
AI Powered Self-Checkout System

Final Year Project Report

GSN: Fall 22-13

Group Members

Muhammad Talha 19L-1271

Muhammad Abdullah 19L-1382

Muhammad Shehryar 19L-1397

Advisor Mr. Mohsin Yousuf

Client Mr. Mohsin Yousuf

3rd June, 2023

Department of Electrical Engineering

National University of Computer and Emerging Sciences, Lahore

GSN: Fall 22-13 1

CERTIFICATIONS

This document has been prepared by all of us together and we take joint ownership of its contents.

We have provided references to the material consulted in preparing this document and, to the best

of our knowledge, have not plagiarized anything.

Muhammad Talha, 19L-1271 Date:

Muhammad Abdullah, 19L-1382 Date:

Muhammad Shehryar, 19L-1397 Date:

I am the client of the product proposed in this document and the product specifications and other

details are according to my requirements.

Client:

Mr. Mohsin Yousuf Date:

The final year project proposal in this document is being submitted to the department of Electrical

Engineering with my approval.

Advisor:

Mr. Mohsin Yousuf Date:

Head of Department:

Dr. Saima Zafar ____________ Date:

GSN: Fall 22-13 2

Abstract

In the fast-paced retail industry, long and inefficient checkout processes have emerged as a

significant problem, impacting both customer satisfaction and sales performance. It's striking that

70% of customers name waiting in checkout lines as their least favored part of shopping in physical

stores [1]. This clear problem statement prompted us to find an innovative solution, employing the

power of Artificial Intelligence (AI) and computer vision to improve the retail checkout

experience.

To address this issue, we set out to develop a system capable of quickly and accurately identifying

and scanning products, thereby doing away with the need for traditional barcodes and RFID tags.

The system leverages the power of the latest iteration of the You Only Look Once (YOLO) object

detection system, YOLOv7. This tool offers significant improvements in accuracy and speed over

previous versions and existing solutions in the market [5]. The system was purposefully designed

to be integrated into a moving conveyor belt setting, enabling real-time product detection and

quantity identification without interrupting the conveyor's operation. The system is also designed

to be easily attachable to existing checkout lanes and is cost-effective

Following our thorough procedures, we managed to create a system that greatly reduces checkout

times. It efficiently identifies the type and number of products, rapidly generates invoices, and

displays this information on an easy-to-use interface. This technology outperforms traditional

barcode scanning methods, which often required multiple scans, causing longer wait times and

lowering customer satisfaction.

In conclusion, the broader impact of our project is significant. By providing a quicker, more

efficient checkout process, we are improving the overall shopping experience, increasing customer

satisfaction and boosting retail sales. Our findings and the developed system hold the potential to

redefine industry standards, paving the way for more sophisticated, AI-enabled solutions.

Keywords: Retail Industry, Checkout Process, YOLOv7, Real-Time Tracking, Cost-Effective

Solution, Customer Satisfaction, Sales Performance.

GSN: Fall 22-13 3

Table of Contents

Abstract .. 2

Table of Contents .. 3

List of Figures .. 5

List of Tables ... 7

Acknowledgements ... 8

Chapter 1: Introduction .. 9

Chapter 2: Problem Definition (Client Requirements) .. 10

2.1 Problem Formulation .. 10

2.2 Mapping to Sustainable Development Goals (SDG) ... 11

2.3 Record of Meetings with Client .. 11

2.4 Preliminary Product Specification .. 12

2.5 Expected Functionality of Product .. 13

Chapter 3: Problem Analysis ... 14

3.1 Engineering Problem Model ... 14

3.2 Recent Similar Projects ... 15

3.3 Distinguishing Features of this Project ... 15

3.4 Societal and Environmental Implications of the Project ... 16

Chapter 4: Design and Implementation .. 18

4.2 Preliminary Design .. 18

4.2.1 Hardware Block Diagram ... 20

4.2.2 Software Block Diagram ... 20

4.3 Detailed Hardware and Software Design: ... 21

4.3.1 Calculations .. 27

4.3.2 Hardware Design .. 29

4.3.3 Software Design ... 29

4.3.4 Software Implementation: ... 30

GSN: Fall 22-13 4

4.3.5 Hardware Implementation: ... 43

Chapter 5: Investigation and Testing .. 53

5.1 Camera and Object Recognition Test: .. 53

5.2 Performance between Local Processing and Client-Server Method: ... 57

5.3 User Interface and Touchscreen Test: .. 58

5.4 Complete System Test: ... 59

5.5 Payment Gateway Test: .. 60

Chapter 6: User Guide .. 62

Step 1: Setting Up the Self-Checkout System ... 62

Step 2: Scanning Items .. 62

Step 3: Reviewing Your Cart .. 64

Step 4: Making Payment ... 64

Step 5: Troubleshooting .. 64

Chapter 7: Deliverables and Cost ... 66

7.1 Deliverables .. 66

7.2 Project Plan ... 67

7.3 Project Cost (Projected) .. 71

Chapter 8: Conclusion .. 73

References .. 76

Appendices ... 79

Glossary ... 86

GSN: Fall 22-13 5

List of Figures

Figure 1 SDG 9 ... 11

Figure 2 Major Components of the System .. 18

Figure 3 Top Level Block Diagram ... 19

Figure 4 Software Block Diagram .. 19

Figure 5 User Interface.. 20

Figure 6 Hardware Block Diagram .. 20

Figure 7 Software Block Diagram .. 21

Figure 8 Flask API .. 21

Figure 9 HTML, CSS AND JavaScript .. 22

Figure 10 Working of YOLO Algorithm .. 23

Figure 11 YOLOv7 Pre-trained Models .. 24

Figure 12 YOLOv7 Predicted Batch ... 24

Figure 13 Performance Metrics over Iterations .. 24

Figure 14 Predictions made by Demo Model ... 25

Figure 15 Product Multi Price Bracket Problem ... 25

Figure 16 Solution # 1 - Fetching Dimensions ... 25

Figure 17 Text Recognition from ABINET(MMOCR).. 26

Figure 18 Solution # 2 - Text Recognition ... 26

Figure 19 All Hardware Components .. 27

Figure 20 3D Schematic for the Conveyor Belt ... 29

Figure 21 Images for Training ... 31

Figure 22 Label File ... 31

Figure 23 YoloV7 (Regular) Model Metrics ... 32

Figure 24 Confusion Matrix for YoloV7 (Regular) ... 33

Figure 25 Test Results from YoloV7 (Regular) .. 33

Figure 26 UI of the Web-App .. 42

Figure 27 - Nvidia Jetson Nano Attached to a Screen ... 43

Figure 28 - Logitech C310 Webcam .. 44

Figure 29 7-inch touchscreen for Jetson Nano ... 44

Figure 30 10A 12-40V PWM Controller... 45

Figure 31 Detachable Box ... 46

Figure 32 Base for the Conveyor Belt .. 46

Figure 33 Complete Structure ... 47

Figure 34 Painting Process of Conveyor Belt .. 47

Figure 35 Painting of Detachable Box ... 47

Figure 36 Testing of Conveyor Belt ... 48

Figure 37 Box Housing .. 49

GSN: Fall 22-13 6

Figure 38 Configuring Jetson Nano ... 49

Figure 39 Testing the System on Jetson Nano .. 50

Figure 40 - Camera Installation ... 50

Figure 41 Screen Installation & Testing .. 51

Figure 42 Testing the System .. 52

Figure 43 Testing on Choco Bliss ... 53

Figure 44 Choco Bliss displayed on Counter ... 54

Figure 45 Testing on Slanty ... 55

Figure 46 Testing on 2 products at once ... 55

Figure 47 Testing on Head & Shoulders from the Front ... 56

Figure 48 Testing on Head & Shoulders from the Back .. 56

Figure 49 Testing on Euthrix DF .. 56

Figure 50 Testing on Shangrila Chilli Sauce ... 57

Figure 51 Testing on Mountain Dew ... 57

Figure 52 Touch Screen Interface ... 59

Figure 53 All checkout items in the cart ... 60

Figure 54 Payment Processed for the Order... 60

Figure 55 Entering Payment Information ... 61

Figure 56 Payment Successfully Completed ... 61

Figure 57 Payment History .. 61

Figure 58 Video Streaming Demonstration .. 63

Figure 59 Checkout Counter ... 63

Figure 60 Jetson Nano Pinout ... 79

Figure 61 Jetson Nano Pin Diagram .. 79

GSN: Fall 22-13 7

List of Tables

Table 1: Table of Meetings ... 11

Table 2 OCR Results .. 54

Table 3 High Level Work Breakdown Structure .. 67

Table 4 Complete Gantt Chart of the Project ... 67

Table 5 Projected vs. Actual Time ... 71

Table 6 Projected Cost .. 71

Table 6 Actual Cost.. 72

GSN: Fall 22-13 8

Acknowledgements

We would like to express our gratitude to our esteemed advisor, Mr. Mohsin Yousuf, for his

invaluable guidance, unwavering support, and thoughtful mentorship throughout the duration of

this project. His expert advice and insightful suggestions have been pivotal in shaping our work.

Our sincere appreciation extends to Ms. Khizra Farooq and Ms. Sara Kiran, members of the

evaluation committee, whose constructive critique and valuable input have further refined our

project, enhancing the strength and validity of our research findings.

We are also deeply grateful to the Pakistan Engineering Council (PEC) for their generous provision

of funds. Their financial support has been crucial in bringing our research to fruition.

Our acknowledgement would be incomplete without mentioning the conducive academic

environment provided by the Faculty of Electrical Engineering at FAST-NU Lahore. The resources

and facilities provided have significantly facilitated our study, enabling the successful completion

of this project.

Lastly, we express our heartfelt gratitude to our families. Their relentless support, encouragement,

and belief in our abilities have been a constant source of motivation throughout this journey. They

have shared our challenges and celebrated our successes, for which we are profoundly grateful.

We appreciate all who have directly or indirectly contributed to our work. The support and

assistance received have been instrumental in the successful realization of this project.

GSN: Fall 22-13 9

Chapter 1: Introduction

The evolution of retail has consistently been driven by technological advancements, with AI and

computer vision serving as the latest catalysts. The prevalent issue of slow and inefficient checkout

processes in retail stores continues to persist, with 70% of customers marking their wait in

checkout lines as the least enjoyable part of their in-store shopping experience [1]. Consequently,

the retail industry is in dire need of an effective solution, which motivated the development of our

system.

