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Abstract 

Deep neural networks are receiving a lot of attention from the research community due to their 

extensive implementation. DNN model complexity often grows with application complexity, 

and the deployment of complicated DNN models requires a large amount of processing 

capacity. Complex DNNs cannot be processed by general-purpose processors within the 

required throughput, latency, and power consumption. As a result, domain-specific hardware 

accelerators must deliver significant computational resources while sustaining performance 

efficiency and throughput on a tiny chip area. The Convolutional Neural Network (CNN) is 

one of the most widely used neural network (NN) models as an efficient algorithm used in 

image processing, pattern recognition, and a variety of other real-world applications. However, 

they can be computationally expensive to train and deploy. In this thesis, we propose a new 

method for designing CNN hardware accelerators that can achieve high performance and 

energy efficiency. Our approach is based on a deep understanding of the CNN architecture. We 

first train a CNN model on the MNIST dataset using Tensor Flow, then implemented this same 

model in native Python without the use of any external libraries. This has helped us to 

understand the inner workings of the CNN model in detail. We are using this knowledge to 

design a new hardware accelerator architecture. Our aim for the hardware accelerator is to 

achieve the same accuracy as Tensor Flow and native Python code have achieved on the 

MNIST dataset, while consuming less power. The method that we have planned for this project 

is, firstly, we will train our model after receiving satisfactory performance, it can be deployed 

for real-world inference tasks. We believe that this approach can be used to design efficient 

CNN hardware accelerators for a wide range of applications. 
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1. Introduction  

1.1 Purpose 

ASIC-based neural network accelerators are custom-designed chips that offer improved 

performance, reduced power consumption, increased scalability, and lower costs compared to 

general-purpose processors. They excel in deep learning tasks, such as image classification, 

natural language processing, and speech recognition, by efficiently executing the specific 

operations required for these applications. With faster processing, lower power requirements, 

and the ability to scale for complex models, ASIC-based accelerators are an ideal solution for 

a wide range of deep learning applications. Additionally, their lower manufacturing costs make 

them an attractive option for implementing deep neural networks at scale. 

1.2 Background 

Neural networks are a group of algorithms that work like the human brain. When you look at 

something, your brain uses neurons to process the information and recognize what the object 

it is. Neural networks do something similar. They take in a lot of data, find patterns in it, and 

then give an output. 

The brain processes a lot of information when it sees an object. Each neuron in the brain is 

connected to others and works in its own area of the brain. This is like how each neuron in a 

neural network works in its own area of the data. The layers in the neural network detect simpler 

patterns first, like lines and curves, and then more complex patterns, like faces and objects. 

This is how computers can "see" things by using neural networks.  

 

 

 

 

 

 

Figure 1.1: Similarity of the brain with ANN in processing an image 
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The figure 1 elaborates on the working of neurons in the brain, links their working with that 

Artificial Neural Networks, and shows how they are similar in their working. 

Neural networks, also known as artificial neural networks (ANNs), are computer models that 

imitate the way the human brain functions. These networks consist of many connected 

processing elements, or neurons, that work together to solve specific problems. One type of 

neural network is a deep learning network, which uses layers of algorithms to create an artificial 

neural network (ANN) that can learn and make accurate decisions on its own. 

ANNs are used to process information and learn from data, just like humans learn from 

experience. They are used for various applications like image recognition [7], voice 

recognition, and robotics, among others. ANNs have a specific architecture format, inspired by 

the biological nervous system, with neurons that are connected to each other by weighted links. 

The network learns through a process of training that involves computations and mathematics 

that simulate the human brain. Convolutional neural networks are one type of ANN that is 

particularly used for image processing. 

1.3 Introduction of Convolutional Neural Networks (CNN) 

CNNs use convolutional layers to analyze the input image, breaking it down into smaller, 

simpler features, like lines and edges. These features are then combined in subsequent layers 

to form more complex features, like shapes and textures until the network can recognize the 

entire object in the image. 

Traditional neural networks can also recognize images, but they become slow and require a lot 

of power when dealing with larger images due to the number of parameters involved. CNNs 

specialize in processing image data, which is represented by pixels arranged in a grid-like 

fashion.  

