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Abstract

Motor, due to their increased use in many of the application,have become critical in the safety and
reliability of engineering system.An induction motor is a type of ac motor in which power is supplied
to the rotor by means of electromagnetic induction.A practical machine learning based fault diagnosis
method is proposed for induction motors using experimental data.In this Project ,Condition Monitoring
based on motor current signature analysis (MCSA), Vibrational and Acoustic emission of bearing
faults.For condition monitoring,two identical single phase induction motor is used,one for healthy data
acquisition and other one is use for faulty data acquisition.The project has two parts,first one deals with
the design of data acquisition setup to acquire baseline (without fault) data under various rpm and loads
conditions.In second phase frequently occurring bearing faults (Outer Race,Inner Race, Ball Fault
and Compound Fault) are injected and data under same conditions is acquired.The faulty data along
with the baseline healthy data is analyzed and extract the time and frequency domain features using
MATLAB. Classification algorithms applied for prediction of motor condition(Healthy or faulty).Three
classification algorithms, support vector machine (SVM), K-nearest neighbors (KNN), and Ensemble,
with 17 different classifiers offered in MATLAB Classification Learner toolbox are used in the study

to evaluate the performance and suitability of different classifiers for induction motor fault diagnosis.
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Chapter 1

1 Introduction to the Project

1.1 Project Title

The title of the project is ”Application Of Machine Learning Algorithms In Bearing
Faults Diagnosis Of Induction Motor Using Motor Current Signature Analysis (MCSA),

Vibrational and Acoustic Emission”.

1.2 Project Overview

This project focus to investigate the use of machine learning methods in the area
of induction motor failure diagnosis and the main aiming to improve the accuracy
and efficiency of the diagnostic process and fill the Research gape. Our main goal
1s to utilize machine learning techniques to analyze data acquisition from induction
motors Experimental Setup. The development of models identify and categorize
various faults by utilizing machine learning techniques. In the proposed study, labeled
datasets comprising details regarding various bearing fault types including inner race
,outer race,ball fault and compound bearing fault.There are many condition monitoring
techniques which includes thermal monitoring, Acoustic monitoring,chemical monitoring
but out of all techniques three are selected for this project (Current signature, Vibrational
and Acoustic ). These datasets will be used to train machine learning algorithms
to discover the patterns and traits unique to each fault type. These algorithms can
be trained to recognize an induction motor’s typical working behavior and extracted
features.Electric machines, in the form of synchronous and induction generators, produce
about 95% of all electric power on Earth (as of early 2020s),[1] and in the form of
electric motors consume approximately 60% of all electric power produced.

1.3 Scope of the Project

The scope of applying machine learning algorithms algorithms for diagnosing faults in
induction motors, specifically targeting bearing faults and analyzing vibration, Acoustis
and motor current signatures. It discuss real-world applications, and consider future
directions like incorporating additional sensors or advanced techniques, all within the
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scope of practical considerations for real-time industrial deployment. This research
work aims to unlock the potential of condition monitoring for early, reliable fault
detection in induction motors, offering significant benefits for predictive maintenance
and industrial efficiency.The project evaluates the performance and suitability of three
classification algorithms - Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Ensemble methods - for predicting motor condition (healthy or faulty). The ultimate
goal is to assess the effectiveness and reliability of the proposed methodology in practical
fault diagnosis scenarios

1.4 Project Milestone
Following milestones have been established for this project:-
* Understanding of project
* Understanding working principles of induction motors
* Establishing experimental bench
* Setup of data acquisition system
* Injecting faults and Acquisition of healthy and faulty data
 Feature Extraction of the data
* Machine Learning algorithms design and prediction
* Development of Graphical User Interface for Result show

1.5 Research Focus and Specific Fault Types

The research primarily focuses on the development and application of machine learning
algorithms for fault diagnosis in induction motors, with a specific emphasis on bearing
faults(Outer Race, Inner Race, Ball fault and Compound fault). The project aims
to investigate the effectiveness of condition monitoring techniques, including Motor
Current Signature Analysis (MCSA), vibrational analysis, and acoustic emission analysis,
for detecting and diagnosing various types of bearing faults. Specifically, the study
targets frequently occurring bearing fault types such as outer race, inner race, ball
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fault, and compound faults. Through comprehensive experimental data acquisition and
analysis, the project seeks to identify distinctive fault signatures and develop robust
classification models capable of accurately distinguishing between healthy and faulty
motor conditions. Furthermore, the research evaluates the performance and suitability of
different classification algorithms, including Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Ensemble methods, to determine the most effective approach for
practical fault diagnosis in induction motors.
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Chapter 2

2 Literature Review

2.1 Basic Overview

Machine learning algorithms acquired sensor data of induction motors improve failure
diagnostics. These algorithms can be trained on labeled datasets that contain details
about various fault kinds, allowing them to discover the patterns and traits unique to
each fault type. Extracting relevant features from motor signals vibration data identify
the presence of faults and train the model on machine learning algorithms.There are

three streams of research on fault diagnosis for induction motors [2]]:

* 1) signature extraction based approaches: The signature extraction based techniques
are finished by using fault signatures in time and/or frequency domain. Current,
voltage, vibration, temperature, and acoustic emission can function monitoring
signals. Signatures extracted from the recorded tracking alerts are used to discover
faults. Motor Current Signature Analysis (MSCA), a well-known spectral analysis
approach, is one of the maximum famous techniques for online monitoring induction

cars in business environments.

 2) model-based approaches: The model-based approaches rely on mathematical
modeling to predict behaviors of induction motors under fault conditions.Although
model-based approaches can provide warnings and estimate incipient faults, its
accuracy is largely dependent on explicit motor models, which may not be always

available.

* 3) knowledge based approaches; The knowledge-based approaches, do not require a
trigger threshold, machine models, motor or load characteristics. Knowledge-based
approaches use machine learning techniques for on-line and off-line applications.Al
methods have been applied for fault diagnosis in very time-varying and non-

linear systems. With continuous advancement of machine learning algorithms, the
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knowledge-based approach emerges as a promising research direction for induction

motor fault diagnosis with great industrial application potential.

2.2 Induction Motor

An induction motor or asynchronous motor is an AC electrical machine that converts
electrical energy into mechanical energy. It is a widely used type of motor due to its
simplicity, reliability, and cost-effectiveness. An Induction machine is defined as an
asynchronous machine is an AC electric motor in which the electric current in the rotor

needed to produce torque as shown in Figure.[3]

End Bracket
Cooling Bearing Ammature  Stator
Fan Housing Rotor  Winding Winding Stator

End Bell

Bearing

Fram

[Yoke]
(Cast Iron)

Figure 1: Induction Motor view

The construction of an induction motor consists of two main components:
* Stator
* Rotor

The stator is the stationary part of the motor and contains a series of winding coils that
are evenly distributed around the stator’s core. These windings are typically made of
copper or aluminum and are connected to an alternating current (AC) power supply. The
rotor, on the other hand, is the rotating part of the motor. It is separated from the stator

by a small air gap. The rotor can be of two types [4]:
* Squirrel Cage
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Figure 2: Stator (left) and Rotor (right)

* Wound Rotor

Figure 3: Squirrel cage (left) and wound rotor (right)

2.3 Faults in Induction Motors

A range of faults can occur within induction motor during the course of operation. These
faults can lead to a potentially disastrous failures if unnoticed. There are different types

of Induction motor faults which is classified into two groups:
* Electrical Faults
* Mechanical Faults

Different faults of induction motors are generally classified as either electrical or

mechanical faults. Different types of faults include stator winding faults, rotor bar

RESTRICTED 13



RESTRICTED

breakage, misalignment, static and/or dynamic air-gap irregularities and bearing gearbox
failures. The most common fault types of these rotating devices have always been

related to the Machine shaft or rotor.

Induction Mator
Faults

al e —
Mechanical Faults
[
—

—

Rotor Fault - -
Stator Fauft | : | Kir g2p Miszligment and Bl
(Winding faults) fmem:g; R BCcentricity Unbalance R

Figure 4: Block diagram classification of Induction Motor Faults
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2.4 Mechanical Faults

The mechanical faults occurrence priority is highest in the induction motor. The
mechanical faults are classified as bearing fault, Air gap eccentricity fault and broken

rotor bar fault.

2.4.1 Air gap eccentricity

Air gap eccentricity is known as a condition that occurs when there is a non-uniform or
asymmetric distance between the rotor and stator in the air gap. It is a specific fault that
can occur in induction motors. It refers to the deviation of the rotor’s center line from
the true circular path within the stator’s air gap. This fault can cause of vibration and
noise. It can be caused by various factors, including manufacturing defects, improper

assembly, or mechanical stresses. There are three types of air gap eccentricity:
* Static eccentricity
* Dynamic eccentricity

* Mixed eccentricity

a) Concentric b} Static eccentricity ¢) Dynamic eccentricity

Figure 5: Air gap eccentricity and its three types

2.4.2 Broken rotor bar

During the process in manufacture, non-uniform metallurgical stresses may be built into
cage assembly and lead to failure during operation. When thermal stresses imposed
upon it during starting of machine. Because of these reasons, rotor bar may be damaged

and simultaneously unbalance rotor situation occur.

RESTRICTED 15



RESTRICTED

Two faulty rotor bars

Figure 6: Broken Rotor Bar

2.4.3 Bearing Faults

This fault contains over 40% of all induction machine failures. The majority of electrical
machines use ball or rolling element bearings and these are one of the most common
causes of failure. These bearing consist of an inner and outer ring with a set of balls or
rolling elements placed in raceways rotating inside these rings as shown in Figure. In
the Figure Artificial bearing defects are shown which are outer race defect and inner
race defect. Since, the rolling elements of a rolling element bearing ride on races. The
large race that goes into a bore is called outer race, and the small race that the shaft rides
is called inner race. Faults in the inner raceway, outer raceway or rolling elements will
produce unique frequency components in the measured machine vibration and other
sensor signals. These bearings fault frequencies are functions of the bearing geometry

and the running speed. Bearing faults can also cause rotor eccentricity.[14]][23]]

Figure 7: Artificial Bearing Fault (a) Outer Race Fault (Left) (b) Inner Race Fault (Right)

2.5 Electrical Faults

Electrical faults in induction motors refer to faults that occur within the electrical

components of the motor, including the stator, rotor, windings, and electrical connections.
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These faults can have a significant impact on the motor’s performance, efficiency, and
reliability. It consists of Stator winding fault, Rotor bar fault, Insulation degradation,

Voltage imbalance etc.

2.5.1 Stator Fault

Stator fault occur mainly due to inter turn winding faults caused by insulation breakdown.
They are generally known as phase-to-ground or phase-to-phase faults. The stator
winding consists of coils of insulated copper wire placed in the stator slots. Stator
winding faults are often caused by insulation failure between two adjacent turns in a

coil. This is called a turn-to-turn fault or shorted turn as shown in fig 8.[24]

q\, _ Coil-to-Coil
).j_‘ .

Phaczetto-Phase

/(/I I e Coil-to-Groumd

c

Figure 8: Graphical Representing of Stator Fault

2.5.2 Rotor Fault

Rotor faults occur about almost 10 percentage of total induction motor faults. These
faults are caused by rotor winding. The rotor faults are mainly broken rotor bars because
of pulsating load and direct on-line starting. It results into fluctuation of speed, torque

pulsation, vibration, overheating, arcing in the rotor and damaged rotor laminations.[24]

2.6 Faults by Percentage Occurance

A statistical study conducted jointly by the Electric Power Research Institute (EPRI) and
the Institution of Electrical and Electronics Engineers (IEEE) examines the percentage
failure components of induction motors. This comprehensive investigation aims to

provide the prevalence and distribution of faults in induction motors across various
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faults condition. By analyzing a large dataset of motor failures, the study aims to identify
the most common failure components, quantify their occurrence rates, and understand
their impact on motor reliability and performance. Through rigorous statistical analysis
and data interpretation, the study seeks to contribute valuable knowledge to the field of
motor reliability engineering, informing maintenance strategies, design improvements,
and operational practices aimed at reducing downtime and enhancing system reliability.
A statistical study of induction motor Faults by Electric Power Research Institute(EPRI)
and Institution of Electrical and Electronics Engineers (IEEE) of percentage failure

components of induction motor are as shown in Figure.[S]

Data As per IEEE Data As per EPRI
22% B Bearing Faults 14% B Bearing Faults
44% B Stator Faults i 4 B Stator Faults
3 "
8% ‘ N Rotor Faults % .ﬁl‘}h Rotor Faults
H Cther Faults 4 B Other Faults
26% 6%

Figure 9: Percentage Component of Induction Motor Failure (Courtesy IEEE and EPRI)

2.7 Importance of Induction Motors in Various Industries

Induction motors are crucial workhorses in a vast array of industries, playing a vital role
in powering diverse applications. Their simplicity, robustness, reliability, and energy
efficiency make them the most widely used electric motor globally. Here’s an overview

of their significance in different sectors:

2.7.1 Manufacturing:

* Production lines: Induction motors drive conveyors, pumps, fans, robots, and
numerous other machinery crucial for manufacturing processes across diverse

sectors (automotive, textile, food processing, etc.).

* Machine tools: Milling, drilling, and cutting machines utilize induction motors for

controlled, precise operation in metalworking and fabrication.
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* HVAC systems: These motors power compressors, fans, and pumps responsible for
heating, ventilation, and air conditioning in factories and industrial buildings.
2.7.2 Energy and Utilities:

* Power generation: Large induction motors are used in generators to convert wind

energy, hydroelectric power, and natural gas power into electricity.

* Oil and gas industry: Pumps, compressors, and pipelines within this sector rely on

induction motors for efficient operation.

» Water and wastewater treatment plants: These facilities utilize induction motors for
pumps, blowers, and other critical equipment.
2.7.3 Agriculture and Mining:

* Irrigation systems: Pumps driven by induction motors provide water for crops and

livestock.

* Conveyors and processing equipment: Mines and quarries utilize these motors for

transporting and processing raw materials.

* Farm machinery: Grain mills, hay balers, and other agricultural equipment often

rely on induction motors.

2.7.4 Consumer Goods and Appliances:

* Washing machines, refrigerators, and air conditioners: These common household

appliances often rely on induction motors for their functionality.

* Power tools and lawnmowers: Portable induction motors provide the power for

these consumer goods.