Several previous studies have investigated different ways to tackle this problem [2]. The use of

barcodes and RFID tags has long been the standard practice, but these methods fall short in

efficiency and customer satisfaction, primarily due to their reliance on manual scanning, which is

time-consuming and prone to errors. Some solutions have suggested the use of AI, but most fail to

realize the full potential of this technology. Our project takes a step further by incorporating an

advanced object detection system.

Our solution, an automated checkout system, leverages AI and computer vision to redefine the

checkout experience. It is powered by YOLOv7, the latest iteration of the You Only Look Once

(YOLO) object detection system, known for its speed and accuracy [5]. The system eliminates the

need for manual barcode scanning by automatically identifying products and their quantities as

they pass on a conveyor belt. It generates invoices swiftly and accurately, displays them on a user-

friendly interface, and keeps the conveyor belt in continuous operation for optimal efficiency.

Our design hypothesis centered around the potential of AI and computer vision to speed up the

checkout process without sacrificing accuracy. The system aims to improve the customer shopping

experience by reducing checkout time, making it more efficient and user-friendly. By doing so, it

could potentially boost sales performance and customer satisfaction in the retail industry.

In conclusion, our project takes a comprehensive approach towards solving a pervasive problem

in the retail industry. We connect the real-world issue of slow checkout processes with an

innovative AI-based solution, establishing a direct link between the problem and our proposed

solution. We believe that our project paves the way for the broader adoption of AI and computer

vision in retail and beyond.

GSN: Fall 22-13 10

Chapter 2: Problem Definition (Client Requirements)

2.1 Problem Formulation

The retail industry has been grappling with the issue of slow checkout processes, primarily due

to the prevalent method of barcode scanning. This conventional approach has become a

bottleneck in streamlining retail operations, resulting in long queues at checkout lanes and

leading to customer dissatisfaction [1], particularly during peak shopping periods like holidays or

special occasions. This problem is compounded by the fact that customers are becoming more

demanding, expecting quick, efficient, and seamless shopping experiences.

Upon consultation with our advisor, we recognized the need for a more effective solution that

enhances the speed and accuracy of the checkout process while maintaining cost-effectiveness.

The consensus was that the ideal solution would significantly minimize checkout times, thus

improving the overall customer experience.

From the information gathered, we identified our problem as follows:

"How to develop a system that expedites the checkout process by surpassing the speed and

efficiency of manual barcode scanning, while ensuring accuracy, cost-effectiveness, and

improved customer satisfaction?"

Following this problem formulation, we established the following order of importance for the

system features:

1. Speed: The system should significantly reduce the checkout time compared to manual barcode

scanning.

2. Accuracy: It must correctly identify products and their quantities to avoid discrepancies in

invoicing.

3. Cost-effectiveness: The solution should be economically feasible for retail stores of various

sizes.

4. Customer satisfaction: By reducing queue times and streamlining the checkout process, the

system should improve overall customer satisfaction.

GSN: Fall 22-13 11

2.2 Mapping to Sustainable Development Goals (SDG)

Figure 1 SDG 9

Our project resonates with Sustainable Development Goal (SDG) 9: Industry, Innovation, and

Infrastructure. SDG 9 emphasizes the promotion of sustainable industrialization and the fostering

of innovation [16], both central aspects of our project. By leveraging the cutting-edge

advancements in AI and computer vision, we strive to revolutionize the retail industry,

specifically focusing on improving efficiency at the checkout process. Our system aims to

streamline this traditionally tedious procedure, reducing the turnaround time and enhancing the

overall shopping experience. This innovation is expected to spur productivity in retail settings

and is indicative of the sustainable and resilient infrastructure that SDG 9 seeks to promote.

Therefore, our project's objectives align directly with the key elements of SDG 9, underlining

our commitment to contributing to sustainable development on a global scale.

2.3 Record of Meetings with Client

Table 1: Table of Meetings

Meeting Date Discussion

1

(9-Sep-22)

Problem Statement

Refinement and Discussing

Solutions

2

(16-Sep-22)

Discussion of Final Product

Description

3

(10-Oct-22)

Selection of Sustainable

Development Goal

4

(17-Oct-22)

Progress in App Development

GSN: Fall 22-13 12

5

(24-Oct-22)

Selection of Hardware

Components, Same Product

Problem and Selection of

Algorithm

6

(21-Nov-22)

Progress Before Final

presentation

7

(25-Nov-22)

Feedback on Final

Presentation and FYP-1

Report

8 (2-Feb-23) Progress After Semester

Break, Remaining Tasks,

Plans

9 (9-Feb-23) Hardware Integration and

Conveyor Belt Mechanism

Updates

10 (16-Feb-23) Progress on Final Trained

Model & Acquisition of Jetson

Nano

11 (9-Mar-23) Updates to Payment Gateway

and Check-out Procedure

12 (16-Mar-23) Improving User Interface

based on Feedback

13 (22-Mar-23) Final System Testing and

Debugging

14 (4-Apr-23) Comprehensive System

Debugging

15 (19-Apr-23) Future Work

2.4 Preliminary Product Specification

In response to the client's need for an efficient, accurate, and cost-effective product identification

system that can seamlessly integrate with existing retail infrastructure, we have conceived an

engineering solution that meets these demands.

Our proposed solution is a modular, attachable box that serves as a product identification and

scanning system. It is designed to be the same size as a standard checkout counter, measuring

GSN: Fall 22-13 13

approximately 2 feet in height, 1 foot in length. The entry points of the box will remain open to

accommodate the movement of products on the conveyor belt.

The system is powered by NVIDIA Jetson Nano, a low-cost, high-performing Single Board

Computer (SBC) that will be housed inside the roof of the box. The SBC will be paired with a

1080p30 high-resolution camera that boasts a wide field of view, ensuring comprehensive

coverage of the box's interior.

The system will employ a machine learning model, specifically the YOLOv7 object

classification model, for product identification. The model will be trained using a dataset of retail

products and subsequently deployed on the SBC. This enables the live processing of product

images captured by the camera as they pass through the box on the conveyor belt.

To ensure usability, the system will also feature a user-friendly, 7-inch touch screen display on

one side of the box. This display will provide real-time information about product names and

quantities, enabling customers and cashiers to easily navigate and verify their purchases.

In summary, this system is designed to revolutionize the checkout process, combining speed,

accuracy, and affordability in a package that fits seamlessly into the existing retail setup. As an

engineering product, it encapsulates the translation of vague client requirements into a tangible,

innovative solution.

2.5 Expected Functionality of Product

Designed to streamline the retail checkout process, our product leverages machine vision and AI

to automate the product scanning and checkout process. Here is how it functions in a real-world

retail environment:

1. The customer begins the checkout process by placing their grocery items on the conveyor

belt.

2. As the items travel along the conveyor belt, they pass through our specially designed box,

where the attached camera under the roof of the box captures images of each product.

3. The images are then immediately sent to the single board computer housed within the

system.

4. Using the pre-trained YOLOv7 model, the computer rapidly identifies each product,

determines their quantity, and fetches their respective prices.

5. This information, including the product names, quantities, and their total price, is

displayed on the user-friendly, 7-inch touch screen interface attached to the box.

6. The customer can then easily proceed to payment, guided by the intuitive user interface.

GSN: Fall 22-13 14

Chapter 3: Problem Analysis

3.1 Engineering Problem Model

The backbone of this project rests on the integration of computer vision, convolutional neural

networks (CNNs), deep learning, and Optical Character Recognition (OCR). These technologies

combine to facilitate real-time object detection and classification, offering the potential to

revolutionize the retail checkout process.

Computer vision is a field that enables computers to interpret and make sense of visual data, such

as images and videos. Within this field, object detection is a technique that locates and identifies

objects within an image or video stream. The technique is integral to various applications,

including autonomous driving, facial recognition, and medical imaging analysis.

A vital aspect of this project is the use of deep learning, a subset of machine learning [3], to

automate the learning of image features. It's the key driving force behind the object detection

capabilities of our system. In particular, we leverage Convolutional Neural Networks (CNNs), a

type of Artificial Neural Network (ANN) adept at recognizing patterns in multi-dimensional

spaces, making them an excellent fit for image processing.

Several deep learning techniques exist for object detection [4] including Faster-RCNN, SSD, and

YOLO. Our project opts for YOLO (You Only Look Once) due to its unique approach of

analyzing an image in a single pass, providing both speed and efficiency. More specifically, we

employ YOLOv7, the latest iteration in the YOLO family. YOLOv7 stands out due to its top-

ranking performance in real-time object detection on the COCO dataset.

Moreover, our system supports multi-class classification, allowing each distinct product to be

assigned to a specific class depending on the product type. To facilitate this, a labelled dataset of

the grocery products we aim to detect is created and divided into training and testing subsets.

The training subset is then used to train the YOLO algorithm.

Finally, we utilize OCR - a technique for extracting machine-readable text from images or video

- to add another layer of accuracy to our system. This approach helps in differentiating the same

product available in various price brackets. It serves as a secondary validation mechanism,

ensuring the robustness and accuracy of our solution.

In summary, the combination of computer vision, CNNs, deep learning, and OCR provides a

comprehensive and reliable solution to the problem at hand, marking a significant advancement in

the retail checkout process.

GSN: Fall 22-13 15

3.2 Recent Similar Projects

A Hybrid Checkout System by Tycho Hartman [7]

This project outlined the design of a combined checkout system comprising both attended checkout

and self-checkout lanes. The checkout process within this model is handled either by customers

using a barcode scanner or through RFID tags on products. However, unlike our approach,

Hartman's project does not incorporate machine learning or AI-based object detection capabilities.

AI-based machine vision for retail self-checkout system by Anton Rigner [8]

This Master Thesis presents a self-checkout system that uses the YOLOv3 object detection

algorithm for retail products. The project discussed three prominent object detection algorithms

(Mask R-CNN, RetinaNet, and YOLOv3) and evaluated their performance on a dataset of ten

Swiss retail products. A functional prototype was also developed, which featured a shelf that

detected and displayed an object once removed. However, the scope of this project is limited to

static scenarios such as shelves, and the checkout screen is immediately adjacent to the shelf, which

contrasts with our broader, more versatile solution.

ARC: A Vision-based Automatic Retail Checkout System [9]

This project also introduced a self-checkout system using computer vision and convolutional

neural networks, trained on a dataset of a hundred local retail items across various categories. The

design incorporated a conveyor belt with a hood and a LASER-LDR (Light Dependent Resistor)

module to detect products. The conveyor belt would pause once a product is detected, allowing

the computer to extract a frame before proceeding. However, this system relies on OpenCV for

object detection and lacks real-time multiple object detection capabilities. This differs from our

approach, where we aim to enable real-time detection and recognition of multiple objects

simultaneously.