 

Figure 1.2: Image representation as a grid of pixels 
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1.4 Objectives 

 Design and evaluation methodology for the accelerator architecture. 

 Comparing the computation results of the hardware against the model. 

 Obtaining efficient computational cost (low-power consumption, less computational 

time). 

 Chip implementation by converting a high-level CNN to a hardware structure. 

1.5 Project Scope 

The design of ASIC based neural network accelerator can efficiently support a wide variety of 

neural network architectures, minimize the power consumption of the accelerator and 

maximizing the performance of the accelerator. 

1.6 Problem Statement 

Deep neural networks (DNNs) are computationally expensive to train and deploy. ASIC-based 

neural network accelerators can address this challenge by providing significant improvements 

in power consumption and performance. Our project aims to develop an ASIC-based neural 

network accelerator for both training and inference that is low-power and compact, making it 

ideal for a wide range of computing applications. 
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1.7 Broader Impact (UN SDGs) 

There are a number of factors to take into account when assessing how an ASIC-based neural 

network accelerator project may affect the Sustainable Development Goals (SDGs) of the 

United Nations. Here are a few possible areas of influence, each with an explanation. 

1.7.1 Targeted SDGs: 

The targeted sustainable development goals of our project for United Nation are: 

SDG 4: Good Health and Well Being: 

The project aim is to ensure healthy lives and well-being for all the ages. ASIC based 

accelerators can be deploy in medical applications that can help to diagnose diseases, monitor 

patients and deliver the personalized treatments. For example, ASIC-based neural network 

accelerators can be used to develop systems that can automatically detect cancer cells in 

medical images, can be fit into MRI and CT-Scan machines which can reduce the time 

significantly or systems that can monitor patients vital signs in real time. 

SDG 4: Quality Education: 

The project advances technologies in the areas of artificial intelligence (AI) and deep learning 

by creating ASIC-based neural network accelerators. By making it possible for more effective 

and potent AI-driven instructional tools, these developments can raise the quality of education. 

All learners will benefit from using these tools since they can offer personalized learning 

experiences, flexible tutoring programs, and intelligent content recommendation algorithms. 

SDG 8: Decent work and Economic growth: 

The deployment of ASIC in industrial applications can create a new jobs and boost economy 

growth with full and productive employment and decent work for all. For example ASIC-based 

neural network accelerators can be used to develop robotics and automation systems that can 

automate tasks that are currently performed by humans, or systems that can improve the 

efficiency of manufacturing processes. 

SDG 9: Industry, Innovation, and Infrastructure: 

The effectiveness and performance of AI applications can be greatly enhanced using ASIC-

based neural network accelerators. These accelerators make neural network processing faster 
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and more energy-efficient, that can improve the quality of life and create a more sustainable 

future. For example, ASIC-based neural network accelerators can be used to develop smart 

cities systems that can manage traffic, energy, and other resources more efficiently, or systems 

that can monitor and protect the environment. 
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2. Literature Review 

Researchers from both academia and industry are actively working on constructing high 

performance hardware for Deep Neural Network (DNN) inference [1]. The integration of 

DNNs in real-time applications necessitates low-power and high-throughput DNN 

accelerators. In recent years, several high performing DNN accelerators architecture have been 

suggested to enhance overall DNN performance. Customized domain-specific accelerators can 

further improve performance by tailoring the architecture to specific applications. Graphics 

Processing Units (GPUs) offer massive parallel computing capabilities and excel at parallel 

DNN computations. However, their high-power consumption limits their usage in embedded 

systems. Field-Programmable Gate Arrays (FPGAs) provide high performance and are often 

employed for prototyping and design verification. Application-Specific Integrated Circuits 

(ASICs) are custom-designed for specific applications, offering optimal speed and power 

consumption. ASICs find multiple applications in embedded devices but have long 

development cycles and lack flexibility after design completion. The focus has shifted towards 

ASIC accelerators due to limited control and flexibility in designing Multiply-Accumulate 

(MAC) units in FPGAs. Nevertheless, recent advancements have explored precision-scalable 

MAC units in different accelerators and highlighted their advantages in various scenarios. 