* Medical equipment: MRI machines, dialysis equipment, and other medical devices

utilize these motors for precise operation.
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2.8 Available Dataset

Nowadays, a huge amount of data is collected in industry and science for different
purposes; some of it is made public in repositories or on websites. But obtaining the
appropriate data in the needed quality and quantity for specialized research often is
still challenging, especially, if a wide range of different types of damages or the yet
rarely used MCS are the target of interest. This also applies to training data for bearing
diagnostics employing ML-algorithms.Some diagnostic data sets for bearing damages

are publicly available; the most popular and comprehensive ones are listed below:

* CWRU: The Case Western Reserve University (CWRU) Bearing Data Center is
a widely recognized repository of bearing vibration data used for research and
development in condition monitoring, fault diagnosis, and prognostics of rotating
machinery. The ball bearing test data provided by the CWRU Bearing Data Center
includes experiments conducted using a 2 hp Reliance Electric motor. Acceleration
data was measured at locations near to and remote from the motor bearings.
The motor bearings were intentionally seeded with faults using electro-discharge
machining (EDM). These faults ranged in diameter from 0.007 inches to 0.040
inches and were introduced separately at the inner raceway, rolling element (ball),
and outer raceway of the bearings.Data was collected for normal bearings, single-
point drive end and fan end defects. Data was collected at 12,000 samples/second
and at 48,000 samples/second for drive end bearing experiments.All fan end bearing
data was collected at 12,000 samples/second.Data files are in Matlab format. Each

file contains fan and drive end vibration data as well as motor rotational speed.[6]

* Paderborn Bearing: Paderborn bearing datasets provided by the Paderborn University
Faculty of Mechanical Engineering. The Paderborn Bearing Data Sets, also known
as the Paderborn Bearing Data Center, is a collection of datasets hosted by the
University of Paderborn, Germany. These datasets are widely used in the field
of machine learning, specifically for tasks related to bearing fault detection and

diagnosis.Synchronously measured motor currents and vibration signals with high
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resolution and sampling rate of 26 damaged bearing states and 6 undamaged
(healthy) states for reference.Supportive measurement of speed, torque, radial load,
and temperature.20 measurements of 4 seconds each for each setting, saved as a
MatLab file.Systematic description of the bearing damage by uniform fact sheets

and a measuring log, which can be downloaded with the data.[//]]

Mendeley dataset: Mendeley Data is a platform where researchers can share and
access datasets associated with scientific publications. The ”Bearing Vibration Data
under Time-varying Rotational Speed Conditions” dataset available on Mendeley
Data likely contains vibration signals recorded from bearings under conditions
where the rotational speed varies over time.The data contain vibration signals
collected from bearings of different health conditions under time-varying rotational
speed conditions. There are 36 datasets in total. For each dataset, there are two
experimental settings: bearing health condition and varying speed condition. The
health conditions of the bearing include (1) healthy, (i1) faulty with an inner race
defect, and (ii1) faulty with an outer race defect. The operating rotational speed
conditions are (i) increasing speed, (ii) decreasing speed, (iii) increasing then
decreasing speed, and (iv) decreasing then increasing speed. Therefore, there are
12 different cases for the setting. To ensure the authenticity of the data, 3 trials are

collected for each experimental setting which results in 36 datasets in total.[8]

Acoustic data: Data was recorded from four 0,8 kW, 1400 rpm induction motors
(the SZJKe 14a), each having the same working parameters, but differing in terms
of health state.Motor (SZJKE 14a) Experiments and development of fault detection
and diagnostics methods using the same motors.Acoustic signals were measured by
three (G.R.A.S. 46 AE ) microphones and with a 3D Sound Intensity Micro flown
probe, Model USP regular. [9]

MAFAULDA: Machinery Fault Database is composed of 1951 multivariate time-
series acquired by sensors on a SpectraQuest’s Machinery Fault Simulator (MFS)

Alignment-Balance-Vibration (ABVT). The 1951 comprises six different simulated
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states: normal function, imbalance fault, horizontal and vertical misalignment faults
and, inner and outer bearing faults. This section describes the database.Three

Industrial IMI Sensors, Model 601A01 accelerometers on the radial, axial and

tangencial directions.[10]
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Chapter 3

3 Condition Monitoring Techniques

Condition monitoring, also known as Health monitoring, involves continuously evaluating
the equipment’s health throughout its operational lifespan. Its primary purpose is to
detect faults in their early stages, referred to as incipient failure detection, in order to
ensure a safe operating environment. By implementing health monitoring systems for
induction motors, the electrical condition of the machines can be continuously assessed.
This enables the provision of timely warnings for impending failures, allowing for
effective scheduling of preventive maintenance and repair activities. Consequently,
this approach minimizes downtime and optimizes maintenance schedules, leading to

improved operational efficiency.

3.1 Need of Condition Monitoring Techniques

Condition monitoring is defined as the continuous evaluation of the health of the
plant and equipment throughout its service life. It is important to be able to detect
faults while they are still developing. This is called incipient failure detection [11].
The incipient detection of motor failures also provides a safe operating environment.
It is becoming increasingly important to use comprehensive condition monitoring
schemes for continuous assessment of the electrical condition of electrical machines. By
using the condition monitoring, it is possible to provide adequate warning of imminent
failure.It can result in minimum down time and optimum maintenance schedules [12]].
Condition monitoring and fault diagnosis scheme allows the machine operator to have
the necessary spare parts before the machine is stripped down, thereby reducing outage
times. Therefore, effective condition monitoring of electric machines is critical in

improving the reliability, safety, and productivity.
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3.2 Existing Condition Monitoring Techniques

This research is focused on the condition monitoring and fault diagnosis of electric
machines. Fault diagnosis is a determination of a specific fault that has occurred in
system. A typical condition monitoring and fault diagnosis process usually consists
of four phases as shown in Figure.Condition monitoring has great significance in the

business environment due to the following reasons:

* To reducing unplanned downtime and costly repairs, ultimately leading to cost

savings in maintenance operations.
* To predict the equipment failure
* To improve equipment and component reliability

* To improve the accuracy in failure prediction

Data Acquisition
N

Feature Extraction
N

Fault progression and Trending Analysis

N

Decision Making

Figure 10: Process for fault diagnosis

Several methods have evolved over time but the most prominent techniques are thermal

monitoring, vibrational monitoring, electrical monitoring, noise monitoring etc.
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3.2.1 Vibration Monitoring

Vibration analysis is a widely used technique to monitor the mechanical condition of
induction motors. It helps detect faults like misalignment, bearing wear, unbalance, and
rotor issues. Sensors are strategically placed on the motor to capture vibration signals,
which are then processed and analyzed to detect faults such as misalignment, unbalance,
bearing wear, mechanical looseness, and rotor faults. By comparing vibration patterns
against established baselines or thresholds, deviations can be identified, indicating the
presence of abnormalities. Trending the vibration data over time allows for monitoring
changes and early fault detection. This information is used to plan appropriate maintenance
actions, including corrective and preventive measures, to ensure reliable and efficient
motor operation while minimizing downtime and optimizing maintenance schedules.Li
et al.[13] carried out vibration monitoring for rolling bearing fault diagnoses. The final
diagnoses are made with an artificial NN. The research was conducted with simulated
vibration and real measurements. In both cases, the results indicate that a neural network
can be an effective tool in the diagnosis of various motor bearing faults through the
measurement and interpretation of bearing vibration signatures. Step following in

Vibrational monitoring Techniques:

g

Vibration [[| Vibrat || signal Display or Data
Motor Transdt Conversion Analysis
instrument

Figure 11: Steps of Vibrational Technique

3.2.2 Temperature Monitoring

Temperatures monitoring as stator windings, bearings, and cooling systems temperature
swings can be a sign of problems with insulation deterioration or insufficient cooling.

The stator windings, bearings, and cooling systems are just a few of the places on the

RESTRICTED 25



RESTRICTED

motor where sensors are strategically positioned to measure temperature. The thermal
behavior of the motor is then evaluated using these values, and any variations from
typical operating temperatures are found. Increased temperatures may be a sign of
problems including deteriorating insulation, failing bearings, insufficient cooling, or
overloading. Potential flaws or abnormal circumstances can be detected early on by
tracking temperature trends and comparing them to predetermined thresholds or previous
data.Electrical machinery can be thermally monitored by estimating parameters or by
measuring the motor’s overall or local temperature. Excessive heat is produced in
the shorted turns by a stator current fault, and this heat extends the fault’s severity
until it reaches a destructive stage. As a result, some researchers developed thermal
model of electric motors.thermal models of electric machines are classified into two

categories[13]:
* Finite element Analysis based model

* Lumped parameter thermal models

FEA based models are more accurate, but highly computational intensive. A lumped
parameter thermal model is equivalent to thermal network that is composed of thermal
resistances, capacitances, and corresponding power losses. The accuracy of model
is generally dependent on the number of thermally homogenous bodies used in the

model[15][16] .

3.2.3 Acoustic Emission Testing

Acoustic emission testing uses sensors to detect and analyze high-frequency sound waves
emitted by the motor. It helps identify issues such as mechanical faults, bearing defects,
or arcing. Specialized sensors are used to capture these acoustic emissions, which are
then analyzed to assess the health of the motor and detect potential faults. Acoustic
emissions can indicate various issues such as mechanical faults, bearing defects, arcing,
or structural weaknesses. By analyzing the characteristics of the emitted sound waves,
including their intensity, frequency, and duration, faults can be identified and classified.

Acoustic emission testing is particularly useful for detecting early signs of deterioration

RESTRICTED 26



RESTRICTED

or impending failures that may not be easily observable through other monitoring
techniques. It enables proactive maintenance actions to be taken, such as lubrication,
repair, or replacement of faulty components, to prevent catastrophic failures and optimize
the reliability and performance of the motor.The early fault diagnostic technique based
on acoustic signals. The proposed technique was used for the single-phase induction
motor. The following states of the motor were analysed:healthy single-phase induction
motor, single-phase induction motor with faulty bearing, single-phase induction motor

with faulty bearing and shorted coils of auxiliary winding.[[17]

3.2.4 Motor Current Signature Analysis (MCSA)

It is a widely used health monitoring technique for induction motors. MCSA involves
analyzing the electrical current waveform of the motor to detect abnormalities and
diagnose faults. By monitoring the motor’s current signature, deviations from normal
operating conditions can be identified, indicating the presence of faults such as rotor
bar defects, eccentricity, or mechanical problems. MCSA allows for the early detection
of developing faults, enabling proactive maintenance actions to be taken before major
failures occur. By comparing the current waveform against reference signatures or
predefined thresholds, abnormal patterns can be detected, allowing for timely interventions
to prevent downtime and optimize maintenance schedules. MCSA is a non-intrusive
technique that can be performed while the motor is in operation.Randy R. Schoen et.
al.[18]] addressed the application of motor current signature analysis for the detection of
rolling-element bearing damage in induction machines. The investigates the efficacy of
current monitoring for bearing fault detection by correlating the relationship between
vibration and current frequencies caused by incipient bearing failures.The bearing
failure modes are reviewed and the characteristic bearing frequencies associated with
the physical construction of the bearings are defined.M.E.H. Benbouzid and H. Nejjari
et. al.[19] stated that preventive maintenance of electric drive systems with induction
motors involves monitoring of their operation for detection of abnormal electrical and

mechanical conditions that indicate, or may lead to, a failure of the system. Intensive
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research effort has been for sometime focused on the motor current signature analysis
Miletic and Cettolo [20] acknowledged that Motor Current Signature Analysis (MCSA)
1s one of the widely used diagnostic methods. This method is based on measurement of
sidebands in the stator current spectrum. These sidebands are usually located close to the
main supply frequency. Frequency converter causes supply frequency to slightly vary in
time and, as a result, some additional harmonics in the current spectrum are induced and
sidebands are reduced. These harmonics can be easily misinterpreted as the sidebands
caused by the rotor faults. In this study, the experimental results of fault diagnosis
carried out using standard supply and using frequency converter were compared and
presented. All tests were performed on 22 kW induction motor.

Jason R. Stack et. al. [21] introduced the notion of categorizing bearing faults as either
single-point defects or generalized roughness. This is important because it divides these
faults according to the type of fault signatures they produce rather than the physical
location of the fault. The benefit of this categorization is twofold. First, it ensures that
the faults categorized as generalized roughness are not overlooked. The majority of
bearing condition monitoring schemes in the literature focus on detection of single-point
defects. While this is an important class of faults, a comprehensive and robust scheme
must be able to detect both generalized roughness and single-point defect bearing faults.
Second, grouping faults according to the type of fault signature they produce provides a

clearer understanding of how these faults should be detected.

3.3 1ISO standard of Condition Monitoring of Machines

ISO (the International Organization for Standardization) is a worldwide federation
of national ISO (the International Organization for Standardization) is a worldwide
federation of national standards bodies (ISO member bodies). The work of preparing
International Standards is normally carried out through ISO technical committees.
Each member body interested in a subject for which a technical committee has been

established has the right to be represented on that committee. The document provides
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guidelines for condition monitoring and diagnostics of machines using parameters
such as vibration, temperature, flow rates, contamination, power, and speed typically
associated with performance, condition, and quality criteria. The evaluation of machine

function and condition may be based on performance, condition or product quality.[22]]

* [SO 22096:2007(en) is the ISO standard for condition monitoring and diagnostics
of machines using acoustic emission.Acoustic emission is a technique that monitors
a component for defects by causing tiny earthquakes in the material. This technique
allows large structures and machines to be monitored while in operation with

minimal disruption.

* [SO 20958:2013 is an international standard that provides guidance for online
condition monitoring and diagnostics of machines using electrical signature analysis.
It was introduced on August 15, 2013 and is applicable to three-phase induction

motors

e [SO 11342:1998, Mechanical vibration — Methods and criteria for the mechanical

balancing of flexible rotors

* ISO 13381-1, Condition monitoring and diagnostics of machines — Prognostics —

Part 1: General guidelines

* ISO 20816 (all parts), Mechanical vibration — Measurement and evaluation of

machine vibration

* [SO 13373-1, Condition monitoring and diagnostics of machines — Vibration

condition monitoring — Part 1: General procedures

* ISO 13379-1 was prepared by Technical Committee ISO/TC 108, Mechanical
vibration, shock and condition monitoring, Subcommittee SC 5, Condition monitoring

and diagnostics of machines.

The part of ISO 13379 contains general procedures that can be used to determine
the condition of a machine relative to a set of baseline parameters. Changes from

the baseline values and comparison to alarm criteria are used to indicate anomalous
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behaviour and to generate alarms: this is usually designated as condition monitoring.
Additionally, procedures that identify the cause(s) of the anomalous behaviour are given
in order to assist in the determination of the proper corrective action: this is usually

designated as diagnostics.
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Chapter 4
4 Methodology

The main aim of this project to get an efficient and accurate fault diagnosis system for
single phase Induction motor bearing Faults using machine learning algorithms . By
this approach we can timely maintenance of our Induction Motor, reduce downtime
and enhance the overall reliability of Induction motor.Experiments were conducted
on two identical induction motors under healthy,single- and multi-fault conditions.
Stator currents and vibration signals and Acoustic signals of the motors were measured
simultaneously in each testing.In this paper, 4-pole, 0.5 HP, 208-230V, 1450 rpm
rated squirrel-cage induction motor purchased for experiments. Two identical motors
named as “Healthy Motor ” and “Faulty Motor , which are treated as sister units,
are used.Healthy Motor is mainly tested for Healthy conditions, and Faulty Motor
for different faults condition. The healthy, single- and compound-fault conditions are
applied to the step-by-step methodology that will be adopted for the project is shown

below:

Literature Hardware Different Faults
Review workbench Induced

Al Machine Feature Dataset

Learning Extraction Acquisition

Testing and

e G| Design Conclusion
Prediction

Figure 12: Methodology
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4.1 Induction Motor Workbench

The process of acquiring data from induction motors involves setting up appropriate
experimental configurations and deploying a robust data acquisition system capable of
capturing relevant signals. Induction motor setup typically includes mounting sensors,
such as accelerometers for vibration measurement , Current sensors for current signature
analysis and Acoustic sensor for Sound data at strategic locations on the motor housing.
These sensors are carefully positioned to ensure optimal signal acquisition and coverage
of critical motor components, such as bearings.In the experimental test bench (in
Figure), an induction motor is connected with the voltage Regulator to a single-phase
power supply.Through Voltage Regulator control the rpm of the motor.The vibration
is measured by a tri-axial accelerometer (adxI-335), for Current measurement (AC-
712) Sensor and for Acoustic Data (KY-037) is used.The accelerometer is mounted
on the top of the motor near the face end, vibration at the axial (x-axis), vertical

(y- axis) and horizontal (z-axis) directions is measured. The sampling frequency for

Figure 13: workbench

vibration measurements is 1 kHz. In each test, single phase stator currents (I) , vibration
at x-, y-, and z-axis and Sound data during the start-up and steady-state conditions
are recorded simultaneously for two minutes. A single- or compound-fault creates

unbalance inside the motor, which will be reflected in stator currents ,Acoustic and
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vibration signals.Induction Motor are tested on different rpm (1450, 1200 and 950) and
different Load (100W , 200W , 300W) conditions.