3.3 Distinguishing Features of this Project

Our project introduces several distinguishing features that significantly differentiate it from

similar initiatives, driving notable enhancements in retail checkout experiences. The unique

aspects of our project are as follows:

• Implementation of YOLOv7: Our system leverages the cutting-edge YOLOv7

algorithm, which provides improved performance over previous YOLO versions in terms

of object detection. This choice of algorithm offers greater accuracy and efficiency in

real-time identification and counting of products [5].

GSN: Fall 22-13 16

• Continuous Movement: Unlike some existing solutions, our system operates on a

conveyor belt where objects remain in constant motion. This continuous flow negates the

need to stop the belt for product detection, promoting operational efficiency.

• Real-Time Multi-Object Detection: Our solution is capable of identifying and

quantifying multiple products in real-time, which considerably speeds up the checkout

process and enhances user experience.

• Modularity: The system is designed to be an attachable module for existing checkout

lanes, facilitating easy integration without disrupting the current retail setup.

• Cost-Effective: Compared to market solutions and similar projects, our system stands out

as a cost-effective alternative. We strive to ensure its economic feasibility within the local

Pakistani context.

• User-Friendly Interface: Our system incorporates a user-friendly interface designed to

assist cashiers or customers in seamlessly navigating and utilizing the system.

• Object Tracking: The application of a tracking algorithm enhances the system's

accuracy by continually tracking detected objects, ensuring accurate identification even

in the rare instance of detector malfunction.

• Diverse Product Identification: Our system is capable of differentiating between the

same product available in different sizes and price brackets. This is achieved through

evaluating object dimensions and applying a text recognition algorithm to extract

pertinent details from the product. This dual-check mechanism also serves as an

additional safeguard against any potential misclassifications by YOLOv7.

3.4 Societal and Environmental Implications of the Project

This project aims to enhance the shopping experience in Pakistan by expediting the checkout

process in retail stores, a sector currently lagging in terms of technological advancement [10].

The proposed system will not only improve the quality of life for customers but also encourage a

shift back to in-person shopping from online platforms, especially for those items where physical

verification is crucial before purchase. By reducing wait times, the system will elevate customer

satisfaction and minimize the chances of disgruntlement or complaints. However, the cultural

aspect of implementing a fully self-checkout system, particularly in Pakistan, has its own

implications. Issues surrounding honesty and trust mean that complete autonomy of the system is

not feasible. We propose a model that still involves human supervision to mitigate the risk of

exploitation, ensuring that all items are correctly placed on the conveyor belt.

GSN: Fall 22-13 17

Environmentally, the system must be power-efficient. With Pakistan grappling with an energy

crisis, it is paramount to deploy a system that optimizes power consumption. Utilizing a single-

board computer offers an energy-efficient solution without compromising processing power,

making the system sustainable for wider-scale implementation.

From a societal perspective, the implementation of self-checkout systems could lead to job losses

in a country already battling high unemployment rates. Our proposed system, however, doesn't

aim to render cashiers redundant. Instead, it seeks to alleviate their workload and enhance customer

service efficiency. The cashiers would still be present, providing guidance to customers on system

usage and monitoring both the system and customers for smooth operations. The primary objective

of this system, therefore, is not to eliminate jobs, but to streamline the checkout process, making

shopping experiences more efficient and enjoyable.

GSN: Fall 22-13 18

Chapter 4: Design and Implementation

Design Requirements:

• System should be able to identify products with high accuracy.

• System should be faster than manual scanning.

• System should reduce the wait time of checkout lines.

• UI of the system should be easy to navigate even for a new customer.

• System should be modular such that it is attachable to existing conveyor belts.

• System should be cost-effective than market available solutions.

Design Constraints:

• This project will focus on conveyor belt implementation only and not on smart carts and

baskets.

• Initial Dataset would be kept small and have popular items from each category.

• The UI should be easy to use and navigate for any customer regardless of their educational

level

• The system shouldn’t have high power consumption due to already high demands and

relatively less supply of electricity in Pakistan.

• The components of the hardware shouldn’t be exposed to account for safety of the system

and the customer.

4.2 Preliminary Design

The system will have 3 components

• An existing conveyor belt that will move the products around

• An identification model that detects and identifies the retail products via cameras.

• An app that displays the retail products, their prices and a checkout button to generate a

receipt.

Figure 2 Major Components of the System

GSN: Fall 22-13 19

Figure 3 Top Level Block Diagram

Figure 4 Software Block Diagram

GSN: Fall 22-13 20

Figure 5 User Interface

4.2.1 Hardware Block Diagram

The conveyor belt has a modular box attached to it. The box houses a Nvidia Jetson Nano or

alternative SBC inside its roof. The camera is attached below the roof of the box which is also

connected to the Nvidia Jetson Nano/SBC. A 7-inch touchscreen is attached on the side of the box

visible to the customer. This touchscreen is also connected to Nvidia Jetson Nano/SBC

Figure 6 Hardware Block Diagram

4.2.2 Software Block Diagram

The front end of the web app is made using HTML, CSS and JavaScript. This front end

communicates with Flask API on what products to show on the app. The Flask API communicates

with the YoloV7 model to get the required product data for the front end to display.

GSN: Fall 22-13 21

Figure 7 Software Block Diagram

4.3 Detailed Hardware and Software Design:

The interactive display of products on the touchscreen will be facilitated by a web application, a

strategic choice aimed at ensuring scalability. This design allows for seamless deployment across

multiple branches of a departmental store, if required. To construct the backbone of this web

application, we will employ Flask, a well-regarded micro-framework renowned for its utility in

application development [17]. Complementing the back-end, the front-end of the application will

be crafted using a combination of HTML, CSS, and JavaScript, integrating a user-friendly

interface with robust functionality.

Figure 8 Flask API

GSN: Fall 22-13 22

Figure 9 HTML, CSS AND JavaScript

The web application can also be efficiently converted into a cross-platform desktop application

with the help of Flask-Desktop. This powerful utility, powered by PySide2 [18], enables the

creation of standalone executables that can operate seamlessly on diverse platforms such as

Windows, Mac, and Linux. This ensures a broader reach of our solution, accommodating various

user preferences and providing an added layer of flexibility, if needed.

For the object detection algorithm several options are available which include but are not limited

to:

• Faster R-CNN

• EfficientDet

• ConvNeXt

• SSDNet

• SPP-Net

• HOG

• YOLOv5

• PP-YOLO

• YOLOR

• YOLOv7 and many more

Among various viable choices, YOLOv7 was selected as the optimal solution for the object

detection task. The reasons for this preference include its top-ranking status in Average Precision

for Real-Time Object Detection in the COCO dataset [11]. This dataset is a crucial benchmark

because our system necessitates both real-time processing and high average precision.

YOLOv7 operates via a single-stage object detection methodology. It initiates by segmenting the

image into N distinct grids, each grid with a dimension of SxS. Object detection and localization

are performed within these grids. Following this, for each grid, bounding box predictions are made

along with their corresponding probability scores. In order to prevent any overlap, Non-Maximal

Suppression is applied, effectively eliminating all bounding boxes associated with low

probabilities. This ensures a refined and precise object detection output [11]

GSN: Fall 22-13 23

Figure 10 Working of YOLO Algorithm

To train this model, a dataset needs to be created. This dataset will contain a few products each

from the following categories

• Beverages

• Dairy

• Cereals

• Frozen Foods

• Personal Care

• Household Supplies

• Pet Care

• Baby Items

• Snacks

• Canned Goods

• Condiments

• Baking

• Health Care

The process of collecting and annotating the dataset would be semi-automated to speed up the

process and allow for a large number of labelled images for each product. Tools like autoAnnoter

[12] and MakeSenseAI [13] can annotate images automatically using any pre-trained model. This

can speed up labelling even if there is a slight cost of accuracy. Wrong labels can be corrected

later. Though if annotating images without any model dependency is a priority, then DarkLabel

[14] can be used which automatically annotates the videos with its built-in object tracking

algorithms.

For the training part of the model, a pretrained model was selected (YOLOv7.pt for Jetson Nano)

GSN: Fall 22-13 24

Figure 11 YOLOv7 Pre-trained Models

A demo model based on 4 products was then trained on our dataset. Below are some results and

visualized metrics of the trained model.

Figure 12 YOLOv7 Predicted Batch

Figure 13 Performance Metrics over Iterations

GSN: Fall 22-13 25

Below are some predictions made by the model. It can be observed that the model can detect the

front and back of an object. But the model is still unable to differentiate the same product of

different sizes.

Figure 14 Predictions made by Demo Model

For that, there are two proposed solutions. The first is to use the height and width information

from the bounding boxes of the product to classify the exact product. This is accurate for most

scenarios but the distance of the camera needs to be fixed and the ranges of height and width

need to be pre-defined for that fixed distance.

Figure 15 Product Multi Price Bracket Problem

Figure 16 Solution # 1 - Fetching Dimensions

GSN: Fall 22-13 26

The second solution is to use a text-recognition algorithm in addition to the object detection

algorithm. YOLOv7 is able to save the cropped images from its predicted results. These cropped

images can be sent to a text-recognition model where it can extract information that can help the

system identify the exact product. This text-recognition layer can also serve as another check

even if the object detector wrongly classifies a product. The reason of applying text-recognition

on a cropped image is to make sure that the text belongs to that product only and not mix-up text

from multiple images.

Figure 17 Text Recognition from ABINET(MMOCR)

Figure 18 Solution # 2 - Text Recognition

GSN: Fall 22-13 27

The box will have the following components

The design of the conveyor belt is a secondary part of the project as the box will be attachable to

any pre-existing conveyor belt to reduce cost.

Figure 19 All Hardware Components

A 775 100W DC motor (controlled by a 10A 12-40V PWM Controller) will be used for the

conveyor belt to prevent unnecessary load on the Nvidia Jetson Nano and to keep the conveyor

belt part independent from the box.