While MAC units play a crucial role in improving accelerator performance, other factors, such 

as data flow and on-chip memory, also impact overall efficiency. An efficient architecture 

should strive for maximum MAC utilization, aiming for 100% utilization. Existing research 

typically employs metrics like chip area, throughput, latency, and energy efficiency for 

performance comparisons. However, an accelerator specifically designed for a particular DNN 

model, taking into consideration factors like sparsity and kernel size, may not uniformly offer 

comparable benefits for other DNN models. 

The primary objective of the proposed accelerator is to design a low-area and power-efficient 

hardware accelerator with optimal performance [2]. While there are existing hardware 

accelerators, our focus is on creating a highly efficient and accurate accelerator. With the 

increasing complexity of neural network models, the area and power requirements also tend to 

grow. Therefore, it becomes crucial to employ techniques that can reduce area, power, and 

energy consumption while maintaining efficiency. To address this, we developed an optimized 

Convolutional Neural Network (CNN) architecture that is shallower, utilizes fewer filters, and 

incorporates narrower bit widths for weight parameters, all while ensuring high accuracy. 
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To demonstrate the effectiveness of our proposed architecture and design technique, we 

conducted experiments using a small CNN and the MNIST dataset for training and validation. 

Our target was to achieve an accuracy of 95% or higher. Throughout our research, we have 

recognized the significance of understanding the factors that influence performance in DNN 

accelerators. It is essential to develop energy and performance-efficient accelerators to meet 

the demands of various applications. 

Building upon our current work [2], our future plans involve developing a flexible architecture 

that can be utilized to accelerate different applications within the network. This flexibility will 

enable us to enhance the versatility and adaptability of the accelerator for a wide range of neural 

network tasks. 

A reconfigurable, FPGA-based CNN accelerator for object recognition applications was 

proposed by Li et al. [3]. It balances parallel computing capability and system power 

consumption by using a kernel partition strategy to minimize recurrent usage to input feature 

maps and kernels. At 151.4 frames per second for the AlexNet, the proposed CNN accelerator 

reaches an optimum throughput of 220.0 GOP/s with a 22.9 GOPs/W energy efficiency. 

Additionally, it may be changed to process VGG-16 for the complex recognition of objects. 

Convolutional neural networks (CNNs) are being accelerated using FPGA technology, and Ma 

et al. [4] have explored this progress and provided a performance model to predict the 

performance and resource use of an FPGA implementation. A number of CNN algorithms are 

used to validate the suggested model, and the outcomes are compared to the onboard test results 

on the two separate FPGAs. The outcomes demonstrate that the suggested performance model 

is capable of properly predicting the performance and resource use of the FPGA 

implementation as well as early design bounds and performance bottleneck identification. The 

literature review section [4] covers pertinent research that has optimized the computation 

patterns and memory access of their suggested architecture and data flow by using performance 

models. Convolution was implemented by Suda et al. [5] as matrix multiplication, and the 

design was improved using a performance model. The execution time in [5] does not take the 

DRAM transfer delay into account; it solely counts calculation time. The model in [5] is unable 

to accurately estimate the total latency as a result of the design being memory-bounded, leading 

to the estimation mismatch of fully linked layers with high compute parallelism. Using a 

performance model, the suggested systolic array design in [6] is also made more efficient. 
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2.1 Literature Review Table 

Paper Year Topic Methodology Results Future Work 

"FPGA-Based 

High Throughput 

CNN Hardware 

Accelerator With 

High Computing 

Resource 

Utilization 

Ratio" 

2022 

FPGA-based 

CNN 

accelerator 

Novel 

architecture for 

both 

convolutional 

and fully 

connected layers 

Achieved high 

throughput and 

resource utilization 

Further optimization of the 

architecture, exploration of 

new CNN architectures, and 

application to other machine 

learning tasks 

"An FPGA-

Based Energy-

Efficient 

Reconfigurable 

Convolutional 

Neural Network 

Accelerator for 

Object 

Recognition 

Applications" 