4.2 Different Sensors Used for Different Condition monitoring

A sensor is a device or component that detects and measures physical phenomena or
environmental conditions and converts them into electrical signals or other readable
forms. Sensors can be a wide range of applications, like industrial systems, automotive
systems, consumer electronics, medical devices etc. They enable monitoring, control,
and feedback mechanisms by capturing information about various parameters such as
temperature, pressure, light intensity, motion etc. There are various sensors that you can
use for fault diagnosis in induction motors. Here are some commonly used sensors for

condition monitoring :
e Current Sensor
e Acoustic Sensor

e Vibrational Sensor

4.3 Data Acquisition

Dataset covers a wide range of fault and healthy condition including bearing faults,Acoustic
faults and Current faults.We have the three sensor for data collection of these Faults.
Normalize and Auto-scale the data set for comparison and analysis of fault diagnosis.It
enables the extraction of relevant information from the raw signals, facilitating fault
diagnosis, condition monitoring, and performance analysis.All data comprises of different
load conditions(no load, 100W , 200W and 300W) and Different rpm conditions (1450
rpm, 1200 rpm and 950 rpm).Collecting all dataset and by using Matlab convert the
dataset files into Ensemble data (memtable) to ready for the feature Extraction.All the
dataset divide into two parts 1) Training data 2) Testing data .Overall data divide into 70

percentage data for Training and 30 percentage data for Testing.
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Sensor Used for Dataset

Current Signal
{RMS)

Figure 14: Three different dataset

The overall data consists of four load condition and three RPM condition.Four Load

condition involve :
* No Load
* 100 Watt
* 200 Watt
* 300 Watt
Three RPM condition involve:
* 1450 rpm
* 1200 rpm
* 950 rpm

The overall table of the data table is include all dataset such as :

RESTRICTED 34



MO LOAD

100wy
LoAD

RESTRICTED

CDUTER
RACE

40 Files 40 Files

40 Files 40 Files

40 Files 40 Files

INMER BALL FALILT COMPOUMD

RACE

40 Files 40 Files

40 Files 40 Files

40 Files

40 Files 40 Files

40 Files

Figure 15: Overall Dataset Table

4.4 Feature Extraction

Extract and Rank Features for Candidate Condition Indicators Export

Top

Import
Data

B
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Figure 16: Diagnostic Feature Designer workflow
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For Feature Extraction of Time Domain features and frequency Domain features used
Diagnostic feature designer tool of the Matlab. Machine learning relies on features
extracted from measurement signals [31] The most effective features can ultimately
become your condition indicators for fault diagnosis and prognostics.The app operates on
ensemble data. Ensemble data contains data measurements from multiple members, such
as from multiple similar machines or from a single machine whose data is segmented
by time intervals such as days or years. The data can also include condition variables,
which describe the fault condition or operating condition of the ensemble member. Often

condition variables have defined values known as labels. It divide into three parts:-

Time Domain Frequency Domain Time-Frequency Domain
RMS Peak amplitude Spectrogram
Standard deviation Peak frequency Short-Time Fourier Transform (STFT)
Shape factor Number of peaks Wavelet Transform
Kurtosis Damping factor Mel-Frequency Cepstral Coefficients (MFCCs)
Skewness Band Energy Wigner-Ville Distribution (WVD)

Table 1: Table of Extracted Features
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4.4.1 Time Domain Features:

Diagnostic Feature Designer app provides a user-friendly interface for extracting time
domain features from signals, which can be particularly useful for diagnostic purposes
in various applications such as condition monitoring, fault detection, and predictive
maintenance. Time domain features are derived directly from the signal’s amplitude

values over time, without any transformation to the frequency domain.

* Mean (Average): The mean is a measure of the central tendency of the signal and

represents the average value of all the data points in the signal.

 Standard Deviation: The standard deviation quantifies the dispersion or spread of
the signal around its mean. It provides a measure of the variability or fluctuation in

the signal.

* Root Mean Square (RMS): The RMS value is calculated as the square root of the
mean of the squared values of the signal. It represents the effective amplitude of the

signal and is often used to quantify signal power.

* Skewness: Skewness measures the asymmetry of the signal’s distribution around
its mean. A positive skewness indicates that the tail of the distribution extends more

to the right, while a negative skewness indicates a longer tail to the left.
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* Kurtosis: Kurtosis measures the ’peakedness” or “tailedness” of the signal’s
distribution. A higher kurtosis value indicates a sharper peak and heavier tails,

while a lower kurtosis value indicates a flatter distribution.

* Peak Amplitude: The peak amplitude is the maximum absolute value of the signal,

regardless of its polarity. It represents the maximum excursion of the signal from

its mean.

* Crest Factor: The crest factor is the ratio of the peak amplitude of the signal to its
RMS value. It provides information about the signal’s peak-to-average power ratio

and can indicate the presence of transient peaks or spikes.
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* Entropy: Entropy measures the randomness or unpredictability of the signal.

Higher entropy values indicate greater randomness, while lower entropy values
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indicate more predictability or regularity in the signal.

* Shape factor:RMS divided by the mean of the absolute value. Shape factor is

dependent on the signal shape while being independent of the signal dimensions.
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4.4.2 Frequency Domain Features:
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Frequency domain features are characteristics of a signal or system that can be
extracted from its frequency-domain representation. They are often used in signal
processing, machine learning, and other fields to analyze and classify signals based on
their frequency content.In engineering and statistics, frequency domain is a term used
to describe the analysis of mathematical functions or signals with respect to frequency,
rather than time. The frequency domain representation of a signal allows you to observe
several characteristics of the signal that are either not easy to see, or not visible at
all when you look at the signal in the time domain.In the frequency domain, the total
average power is the sum of the power of all the frequency components of the signal. The
power spectrum is a frequency-domain plot of power per unit Hz vs. frequency. It
indicates the relative magnitudes of the frequency components that combine to make up

the signal. Three frequency domain feature selected:

* Peak Amplitude: In the frequency domain, peak amplitude is a measure of how
much a wave or vibration deviates from its central value. Amplitude is plotted on
the y-axis, and frequency is plotted on the x-axis.n a sinusoidal waveform, peak
amplitude is the maximum positive or negative deviation from the waveform’s zero

reference level. In the frequency domain, a signal is described by a complex
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function of frequency. The modulus of the number is the amplitude of that
component, and the argument is the relative phase of the wave.he frequency of a
sinusoid determines the ”pitch” of the tone, while the amplitude determines the
“loudness”.Peak amplitude = 1.414 x rms amplitude. How does this work? If we
took 4 equally-spaced samples of a sine wave with an amplitude of 1, we would get

0, 1, 0, -1. Squaring each we get 0,1,0,1.

* PeakFrequency: Peak frequency is the frequency of waves represented by a peak
in the wave spectrum. It can also refer to the frequency of the peak of greatest
amplitude within a call.The frequency (period/wavelength) of waves represented by
a peak (maximum energy) in the wave spectrum; sometimes known as the dominant
frequency.The formula for peak frequency is fmax =k x T, where k is a numerical

constant equal to 5.8789232 x 10! Hz/K.

* Band Power: Band power is a single number that summarizes the contribution of
a given frequency band to the overall power of a signal. It’s calculated by using a
modified periodogram to determine the average power in a frequency range.The
band power of a signal with length is computed as the area beneath the graph of
the power spectral density of versus the frequencies.In MATLAB, bandpower is

calculated using the formula: p = bandpower( pxx , f, freqrange ,”psd”)

Now “Rank Features,” the app uses one-way ANOVA to calculate ranking scores for
all the features. The results of the ANOVA test are displayed on the Screen whereas
the bars also shows the normalized scores for different features. For training a machine
learning model, we will choose features that have a high ANOVA score and leave out
the ones with a much smaller score as these won’t contribute to training a model. When
we are extracting features to train a model,Everyone find his self trying out different
sets of features to see which set works best for classifying fault types.Now we’re ready
to export the extracted features to the Classification Learner to train a machine learning

model.
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Features Sorted by Importance

Feature One-way AMNOYA
B One-way ANOVA Datar_sigstatsitd i 3.50932+03
Data_sigstats/RMS 781 0662
Data_sigstatsPeakvalue 2965319
Data sigstats/iSkewness 162.2992
Data_sigstatsMurtosis 1402436
Data_sigstatsiCrestFactor 113.8369
Data_sigstatsimpulseFactor 381176
Drata_sigstatsMlean 184225
Data_sigstatsiShapeFactor 16.5455
Data_sigstatsiClearanceFactor 16.0445
Data_sigstats/SINAD 84630
Drata_sigstats/ShE 8.3355
Diata_sigstatsTHD i}
Figure 17: Feature one-way Anova
Features Sorted by Importance
T T T T
Feature One-way ANOWVA
I O c-vay ANOVA Data_sigstats/Std 4.};831 404
Data_sigstatz/PeskValue 5.3373e+03
g Data_sigstatsRMS 527 e+03
Data_sigstatsMean 15982272
T Data_sigstatsiShapeF actor 1324781
Data_sigstataiSkewness 52.4824
}> | Data_sigstatsiClearanceF actor 475319
}; i Data_sigstatsAmpulseFactor 47 ET13
Data_sigstatz Murtosis 47 6057
r T Diata_sigstatsiCrestFactor 47 0368
Data_sigstats/ShR 15.5966
i 1 Data_sigstatz/SINAD 18 5658
L i Data_sigstatsTHD 1]

Figure 18: Other Data Feature one-way Anova

4.5 Algorithm Selection and Modelling

Machine learning (ML) is a discipline of artificial intelligence (AI) that provides
machines with the ability to automatically learn from data and past experiences while
identifying patterns to make predictions with minimal human intervention. Machine
learning derives insightful information from large volumes of data by leveraging
algorithms to identify patterns and learn in an iterative process. ML algorithms use
computation methods to learn directly from data instead of relying on any predetermined

equation that may serve as a model.
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4.5.1 How does machine learning work?

Machine learning algorithms are molded on a training dataset to create a model. As new
input data is introduced to the trained ML algorithm, it uses the developed model to

make a prediction.

HOW DOES MACHINE LEARNING WORK?

S

Training

data

+ (Unacceptable) (Acceptable)

M) «— { Q) —»{ @)
Train ML Accuracy Successful
algorithm model

=&
=03
Model input
data
b he oz )
=y —> —> 5
New input ML algorithm Prediction
data

Figure 19: Machine Learning
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4.5.2 Types of Machine Learning

Machine learning algorithms can be trained in many ways, with each method having
its pros and cons. Based on these methods and ways of learning, machine learning is
broadly categorized into four main types: During past two decades machine learning

TYPES OF
MACHINE LEARNING

o)

Supervised Unsupervised Semi-Supervised Reinforcement
Machine Learning Machine Learning Learning Learning

Figure 20: Types of Machine Learning

methods for fault diagnosis of induction motors are the artificial neural network (ANN)
or hybrid ANN combined with other techniques [25] One of the most popular hybrid
ANN methods is combining ANN with Fuzzy logic, which can provide accurate fault
detection with heuristic interpretation [26]Several other machine learning approaches
are employed last few years.The immunological principles are applied for induction
motor fault detection in [27]. A pattern recognition approach associated with Kalman
interpolator/extrapolator is proposed in [28]. An integrated class-imbalanced learning
scheme for diagnosing bearing defects is reported in [29]. A sparse deep learning
method proposed in [30] can overcome overfitting risk of deep networks. Among machine
learning based fault diagnosis methods,stator current is the most widely used signal,

either alone or combined with other signals.
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4.5.3 Selected Machine Learning Algorithms

Use the machine learning algorithms suitable for fault diagnosis in induction motors.
Selection of algorithms for fault diagnosis in induction motors have several factors
including the complexity of the problem, the availability and quality of data, computational
resources, and the desired performance metrics. There are different Algorithms which
include decision trees, random forests, support vector machines, or neural networks. We
use and interchange some build in Machine Algorithms available on matlab. a practical
machine learning based approach for induction motor fault diagnosis is proposed using
experimental data in this project.The Classification Learner app trains models to classify
data. Using this app, you can explore supervised machine learning using various
classifiers. You can explore your data, select features, specify validation schemes, train
models, and assess results. You can perform automated training to search for the best
classification model type, including decision trees, discriminant analysis, support vector
machines, logistic regression, nearest neighbors, naive Bayes, kernel approximation,
ensemble, and neural network classification.A selection of model types appears in the
Models pane. When the models finish training, the best percentage Accuracy (Validation)

score is outlined in a box.Four Classification Learner Model Selected .
* Fine Gaussian SVM
* Fine KNN
* Ensemble(Bagged Tree)

e Medium Neural Network

4.5.4 Fine Gaussian SVM

Support Vector Machine (SVM) and Gaussian SVM (additionally called Gaussian kernel
SVM) are each variations of the SVM algorithm, with the important thing difference
lying within the preference of kernel feature used to model the selection boundary

between training.
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* SVM In a standard SVM with a linear kernel, the decision boundary is a hyperplane
that separates the feature space into two classes.The linear kernel computes the dot
product between input feature vectors, resulting in a linear decision boundary.Linear
SVM is effective when the data is linearly separable, meaning the classes can
be separated by a straight line or hyperplane in the input space.Linear SVM is
computationally efficient and easy to interpret, but it may not perform well on data
with complex nonlinear relationships.SVM is a commonly used machine learning
method for data classification and regression based on statistical learnings and

structural risk minimization [32]]

* Fine Gaussian SVM Gaussian SVM (or Radial Basis Function, RBF, SVM) is
a variant of SVM that uses a Gaussian (or radial basis function) kernel to model
the decision boundary.The Gaussian kernel computes the similarity between input
feature vectors based on their Euclidean distance in the feature space. It assigns
higher weights to nearby points and lower weights to distant points.Gaussian SVM
is capable of capturing complex nonlinear relationships between features and class
labels, making it suitable for data that is not linearly separable.However, Gaussian
SVM may be more computationally expensive and prone to overfitting, especially
with a large number of training samples or when the kernel bandwidth parameter is
not properly tuned.A kernel function converts a nonlinearly separable object into
linearly separable by mapping them in a higher dimensional feature space [33]].
The common types of kernel functions include linear kernel, polynomial kernel,

Gaussian radial basis function (RBF) kernel [34][37].