4.3.1 Calculations

Following are the significant design calculations needed for this project

a) Power Consumption of Attachable Modular Box

b) Belt Pull and Power Calculation (For the optional conveyor belt)

a) Power Consumption of Attachable Modular Box

Nvidia Jetson Nano 4GB consumes 10W of power in the default mode and up to 20W of power

for peak performance

GSN: Fall 22-13 28

Assuming Jetson Nano is running at maximum power of 20W for the entire 24 hours. The

maximum power consumption would be

E = P x t … Wh

Power Consumed per Day

= 20W * 24 hours

= 480 Wh / Day

= 0.48 kWh / day

Power Consumed per Month

= 20W * 24 hours * 30 days

= 14,400 Wh / Month

= 14.4 kWh / Month

Power Consumed per Year

= 20W * 24 hours * 365 days

= 175,200 Wh / Year

= 175.2 kWh/Year

b) Belt Pull and Power Calculation (For the optional conveyor belt)

For this portion, the calculations are done in metric units

Mass of a standard conveyor belt = 4.5 kg/m

Length of a standard retail conveyor belt = 900 mm or 0.9 m

Belt Speed = 0.25 m/s

Total Mass = 50 kg + 0.9 m * 4.5 kg/m

Total Mass = 50 kg + 4.05 kg

Total Mass = 54.05 kg

Total Weight = 54.04kg * 9.81 N/kg = 530.23 N

Belt Pull = Total Weight * Frictional Coefficient

Belt Pull = 530.23 N * 0.5 (Assuming Frictional Coefficient of 0.5)

Belt Pull = 265.115 N

Required Power = Belt Pull x Belt Speed

Required Power = 265.115 N * 0.25 m/s

Required Power = 66.28 Nm/s

GSN: Fall 22-13 29

Required Power = (66.28 Nm/s)/(1 Nm/s per Watt)

Required Power = 66.28W

4.3.2 Hardware Design

Figure 20 3D Schematic for the Conveyor Belt

4.3.3 Software Design

The following tools and libraries will be used for the software part of this project

• Anaconda

• MMOCR

• YOLOv7

• PyTorch

• FlaskAPI

• HTML

• CSS

• JavaScript

• TensorFlow

• TensorRT

For the model training, Anaconda will be used to set up a Python environment for training. For

object detection, YOLOv7 algorithm will be used. For text recognition, MMOCR toolbox [15]

will be used. For running the model on the cloud on a desktop, PyTorch can be used. Though the

model will be exported as a TensorFlow model specifically a TensorRT model so that it can run

GSN: Fall 22-13 30

at maximum performance on the Nvidia Jetson Nano. The frontend of the web app will be designed

using HTML, CSS, and JavaScript while the backend will be designed using Flask API

4.3.4 Software Implementation:

Training Object Detection Model (YoloV7):

For the training of the complete model of YoloV7, we first shortlisted the products that would be

classified by the final model. Those products are:

• Nestle Milo

• National Chilli Garlic Sauce

• Nestle Everyday

• Shangrila Chilli Garlic

• Marie Biscuits

• Saltish Biscuits

• Nescafe 3 in 1 Coffee

• Head and Shoulders

• Euthrix DF

• Kurkure Red Chilli

• Lays Masala

• Slanty Masala

• Mountain Dew

• Pepsi

• Choco Bliss

• Shan Bombay Biryani Mix

• Shan Tandoori Mix

• Perk Chocolate

• Mortein Mosquito Spray

• Ponds Face Wash

• Todays Canned Mixed Fruit

• Scotch Brite

• Tapal Danedar Tea

• Crispo Spaghetti

• Tibet Soap

• Palmolive Soap

• King’s Ice Cream Syrup

• Colgate Herbal

• Numberdaar Detergent

• Crispo Pasta

GSN: Fall 22-13 31

To facilitate the training process and ensure uniformity between the training, testing, and

deployment environments, we recorded a video of each product on a black conveyor belt that

mirrors the final setup. Capturing the product from various angles generated a robust dataset and

mimicked the diverse orientations a product might adopt in real-life scenarios.

Every video was approximately 50 seconds long with a frame rate of 30 frames per second. This

yielded approximately 1500 images for each product, producing a comprehensive image library

for model training.

Figure 21 Images for Training

We saved the images using a simple numbering system, ending up with 47,188 images in total.

These images took up about 46GB of storage space. Along with each image, we also created a

label.txt file. This file had the product index and the details of where the product was located

within the image.

Figure 22 Label File

GSN: Fall 22-13 32

The training of the model was done using 6GB of GPU memory. We set a limit of 500 epochs,

but we found that the model usually performed well after just 10 epochs. On average, each epoch

took about an hour and a half to complete.

Once we had trained the model for 5 epochs, we checked its performance using a few different

measures. The results of this check are provided below.

Precision = 96.66%

Recall = 98.99%

mAP@0.5 = 99%

The precision of 96.66% implies few false positives, and a high recall of 98.99% indicates that it

correctly identifies the majority of object instances. The mAP score of 99% at a 0.5 IoU threshold

demonstrates a high level of overlap between the predicted and actual bounding boxes. These

numbers suggest that the model performs very well on the dataset used for evaluation. However,

it's crucial to verify this performance in real-world environments as well, as results could vary

based on the nature and complexity of the data encountered there.

Figure 23 YoloV7 (Regular) Model Metrics

GSN: Fall 22-13 33

Figure 24 Confusion Matrix for YoloV7 (Regular)

Figure 25 Test Results from YoloV7 (Regular)

GSN: Fall 22-13 34

Text Recognition:

For text recognition we have used three different algorithms for the sake of comparison and testing:

• Tesseract: Developed by Google, Tesseract is a versatile optical character recognition

(OCR) engine that supports a wide range of languages. It works exceptionally well with

high-quality images and clear text layout. The performance of Tesseract can be further

enhanced with preprocessing techniques such as noise removal, skew correction, and

binarization [19].

• EasyOCR: EasyOCR is a powerful OCR tool that comes with support for over 80

languages, including complex ones like Chinese, Japanese, and Korean. It employs a deep

learning-based approach and is relatively easy to use and implement. Despite being robust,

it might be slower than traditional OCR tools due to its reliance on deep learning [20].

• MMOCR: MMOCR is an open-source OCR toolbox based on PyTorch and

MMDetection. It is designed to address several major text detection and recognition

scenarios. This tool provides support for a range of cutting-edge text detection and

recognition algorithms, making it a versatile option for various OCR tasks [15].

Below are the implemented functions for all three:

Tesseract EasyOCR MMOCR

def

perform_ocr_pytess(image):

 # Perform OCR on the image

 text =

pytesseract.image_to_string(imag

e, config="--psm 6")

 # Split the text into a list of

lines

 lines = text.split('\n')

 # Remove any empty lines

 lines = [line.strip() for line in

lines if line.strip()]

 return lines

def

perform_ocr_easyocr(image

):

 reader =

easyocr.Reader(['en'])

 results =

reader.readtext(image)

 temp = ''

 for detection in results:

 text = detection[1]

 temp = temp +

text.strip() # this will strip

spaces at the end

 print(temp.upper(),

end="")

 return temp

def

perform_ocr_mmocr(image

):

 # Load the OCR model

 results =

ocr.readtext(image,

print_result=True,

imshow=False)

 # Extract the recognized

text from the results

 return [result['text'] for

result in results]

GSN: Fall 22-13 35

Flask Backend:

Method 1 (Local Processing):

This method performs local processing and requires the device to be capable of handling the

processing at relatively fast speeds for proper real-time classification.

First let’s talk about the imports and the initializations

• Various packages and modules are imported that are required to run the web application

and process the images from the webcam.

• The MMOCR module is loaded with specific parameters for detection and recognition.

• The variables COLORS is defined for drawing bounding boxes with distinct colors.

• The intersect() and ccw() functions are defined for mathematical calculations on the

coordinates.

• The get_output_fps_height_and_width() function is defined to get the height, width, and

frames per second of the webcam feed.

• The _convert_detections_into_list_of_tuples_and_count_quantity_of_each_label()

function is defined to convert the output of the object detection model into a list of tuples

and count the quantity of each label detected.

• The perform_ocr_pytess(), perform_ocr_easyocr(), and perform_ocr_mmocr() functions

are defined to perform OCR on an image using different OCR tools.

• The Flask web app and the Turbo-Flask extension are initialized.

• The names variable is set up to contain all the possible labels that the object detection

model can detect.

• A list data is created, where each element is a list that contains the product ID, name,

quantity, and price. This will later be displayed on the web page.

• The video capture object is created to capture video from the webcam.

• The PyTorch object detection model is loaded from a local file.

• The SORT tracker is initialized with specified parameters.

• The DETECTION_FRAME_THICKNESS,

OBJECTS_ON_FRAME_COUNTER_FONT,

OBJECTS_ON_FRAME_COUNTER_FONT_SIZE, LINE_COLOR,

LINE_THICKNESS, LINE_COUNTER_FONT, LINE_COUNTER_FONT_SIZE, and

LINE_COUNTER_POSITION variables are defined for drawing and displaying on the

video frame.

• The extract_unit_price() function is defined to extract the price from a string.

Now let’s talk about the Web Application Routes themselves:

The '/' route is defined to render the main page of the web application. It uses a template from

Flask, passing in the headings and data for the table to be displayed on the page.

GSN: Fall 22-13 36

@app.route('/')

def index():

 return render_template('index.html',t_headings=headings,t_data=data)

def gen(video):

The gen(video) function is defined. It is responsible for processing the webcam feed frame by

frame. Here's what it does in detail:

It captures a frame from the webcam and converts the color space from BGR to RGB.

 counter=0

 memory = {}

 dets_d = []

 while True:

 success, image = video.read()

 frame = image[:, :, [2,1,0]]

 frame = Image.fromarray(frame)

 frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)

The object detection model is run on the frame, resulting in a set of bounding boxes and class

labels for detected objects.

 detections = model(frame,size=640)

 detv2 = detections.pandas().xyxy[0].to_dict(orient="records")

 #pass an empty array to sort

 dets_to_sort = np.empty((0,6))

 for det in detv2:

 x1 = int(det['xmin'])

 y1 = int(det['ymin'])

 x2 = int(det['xmax'])

 y2 = int(det['ymax'])

 conf = float(det['confidence'])

 cla = det['class']

 dets_to_sort = np.vstack((dets_to_sort, np.array([x1, y1, x2, y2,

conf, cla])))

 #print(dets_to_sort)

GSN: Fall 22-13 37

The detections are passed to the SORT tracker, which assigns each detection a unique ID and

tracks it across frames. The Simple Online and Realtime Tracker (SORT) is a tracking method

that uses Kalman filtering and Hungarian assignment algorithm. It is designed to track objects in

a video as they move from frame to frame. This allows each object to be tracked individually and

consistently.