2022 

FPGA-based 

CNN 

accelerator 

Kernel partition 

technique 

Achieved high 

throughput and 

energy efficiency 

Further optimization of the 

architecture, exploration of 

new CNN architectures, and 

application to other machine 

learning tasks 

"Design of 

Power-Efficient 

Training 

Accelerator for 

Convolution 

Neural 

Networks" 

2021 

FPGA-based 

CNN training 

accelerator 

Resource sharing, 

integrated 

convolution-

pooling block, 

concurrent 

floating-point 

data paths 

Achieved high 

throughput and 

energy efficiency 

"Design of Power-Efficient 

Training Accelerator for 

Convolution Neural 

Networks" 

"Implementation 

of Convolutional 

Neural Networks 

in FPGA for 

Image 

Classification" 

2019 

FPGA-based 

CNN 

accelerator 

Scalable and 

modular 

architecture 

Achieved high 

throughput and 

energy efficiency 

"Implementation of 

Convolutional Neural 

Networks in FPGA for 

Image Classification" 
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"FPGA-based 

Accelerators of 

Deep Learning 

Networks for 

Learning and 

Classification: A 

Review" 

2018 

FPGA-based 

CNN 

accelerator 

Review of 

existing 

techniques 

Highlights key 

features and 

provides 

recommendations 

 

 

"Recent 

Developments in 

Low Power 

Machine 

Learning 

Hardware 

Accelerators for 

Mobile Devices" 

2018 Low power 

machine 

learning 

hardware 

accelerators 

for mobile 

devices 

Dataflow, 

reduced 

precision, model 

compression, and 

sparsity 

Achieved high 

efficiency 

Explore new techniques for 

reducing energy costs and 

improving performance 

"An FPGA 2D 

Convolution unit 

based on the 

CAPH language" 

2017 FPGA-based 

2D 

convolution 

CAPH language, 

parallel 

convolution 

Achieved high 

performance, 

reduced hardware 

resource 

consumption 

 

"Design and 

Implementation 

of Hardware 

Accelerator for 

Deep 

Convolutional 

Neural 

Networks" 

2018 FPGA-based 

CNN 

accelerator 

Dataflow 

optimization, 

internal 

parallelism 

reduction 

Achieved high 

efficiency 

Increase on-chip memory 

size, try bigger filter 

kernels, test in a particular 

framework 
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3. Methodology 

This chapter provides a comprehensive overview of the methodology employed in our project. 

It includes essential definitions of key terms and concepts that will be frequently referenced 

throughout the study. 

3.1 Block Diagram of Accelerator 

The following block diagram shows the high-level architecture of a Python native model for 

an ASIC-based neural network accelerator which is further translated to the hardware 

description language HDL. The HDL language will be synthesized and will be implemented 

on a chip 

Types of Layers in a convolutional neural network 

1. Convolution Layer. 

2. Pooling 

3. Fully Connected 

Figure 3.1: Block Diagram of Proposed Design 
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An architecture that conducts both the training and inference in a single chip can provide 

significant performance and energy sufficient benefits as compared to the traditional 

architecture that require separate hardware for different tasks. 

3.2 Method for Neural Networks 

For making our model train training and inference plays a very important role. 

3.2.1 Training: 

It refers to the process of updating the weights and biases of neural network using a set of 

labelled data to minimize the error between the predicted outputs and true label. Training a 

neural network is typically a compute-intensive process that involves many iterations of 

forward and backward propagation. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Logical Diagram of Training a Neural  Networks 

Figure3.2: Convolution Neural Network Architecture 
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3.2.2 Inference: 

Inference refers to the process using a trained neural network to make predictions or decision 

based on input data. During inference, the input data is fed into the neural network and the 

neural network and then network computes the output using the weights and biases that a model 

learned during training. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Working Block Diagram of Training in Neural Networks 

Figure 3.5: Logical Diagram of Inference in Neural Network 

 



25 

 

 

 

 

 

 

 

 

 

 

 

Here is an analogy that can clear the difference between training and inference. Imagine that 

you are training a student to become a doctor. The training process would involve teaching the 

student about anatomy, physiology, and pharmacology. The student would also need to practice 

performing surgery on cadavers. This training process would be long and difficult, but it would 

be necessary for the student to become a competent doctor. 