Specification of the Selected Model is :-

Model Fine Gaussian SVM
KernelParameters 0.7900
Binary Loss hinge loss= max(0,1-Y*f(x))
LearnerRate 0.41 0.40 0.37 0.39 0.42 0.39 0.41 0.38 0.40 0.38
Score Transform None
Bias 0.489

Table 2: Specification of Fine Gaussian SVM

RESTRICTED 46



RESTRICTED

4.5.5 Fine KNN

Fine KNN” likely refers to a variant or modification of the k-nearest neighbors (KNN)
algorithm that involves fine-tuning certain parameters or hyperparameters to optimize
its performance. The term “’fine” in this context typically suggests a process of fine-
tuning or optimizing the algorithm for better results.Unlike standard KNN where k can
be larger, Fine KNN uses k = 1, meaning it relies on the single nearest neighbor for
classification.Choosing centroid value is an iterative process. To generate an initial set
of random clusters, the emanated classifier is used.Then it continue to adjust the centroid
value until it becomes stable. The stable centroids are used to classify input data by

transforming an anonymous dataset into a known one. [335]]

Model Fine KNN
NumNeighbors 1
Distance “euclidean’
DistanceWeight Equal
BreakTies Smallest
Bucket Size 50
Type Classification

Table 3: Specification of Fine KNN

4.5.6 Ensemble(Bagged Tree)

Ensemble learning is a machine learning technique where multiple models are combined
to improve the overall performance of the system. Bagged Trees, short for Bootstrap
Aggregating Trees or Bootstrap aggregating of decision trees, is a specific type of
ensemble method that involves training multiple decision trees on different subsets of
the training data and aggregating their predictions.Bagging (Bootstrap Aggregation) is a
specific type of ensemble method that uses decision trees as base learners.Bagged Trees
represent a valuable ensemble method for bearing fault diagnosis in induction motors.
Their ability to improve accuracy, reduce variance, and handle complex data makes them

a strong contender in your research toolbox.This flexibility may lead to over fitting,which
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1s overcome in Bagged Trees where each classifier is trained in different partitions and
combined through a majority voting. A weaker correlation of error of single classifiers
leads to a better prediction accuracy. Therefore, diverse single classifiers are preferred

for ensemble [36]

Model Ensemble
TrainedWeight 1
Combined Weight 30
NumNodes 15
Training each tree | Independently
Each subset bootstrap sample

Table 4: Specification of Ensemble

4.6 Training and Testing the Models

Train the selected machine learning models using the training data. During training,
the models learn the patterns and relationships in the data that distinguish between
normal and faulty operating conditions.we have five parameters available for training

the model.now I will explain each model training and testing one by one .

4.6.1 SVM Model Training and Testing

Train the SVM model on the dataset and Specify the SVM kernel (e.g., linear, polynomial,
Gaussian) and any hyperparameters that need to be tuned (e.g., regularization parameter
C, kernel parameters).Evaluate the trained SVM model using the testing dataset. Make
predictions on the testing data and compare the predicted labels with the ground truth to

compute evaluation metrics such as accuracy and confusion matrix.
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Figure 21: SVM Vibrational Confusion matrix
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Figure 23: SVM Acoustic Confusion matrix
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Figure 22: SVM Current Confusion matrix
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Figure 24: SVM Acoustic Confusion matrix
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4.6.2 KNN Model Training and Testing

Train the KNN model using the training dataset. Specify the number of neighbors

(k) and any other hyperparameters that need to be tuned.Evaluate the trained KNNN

model using the testing dataset. Make predictions on the testing data and compare the

predicted labels with the ground truth to compute evaluation metrics such as accuracy,

precision,and confusion matrix.
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Figure 25: KNN Vibrational Confusion matrix
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Figure 26: KNN Current Confusion matrix
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Figure 27: KNN Acoustic Confusion matrix
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4.6.3 Ensemble Model Training and Testing

Train the ensemble model using the training dataset. For bagging, train multiple base

learners on different subsets of the training data and aggregate their predictions. For

boosting, train base learners sequentially, with each subsequent learner focusing on the

errors made by the previous ones. For stacking, train multiple base learners and combine

their predictions using a meta-learner.valuate the trained ensemble model using the

testing dataset. Make predictions on the testing data and compare the predicted labels.

Model 121
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©
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Figure 29: Ensemble Vibrational Confusion matrix
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Figure 31: Ensemble Acoustic Confusion matrix
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Figure 30: Ensemble Current Confusion matrix

35%

39%

37%

True Class
~a

FINR

Predicted Class

Figure 32: Ensemble Acoustic Confusion matrix
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4.6.4 Neural Network Model Training and Testing

Train the neural network model using the training dataset. This involves feeding the
training data through the network, computing the loss function (e.g., cross-entropy
loss for classification tasks), and updating the model parameters using optimization
algorithms.Make predictions on the testing data and compare the predicted labels
with the ground truth to compute evaluation metrics such as accuracy.Then tested the

performance of your trained neural network model on the unseen test set.
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Figure 33: Neural Network Vibrational Confusion matrix Figure 34: Neural Network Current Confusion matrix
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Figure 35: Neural Network Acoustic Confusion matrix Figure 36: Neural Network Acoustic Confusion matrix

RESTRICTED 52



RESTRICTED

4.6.5 ROC and AUC of the model

Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are
important metrics used to evaluate the performance of classification models, including
those used for fault diagnosis of induction motors using machine learning techniques.

The ROC curve is a graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. It is created by plotting the
true positive rate (sensitivity) against the false positive rate (1-specificity) at various
threshold settings. A higher true positive rate and a lower false positive rate indicate
better performance of the classifier.

The AUC represents the area under the ROC curve and provides a single scalar value
that summarizes the performance of the classifier across all possible threshold settings.
The AUC value ranges from O to 1, where a model with an AUC of 1 indicates perfect
discrimination (i.e., the model achieves a true positive rate of 1 and a false positive rate
of 0 across all threshold settings), while a model with an AUC of 0.5 suggests random
classification (no better than chance).The ROC curve is a graphical representation of the
confusion matrix. It summarizes the overall performance of a classifier over all possible
thresholds, and the area under the curve (AUC) gives an insight about how confidently

the classification is done.
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Chapter 5

5 Experimental Setup
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Figure 38: Flow chart for purposed methodology
In order to diagnose the fault of induction motor with high accuracy and result. Experimental
test bench was set up as shown in Figure.It consists of
* Induction Motor
* Arduino Uno
* Acoustic Sensor

e Current Sensor
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* Vibrational Sensor
* Voltage Regulator
* Tachometer

* Loads

* Power Supply
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Figure 40: Experimental Test Bench Top view
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5.1 Induction Motor

At Start a Induction motor was bought as a beginner to this project.The cost of this
induction motor is PKR 9500/-.Two Squirrel-cage induction motors purchased for
experiments.One for Healthy Data Acquisition and Second for Faulty Data Acquisition
on different load and rpm conditions. It is the single phase Induction motor with

Specification were as follow:

Parameters Data
Voltage 208-230 V
Frequency 50 Hz
Power 0.37 W
HP 0.5
Pole 4
RPM 1450

Table 5: Specification of Induction Motor
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Figure 41: Induction Motor for Experiment

5.2 Arduino Uno

The Arduino Uno software and hardware is a popular microcontroller board based on
the ATmega328P microcontroller. It’s part of the Arduino family of development boards,
which are designed for building and prototyping electronic projects. The Arduino Uno
is particularly well-suited for beginners due to its simplicity and ease of use. The
Arduino Uno can be used for fault diagnosis in induction motors by monitoring various

parameters and analyzing the data.The Arduino Uno has the following features:
* 14 digital input/output pins, including six that can be used as PWM outputs
* Six analog inputs
* A 16 MHz ceramic resonator
* A USB connection

¢ A reset button
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e An ICSP header

The Arduino Uno can be used in a variety of electronic projects, including interfacing
with other Arduino boards, Arduino shields, and Raspberry Pi boards. It can also control
relays, LEDs, servos, and motors as an output. Here’s how you can utilize the Arduino

Uno in this project:

5.2.1 Sensor Integration:

Connect sensors to the Arduino Uno to measure relevant parameters of the induction
motor. For fault diagnosis, you may consider using sensors such as current sensors,
voltage sensors, temperature sensors, vibration sensors, or Hall Effect sensors. These

sensors will help you gather data about the motor’s performance.

5.2.2 Data Acquisition:

Use the analog or digital input pins of the Arduino Uno to read the sensor data. You can
interface the sensors directly with the Arduino Uno or use additional circuitry, depending

on the sensor requirements.

5.2.3 Data Processing and Analysis:

All the sensor data acquired and then get the rms values of all the induction motor
sensors.Develop a program using the Arduino IDE to process and analyze the sensor data.
You can implement algorithms or techniques to detect faults or anomalies in the motor’s
behavior. For example, you could monitor the current waveform for irregularities,

analyze temperature trends, or detect excessive vibrations.
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Figure 42: Arduino Uno

5.3 Acoustic Sensors

The KY-037 can detect loud sounds, such as slamming doors. It has analog and digital
outputs, so the sensor can be ready by any microcontroller. Acoustic sensors are used
to detect and measure sound waves or acoustic signals in the environment. They have
many applications, including environmental monitoring, industrial condition monitoring,

security and surveillance, healthcare, automotive and robotics.

:F? '5’1. -Eh&“'-:;.

%

[

F;’.!ﬂ'

Figure 43: KY-037

Here are some specifications for the KY-037 High Sensitive Sound Microphone

Sensor:
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Parameters Specification
Main chip LM393
Microphone type Electret condenser microphone
Working voltage DC 4-6V
Output Single channel signal
Induction distance Maximum of 0.5m
Electret condenser microphone CMA-6542PF
resistors 6
potentiometer 3296W
Microphone sensitivity -42 +£3 db

Table 6: Specification of Acoustic Sensor

5.4 Current Sensors

Current sensors such as Hall Effect current sensors can be used to measure the current
flowing through the motor windings. They provide data on the motor’s electrical
performance and can help detect issues like overloading, phase imbalances, or abnormal
current patterns.The current sensor used in the project for current flowing through the
motor is The ACS712 is a linear current sensor that uses its conductor to calculate and
measure the amount of current applied. It has a low-noise analog signal path, an 80 kHz

bandwidth, and a 5 us output rise time in response to step input current.

Figure 44: AC-712

Here are some specifications for the ACS712 current sensor module:
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Parameters Specification
SDimensions 31 x 13 x 14 mm (LxWxH)
Weight 3 gm
Working voltage DC 4-6V
Output sensitivity 66 to 185 mV/A
Measure current range -20A 20A
Sensitivity 100mV/A
Internal conductor resistance 1.2m
Minimum isolation voltage | 2.1 kV RMS from pins 1-4 to pins 5-8
Operation 5.0V, single-supply
Measurement range -30to +30 A
Scale factor 66 mV per A

Table 7: Specification of Current Sensor

5.5 Vibration Sensors

Vibration sensors, such as accelerometer or vibration modules, are used to detect
abnormal vibrations in the motor. Unusual levels of vibration can be an indication
of misalignment, rotor imbalance, bearing wear, or mechanical faults. By monitoring
vibrations, we can identify faults and schedule maintenance or repairs.we use adxl-335

sensor for the vibrational data acquition.

Figure 45: adxl-335
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Here are some specifications for the ADXL.-335 accelerometer module:

Parameters Specification

Supply voltage 2.8-3.6V

Current consumption 320 uA

Sensitivity 300 mV/g
Bandwidth 03 Hz to 05 kHz
Dynamic range +3¢g

Operating temperature | -40°C to +85°C

Package type Surface mount plastic package (LFCSP)

Pin configuration 5 pin, 1.27 mm pitch

Table 8: Sensor Specifications

5.6 Tachometer

A tachometer is a device that measures the rotation speed of a shaft or disk, such as in
a motor or other machine. It’s designed to measure the revolutions per minute (RPM)
of a moving object. Tachometers are typically used in motors and other machines, and
are widely found in the automotive and aviation industries. They can be available as
a handheld or fixed-mount models, depending on if they’re to be used as permanent

monitoring or spot-checking tools.
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Figure 46: Tachometer

5.7 Different Loads

A bulb is an ohmic load, and adding lamps can add extra heat to the filament of the
lamp.An induction motor’s power factor changes with load. At full load, the power
factor is usually around 0.85 or 0.90, while at no-load it can be as low as about 0.20.An

induction motor use incandescent light bulbs as test loads in this project.
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Figure 49: workbench with 300W

5.8 Software

Matlab used for Data Acquisition, for Decision and comparison of the healthy and faulty
Induction Motor data and Design the GUI for Monitoring of the Induction Motor.In
Matlab use Diagnostic feature Designer for feature Extraction and Classification Learner
for Algorithm modelling. MATLAB is a high-level programming language and environment
widely used in various fields, including engineering, science, and mathematics. With
MATLAB, users can perform tasks such as data manipulation, algorithm development,
simulation, modeling, and the implementation of complex mathematical operations.
MATLAB is commonly used in the health monitoring of induction motors due to its
powerful computational capabilities and extensive toolboxes for signal processing and

data analysis.
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Figure 50: Matlab

5.9 Different Faults Induced

For collection of data,our main focus is on the bearing faults including inner race
fault,outer race fault and compound fault .Collect the faults and healthy the dataset
using vibrational sensor,Acoustic and Current.Different Faults is induced in the bearing
before start the motor.We have two Motor 1)Used for Healthy dataset 2) Used for Faulty
dataset.The main focus of data collection is the bearing faults of the motor.Using Healthy
and Faulty bearing(Outer Race ,Inner Race ,Ball Fault and Compound Fault) in the
project.Fault induced in the bearing through drill and rough the surfaces according to

the faults.Specification of the bearing is :-

Geometry Size
parameter
: 47 mm
Outer diameter (Do)
Inner diameter (D) 20 mm
Pitch diameter (Dp) 33.5 mm
Ball diameter (D53) 8 mm
Number of balls (Np) 8
Contact angle (0) 0°

Figure 51: Bearing Specification
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Figure 52: Healthy Bearing

Figure 54

: Inner Race Fault
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Figure 53: Compound Fault

Figure 55: Outer Race Fault
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Figure 56: Ball Fault
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Chapter 6

6 Vibrational Setup

6.1 Studies Relevant to Bearing Faults

Numerous studies have focused on the application of machine learning techniques
specifically for the diagnosis of bearing faults in induction motors. These studies
utilize various types of data, including vibration signals, current signatures, and acoustic
emissions, to detect and classify different types of bearing faults such as inner race,

outer race, and Ball faults.