 # Run SORT

 tracks = sort_tracker.update(dets_to_sort)

 boxes = []

 indexIDs = []

 labels = []

 previous = memory.copy()

 memory = {}

For each tracked object, a bounding box is drawn on the frame, and the object is checked for

intersection with a specified line (the "counter line").

 if len(boxes) > 0:

 i = int(0)

 for box in boxes:

 (x, y) = (int(box[0]), int(box[1]))

 (w, h) = (int(box[2]), int(box[3]))

 color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]

 cv2.rectangle(frame, (x, y), (w, h), color,

DETECTION_FRAME_THICKNESS)

 if indexIDs[i] in previous:

 previous_box = previous[indexIDs[i]]

 (x2, y2) = (int(previous_box[0]), int(previous_box[1]))

 (w2, h2) = (int(previous_box[2]), int(previous_box[3]))

 p0 = (int(x + (w - x) / 2), int(y + (h - y) / 2))

 p1 = (int(x2 + (w2 - x2) / 2), int(y2 + (h2 - y2) / 2))

 cv2.line(frame, p0, p1, color, 3)

If an object intersects the counter line, the counter is incremented and the OCR functions are run

on the cropped area of the frame that contains the object.

 if intersect(p0, p1, (250,500), (250,0)):

 counter += 1

 cid = int(result['class'])

 # ========================OCR

HERE============================== #

 cropped_img = frame[y:y+h, x:x+w]

GSN: Fall 22-13 38

 # Apply Gaussian blur to the cropped image

 blur_img = cv2.GaussianBlur(cropped_img, (5, 5), 0)

 # Apply Otsu thresholding to the blurred image

 gray_img = cv2.cvtColor(blur_img, cv2.COLOR_BGR2GRAY)

 thresh_img = cv2.threshold(gray_img, 0, 255,

cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

 ocr_texts_pytess = perform_ocr_pytess(thresh_img)

 ocr_texts_easyocr = perform_ocr_easyocr(cropped_img)

 ocr_texts_mmocr = perform_ocr_mmocr(cropped_img)

 print(ocr_texts_pytess)

 print(ocr_texts_easyocr)

 print(ocr_texts_mmocr)

 ocr_texts = ocr_texts_mmocr

 #Match OCR text with the hard-coded list

 best_match = ""

 highest_similarity = 0

 best_match_index = -1

 for index, ref_text in enumerate(ocr_results):

 #Calculate the average similarity across all detected

texts

 total_similarity = 0

 avg_similarity = 0

 for ocr_text in ocr_texts:

 similarity = SequenceMatcher(None, ocr_text,

ref_text).ratio()

 total_similarity += similarity

 if len(ocr_texts) != 0:

 avg_similarity = total_similarity /

len(ocr_texts)

 if avg_similarity > highest_similarity:

 highest_similarity = avg_similarity

 best_match = ref_text

 best_match_index = index

The OCR results are compared with a predefined list of possible results to find the best match. If

a match is found, the corresponding counter in the data list is incremented.

GSN: Fall 22-13 39

 data[cid][2] += 1

 text2 = names[labels[i]]

The function yields the frame as a byte stream, which can be displayed on the web page.

Front-end Web App

 ret, jpeg = cv2.imencode('.jpg', frame)

 frame = jpeg.tobytes()

 yield (b'--frame\r\n'

 b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')

Then a client token is generated which is required by the Braintree client SDK. This client token

is then passed to the checkout.html page where it's used to setup the Braintree client instance and

to tokenize payment information.

Create a route for the checkout form

@app.route('/checkout', methods=['GET', 'POST'])

def checkout():

 # Generate a client token using the Braintree Python SDK

 client_token = braintree.ClientToken.generate()

 # Render the checkout form using Flask templating

 return render_template('checkout.html', client_token=client_token)

when a payment is initiated from the client (typically a form submission), the server receives a

POST request at the /process_payment endpoint. The server then receives the payment method

nonce, which is a one-time-use reference to payment information provided by the customer.

Using the Braintree Python SDK [21], a new transaction is made with the

braintree.Transaction.sale function, which initiates the transaction. The amount to charge is

calculated as total_price * 0.0035. The "submit_for_settlement": True option automatically

submits the transaction for settlement, meaning the payment will be transferred to your account.

Handle the payment request when the checkout form is submitted

@app.route('/process_payment', methods=['POST'])

def process_payment():

 global total_price

 # Get the payment method nonce from the request

 nonce = request.form['payment_method_nonce']

 # Create a transaction using the Braintree Python SDK

 result = braintree.Transaction.sale({

 "amount": total_price*0.0035,

 "payment_method_nonce": nonce,

GSN: Fall 22-13 40

 "options": {

 "submit_for_settlement": True

 }

 })

Once the transaction is attempted, the application checks the result of the transaction. If the

transaction was successful (result.is_success), the user is redirected to a success page

(success.html). If the transaction was not successful, the user is shown a message with the failure

reason.

 # Handle the result of the payment request and provide feedback to the

customer

 if result.is_success:

 return redirect(url_for('success'))

 else:

 return "Payment failed: %s" % result.message

Method 2 (Client-Server):

This method sends the webcam stream from the client to the server for processing and then the

results are sent back to the client

First the webcam feed is captured. This could be done through various ways, but for web

applications, the MediaDevices API is typically used. This API provides access to connected

media input devices like cameras and microphones.

 const video = document.getElementById("webcam");

 const processed = document.getElementById("processed");

 // Get the webcam feed

 navigator.mediaDevices.getUserMedia({ video: true })

 .then(stream => {

 video.srcObject = stream;

 });

The client application then sends this feed to a server where the processing will occur.

@app.route('/process_frame', methods=['GET', 'POST'])

def handle_process_frame():

 frame_data = request.json["frame"]

 # Decode the base64 frame to a numpy array

 nparr = np.frombuffer(base64.b64decode(frame_data), np.uint8)

 # Convert the numpy array to an OpenCV image (BGR format)

GSN: Fall 22-13 41

 frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)

 processed_image = process_frame(frame)

On the server-side, the received feed is processed (passed through the process(frame) function

where it classifies the products in the frame and sends back the results)

def process_frame(frame_data):

 counter=0

 memory = {}

 dets_d = []

 frame = cv2.cvtColor(np.array(frame_data), cv2.COLOR_RGB2BGR)

Once the processing is complete, the server then needs to send the results back to the client.

Depending on the application, this could be the processed images themselves, or some kind of

data derived from the processing, like object detection results.

 return frame

 # Encode the processed frame back to base64

 retval, buffer = cv2.imencode('.jpg', processed_image)

 jpg_as_text = base64.b64encode(buffer).decode("utf-8")

 return jsonify({"frame": jpg_as_text})

On the client side, these results are received and then rendered appropriately. If the results are

images, they can be displayed directly. If the results are some form of data, the client application

would then handle this data and display it appropriately, perhaps overlaying it on the original

webcam feed or displaying it in another part of the UI.

 // Send the frame to the server periodically

 setInterval(async () => {

 const canvas = document.createElement("canvas");

 canvas.width = video.videoWidth;

 canvas.height = video.videoHeight;

 const ctx = canvas.getContext("2d");

 ctx.drawImage(video, 0, 0);

 const frameData = canvas.toDataURL("image/jpeg").split(",")[1];

 const response = await fetch("/process_frame", {

 method: "POST",

 headers: {

GSN: Fall 22-13 42

 "Content-Type": "application/json"

 },

 body: JSON.stringify({ frame: frameData })

 });

 const data = await response.json();

 processed.src = "data:image/jpeg;base64," + data.frame;

 }, 100); // Adjust the interval duration as needed

This Client-Server method for processing webcam streams is useful when the client-side device

is not powerful enough to do the necessary processing, or when the processing involves

proprietary or confidential algorithms that you don't want to expose on the client side. However,

it does require a stable and relatively fast internet connection, as the webcam feed needs to be

sent to the server and the processed results returned in real time.

Front-End (UI):

The user interface of this web app is designed using html, CSS and JavaScript

Figure 26 UI of the Web-App

Our webpage features a table with four columns: Product Number, Name, Quantity, and Price.

Each row in the table represents a product in the user's shopping cart, with details about it. At the

end of the table, we calculate and display the total price of all products in the cart.

In addition to the product table, the bottom of the page hosts a real-time webcam stream. This

enables users to observe their surroundings while using the app.

Once the user is ready to complete their purchase, they can press the "Checkout" button located

near the total price. Pressing this button will lead them to our secure payment gateway, finalizing

the shopping process.

GSN: Fall 22-13 43

4.3.5 Hardware Implementation:

Conveyor Belt and Modular Box:

The system utilizes a 100cm long and 30cm wide conveyor belt, featuring an attached box with

open entry and exit points. This box is the housing site for all operational components, ensuring

their secure placement and easy maintenance. For seamless interaction, a 7-inch touchscreen is

mounted on the side of the box, providing real-time system control and data display. This compact

and efficient design ensures effortless integration into existing processes.

Nvidia Jetson Nano (Single Board Computer):

The Nvidia Jetson Nano serves as the central processing unit of the self-checkout system. This

compact, yet powerful single board computer (SBC) is capable of running multiple neural

networks in parallel, making it ideal for image recognition tasks.

Figure 27 - Nvidia Jetson Nano Attached to a Screen

GSN: Fall 22-13 44

Camera:

The camera used in this system is the Logitech C310 Webcam. This device is well-regarded for

its high-resolution image capturing capabilities, which is critical for the accurate functioning of

the system. The Logitech C310 provides a clear, real-time video feed to the Nvidia Jetson Nano,

which then identifies the products. Its ease of use and reliability make it a good fit for this

application.

Figure 28 - Logitech C310 Webcam

Touchscreen:

A crucial part of the user interface is the 7-inch touchscreen. It serves as a point of interaction for

the customers, allowing them to view their selected items, total cost, and complete the checkout

process. The screen displays real-time information as the customer places items on the conveyor,

offering a dynamic and intuitive self-checkout experience. Its compact size ensures it fits neatly

into the system design, while still being large enough for comfortable use.

Figure 29 7-inch touchscreen for Jetson Nano

GSN: Fall 22-13 45

10A 12-40V PWM Controller:

Figure 30 10A 12-40V PWM Controller

The PWM (Pulse Width Modulation) Controller DC Motor Speed Controller is a vital

component for controlling the speed of DC motors in a precise and efficient manner. This

controller is designed to handle a working voltage between 12V and 40V DC and is capable of

controlling power ranging from 0.01 to 400W, making it highly versatile for a variety of

applications.