Once the student has graduated from medical school, they can begin practicing medicine. This 

is the inference phase. When a patient comes to see the doctor, the doctor will use their 

knowledge and skills to diagnose the patient's illness and recommend a course of treatment. 

This process is much less time-consuming than the training process, but it is still essential for 

the doctor to be able to provide quality care to their patients. 

In the same way, training a neural network is a long and computationally intensive process, but 

it is necessary for the neural network to be able to perform inference tasks in real time. 

 

 

 

 

 

Figure 3.6: Working Block Diagram of Inference in Neural Networks 
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3.3 Essential Methodology Steps for Success 

This methodology is followed to develop ASIC-based neural network accelerators that can 

achieve high performance and energy efficiency. 

1. Developing Python model with training and inference: 

To develop a Python model with training and inference capabilities, we can use popular deep 

learning frameworks like TensorFlow, PyTorch, or Keras. However, for a more in-depth 

understanding of the calculations of every layer and to help with future hardware design, we 

can build our own Convolutional Neural Network (CNN) architecture using native Python 

code. This involves defining the structure of the neural network, including the number of layers, 

neurons, and activation functions. Once the architecture is defined, we can train the model 

using a large labeled dataset, which may take considerable time. After training, we evaluate the 

model's performance using a separate test dataset, measuring metrics such as accuracy and 

precision. Defining the architecture, training the model, and evaluating its performance are 

crucial steps in building a Python model with training and inference capabilities, allowing us 

to gain a deeper understanding of the neural network's inner workings and paving the way for 

potential hardware design advancements. 

2.  Analyze HW requirements such as bandwidth, memory and design 

partitioning: 

When analyzing the hardware requirements for a neural network accelerator, there are a few 

important factors to consider. Firstly, the size and complexity of the neural network architecture 

have a big impact on the memory and bandwidth needed for the accelerator. If the architecture 

is more complex with lots of layers and neurons, it will require more memory and bandwidth. 

Secondly, the size of the dataset used for training and inference also affects the memory 

requirements. Bigger datasets need more memory capacity. Lastly, the desired performance 

level of the accelerator determines the necessary bandwidth. Higher performance goals call for 

more bandwidth. By taking these factors into account, we can design the hardware accelerator 

by optimizing performance and area through proper partitioning. 

3.  Translate python model to Verilog HDL, while being aware of the HW 

requirements: 

We have written the Verilog HDL code that is manual coding, where you write the Verilog 

HDL code for each part of the neural network accelerator by hand. This gives you complete 

control over the design but takes more time. After translating the Python model to Verilog 
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HDL, you can simulate the model to check its accuracy and synthesize it to create a hardware 

implementation. 

4.  Implement HW accelerator design using Verilog HDL: 

To implement a hardware accelerator design using Verilog HDL, you need to follow a few key 

steps. Firstly, you write the Verilog HDL code for the different blocks of the neural network 

accelerator, either manually or using an automatic code generation tool. This step allows you 

to define the behavior and structure of the accelerator. Next, you synthesize the Verilog HDL 

code, which involves transforming it into a gate-level netlist. This synthesis process optimizes 

the design for factors like area, speed, and power consumption. Finally, you perform place and 

route, where the gate-level netlist is transformed into a physical chip. This involves placing the 

components on the chip and establishing the necessary connections. Once the hardware 

accelerator design is implemented, you can test it using a simulator or deploy it on a physical 

chip. 

5.  Test and Verify HW accelerator: 

To test and verify a hardware accelerator, there are several steps you can follow. First, you can 

simulate the design using a simulator, which is a cost-effective way to check if the accelerator 

functions correctly. The simulator runs the design on a virtual platform and provides a report 

to verify its accuracy. Additionally, you can fabricate the design and test it on a physical chip. 