* For instance, Zhang et al. (2019) developed a fault diagnosis method based on
deep learning for detecting bearing faults in induction motors using vibration
signals. Their convolutional neural network (CNN) model achieved high accuracy in
distinguishing between healthy and faulty bearings, demonstrating the effectiveness

of deep learning approaches in bearing fault diagnosis.

* Lietal. (2020) proposed a fault diagnosis framework that combined vibration signal
analysis with machine learning algorithms, including support vector machines
(SVM) and decision trees, to classify bearing faults in induction motors. Their study
highlighted the importance of feature selection and fusion techniques in improving

fault classification accuracy.

* In another study, Wang et al. (2018) investigated the use of acoustic emission signals
for bearing fault diagnosis in induction motors. They developed a novel feature
extraction method based on wavelet packet decomposition and applied machine
learning algorithms such as k-nearest neighbors (KNN) and random forests for fault

classification.

6.2 Analysis of Vibrational Signal Trace

Signal features provide general signal-based statistical metrics that can be applied to any

kind of signal, including a time-synchronized average (TSA) vibration signal. Changes
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in these features can indicate changes in the health status of a system. Diagnostic Feature
Designer provides a set of feature options .The statistical features include basic mean,
standard deviation, and root mean square (RMS) metrics. In addition, the feature set
includes shape factor and the higher order kurtosis and skewness statistics. All these
statistics can be expected to change as a deteriorating fault signature intrudes upon the
nominal signal. In this project ,after import the dataset and see the Signal trace of all

three axis:

Signal Trace
R s ol b 'T'I',
FaultCode=4 | |
FaultCode=2
FaultCode=3 f¥!
FaullCode*O |

Data/X

0.57 0.58 0.59 0.6 0.61 0.6e2 0.63 0.64 0.65 0.66 0.67
Sample (samples) x10°

Figure 57: Signal of X

Power Spectrum view of the data with healthy and faulty indication.
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Figure 62: Power Spectrum of Z

6.3 Analysis of data Features

The Diagnostic Feature Designer tool of MATLAB offers a user-friendly interface
for extracting both time domain and frequency domain features from signals, which
are essential for various diagnostic applications such as condition monitoring, fault
detection, and predictive maintenance. Time domain features, derived directly from the
signal’s amplitude values over time, provide valuable insights into the signal’s behavior
and characteristics. For instance, the mean (average) represents the central tendency
of the signal, while the standard deviation quantifies its spread or variability. The
root mean square (RMS) value reflects the effective amplitude and quantifies signal
power. Skewness and kurtosis measure the asymmetry and peakedness of the signal’s
distribution, respectively, providing information about its shape and characteristics.
Additionally, features such as peak amplitude, crest factor, entropy, and shape factor
offer insights into signal properties such as maximum excursion, peak-to-average power

ratio, randomness, and signal shape, respectively. Each of these features contributes
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to a comprehensive understanding of the signal’s behavior, aiding in the diagnosis and

analysis of various system conditions and faults.Get the Time domain features and also

frequency domain feature extracted from the matlab tool.
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Figure 63: Time domain Features
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Figure 64: Frequency Domain Features
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All the computed features are now listed, Fault diagnosis of bearings is usually based

on vibration signals, and a set of features are extracted in order to classify the faults.

we also have the histograms. On these plots, different fault types are highlighted with

different colors. Ideally, we want to have a plot that looks separately. All different

colored distributions are apart from each other. If our histogram plots looks separately

then, we could easily discriminate between different types of faults. But instead they

look similar to each other, where there’s a lot of overlapping between different fault

types. Due to overlapping and a large number of features, it is really hard for us to tell

the most useful features just by looking at plots. However, this app lets us rank these

features to determine the ones that will help us effectively separate different types of

faults. Histograms of the selected dataset:-
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Figure 65: Histograms of Vibrational
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Figure 66: Histograms of Vibrational
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6.4 Results

In this project for fault diagnosis in induction motors using machine learning, MATLAB’s
Classification Learner app is employed to explore and compare the performance of
four selected models: Fine Gaussian SVM, Fine KNN, Ensemble (Bagged Tree),
and Medium Neural Network. These models represent a range of machine learning
algorithms suitable for classification tasks, including support vector machines, k-nearest
neighbors, ensemble methods, and neural networks. By using the app’s capabilities,
such as automated training, feature selection, and validation schemes, the project aims to
identify the most effective model for accurately classifying fault conditions in induction
motors. Through careful evaluation of performance metrics and model interpretability,
the project seeks to provide a practical and reliable solution for diagnosing faults in
real-world industrial settings, considering factors such as data complexity, computational
resources, and desired performance criteria.In this project utilizes vibrational sensor data
collected specifically from bearings to enhance diagnostic accuracy.Confusion matrix of
vibrational Train data:

Model 2.1 Model 2.14

100.0% 100.0%

True Class
(=)

True Class

100.0%

100.0%
100.0%

TPR  FNR

Fredicted Class
Predicted Class

Figure 67: SVM Vibrational Confusion matrix Figure 68: KNN Vibrational Confusion matrix
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Figure 69: Ensemble Vibrational Confusion matrix Figure 70: Neural Vibrational Confusion matrix

The area under the ROC curve (AUC) serves as a valuable metric for evaluating
the performance of a classifier in distinguishing between different classes of motion
or vibration patterns. The ROC curve provides a graphical representation of the
classifier’s performance across various threshold settings, where the true positive
rate (sensitivity) is plotted against the false positive rate (1-specificity). A perfect
classifier would have an ROC curve that hugs the upper left corner of the plot, indicating
a true positive rate of 1 and a false positive rate of 0 across all threshold settings,
resulting in an AUC value of 1. This scenario would suggest that the classifier achieves
optimal discrimination between different motion or vibration patterns captured by the
accelerometer sensor data. Conversely, a classifier with an AUC value close to 0.5
suggests random classification, indicating no better performance than chance. By
analyzing the AUC value in conjunction with the ROC curve, practitioners can gain
insights into the confidence and reliability of the classifier’s classification decisions
based on accelerometer sensor data, thereby facilitating informed decision-making in
various applications such as activity recognition, structural health monitoring, or fault

diagnosis.
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Chapter 7

7 Acoustic Emission Setup

7.1 Studies Relevant to Bearing Faults

Acoustic Emission technique related to bearing faults in induction motors are instrumental
in understanding the characteristic acoustic signals emitted by bearings undergoing
various fault conditions. These studies involve monitoring the high-frequency sound
waves generated by the friction, impact, and structural changes within the bearing
components. By analyzing AE signals, researchers can identify distinctive patterns

associated with specific types of faults, such as inner race, outer race, or Ball fault.

* ”Acoustic Emission-Based Bearing Fault Diagnosis: A Review” ,In This paper
provides a comprehensive review of acoustic emission-based techniques for bearing
fault diagnosis, including methodologies, signal processing techniques, and case
studies. It discusses the application of acoustic emission analysis in detecting
various types of bearing faults, including defects in the inner race, outer race, and

rolling elements, with a focus on its application in induction motors.

* ”Acoustic emission analysis for bearing fault diagnosis of electrical machines: A
review”, This review paper explores the use of acoustic emission analysis for bearing
fault diagnosis in electrical machines, including induction motors. It discusses the
principles of acoustic emission, signal processing techniques, and the application of
AE analysis for detecting different types of bearing faults. The paper also highlights

the advantages and limitations of AE-based techniques in fault diagnosis.

7.2 Analysis of Acoustic Signal Trace

Acoustic data, capturing sound wave emissions from the system, offers complementary
insights alongside vibration signals. By integrating acoustic emission techniques, which
analyze high-frequency sound waves generated by system components, such as bearings,

additional fault signatures can be detected.
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Power Spectrum of the Acoustic data and sampling frequency is 1000Hz.
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7.3 Analysis of data Features
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Diagnostic Feature Designer provides a diverse set of feature options, including basic

statistical metrics like mean, standard deviation, and root mean square (RMS), as well

as shape factor, kurtosis, and skewness statistics.Extract the Features and then model on

algorithm.
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Figure 76: Time domain Acoustic Features
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Figure 77: Frequency Domain Acoustic Features
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Frequency domain fft result of Acoustic data of healthy and faulty conditions:

* Outer Race Fault signal of fft is :
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Figure 78: FFT of Outer Race condition of Current

e Inner Race Fault signal of fft is :
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Figure 79: Inner Race Fault signal of Current

* Ball Fault signal of fft is :
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Figure 80: Ball Fault signal of fft
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Histograms of Acoustic features:-
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Figure 82: Histograms of Sound

7.4 Results

By integrating Acoustic Emission data alongside vibrational data, the machine learning
models developed within MATLAB’s Classification Learner app gain a more comprehensive
understanding of the motor’s health status.selected models: Fine Gaussian SVM, Fine
KNN, Ensemble (Bagged Tree), and Medium Neural Network. These models represent a
range of machine learning algorithms suitable for classification tasks, including support

vector machines, k-nearest neighbors, ensemble methods, and neural networks.
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Figure 83: SVM Acoustic Confusion matrix
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Figure 85: Ensemble Acoustic Confusion matrix
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Figure 84: KNN Acoustic Confusion matrix
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Figure 86: Neural Acoustic Confusion matrix
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Chapter 8

8 Motor Current Signature Analysis Setup

8.1 Studies Relevant to Bearing Faults

Numerous studies have investigated bearing faults in various contexts, including those

related to induction motors. Here are some relevant studies along with their references:

* "Bearing Fault Diagnosis Using Time-Frequency Analysis Techniques: A Comprehensive
Review” A comprehensive overview of time-frequency analysis techniques for
bearing fault diagnosis, covering methodologies, signal processing algorithms,
and case studies.Hilbert-Huang transform, and empirical mode decomposition in

detecting and diagnosing bearing faults in induction motors.

* "Fault diagnosis of induction motor bearings using vibration analysis based on
ensemble empirical mode decomposition and random forests” Fault diagnosis
approach for induction motor bearings using vibration analysis based on ensemble
empirical mode decomposition and random forests. It investigates the effectiveness
of the proposed method in identifying different types of bearing faults, including

Inner race, outer race

* "Bearing Fault Diagnosis of Induction Motors Using Motor Current Signature
Analysis and Convolutional Neural Networks” Fault diagnosis approach for induction
motor bearings utilizing MCSA combined with convolutional neural networks
(CNNs).Use of CNNs for automated fault classification, achieving high accuracy in

fault detection.

8.2 Analysis of MCSA Signal Trace

Once the data is loaded, you can visualize the MCSA signal trace by selecting it from
the list of available signals in the app.Navigate through the signal trace to explore its

characteristics.
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Figure 88: Power spectrum of current

8.3 Analysis of Data features

Use the feature extraction tools provided in the Diagnostic Feature Designer app to
extract relevant features from the MCSA signal trace. These features may include time-
domain features such as mean, standard deviation, root mean square (RMS), skewness,

and kurtosis, as well as frequency-domain features obtained through Fourier analysis or

wavelet transform.

Frequency domain fft result:-
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* Inner Race Fault signal of fft is :

wqgt InnerRace Fault Acoustic
3.5 T T T T T T T T T
3l J
25 5
w
[&]
1]
)
@ 2r 7
=
[1H]
=
215 .
o
£
<
1k J
X 43,1431
Y 4.97328e-05
0.5 b
0

0 &5 10 15 20 25 30 35 40 45 5O
Frequency (Hz)

Figure 90: Inner Race Fault condition of Current
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Figure 92: Histograms of Current

By MCSA data the machine learning models developed within MATLAB’s Classification

Learner app gain a comprehensive fault indicator of the motor’s health status.selected

models: Fine Gaussian SVM, Fine KNN, Ensemble (Bagged Tree), and Medium Neural

Network. These models represent a range of machine learning algorithms suitable for

classification tasks, including support vector machines, k-nearest neighbors, ensemble

methods, and neural networks.
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Figure 93: SVM MCSA Confusion matrix
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Figure 94: KNN MCSA Confusion matrix
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Chapter 9

9 Comparative Analysis

Comparing the bearing data acquisition methods through accelerometer, acoustic, and
current data (MCSA technique) involves to indicate or predict the faults in induction
motors. Each method has its Pros and cons, which influence their performance for

machine learning model-based fault identification.

9.1 vibrational Technique

Pros:Accelerometer data provides information about vibration patterns, which can
indicate mechanical faults such as bearing faults.Cons:Accelerometer data may be
sensitive to external vibrations and environmental noise, which can affect signal accuracy.

Additionally, certain fault types may not manifest significant vibration signatures.

9.2 Acoustic Technique

Pros:Acoustic data captures sound emissions generated by bearing faults, offering
complementary information to vibration-based methods. It can detect faults such as
surface defects or lubrication issues.Cons: Acoustic data may be influenced by ambient
noise in the environment, impacting signal clarity. Additionally, it may be less sensitive

to certain fault types compared to vibration or current data.

9.3 Current Technique

Pros:MCSA provides direct insights into the electrical current flowing through the
motor, detecting faults such as rotor bar defects, stator winding faults, and bearing
defects. It offers high sensitivity and specificity to motor-related faults.Cons:MCSA
requires specialized equipment and may not detect certain mechanical faults that do not

significantly affect electrical current.
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MCSA data is frequently seen to be more accurate in identifying defects in induction
motors when it comes to machine learning model-based fault identification. This is due
to the reason that MCSA measures the motor’s electrical properties directly, which are
directly linked with both its fault status and operational state. For operations involving
fault diagnosis, MCSA is a dependable option due to its high sensitivity and specificity

to motor-related faults.

9.4 Accuracy

Accuracy
Technique | SVM(fine gaussian) | Ensemble | Fine KNN | Neural Network
X 83% 88.3% 92% 79.3%
Y 89.1% 91.2% 94.3% 93.6%
/ 94.2% 99.3% 89.6% 96.7%
Acoustic 91.8% 97.4% 97.8% 94.5%
Current 99.3% 99.6% 98.6% 98.7%
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Chapter 10

10 Development of Graphical User Interface(GUI) for
Condition Monitoring

At the end, design the GUI (Graphical User Interface) for to show the output result of
fault diagnosis of Induction Motor. GUI allow users to customize the display and adjust
parameters, while alerts and notifications provide timely information on critical faults of
the Motor.