The static current of the controller is extremely low, at just 0.02A, which helps to reduce power

consumption and improve overall efficiency. The speed control range is also wide, from 10% to

100%, offering significant flexibility in controlling the motor speed according to our needs.

The PWM frequency of this controller is 13 kHz. The higher frequency allows for more precise

control over the motor's speed, and it also reduces the risk of the motor experiencing audible

noise or vibration.

One key feature of this controller is its robust safety mechanisms. It is equipped with a fuse tube

that protects the speed controller from burnout caused by short circuits. It also includes a reverse

connection protection function that guards against damage from incorrectly wired connections.

The design of this speed controller includes convenient screw terminals that provide a

straightforward means for connecting wires, enhancing its ease of use and reducing the time

required for setup.

To integrate this into our self-checkout system, the DC Motor Speed Controller could be used to

regulate the speed of the conveyor belt. By adjusting the PWM signals, we can control the

conveyor belt to move at the desired pace, ensuring smooth operation of the system.

GSN: Fall 22-13 46

Hardware Assembly Process:

The assembly process of our self-checkout system involves several key steps, with each

component carefully installed to ensure a cohesive, effective, and user-friendly solution.

1. Establishing the Base Framework:

Our assembly began with the construction of the base structure. This structure forms the

backbone of our self-checkout system, providing essential support and positioning for the

conveyor belt, box housing for system components, and the touchscreen interface.

Figure 31 Detachable Box

Figure 32 Base for the Conveyor Belt

GSN: Fall 22-13 47

Figure 33 Complete Structure

Figure 34 Painting Process of Conveyor Belt

Figure 35 Painting of Detachable Box

GSN: Fall 22-13 48

2. Conveyor Belt Installation:

Following this, we secured the conveyor belt onto the base framework. We paid close

attention to ensuring the belt was taut and could run smoothly, an essential characteristic for

effective product transportation. The conveyor belt's motion was powered by a DC motor,

controlled by a PWM Controller DC Motor Speed Controller 12V-40V 10A.

Figure 36 Testing of Conveyor Belt

GSN: Fall 22-13 49

3. Box Housing Setup:

Next, we attached the box housing to the conveyor belt system. This housing was carefully

designed to securely contain the critical components of our self-checkout system, while

allowing for easy maintenance and potential future upgrades.

Figure 37 Box Housing

4. NVIDIA Jetson Nano Installation

With the box housing in place, we installed the NVIDIA Jetson Nano. This single-board

computer forms the processing hub of our self-checkout system.

Figure 38 Configuring Jetson Nano

GSN: Fall 22-13 50

Figure 39 Testing the System on Jetson Nano

5. Camera Setup

We then mounted the Logitech C310 webcam, strategically positioning it for optimal product

viewing and identification. The webcam, connected to the NVIDIA Jetson Nano, provides

crucial visual data for the system to identify and price products correctly.

Figure 40 - Camera Installation

GSN: Fall 22-13 51

6. Touchscreen Installation

Next, we installed the 7-inch touchscreen onto the side of the box housing. This screen

provides an intuitive interface for user interaction and was placed for comfortable, easy

access. As with the webcam, this was connected to the NVIDIA Jetson Nano.

Figure 41 Screen Installation & Testing

7. Payment Gateway Setup

On the software side, we made sure the payment gateway was correctly integrated with the

interface displayed on the touchscreen. This gateway provides the necessary infrastructure

for processing user payments. (More on this in Chapter 5)

8. Software Installation

We installed all necessary software on the NVIDIA Jetson Nano. This included the image

processing software and the software required to control the conveyor belt and process

payments.

GSN: Fall 22-13 52

9. Testing

With all components installed and software in place, we conducted comprehensive testing to

ensure the system functioned as intended. We tested the conveyor belt's smoothness, the

camera's accuracy in identifying products, the touchscreen's response to user input, and the

payment processing functionality. These tests are vital for ensuring system reliability and

performance.

Figure 42 Testing the System

In conclusion, our assembly process was methodical and meticulous, ensuring each part of our

self-checkout system worked harmoniously with the rest. This process, combined with rigorous

testing, gave us confidence in the system's functionality and reliability.

GSN: Fall 22-13 53

Chapter 5: Investigation and Testing

5.1 Camera and Object Recognition Test:

Procedure: Set up a variety of products in front of the Logitech C310 Webcam and let the

system identify the products. Use different lighting conditions and orientations to test the

robustness of the model.

Expected Result: The system should accurately recognize and classify the products regardless

of orientation.

Actual Result:

The system was largely successful in accurately recognizing and classifying the products under

various orientations. Both the front and back sides of individual products were tested to ensure

robust identification. The system showed an impressive ability to discern the unique features of

each product, correctly classifying them even under different lighting conditions.

When testing multiple products simultaneously, the system managed to separate and identify

individual items effectively. This affirms the capacity of our self-checkout system to handle real-

world scenarios where customers may place several items onto the conveyor belt at once.

Despite the largely successful outcomes, it's important to note that the recognition model's

accuracy may slightly vary depending on factors such as the similarity of product packaging and

the clarity of the product labels. These minor challenges will be addressed as part of our future

work to refine and improve the system.

Figure 43 Testing on Choco Bliss

GSN: Fall 22-13 54

Figure 44 Choco Bliss displayed on Counter

Table 2 OCR Results

Results from PyTesseractOCR

['f a', 'ar 3']

Results from EasyOCR

DoubleChocolateBisChoco_

Results from MMOCR

[['chocolate', 'double', 'choco', 'blss']]

In the implementation of Optical Character Recognition (OCR) for our self-checkout system, we

employed and tested three different OCR engines: PyTesseract, EasyOCR, and MMOCR. Our

comparative analysis revealed distinct performance characteristics and levels of effectiveness for

each.

PyTesseract, while recognized for its ease of use, unfortunately underperformed in our tests. It

demonstrated less accuracy in character recognition compared to the other two OCR engines,

making it less suitable for the precise requirements of our project.

Both EasyOCR and MMOCR showed significantly better performance, often running neck-and-

neck in their capabilities. They successfully recognized and translated printed text in many

scenarios, proving to be more reliable for our application. However, there were specific

GSN: Fall 22-13 55

situations where each showed strengths and weaknesses, and no clear winner emerged from these

close ties.

Ultimately, we identified MMOCR as the superior option, despite it being the slowest among the

three. Its slower speed is offset by its impressive accuracy and consistency in character

recognition. It managed to outperform the other engines in complex recognition scenarios,

solidifying its position as the most suitable OCR engine for our project.

Nonetheless, the slower operation speed of MMOCR is a trade-off that we acknowledge. In our

future work, we aim to find ways to optimize its speed without compromising the quality of its

OCR capabilities.

Figure 45 Testing on Slanty

Figure 46 Testing on 2 products at once

GSN: Fall 22-13 56

Figure 47 Testing on Head & Shoulders from the Front

Figure 48 Testing on Head & Shoulders from the Back

Figure 49 Testing on Euthrix DF

GSN: Fall 22-13 57

Figure 50 Testing on Shangrila Chilli Sauce

Figure 51 Testing on Mountain Dew

5.2 Performance between Local Processing and Client-Server Method:

Procedure:

The performance of Local Processing and Client-Server Method was measured using two

primary factors: time taken for processing and accuracy of the results. Both methods were tested

with the same set of data to ensure fairness in comparison.

Expected Result:

The expected result was that Local Processing would be faster due to the absence of data transfer

times as compared to the Client-Server method. However, we anticipated a possible trade-off in

the accuracy of results, as the processing power of a local system might be lower compared to a

dedicated server.

GSN: Fall 22-13 58

Actual Result:

Local Processing: The local processing method provided faster results as there was no delay

caused by data transfer between the client and the server. However, it was observed that the

accuracy of results was slightly less consistent due to the varying processing capabilities of local

systems (i.e. very poor frame rates on Jetson Nano but higher frames on a RTX 3060 GPU)

Client-Server Method: This method was slightly slower (0.2 seconds slower) due to the data

transfer times, but it was observed that it consistently produced more accurate results because of

the higher processing capabilities of the server.

In conclusion, the Local Processing method proved to be faster, as expected, but the Client-

Server method offered more reliable results. The choice between the two methods would

therefore depend on whether speed or accuracy is the higher priority for the specific use case of

the self-checkout system.

5.3 User Interface and Touchscreen Test:

Procedure: Interact with the 7-inch touchscreen interface to test its responsiveness and

functionality. Try completing the checkout process.

Expected Result: The touchscreen should respond accurately to input, and the user interface

should update correctly based on user interactions.

GSN: Fall 22-13 59

Actual Result: During the testing phase, the 7-inch touchscreen interface demonstrated a high

degree of responsiveness and seamless functionality. The checkout process was executed

successfully using the touch input, further emphasizing the efficacy of the interface. The system

accurately registered touches and the user interface updated accordingly in real-time, facilitating

an intuitive and user-friendly shopping experience.

Figure 52 Touch Screen Interface

5.4 Complete System Test:

Procedure: Simulate a full shopping experience. Place multiple items on the conveyor, let the

system recognize them, add them to the cart, and complete a transaction.

Expected Result: The complete system should function as expected, recognizing and adding

items to the cart, displaying correct totals, and processing the payment successfully.

Actual Result:

Upon simulating a full shopping experience, the complete system functioned seamlessly and

demonstrated its effectiveness. A variety of items were placed on the conveyor and were

GSN: Fall 22-13 60

successfully recognized by the system. These items were then automatically added to the shopping

cart. The system effectively maintained an accurate running total of the cost of the items. The total

calculated for the items, which amounted to Rs. 2910 or $10.21, was accurately displayed. The

checkout process was then completed with the system processing the payment transaction

successfully. This comprehensive test further attests to the efficiency and reliability of the system

in a real-world shopping scenario.

Figure 53 All checkout items in the cart

Figure 54 Payment Processed for the Order

5.5 Payment Gateway Test:

Procedure: Simulate transactions using the payment gateway

Expected Result: The payment gateway should successfully process transactions of varying

amounts.

GSN: Fall 22-13 61

Actual Result:

The system was subjected to transactions of varying amounts, each processed smoothly without

errors. Furthermore, the transaction details were accurately reflected. This thorough test affirmed

the system's proficiency in providing secure and seamless transactions for its users, hence

enhancing the shopping experience.