4 Fault Diagnostic of Induction Motor by Ahsan Ullsh = X
Application of Machine Learning Algorithms in Fault

Diagnosis of Induction Motor Using
Vibration Signature

X Y 7 Acoustic Current
Tirne Darmain Frequency Domain

SV | KNN Ensemhble Meural Metwork

SVM based Model

Feature

Import file Extraction Prediction

= . : Result
4 B A ‘

Figure 97: Graphical User Interface(GUI)
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-;;lﬁ Fault Diagnostic of Induction Motor by Ahsan Ullah

Application of Machine Learning Algorithms in Fault
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Vibration Signature
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Figure 98: Graphical User Interface(GUI) with Result
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Chapter 9

11 Conclusion and Future Work

11.1 Conclusion

In conclusion, the study proposes a practical machine learning-based fault diagnosis
method for induction motors using experimental data, focusing on condition monitoring
through Motor Current Signature Analysis (MCSA), vibrational, and acoustic emission
analysis of bearing faults. By utilizing two identical single-phase induction motors—one
for healthy data acquisition and the other for faulty data acquisition—the project
effectively captures baseline and faulty data under various operating conditions. Through
the analysis of time and frequency domain features extracted from MATLAB, the study
evaluates the performance of three classification algorithms—Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Ensemble—using MATLAB Classification
Learner toolbox. The results demonstrate the suitability of machine learning techniques
in accurately predicting motor conditions (healthy or faulty) By using advanced fault
diagnosis methodologies, this approach contributes to proactive maintenance strategies,

minimizing downtime, and optimizing motor performance in critical applications.

11.2 Future Work

To further enhance the effectiveness of fault diagnosis of induction motors using bearing,

acoustic, and current signature data, the following recommendation for the future:
* Proposed techniques may be applied for fault diagnosis of large size motors.

* It is the diagnostic approach toward fault prediction ,in future work on Prognostic

Technique.

* Many other Faults can be investigate like Stator winding,broken rotor bar , electric

faults etc

* Integration of advanced signal processing techniques, such as deep learning models
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* Multi-Sensor data fusion technique Approach

* Applied RSM (Response Surface Methology)
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A Program Code

A.1 Code for Scenario 01 :Data Acquisition Using Arduino uno to store data

from sensors

const int xPin = AOQO; // Connect the X-axis output to Arduino A0
const int yPin = Al; // Connect the Y-axis output to Arduino Al
const int zPin = A2; // Connect the Z-axis output to Arduino A2

const int soundSensorPin = A3; // Connect the sound sensor's analog output to A3

const int currentSensorPin = A4; // Connect the ACS712 current sensor's analog output to
— A4
const int sampleCount = 100; // Number of samples for RMS calculation

int xValues[sampleCount];
int yValues[sampleCount];
int zValues[sampleCount];
int soundValues|[sampleCount];

int currentValues[sampleCount];

int currentIndex = 0;

void setup() {
Serial .begin (9600) ;

pinMode (soundSensorPin, INPUT); // Set the sound sensor pin as an input

bool printedHeadings = false;

void loop () {
int xValue = analogRead (xPin);
int yValue = analogRead (yPin);
int zValue = analogRead(zPin);
int soundValue = analogRead (soundSensorPin);

int currentRawValue = analogRead (currentSensorPin);

// Store the readings in arrays

xValues[currentIndex] = xValue;
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yValues|[currentIndex] = yValue;

zValues[currentIndex] = zValue;

soundValues [currentIndex] = soundValue;

currentValues[currentIndex] = currentRawValue;

// Move to the next index (circular buffer)

o

currentIndex = (currentIndex + 1) % sampleCount;

if (mprintedHeadings) {

// Print the headings only once

Serial.println ("\tx\t\tY\t\tz\t\tSound\t\tCurrent (A)");
printedHeadings = true;

}

if (currentIndex == 0) {

// Calculate RMS values for each axis

float rmsX = calculateRMS (xValues, sampleCount);

float rmsY = calculateRMS (yValues, sampleCount);

float rmsZ = calculateRMS (zValues, sampleCount);

// Calculate RMS value for the sound sensor

float rmsSound = calculateRMS (soundValues, sampleCount);

// Calculate RMS value for the current sensor

float rmsCurrent = calculateRMS (currentValues, sampleCount);

// Print the RMS values below their respective headings

Serial.print ('\t'"); // Tab separator

Serial.
Serial
Serial
Serial
Serial
Serial
Serial
Serial

Serial

// Delay

print (rmsX-2.4, 6);

.print ('\t"); // Tab separator
.print (rmsY-1.50, 6);

.print ('\t"); // Tab separator
.print (rmsz-1.32, 6);

.print ('\t"); // Tab separator
.print (rmsSound-0.20, 6);
.print ('\t"); // Tab separator

.println(rmsCurrent-2.48, 6);

as needed
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//delay (10)

’
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// Adjust the sampling interval as needed

// Function to calculate the RMS value of an array of samples

float calculateRMS (int values[], int count) {

float sumOfSquares = 0.0;

for (int 1

0; 1 < count; i++) {

float voltage = (values[i] / 1023.0) = 5.0; // Convert to voltage

sumOfSquares += voltage * voltage;

float rms =

return rms;

sgrt (sumOfSquares / count);

RESTRICTED
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A.2 Code for Scenario 02: Making memtable and labelling the data

clc
close all

clear all

% Initialize arrays to store data and fault codes

dataCells = cell (600, 1);

faultCode = [zeros (120, 1); ones (120, 1);2+ones(120,1);3*ones(120,1);4+ones(120,1)1];

o

% Process healthy data

for i = 1:120

filename = sprintf('modified_healthy_ %d.xlsx', 1i);
a_i = readtable(filename);

$timeVector = seconds (a_i.Time);

% aa_1l = removevars(a_i, 'Time');

%aaa_i = table2timetable(a_i, 'RowTimes');
a_i.Properties.VariableNames = {'Y' };

dataCells{i} = a_i;
end
% Process outer_race faulty data
for j = 1:120
filename = sprintf('modified_outer_race_fault_%d.xlsx',
f_j = readtable(filename);
% timeVector = seconds (f_j.Time);
% ff_j = removevars (f_j, 'Time'");
s fff_j = table2timetable(f_j, 'RowTimes', timeVector);

f_j.Properties.VariableNames = {'Y'};

dataCells{120 + J} = f_3j;
end
% Process inner_race data
for k = 1:120

filename = sprintf('modified_inner_ race_fault_%d.xlsx',

b_k = readtable(filename) ;
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o)

% timeVector = seconds (b_k.Time);
% bb_k = removevars(b_k, 'Time');
$bbb_k = table2timetable(b_k, 'RowTimes', timeVector);

b_k.Properties.VariableNames = {'Y'};

dataCells {240 + k} = b_k;

end

% Process ball_fault data
for 1 = 1:120

filename = sprintf('modified_ball fault_%d.xlsx', 1);

c_1l = readtable(filename);
%$timeVector = seconds(c_1l.Time);

%$cc_l= removevars(c_l, 'Time');

%$ccc_1l = table2timetable(c_1l, 'RowTimes', timeVector);
c_l.Properties.VariableNames = {'Y'};

dataCells {360 + 1} = c_1;
end
% Process compound_fault data
form = 1:120
filename = sprintf ('compound_fault_%d.xlsx', 1);
d_m = readtable(filename);
$timeVector = seconds (c_l.Time) ;
%cc_l= removevars(c_l, 'Time');
$ddd_m = table2timetable(d_m, 'RowTimes', timeVector);

d_m.Properties.VariableNames = {'Y'};

dataCells {480 + m} = d_m;
end

°

% Create memtable by concatenating data and fault code

memtable = table(dataCells, faultCode, 'VariableNames', {'Data',

o

% Set the random seed for reproducibility

rng (30) ;

°

% Shuffle indices for random split

indices = randperm(size (memtable, 1));

o
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% Calculate the number of samples for training (70%) and testing

'FaultCode'});
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training_samples = round (0.7 * size (memtable, 1));

testing_samples = size (memtable, 1) - training_samples;

% Split the data and fault codes

training_data = memtable (indices(l:training_samples), :);

testing_data = memtable (indices (training_samples+l:end), :);

% Verify the separation of faults and healthy data in training and testing sets
disp('Training Set Distribution:');

disp (tabulate (training_data.FaultCode)) ;

disp('Testing Set Distribution:');

disp (tabulate (testing_data.FaultCode));

RESTRICTED
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A.3 Code for Scenario 03:Time Domain Feature Extraction of the Data

function [featureTable,outputTable] = diagnosticFeatures (testing_data)

%$DIAGNOSTICFEATURES recreates results in Diagnostic Feature Designer.

o
°

o
°

o\ oe o\ oe o\ o°

o°

o o\ o o\ oe o\ o°

o

o

o°

o°

S
°

Input:
inputData: A table or a cell array of tables/matrices containing the

data as those imported into the app.

Output:
featureTable: A table containing all features and condition variables.

outputTable: A table containing the computation results.

This function computes spectra:

Data_ps/SpectrumbData

This function computes features:
Data_ps_spec/PeakAmpl
Data_ps_spec/PeakFreql

Data_ps_spec/BandPower
Organization of the function:
1. Compute signals/spectra/features

2. Extract computed features into a table

Modify the function to add or remove data processing, feature generation

or ranking operations.

Auto-generated by MATLAB on 07-Feb-2024 02:16:23

Create output ensemble.

outputEnsemble =

—

S
°

workspaceEnsemble (testing_data, 'DataVariables', "Data", 'ConditionVariables', "FaultCode");

Reset the ensemble to read from the beginning of the ensemble.

reset (outputEnsemble) ;

o

°

Append new signal or feature names to DataVariables.
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outputEnsemble.DataVariables =

— unique ([outputEnsemble.DataVariables; "Data_ps";"Data_ps_spec"], 'stable');

38

39

40

41

42

43

Set SelectedVariables to select variables to read from the ensemble.

outputEnsemble.SelectedVariables =

Loop through all ensemble members to read and write data.

while hasdata (outputEnsemble)
% Read one member.
member = read(outputEnsemble) ;

% Get all input variables.

Data = readMemberData (member, "Data");

49

50

51

52

53

54

55

56

= (0:1: (height (Data)-1)«*1)";

Data.Sample = iv;

Initialize a table to store results.

memberResult

%% PowerSpectrum

try
% Get units to use in computed spectrum.
tuReal = "samples";
tuTime = "seconds";

)

% Compute effective sampling rate.
tNumeric = time2num(Data.Sample, tuReal);
[Fs,irregular] = effectivefs (tNumeric);
Ts = 1/Fs;
% Resample non-uniform signals.
x = Data.Y;
if irregular

x = resample (x, tNumeric,Fs, 'linear');
end
% Compute the autoregressive model.
data = iddata(x,[],Ts, 'TimeUnit',tuTime, 'OutputName', 'Spectrumbata');
arOpt = arOptions ('Approach','fb', '"Window', 'now', 'EstimateCovariance', false);

model = ar (data,4,arOpt);
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o

% Compute the power spectrum.
[ps,w] = spectrum(model);

ps = reshape (ps, numel (ps), 1);
factor = 1/2/pi

w = factor*w;

% Remove frequencies above Nyquist frequency.
I = w<=(Fs/2+led~*eps);
w = w(l);

ps = ps(I);

% Configure the computed spectrum.
ps = table(w, ps, 'VariableNames', ["Frequency", "Spectrumbata"]);
ps.Properties.VariableUnits = ["cycles/sample", ""];
ps = addprop(ps, {'SampleFrequency'}, {'table'});
ps.Properties.CustomProperties.SampleFrequency = Fs;
Data_ps = ps;
catch
Data_ps = table(NaN, NaN, 'VariableNames', ["Frequency", "Spectrumbata"]);

end

% Append computed results to the member table.
memberResult = [memberResult,

table ({Data_ps}, 'VariableNames', "Data_ps")]; $#ok<AGROW>

%% SpectrumFeatures

try
% Compute spectral features.
% Get frequency unit conversion factor.
factor = 2xpi;

ps = Data_ps.SpectrumData;

w = Data_ps.Frequency;
w = factor+*w;
mask_1 = (w>=factor+1.59154943091895e-06) & (w<=factor+0.5);

ps = ps(mask_1);

w = w(mask_1);

% Compute spectral peaks.

[peakAmp, peakFreq] = findpeaks (ps,w/factor, 'MinPeakHeight',-Inf,
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— 'MinPeakProminence', 0, '"MinPeakDistance',0.001, 'SortStr', '"descend', 'NPeaks',2);
peakAmp = [peakAmp (:); NaN(2-numel (peakAmp),1)];
peakFreq = [peakFreqg(:); NaN(2-numel (peakFreq),1)];

o

% Extract individual feature values.

PeakAmpl = peakAmp (1) ;

PeakFregl = peakFreq(l);

BandPower = trapz (w/factor,ps);

% Concatenate signal features.

featureValues = [PeakAmpl,PeakFreql,BandPower];

o

% Package computed features into a table.

featureNames = ["PeakAmpl", "PeakFreqgl", "BandPower"];
Data_ps_spec = array2table (featureValues, 'VariableNames', featureNames) ;
catch

o

% Package computed features into a table.
featureValues = NaN (1, 3);
featureNames = ["PeakAmpl", "PeakFreqgl", "BandPower"];
Data_ps_spec = array2table (featureValues, 'VariableNames', featureNames) ;
end
% Append computed results to the member table.
memberResult = [memberResult,

table ({Data_ps_spec}, 'VariableNames', "Data_ps_spec")]; $#ok<AGROW>

%% Write all the results for the current member to the ensemble.
writeToLastMemberRead (outputEnsemble, memberResult)

end

% Gather all features into a table.

featureTable = readFeatureTable (outputEnsemble);

% Set SelectedVariables to select variables to read from the ensemble.

outputEnsemble.SelectedVariables =

— unique ([outputEnsemble.DataVariables;outputEnsemble.ConditionVariables;outputEnsemble. Independer

°

% Gather results into a table.

outputTable = readall (outputEnsemble);
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A.4 Code for Scenario 04: Frequency Domain Feature Extraction

function [featureTable,ranking,outputTable] = diagnosticFeatures (inputData)

%$DIAGNOSTICFEATURES recreates results in Diagnostic Feature Designer.

o
°

o
°

oe oe oe oe oe

o°

o o\ o o\ oe o\ o°

o

oe o oe o oe

o\

o
°

Input:
inputData: A table or a cell array of tables/matrices containing the

data as those imported into the app.

Output:
featureTable: A table containing all features and condition variables.
ranking: A table containing ranking scores for selected features.

outputTable: A table containing the computation results.

This function computes spectra:

Data_ps/SpectrumData

This function computes features:
Data_ps_spec/PeakAmpl
Data_ps_spec/PeakFreql

Data_ps_spec/BandPower

This function ranks computed feautres using algorithms:

One-way ANOVA
Organization of the function:
1. Compute signals/spectra/features
2. Extract computed features into a table

3. Rank features

Modify the function to add or remove data processing, feature generation

or ranking operations.

Auto-generated by MATLAB on 07-Feb-2024 00:40:51

Create output ensemble.

outputEnsemble =

—

workspaceEnsemble (inputData, 'DataVariables', "Data", 'ConditionVariables', "FaultCode") ;
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o

% Reset the ensemble to read from the beginning of the ensemble.
reset (outputEnsemble) ;

% Append new signal or feature names to DataVariables.
outputEnsemble.DataVariables =

— unique ([outputEnsemble.DataVariables; "Data_ps"; "Data_ps_spec"], 'stable');

% Set SelectedVariables to select variables to read from the ensemble.
outputEnsemble.SelectedVariables = "Data";
% Loop through all ensemble members to read and write data.
while hasdata (outputEnsemble)
% Read one member.
member = read (outputEnsemble);
% Get all input variables.
Data = readMemberData (member, "Data");
iv = (0:1: (height (Data)-1)=*1)"';

Data.Sample = iv;

% Initialize a table to store results.

memberResult = table;

%% PowerSpectrum

try
% Get units to use in computed spectrum.
tuReal = "samples";
tuTime = "seconds";

)

% Compute effective sampling rate.
tNumeric = time2num(Data.Sample, tuReal) ;
[Fs,irregular] = effectivefs (tNumeric);
Ts = 1/Fs;

% Resample non-uniform signals.

x = Data.X;

if irregular

x = resample (x,tNumeric,Fs, 'linear');

end
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o

% Compute the state-space model.

data = iddata(x,[],Ts, 'TimeUnit',tuTime, 'OutputName', 'Spectrumbata');

ssOpt =

— ssestOptions ('N4Horizon', "auto', 'N4Weight', '"CVA', 'EstimateCovariance', false);

ssOpt.Utility.Interactive = false;
ssOpt.SearchOptions.MaxIterations = 20;

model = ssest (data,4,ssOpt, 'Ts',Ts);

% Compute the power spectrum.
[ps,w] = spectrum(model);

ps = reshape (ps, numel (ps), 1);
factor = 1/2/pi

w = factorx*w;

% Remove frequencies above Nyquist frequency.
I = w<=(Fs/2+ledxeps);
w = w(l);

ps = ps(I);

% Configure the computed spectrum.

ps = table(w, ps, 'VariableNames', ["Frequency", "Spectrumbata"]);

ps.Properties.VariableUnits = ["cycles/sample", ""];
ps = addprop(ps, {'SampleFrequency'}, {'table'});
ps.Properties.CustomProperties.SampleFrequency = Fs;
Data_ps = ps;

catch
Data_ps = table(NaN, NaN, 'VariableNames', ["Frequency",

end

% Append computed results to the member table.

memberResult = [memberResult,

table ({Data_ps}, 'VariableNames', "Data_ps")]; $#o0k<AGROW>

%% SpectrumFeatures
try

)

% Compute spectral features.
% Get frequency unit conversion factor.
factor = 2xpi;

ps = Data_ps.SpectrumData;
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w = Data_ps.Frequency;

w factor+w;

mask_1 = (w>=factor+1.59154943091895e-11) & (w<=factor*0.5);
ps = ps(mask_1);

w = w(mask_1);

% Compute spectral peaks.

[peakAmp, peakFreq] = findpeaks (ps,w/factor, 'MinPeakHeight',-Inf,

<« 'MinPeakProminence', 0, '"MinPeakDistance',0.001, 'SortStr', '"descend', 'NPeaks',1);

peakAmp = [peakAmp(:); NaN(l-numel (peakAmp),1l)];
peakFreq = [peakFreqg(:); NaN(l-numel (peakFreq),1)];
% Extract individual feature values.
PeakAmpl = peakAmp (1) ;

PeakFregl = peakFreq(l);

BandPower = trapz (w/factor,ps);

% Concatenate signal features.

featurevValues = [PeakAmpl,PeakFreql,BandPower];

% Package computed features into a table.

featureNames = ["PeakAmpl", "PeakFreqgl", "BandPower"];
Data_ps_spec = array2table (featureValues, 'VariableNames', featureNames) ;
catch

)

% Package computed features into a table.
featureValues = NaN (1, 3);

featureNames = ["PeakAmpl", "PeakFreql", "BandPower"];

Data_ps_spec = array2table (featureValues, 'VariableNames', featureNames) ;

end
% Append computed results to the member table.
memberResult = [memberResult,

table ({Data_ps_spec}, 'VariableNames', "Data_ps_spec")]; $#ok<AGROW>

%% Write all the results for the current member to the ensemble.
writeToLastMemberRead (outputEnsemble, memberResult)

end

o

% Gather all features into a table.
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featureTable = readFeatureTable (outputEnsemble) ;
% Feature ranking for FeatureTablel
selectedFeatureNames =

— ["Data_ps_spec/PeakAmpl", "Data_ps_spec/PeakFreql", "Data_ps_spec/BandPower"];

% Get selected features and labels for classification ranking
selectedFeatureValues = featureTable{:,selectedFeatureNames};
label = featureTable{:,"FaultCode"};
% Convert label to numeric values
if iscategorical (label)
label = string(label);
end
group = grp2idx(label);
% Initialize an empty matrix to store ranking scores
score = zeros (numel (selectedFeatureNames),0);
% Initialize a string array to store ranking method names

methodList = strings (0);

%% One—-way ANOVA

¢ Normalize features using minmax.

fNorm =

< (selectedFeatureValues—min (selectedFeatureValues, [],1)) ./ (max (selectedFeatureValues, [], 1) -min (se

o

% Compute ranking score using One-Way ANOVA.
numFeatures = size (fNorm, 2);
z = zeros (numFeatures, 1) ;
for k = l:numFeatures
[7,tbl] = anoval (fNorm(:,k),group, 'off'");
% Get the F-statistic from the output of one-way ANOVA.
stats = tbl{2,5};
if "isempty(stats)
z (k) = stats;
end
end

o

% Append new score and method name.
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Score

[score, z];

methodList

%% Create ranking result table
featureColumn
ranking

ranking

% Set SelectedVariables to select variables to read from the ensemble.

outputEnsemble.SelectedVariables

—

o

outputTable

end

unique ([outputEnsemble.DataVariables; outputEnsemble.ConditionVariables;outputEnsemble.Independer

% Gather results into a table.
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[methodList, "One-way ANOVA"];

table (selectedFeatureNames (:), 'VariableNames', {'Features'});
[featureColumn array2table (score, 'VariableNames',methodList)];

sortrows (ranking, 'One-way ANOVA', 'descend');

readall (outputEnsemble) ;
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\newpage

classdef app2 < matlab.apps.AppBase

% Properties that correspond to app components

properties (Access = public)

FaultDiagnosticofInductionMotorbyAhsanUllahUIFigure

TabGroup3

XTab

TabGroup

TimeDomainTab
TabGroup2
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SVMbasedModelLabel
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Button_3
FeatureExtractionLabel
Button_2
ImportfilelLabel
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ResultTextArea_7
ResultTextArea_7Label
Image_"7
PredictionLabel_7
Button_21
FeatureExtractionLabel_7
Button_20
ImportfilelLabel 7
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NeuralNetworkTab
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ACS712 Current Sensor

Basic Overview

The ACS712 Current Sensors offered on the internet are designed to be easily used with micro controllers like the

Arduino.

These sensors are based on the Allegro ACS712ELC chip.

These current sensors are offered with full scale values of 5A, 20A and 30A.

The basic functional operation of each of these devices is identical. The only difference is with the scale factor at the

output as detailed below.

Sensor Specifications

Supply Voltage (VCC)

Measurement Range

Voltage at 0A

Scale Factor

Chip

5A Module

5Vdc Nominal

-5to +5 Amps

VCC/2
(nominally 2.5Vdc)

185 mV per Amp

ACST712ELC-05A

20A Module

5Vdc Nominal

-20 to +20 Amps

VCC/2
(nominally 2.5Vdc)

100 mV per Amp

ACST712ELC-T10A

30A Module

5Vdc Nominal

-30 to +30 Amps

VCC/2
(nominally 2.5VDC)

66 mV per Amp

ACST712ELC-30A

ACS712 Module Pin Outs and Connections

The picture below identifies the pin outs for the ACS172 Modules.

Pay attention to the polarity at the load end of the device. If you are connected as illustrated below, the output will

raise. If you connect it opposite of this picture, the output will decrease from the 2.5 volt offset.



Connect To Load

WCC—5 Volts

Output

Ground
Connect to Power
Source Negative

Basic Hook Up and Functional Description

As mentioned before, these modules are primarily designed for use with micro-controllers like the Arduino. In those
applications, the connections would be as picture below:

5y
Analog In
ACS712 Current Sense Ground
* — Module -
Micro-controller
Power Source

If the light bulb shown in the picture above were disconnected, the output of the ACS712 module would be 2.500 volts.

Once connected, the output would be scaled to the current drawn through the bulb. If this were a 5 Amp module and
the light bulb pulled 1 Amp, the output of the module would be 2.685 volts.

Now imagine the battery polarity reversed. Using the same 5A module, the output would be 2.315 volts.

IMPORTANT NOTE — This device is a Hall Effect transducer. It should not be used near significant magnetic fields.



ANALOG Small, Low Power, 3-Axis +3 g
DEVICES Accelerometer

ADXL333

FEATURES GENERAL DESCRIPTION

3-axis sensing The ADXL335 is a small, thin, low power, complete 3-axis accel-

Small, low profile package erometer with signal conditioned voltage outputs. The product
4 mm x 4 mm x 1.45 mm LFCSP measures acceleration with a minimum full-scale range of £3 g.

Low power : 350 pA (typical) It can measure the static acceleration of gravity in tilt-sensing

Single-supply operation: 1.8 Vto 3.6 V applications, as well as dynamic acceleration resulting from

10,000 g shock survival motion, shock, or vibration.

Excellent temperature stability
BW adjustment with a single capacitor per axis
RoHS/WEEE lead-free compliant

The user selects the bandwidth of the accelerometer using the
Cx, Cy, and Cz capacitors at the Xour, Your, and Zour pins.
Bandwidths can be selected to suit the application, with a
range of 0.5 Hz to 1600 Hz for the X and Y axes, and a range

APPLICATIONS of 0.5 Hz to 550 Hz for the Z axis.

Cost sensitive, low power, motion- and tilt-sensing The ADXL335 is available in a small, low profile, 4 mm x
applications 4 mm x 1.45 mm, 16-lead, plastic lead frame chip scale package
Mobile devices (LFCSP_LQ).

Gaming systems

Disk drive protection
Image stabilization
Sports and health devices

FUNCTIONAL BLOCK DIAGRAM

+3V

.

ADXL335

OUTPUT AM

3-AXIS
SENSOR

AC AMP DEMOD OUTPUT AM

Cpc =—=

—— [/

OUTPUT AM

a0—

Q

]

=
07808-001

Figure 1.
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ADXL3335

SPECIFICATIONS

Ta=25°C, Vs =3V, Cx = Cy = C2 = 0.1 pF, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are
guaranteed. Typical specifications are not guaranteed.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range +3 +3.6 g

Nonlinearity % of full scale +0.3 %

Package Alignment Error +1 Degrees

Interaxis Alignment Error +0.1 Degrees

Cross-Axis Sensitivity' +1 %
SENSITIVITY (RATIOMETRIC)? Each axis

Sensitivity at Xour, Your, Zout Vs=3V 270 300 330 mV/g

Sensitivity Change Due to Temperature? Vs=3V +0.01 %/°C
ZERO g BIAS LEVEL (RATIOMETRIC)

0 g Voltage at Xour, Your Vs=3V 1.35 1.5 1.65 \

0 g Voltage at Zour Vs=3V 1.2 1.5 1.8 \

0 g Offset vs. Temperature +1 mg/°C
NOISE PERFORMANCE

Noise Density Xour, Your 150 ug/vHz rms

Noise Density Zour 300 ug/VHz rms
FREQUENCY RESPONSE*

Bandwidth Xour, Your® No external filter 1600 Hz

Bandwidth Zour® No external filter 550 Hz

Reir Tolerance 32+15% kQ

Sensor Resonant Frequency 55 kHz
SELF-TEST®

Logic Input Low +0.6 Vv

Logic Input High +2.4 Vv

ST Actuation Current +60 UA

Output Change at Xour Self-Test 0 to Self-Test1 | —150 -325 —600 mV

Output Change at Your Self-Test 0 to Self-Test 1 | +150 +325 +600 mV

Output Change at Zour Self-Test 0 to Self-Test 1 | +150 +550 +1000 | mV
OUTPUT AMPLIFIER

Output Swing Low No load 0.1 \Y

Output Swing High No load 2.8 \Y
POWER SUPPLY

Operating Voltage Range 1.8 3.6 Vv

Supply Current Vs=3V 350 MA

Turn-On Time’ No external filter 1 ms
TEMPERATURE

Operating Temperature Range -40 +85 °C

' Defined as coupling between any two axes.
2 Sensitivity is essentially ratiometric to Vs.

3 Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature.

4 Actual frequency response controlled by user-supplied external filter capacitors (Cx, Cv, Cz).

5 Bandwidth with external capacitors = 1/(2 x 11 x 32 kQ X C). For Cx, Cy = 0.003 pF, bandwidth = 1.6 kHz. For Cz = 0.01 uF, bandwidth = 500 Hz. For Cx, Cy, Cz = 10 pF,

bandwidth = 0.5 Hz.
¢ Self-test response changes cubically with Vs.

7 Turn-on time is dependent on Cx, Cy, Cz and is approximately 160 x Cx or Cy or Cz + 1 ms, where Cx, Cy, Cz are in microfarads (uF).
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ADXL3335

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter Rating
Acceleration (Any Axis, Unpowered) | 10,000 g
Acceleration (Any Axis, Powered) 10,000 g

Vs -03Vto+3.6V

All Other Pins

Output Short-Circuit Duration
(Any Pin to Common)

Temperature Range (Powered)
Temperature Range (Storage)

(COM-0.3V)to(Vs+0.3V)
Indefinite

—55°Cto +125°C
—65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

ESD CAUTION
ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features

patented or proprietary protection circuitry, damage

‘!’% I \ may occur on devices subjected to high energy ESD.

Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.
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ADXL3335

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

o n o O
z > > z
oo o o
° 16 15 14 13
nch1 ADXL335 i xo
TOP VIEW
sTH 2 (Not to Scale) 1 I Ne
+Y
com[3 +Z 10 O Your
NC[4 +X 9 NC

COM [«
COM [~
COM [~
Zoyr 1=

NC = NO CONNECT

NOTES
1. EXPOSED PAD IS NOT INTERNALLY

CONNECTED BUT SHOULD BE SOLDERED

FOR MECHANICAL INTEGRITY.

Figure 2. Pin Configuration

07808-003

Pin No. Mnemonic Description

1 NC No Connect.'

2 ST Self-Test.

3 comMm Common.

4 NC No Connect.!

5 COM Common.

6 comMm Common.

7 com Common.

8 Zout Z Channel Output.

9 NC No Connect.

10 Your Y Channel Output.

1 NC No Connect.’

12 Xout X Channel Output.

13 NC No Connect.’

14 Vs Supply Voltage (1.8V to 3.6 V).
15 Vs Supply Voltage (1.8Vto 3.6 V).
16 NC No Connect.’

EP Exposed Pad Not internally connected. Solder for mechanical integrity.

" NC pins are not internally connected and can be tied to COM pins, unless otherwise noted.
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ADXL3335

TYPICAL PERFORMANCE CHARACTERISTICS

N > 1000 for all typical performance plots, unless otherwise noted.
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ADXL3335
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ADXL3335

CURRENT (pA)
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ADXL3335

THEORY OF OPERATION

The ADXL335 is a complete 3-axis acceleration measurement
system. The ADXL335 has a measurement range of +3 ¢ mini-
mum. It contains a polysilicon surface-micromachined sensor
and signal conditioning circuitry to implement an open-loop
acceleration measurement architecture. The output signals are
analog voltages that are proportional to acceleration. The
accelerometer can measure the static acceleration of gravity

in tilt-sensing applications as well as dynamic acceleration
resulting from motion, shock, or vibration.