Figure 55 Entering Payment Information

Figure 56 Payment Successfully Completed

Figure 57 Payment History

GSN: Fall 22-13 62

Chapter 6: User Guide

Safety Precautions:

To ensure safe usage of our Self-Checkout System, it's important to remember the following

precautions:

1. Stay Clear of Moving Parts: The conveyor belt is a moving part. Make sure to keep

hands, clothing, or any foreign objects away from it while it's in operation.

2. System Stability: Place the Self-Checkout System on a flat, stable surface to prevent it

from tipping or falling.

3. Avoid Liquids: The system contains electrical components that can be damaged by liquid.

Keep drinks and other liquids away, especially near the touchscreen and other system

internals.

Getting Started:

Here's a step-by-step guide to using your Self-Checkout System:

Step 1: Setting Up the Self-Checkout System

• Plug the system into an electrical outlet using the provided power cord.

• Allow a few moments for the system to boot up. The user interface will display on the 7-

inch touchscreen.

Step 2: Scanning Items

• Place the item to be scanned on the conveyor belt at the designated entry point. You can

check the live video feed by scrolling down on the app under “Video Streaming

Demonstration”.

GSN: Fall 22-13 63

Figure 58 Video Streaming Demonstration

• The Logitech C310 Webcam, pointed at the conveyor belt, will capture the image of the

product. The system's AI will then use image recognition to identify the product and pull

the corresponding price from the database.

• The item details, including its name and price, will be displayed on the touchscreen.

Figure 59 Checkout Counter

GSN: Fall 22-13 64

Step 3: Reviewing Your Cart

• The touchscreen display provides an easy-to-read list of all scanned items, including the

quantity of each item and their respective prices.

• Once you've verified all items in your cart, tap 'Proceed to Checkout' on the touchscreen.

Step 4: Making Payment

• After you've confirmed your cart and tapped 'Proceed to Checkout', the system will

display the payment gateway.

• Here, you can choose your preferred payment method and enter the necessary details.

• The system uses a secure, encrypted process to ensure the safety of your information.

• Once the payment goes through, a This message will appear on the screen.

Step 5: Troubleshooting

• If an item isn't recognized when placed on the conveyor belt, try repositioning or

replacing the item. If the issue persists, try manually entering the item's details.

• If you encounter a system error or if the conveyor belt malfunctions, turn off the system

immediately. Contact the technical support number provided in the package for further

assistance.

GSN: Fall 22-13 65

• In case of a malfunctioning display, ensure that all the associated cables are properly

connected. Specifically, pay close attention to the micro-USB and HDMI cables, verifying

that they are securely inserted and that their connections are intact.

Step 6: System Shutdown

• To turn off the system, tap the 'Shutdown' option on the touchscreen interface.

• Allow the system to fully power down before unplugging it from the electrical outlet.

This ensures that all system processes have been correctly halted and helps extend the life

of the system.

GSN: Fall 22-13 66

Chapter 7: Deliverables and Cost

7.1 Deliverables

The major deliverables are:

1.1. Product Identification Model

1.2. Web Application

1.3. Modular Self-Checkout Lane (Hardware)

The sub-deliverables are:

1.1.1 Selection of Algorithm

1.1.2 Data Pre-processing

1.1.3 Training the Model

1.1.4 Testing the Model

1.1.5 Tuning the Model

1.2.1 Application Programming Interface (API)

1.2.2 User Interface (UI)

1.3.1 Component Selection

1.3.2 Box Construction

1.3.3 Component Assembly

1.3.4 Set-up

1.3.5 Functionality Check

GSN: Fall 22-13 67

7.2 Project Plan

7.2.1 Work Breakdown Structure:

Table 3 High Level Work Breakdown Structure

7.2.2 Gantt Chart:

Table 4 Complete Gantt Chart of the Project

GSN: Fall 22-13 68

GSN: Fall 22-13 69

GSN: Fall 22-13 70

GSN: Fall 22-13 71

Table 5 Projected vs. Actual Time

Start Time 1st August 2022

Projected Time to

Completion

9th August 2023

Actual Time of Completion 19th April 2023

Difference 112 days

7.3 Project Cost (Projected)

Table 6 Projected Cost

Component List Price

1080p30 CSI Cam or Webcam Equivalent ~ Rs. 8,000

Nvidia Jetson Nano 4GB Rs. 40,000

7 Inch HDMI Capacitive LCD Touch Screen Rs. 11,000

NEMA 17/24 Stepper Motors Rs. 300 to 1500 (New & Used)

A4988 Stepper Motor Driver Rs. 250

TB6560 3A Stepper Motor Driver Rs. 950

ESP8266 CH340 NodeMCU V3 IOT

Development Board

Rs. 550

Material & Construction Cost Rs. 10,000

Estimated Total* ~ Rs. 74,750

Estimated Total with Overhead (30%)* ~ Rs. 97,175

GSN: Fall 22-13 72

7.4 Project Cost (Actual)

Table 7 Actual Cost

Component List Price

Logitech C310 720p30 Webcam Rs. 5000

Nvidia Jetson Nano 4GB Rs. 46,000

7 Inch HDMI Capacitive LCD Touch Screen Rs. 14,000

100w 775 Long Shaft DC Motor Rs. 700

10A 12-40V PWM Controller Rs. 600

Material & Construction Cost Rs. 7,000

Total Rs. 73,300

For our self-checkout system project, we had initially projected a budget of 74,750. This budget

was carefully calculated considering all the components required, including the Nvidia Jetson

Nano, Logitech C310 Webcam, 7-inch touchscreen, various electrical and mechanical parts for

the conveyor belt system, and overhead costs. Overhead costs are those costs that aren't directly

tied to a specific activity and include things such as administrative and operational expenses.

With these overhead costs included, our total projected budget rose to Rs. 97,175.

However, we were able to strategically source materials and manage our resources effectively

throughout the project. This resulted in our actual total expenditure coming to Rs. 73,300, which

is below our initial projected budget excluding overheads. This demonstrates effective budget

management and resource allocation throughout the project's duration.

In undertaking this project, we were fortunate enough to receive financial backing from the PEC

(Punjab Engineering College). The funding was allocated to us as part of PEC's commitment to

supporting innovative and impactful student-led projects that align with their vision of advancing

technology and engineering solutions for societal benefits.

As a leading engineering institution, PEC is deeply invested in nurturing students' inventive

thinking and practical application of their learning. By financing projects like ours, they create an

environment that encourages technical skills development and fosters a culture of innovation and

entrepreneurship.

We are grateful for PEC's financial support, and we believe that our successful completion of the

project under the projected budget demonstrates responsible and effective use of these funds. It's

our hope that this project will contribute positively to the broader mission of PEC to drive

technological innovation and solution-driven engineering.

GSN: Fall 22-13 73

Chapter 8: Conclusion

The primary objective of this project was to create a self-checkout system powered by artificial

intelligence to streamline the checkout process in retail environments. This goal was realized

through the successful development and testing of a compact, automated system leveraging

advanced technologies such as the NVIDIA Jetson Nano and image recognition algorithms.

The system developed achieved the desired functionality, reliably recognizing products placed

on a conveyor belt, accurately calculating total prices, and facilitating a secure, seamless

payment process. The integration of a user-friendly touchscreen interface also ensured that the

system was accessible to users of varying levels of technical proficiency.

Throughout the course of this project, numerous tests were performed to ensure the system's

accuracy and reliability. These tests included product recognition accuracy tests, stress tests on

the conveyor system, and security tests for the payment gateway. All results met or exceeded

initial expectations, providing confidence in the system's readiness for practical use.

Despite the successful completion of the project, there is always room for further refinement and

expansion.

• Refinement of Image Recognition Algorithm: Further optimization of the image

recognition algorithm could improve the accuracy of the product recognition, reducing

the possibility of errors. This could involve implementing more advanced machine

learning models or increasing the breadth of the training data set to encompass a wider

variety of products.

• Expanding Product Database: As the system is implemented in different retail settings,

it would be beneficial to expand the product database to cater to a more diverse range of

items. This could involve a system for easy addition and removal of product details in the

database by the store manager.

GSN: Fall 22-13 74

• Additional Payment Methods: While the system currently supports card payments via

Braintree, there is potential to integrate other payment methods, such as digital wallets or

QR code payments. This could make the system more versatile and convenient for users

with different payment preferences.

• Multilingual Support: To cater to a more diverse user base, the system could be updated

to offer multilingual support. This would allow non-English speaking users to use the

system with ease and increase the system's accessibility.

• Personalized Recommendations: Leveraging data analytics, the system could offer

personalized recommendations to customers based on their past purchases or scanned

items. This could enhance the user experience and also drive additional sales for the

retailer.

• Integration with Loyalty Programs: To provide a more comprehensive retail

experience, the system could be integrated with store loyalty programs. This would allow

users to earn and redeem points when they shop, encouraging repeat business.

• Shopping Cart Tracking: A future enhancement could involve integrating a system for

tracking and managing shopping carts. This would enable the system to keep track of the

items added to the cart, potentially reducing theft and improving inventory management.

Furthermore, it could also provide a running total to the customer as they shop, enhancing

the shopping experience.

• Smart Shelf Implementation: The development and integration of smart shelves could

significantly enhance the functionality of the system. Smart shelves, equipped with

weight sensors and RFID technology, can monitor stock levels in real-time and alert staff

when restocking is needed. Additionally, these shelves could be linked to the self-

checkout system, providing real-time updates of what items are being picked up and

GSN: Fall 22-13 75

placed in the cart, allowing for a seamless and potentially "checkout-free" shopping

experience.

• Robustness Against Varied Lighting Conditions: Currently, the system performs

optimally under certain lighting conditions. Further development could focus on

enhancing the image recognition algorithm's performance under a wider range of lighting

conditions, making the system more versatile for different store environments.

• Customer Profile Creation: For regular customers, the system could provide an option

to create a customer profile. This profile could track purchase history, provide

personalized discounts, and even predict shopping needs based on past purchases. This

would not only increase customer satisfaction but also provide valuable data for

inventory management and sales forecasting.

In conclusion, this project has achieved its set objectives and has substantial potential for future

development and refinement. It is an encouraging step towards a more efficient, user-friendly, and

technologically advanced retail landscape

GSN: Fall 22-13 76

References

[1] J. Loechner, "Media Post," 27 May 2013. [Online]. Available:

https://www.mediapost.com/publications/article/201157/shoppers-prefer-personalized-brick-mortar-vs-

on.html?print. [Accessed 22 9 2022].