The sensor is a polysilicon surface-micromachined structure
built on top of a silicon wafer. Polysilicon springs suspend the
structure over the surface of the wafer and provide a resistance
against acceleration forces. Deflection of the structure is meas-
ured using a differential capacitor that consists of independent
fixed plates and plates attached to the moving mass. The fixed
plates are driven by 180° out-of-phase square waves. Acceleration
deflects the moving mass and unbalances the differential capacitor
resulting in a sensor output whose amplitude is proportional to
acceleration. Phase-sensitive demodulation techniques are then
used to determine the magnitude and direction of the
acceleration.

The demodulator output is amplified and brought off-chip
through a 32 kQ resistor. The user then sets the signal
bandwidth of the device by adding a capacitor. This filtering
improves measurement resolution and helps prevent aliasing.

MECHANICAL SENSOR

The ADXL335 uses a single structure for sensing the X, Y, and
Z axes. As a result, the three axes’ sense directions are highly
orthogonal and have little cross-axis sensitivity. Mechanical
misalignment of the sensor die to the package is the chief
source of cross-axis sensitivity. Mechanical misalignment

can, of course, be calibrated out at the system level.

PERFORMANCE

Rather than using additional temperature compensation circui-
try, innovative design techniques ensure that high performance
is built in to the ADXL335. As a result, there is no quantization
error or nonmonotonic behavior, and temperature hysteresis

is very low (typically less than 3 mg over the —25°C to +70°C
temperature range).
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ADXL3335

APPLICATIONS INFORMATION

POWER SUPPLY DECOUPLING

For most applications, a single 0.1 pF capacitor, Cpbc, placed
close to the ADXL335 supply pins adequately decouples the
accelerometer from noise on the power supply. However, in
applications where noise is present at the 50 kHz internal clock
frequency (or any harmonic thereof), additional care in power
supply bypassing is required because this noise can cause errors
in acceleration measurement.

If additional decoupling is needed, a 100 Q (or smaller) resistor
or ferrite bead can be inserted in the supply line. Additionally, a
larger bulk bypass capacitor (1 pF or greater) can be added in
parallel to Cpc. Ensure that the connection from the ADXL335
ground to the power supply ground is low impedance because
noise transmitted through ground has a similar effect to noise
transmitted through Vs.

SETTING THE BANDWIDTH USING Cy, Cy, AND C;

The ADXL335 has provisions for band limiting the Xour, Your,
and Zour pins. Capacitors must be added at these pins to imple-
ment low-pass filtering for antialiasing and noise reduction. The
equation for the 3 dB bandwidth is

Fsas=1/2n(32kQ) x Cx, v, 2)
or more simply
Fsa=5pF/Cux,v 2

The tolerance of the internal resistor (Reir) typically varies as
much as +15% of its nominal value (32 kQ), and the bandwidth
varies accordingly. A minimum capacitance of 0.0047 pF for Cx,
Cy, and Cz is recommended in all cases.

Table 4. Filter Capacitor Selection, Cx, Cy, and Cz

Never expose the ST pin to voltages greater than Vs + 0.3 V.
If this cannot be guaranteed due to the system design (for
instance, if there are multiple supply voltages), then a low
Vr clamping diode between ST and Vs is recommended.

DESIGN TRADE-OFFS FOR SELECTING FILTER
CHARACTERISTICS: THE NOISE/BW TRADE-OFF

The selected accelerometer bandwidth ultimately determines
the measurement resolution (smallest detectable acceleration).
Filtering can be used to lower the noise floor to improve the
resolution of the accelerometer. Resolution is dependent on
the analog filter bandwidth at Xour, Your, and Zour.

The output of the ADXL335 has a typical bandwidth of greater
than 500 Hz. The user must filter the signal at this point to
limit aliasing errors. The analog bandwidth must be no more
than half the analog-to-digital sampling frequency to minimize
aliasing. The analog bandwidth can be further decreased to
reduce noise and improve resolution.

The ADXL335 noise has the characteristics of white Gaussian
noise, which contributes equally at all frequencies and is
described in terms of pg/VHz (the noise is proportional to the
square root of the accelerometer bandwidth). The user should
limit bandwidth to the lowest frequency needed by the applica-
tion to maximize the resolution and dynamic range of the
accelerometer.

With the single-pole, roll-off characteristic, the typical noise of
the ADXL335 is determined by

rms Noise = Noise Density x (,/[BW x1.6)

It is often useful to know the peak value of the noise. Peak-to-
peak noise can only be estimated by statistical methods. Table 5
is useful for estimating the probabilities of exceeding various
peak values, given the rms value.

Table 5. Estimation of Peak-to-Peak Noise

% of Time That Noise Exceeds

Peak-to-Peak Value Nominal Peak-to-Peak Value

Bandwidth (Hz) Capacitor (pF)
1 4.7

10 0.47

50 0.10

100 0.05

200 0.027

500 0.01
SELF-TEST

The ST pin controls the self-test feature. When this pin is set to
Vs, an electrostatic force is exerted on the accelerometer beam.
The resulting movement of the beam allows the user to test if
the accelerometer is functional. The typical change in output

is —1.08 g (corresponding to —325 mV) in the X-axis, +1.08 g
(or +325 mV) on the Y-axis, and +1.83 g (or +550 mV) on the
Z-axis. This ST pin can be left open-circuit or connected to
common (COM) in normal use.

2Xxrms 32

4 xrms 4.6

6 X rms 0.27
8 xXrms 0.006

Rev.B|Page 11 of 16




ADXL335

USE WITH OPERATING VOLTAGES OTHERTHAN 3V

The ADXL335 is tested and specified at Vs = 3 V; however, it
can be powered with Vs as low as 1.8 V or as high as 3.6 V. Note
that some performance parameters change as the supply voltage
is varied.

The ADXL335 output is ratiometric, therefore, the output
sensitivity (or scale factor) varies proportionally to the
supply voltage. At Vs = 3.6 V, the output sensitivity is typi-
cally 360 mV/g. At Vs = 2V, the output sensitivity is typically
195 mV/g.

The zero g bias output is also ratiometric, thus the zero g
output is nominally equal to Vs/2 at all supply voltages.

The output noise is not ratiometric but is absolute in volts;
therefore, the noise density decreases as the supply voltage
increases. This is because the scale factor (mV/g) increases
while the noise voltage remains constant. At Vs =3.6'V,
the X-axis and Y-axis noise density is typically 120 pg/VHz,
whereas at Vs = 2V, the X-axis and Y-axis noise density is
typically 270 pg/VHz.

Xout =-19
Your = 0g
Zoyt =09

TOP

[ )
Xourt =09
Your =19 TOP TOP
Zout =0g
[ ]

AV

Self-test response in g is roughly proportional to the square of
the supply voltage. However, when ratiometricity of sensitivity
is factored in with supply voltage, the self-test response in volts
is roughly proportional to the cube of the supply voltage. For
example, at Vs = 3.6 V, the self-test response for the ADXL335
is approximately —560 mV for the X-axis, +560 mV for the
Y-axis, and +950 mV for the Z-axis.

At Vs = 2V, the self-test response is approximately —96 mV for
the X-axis, +96 mV for the Y-axis, and —163 mV for the Z-axis.

The supply current decreases as the supply voltage decreases.
Typical current consumption at Vs = 3.6 V is 375 pA, and typi-
cal current consumption at Vs =2 V is 200 pA.

AXES OF ACCELERATION SENSITIVITY

Az

Ay

4

Figure 23. Axes of Acceleration Sensitivity; Corresponding Output Voltage
Increases When Accelerated Along the Sensitive Axis.

07808-025

Ax

GRAVITY

Xout = 09 l

Your =-19
Zoyt =0g

Xout = 09 Xour =09 o
Your =09 Your =09 H
Zour =19 Zout =-19 g

Figure 24. Output Response vs. Orientation to Gravity
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ADXL3335

LAYOUT AND DESIGN RECOMMENDATIONS

The recommended soldering profile is shown in Figure 25 followed by a description of the profile features in Table 6. The recommended

PCB layout or solder land drawing is shown in Figure 26.

ts
PREHEAT

CRITICAL ZONE
te T.TOTp

_________ 4,

l¢————— t25°C TO PEAK ——

TIME

Figure 25. Recommended Soldering Profile

Table 6. Recommended Soldering Profile

07808-002

Profile Feature

Sn63/Pb37

Pb-Free

Average Ramp Rate (T, to Tp)

Preheat
Minimum Temperature (Tsw)
Maximum Temperature (Tsmax)
Time (Tsmin to Tsmax)(ts)

Tsmax to TL
Ramp-Up Rate

Time Maintained Above Liquidous (T.)
Liquidous Temperature (Tv)
Time (tu)

Peak Temperature (Te)

Time Within 5°C of Actual Peak Temperature (tp)

Ramp-Down Rate

Time 25°C to Peak Temperature

3°C/sec max

100°C
150°C
60 sec to 120 sec

3°C/sec max

183°C

60 secto 150 sec
240°C + 0°C/-5°C
10 sec to 30 sec
6°C/sec max

6 minutes max

3°C/sec max

150°C
200°C
60 sec to 180 sec

3°C/sec max

217°C

60 sec to 150 sec
260°C + 0°C/-5°C
20 sec to 40 sec
6°C/sec max

8 minutes max

EXPOSED PAD IS NOT
INTERNALLY CONNECTED
BUT SHOULD BE SOLDERED
FOR MECHANICAL INTEGRITY.

DIMENSIONS SHOWN IN MILLIMETERS

Figure 26. Recommended PCB Layout
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ADXL3335

OUTLINE DIMENSIONS

ORDERING GUIDE

0.35
D g_.og $Q —= 030 =1 [~ PIN 1
PIN 1\ . 0_—25" ‘ INDICATOR
INDICATOR
S | g aggge
13 ' 16
065_ [O12 | 1
EXPO!
BSC i 2.55
—_— — = 2.40sQ
= . a 2.25
. o2 s T }’<Cl
\ 0ss L0000 ¥
TOP VIEW 050 BOTTOM VIEW L 015 MAX
0.45
1.50 FOR PROPER CONNECTION OF
145 o 0.05 MAX THE EXPOSED PAD, REFER TO
140 0.05 THE PIN CONFIGURATION AND
0 o oo 0.02 NOM FUNCTION DESCRIPTIONS
COPLANARITY SECTION OF THIS DATA SHEET.
SEATING 0.08
PLANE 0.15 REF

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.

Figure 27. 16-Lead Lead Frame Chip Scale Package [LFCSP_LQ]

4 mm x 4 mm Body, 1.45 mm Thick Quad
(CP-16-14)
Dimensions shown in millimeters

051909-A

Model’ Measurement Range | Specified Voltage Temperature Range | Package Description | Package Option
ADXL335BCPZ +3g 3V —40°Cto +85°C 16-Lead LFCSP_LQ CP-16-14
ADXL335BCPZ-RL +3g 3V —40°C to +85°C 16-Lead LFCSP_LQ CP-16-14
ADXL335BCPZ-RL7 +3g 3V —40°Cto +85°C 16-Lead LFCSP_LQ CP-16-14
EVAL-ADXL335Z Evaluation Board

' Z =RoHS Compliant Part.
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SensorKit

KY-037 Microphone sensor module (high sensitivity)

KY-037 Microphone sensor module (high sensitivity)
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Picture

Technical data / Short description

Digital Out: You can use a potentiometer to configure an extreme value for the sonic. If the value exceeds
the extreme value, it will send a signal via digital out.

Analog Out: Direct microphone signal as voltage value

LED1: Shows that the sensor is supplied with voltage

LED2: Shows that a magnetic field was detected
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KY-037 Microphone sensor module (high sensitivity)

Pinout

digital signal
+V

GND

analog signal

Functionality of the sensor

The sensor has 3 main components on its circuit board. First, the sensor unit at the front of the module
which measures the area physically and sends an analog signal to the second unit, the amplifier. The
amplifier amplifies the signal, according to the resistant value of the potentiometer, and sends the signal to
the analog output of the module.

The third component is a com parator which switches the digital out and the LED if the signal falls under a
specific value.

You can control the sensitivity by adjusting the potentiometer.

Please notice: The signal will be inverted; that means that if you measure a high valus, it is shown as a low
voltage value at the analog output.
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KY-037 Microphone sensor module (high sensitivity)

Reduce sensitivity

This sensor doesn't show absoclute values (like exact temperature in °C or magneticfield strenght in mT).
It is a relative measurement: you define an extreme value to a given normal environment situation and a
signal will be send if the measurement exceeds the extreme value.

It is perfect for temperature control (KY-028), proximity switch (KY-024, KY-025, KY-036), detecting alarms
{KY-037, KY-038) or rotary encoder (KY-026).

Code example Arduino

The program reads the current voltage value which will be measured at the output pin and shows it via
serial interface.

Additional to that the status of the digital pin will be shown at the terminal which means if the extreme
value was exceeded or not.

// Declaration and initialization of the input pin
int Analog_Eingang = AQ; // X-axis-signal
int Digital_Eingang = 3; // Button

void setup ()

1
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KY-037 Microphone sensor module (high sensitivity)

pinMode (Analog_Eingang, INPUT};
pinMode (Digital_Eingang, INPUT);

Serial.begin (9600); // Serial output with 9600 bps
ks

// The program reads the current value of the input pins
f/ and outputs it via serial out
void loop ()
{
float Analog;
int Digital;

// Current value will be read and converted to voltage
Analog = analogRead (Analog_Eingang) * (5.0 / 1023.0};
Digital = digitalRead (Digital_Eingang);

f/... and outputted here
Serial.print ("Analog voltage value: "); Serial.print (Analog, 4); Serial.print ("V, ");

Serial.print ("Extreme value: "};

if(Digital==1)

Serial.println (" reached"};

}

else

Serial.println (" not reached yet"};

¥
Serial.println (M---- oo o m e o e e - "},
delay (200);

Connections Arduino:

digital signal = [Pin 3]
+V = [Pin 5V]
GND = [Pin GND]
analog signal = [Pin O]

Example program download

ARD_Analog-Sensor

Code example Raspberry Pi

Attention Attention

Unlike the Arduino, the Raspberry Pi doesn't provide an ADC (Analcg Digital Converter) on its Chip. This
limits the Raspbery Pi if you want to use a non digital Sensor.

To evade this, use our Sensorkit X40 with the KY-053 module, which provides a 16 Bit ADC, which can be
used with the Raspberry Pi, to upgrade it with 4 additional analog input pins. This module is connected via
I12C to the Raspberry Pi.

It measures the analog data and converts it into a digital signal which is suitable for the Raspberry Pi.

S0 we recommend to use the KY-053 ADC if you want to use analog sensors along with the Raspberry Pi.
For more information please lock at the infosite: KY-053 Analog Digital Converter

Attention Attention
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