[2] PYMNTS, "Amazon Expands ‘Just Walk Out’ as Shoppers’ Checkout Expectations Rise," [Online]. Available:

https://www.pymnts.com/amazon-commerce/2022/amazon-expands-just-walk-out-as-shoppers-checkout-

expectations-rise/.

[3] Mathworks, "What is Deep Learning?," [Online]. Available: https://www.mathworks.com/discovery/deep-

learning.html#:~:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost..

[4] MathWorks, "Getting Started with Object Detection Using Deep Learning," [Online]. Available:

https://www.mathworks.com/help/vision/ug/getting-started-with-object-detection-using-deep-

learning.html.

[5] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for

real-time object detectors.

[6] G. Bais, "Building Deep Learning-Based OCR Model: Lessons Learned," 14 November 2022. [Online]. Available:

https://neptune.ai/blog/building-deep-learning-based-ocr-model. [Accessed 2 December 2022].

[7] T. Hartman, "A Hybrid Checkout System," 24 June 2008. [Online]. Available:

http://essay.utwente.nl/59064/1/Bsc._Thesis_IO%2C_Hartman_Tycho%2C_A_Hybrid_Checkout_System.pdf.

[Accessed 2 December 2022].

[8] A. Rigner, "AI-based machine vision for retail self-checkout system," 2019. [Online]. Available:

https://lup.lub.lu.se/student-papers/search/publication/8985308. [Accessed 2 December 2022].

GSN: Fall 22-13 77

[9] S. T. Bukhari, "ARC: A Vision-based Automatic Retail Checkout System," 17 May 2021. [Online]. Available:

https://arxiv.org/abs/2104.02832. [Accessed 2 December 2022].

[10] S. Ahmed, "Retail in Pakistan - An Overview," 27 February 2016. [Online]. Available:

https://www.linkedin.com/pulse/retail-pakistan-overview-sohail-

ahmed#:~:text=There%20are%20approximately%202%20million,general%20stores%20and%20the%20like..

[Accessed 2 December 2022].

[11] H. Bandyopadhyay, "YOLO: Real-Time Object Detection Explained," 7 October 2022. [Online]. Available:

https://www.v7labs.com/blog/yolo-object-detection. [Accessed 2 December 2022].

[12] N. AP, "autoAnnoter," [Online]. Available: https://github.com/naseemap47/autoAnnoter.

[13] MakeSense. [Online]. Available: https://www.makesense.ai/.

[14] darkpgmr, "DarkLabel," 4 September 2021. [Online]. Available: https://github.com/darkpgmr/DarkLabel.

[Accessed 2 December 2022].

[15] Z. a. S. H. a. L. Z. a. Y. X. a. L. T. H. a. C. J. a. W. H. a. Z. Y. a. G. T. a. Z. W. a. C. K. a. Z. W. a. L. D. Kuang,

"MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding," 14 August 2021.

[Online]. Available: https://arxiv.org/abs/2108.06543. [Accessed 2 December 2022].

[16] "Infrastructure, Industrialization," United Nations Sustainable Development, 2023. [Online]. Available:

https://www.un.org/sustainabledevelopment/infrastructure-industrialization/

[17] "Welcome | Flask (A Python Microframework)," Flask, 2023. [Online]. Available:

https://flask.palletsprojects.com/en/2.3.x/

[18] Widdershin, "Flask-Desktop," GitHub, 2023. [Online]. Available: https://github.com/Widdershin/flask-desktop

GSN: Fall 22-13 78

[19] "Tesseract-ocr/tesseract," GitHub, 2023. [Online]. Available: https://github.com/tesseract-ocr/tesseract

[20] JaidedAI, "EasyOCR," GitHub, 2023. [Online]. Available: https://github.com/JaidedAI/EasyOCR

[21] Braintree, "Braintree/braintree_python," GitHub, 2023. [Online]. Available:

https://github.com/braintree/braintree_python

GSN: Fall 22-13 79

Appendices

Nvidia Jetson Nano Pin Diagram:

Figure 60 Jetson Nano Pinout

Figure 61 Jetson Nano Pin Diagram

GSN: Fall 22-13 80

HTML & CSS CODE:

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Video Streaming Demonstration</title>

 {{ turbo() }}

 </head>

 <body>

 <link rel= "stylesheet" type= "text/css" href= "{{

url_for('static',filename='styles/style.css') }}">

 <div class="container">

 <h1>SELF CHECKOUT COUNTER</h1>

 <hr>

 <table id="data" class="table table-striped">

 <thead>

 <tr>

 <th>Product</th>

 <th>Name</th>

 <th>Quantity</th>

 <th>Price</th>

 </tr>

 </thead>

 <tbody>

 <tfoot>

 <tr>

 <th colspan="3" style="text-align:right">Total Price:</th>

 <th id="total-price"></th>

 </tr>

 </tfoot>

 </tbody>

 </table>

 <button id="checkout-btn" class="btn btn-success btn-lg">CHECKOUT</button>

 </div>

 <h1>Video Streaming Demonstration</h1>

 <div id="container">

 <div>

GSN: Fall 22-13 81

 <video autoplay="true" id="videoElement"></video>

 <canvas id="canvasElement"></canvas>

 </div>

 </div>

 <script type="text/javascript" charset="utf8"

src="https://code.jquery.com/jquery-3.6.0.min.js"></script>

 <script type="text/javascript" charset="utf8"

src="https://cdn.datatables.net/1.10.25/js/jquery.dataTables.js"></script>

 <script type="text/javascript" charset="utf8"

src="https://cdn.datatables.net/1.10.25/js/dataTables.bootstrap5.js"></script>

 <script>

 var mytable;

 function initDataTable() {

 if (!$.fn.DataTable.isDataTable('#data')) {

 mytable = $('#data').DataTable({

 ajax: {

 url: '/api/data',

 },

 columns: [

 { data: 'Product' },

 { data: 'Name' },

 { data: 'Quantity' },

 { data: 'Price' },

],

 });

 } else {

 mytable = $('#data').DataTable();

 }

 }

 initDataTable();

 setInterval(function () {

 mytable.ajax.reload(null, false);

 // Calculate the total price

 let totalPrice = 0;

 mytable.rows().every(function () {

 const rowData = this.data();

GSN: Fall 22-13 82

 const priceStr = rowData.Price.replace('Rs. ', '');

 totalPrice += parseFloat(priceStr);

 });

 // Update the total price in the table footer

 document.getElementById('total-price').innerHTML = `Rs.

${totalPrice.toFixed(2)}`;

 }, 1000);

 function printReceipt() {

 const receiptWindow = window.open('', '_blank');

 receiptWindow.document.write('<html><head><title>Receipt</title></head><b

ody>');

 receiptWindow.document.write('<h1>Receipt</h1>');

 receiptWindow.document.write(document.getElementById('data').outerHTML);

 receiptWindow.document.write('</body></html>');

 receiptWindow.document.close();

 receiptWindow.print();

 }

 document.getElementById('checkout-btn').addEventListener('click',

function () {

 window.open('/checkout', '_blank');

 });

 </script>

 </body>

</html>

/* Global Styles */

html, body {

 height: 100%;

 margin: 0;

 font-family: 'Poppins', sans-serif;

 background-color: #f5f5f5;

 font-size: 25px;

 }

 .container {

GSN: Fall 22-13 83

 display: flex;

 flex-direction: column;

 margin: 0;

 padding: 5rem;

 align-items: stretch; /* Add align-items: stretch */

 }

 /* Table Styles */

 #data {

 background-color: #ffffff;

 box-shadow: 0 0.4rem 1.2rem rgba(0, 0, 0, 0.1);

 border-radius: 1rem;

 }

 h1 {

 color: #4b0082;

 font-weight: 600;

 text-align: center;

 }

 #data th {

 background-color: #4b0082;

 color: #fff;

 padding: 1rem;

 text-transform: uppercase;

 border-radius: 0.5rem 0 0;

 }

 #data td {

 padding: 1rem;

 border-bottom: 1px solid #ddd;

 }

 #data tfoot th {

 background-color: #eee;

 color: #4b0082;

 font-weight: 600;

 border-radius: 0 0 0.5rem;

 }

 /* Checkout Button */

 #checkout-btn {

 background-color: #4b0082;

 color: #fff;

 font-size: 25px;

 padding: 0.5rem 1rem;

GSN: Fall 22-13 84

 margin-top: 1rem;

 border-radius: 0.4rem;

 cursor: pointer;

 transition: background-color 0.3s;

 }

 #checkout-btn:hover {

 background-color: #6a1b9a;

 }

 /* Checkout Button */

 #capture-btn {

 background-color: #4b0082;

 color: #fff;

 font-weight: 600;

 padding: 3rem 2rem;

 margin-top: 1rem;

 border-radius: 0.4rem;

 cursor: pointer;

 transition: background-color 0.3s;

 }

 #capture-btn:hover {

 background-color: #6a1b9a;

 }

/* Video Streaming */

 #bg {

 padding: 2rem; /* Added 'auto' for center alignment */

 border-radius: 3rem;

 overflow: hidden;

 }

 #videoElement {

 border-radius: 1rem;

 }

 #canvasElement {

 display: none;

 }

 #photo {

 position: absolute;

 top: 0;

GSN: Fall 22-13 85

 left: 0;

 border-radius: 1rem;

 }

/* Custom styles for DataTables */

.dataTables_wrapper {

 width: 100%;

 padding: 0;

 }

 .dataTables_wrapper div {

 box-sizing: border-box;

 }

 table.dataTable {

 width: 100% !important;

 }

GSN: Fall 22-13 86

Glossary

List all acronyms and technical terms in alphabetical order along with their brief description, as

shown below:

SBC Single Board Computer

AI Artificial Intelligence

RFID Radio-frequency Identification

YOLO You Only Look Once

DC Direct Current

ANN Artificial Neural Network

CNN Convolutional Neural Network

LDR Light-dependent resistor

CV Computer Vision

HTML Hypertext Markup Language

CSS Cascading Style Sheets

JS JavaScript

API Application Programming Interface

COCO Common Objects in Context

Flask A micro web framework written in Python. It does not require particular tools or

libraries, and it's used to make web applications.

TensorFlow A micro web framework written in Python. It does not require particular tools or

libraries, and it's used to make web applications.

GSN: Fall 22-13 87

Similarity (Plagiarism) Report

GSN: Fall 22-13 88