This involves creating a chip from the design and conducting various tests, such as checking 

its functionality, performance, and power consumption. It's important to use a combination of 

testing methods, such as simulation, emulation (which is faster but more expensive), and 

physical testing (which is the most accurate but slower). Once the hardware accelerator is 

successfully tested and verified, it can be deployed in a production environment. To ensure 

thorough evaluation, use a reliable simulator, select a representative physical chip, test under 

different conditions, and collect data for analysis and troubleshooting. 
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4. Fundamentals of Convolutional Neural Networks 

Before going into the details of the convolutional neural network layers, it’s necessary to cover 

some basic definitions of image, filter, stride, padding and convolution.  

Image: 

An image is represented in two or three-dimensional form. It is made up of pixels arranged in 

columns and rows, forming a matrix or an array. In a grayscale image, each pixel is an integer 

value between 0 (black) and 255 (white), giving 256 different shades of gray in an 8-bit color 

format. In the binary image, there are only two-pixel values, 0 and 1, representing black and 

white, respectively. 

Filter: 

The filter size is smaller than the input data size, typically 3x3. The filters slide across the input 

data, performing dot product calculations between the pixels.  A dot product is an element-wise 

multiplication between the filter-sized patch of the input and filter, which is then summed, 

always resulting in a single value. Because it results in a single value, the operation is often 

referred to as the “scalar product“. 

We have multiple filters: 

  

 

 

 

(1)                                                 (2)                                                  (3) 

Figure 4.1: Filters (1) Edge Detection (2) Sharpening Filter (3) Laplacian Filter 

 

Stride: 

Stride refers to the number of pixels the filter moves at a time while scanning through the input 

image during the convolution operation. It determines the distance between the placements of 

the filters on the image. If the stride value is large, then the output feature map will be smaller, 

and if the stride value is small, the output feature map will be larger.  
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      Stride 1                                         Stride 2 

 

 

 

 

 

 

 

Figure 4.2: Process of the Kernels slides over the patch of image pixels 

4.1 Convolution 

Convolution is a mathematical process that involves multiplying a matrix (known as a filter or 

kernel) with an input image element or pixels to produce an output feature map. This technique 

is commonly used in Convolutional Neural Networks (CNNs) to extract useful information 

from images e.g. edges, texture, scenes, etc.Prior to performing convolution, it is essential to 

verify the dimensions of the input image to determine whether padding is required or not. 

4.2 Padding 

Padding is defined as the addition of layers of pixels to an image when it is being processed by 

the CNN kernel. Pixels are added to the outer frame of the image to allow more space for the 

filter to cover the image. It results in a more accurate analysis of images. 

Types of padding: 

There are two types of padding:  

1. Same Padding (It uses a stride of 1, and pixels will be added. The layer's outputs will 

have the same spatial dimensions as its inputs). 

2. Valid Padding (There will be no stride or no addition of pixels in the input image. The 

layer only uses valid input data). 
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Why is padding necessary? 

Padding is necessary because it helps reduce the loss of information at the borders of the input 

feature map and can improve the performance of the model. When the kernel moves over the 

image, it will move more in the center and will have more knowledge about the middle part of 

the image than the edges, and we might lose important features from the edges. 

Suppose below this is an image matrix, and the black dashed line squares are kernels that will 

move over an image. As we can see from the below picture, the pixels at the edges (circled 

numbers) will be used one time, and there is a high chance we may lose a piece of information, 

whereas the pixels in the middle, enclosed in the second black dashed line square, will be used 

multiple times when performing MAC operations. 

 

 

 

 

 

Figure 4.3: Lost of information due to MAC operation 

The solution is to add more dimension according to the requirements of the image so that all 

the information that is at the edges of the image will not be lost. Now that this picture has two 

rows of zeros and two columns of zeros, this will help us get all the features of an image. The 

pixels that were at the edges are now in the middle, and when a filter is placed over them, we 

can easily detect the feature. 

 

 

 

 

 

 

 

Figure 4.4: Padded rows and columns in an image 

-5 10 2 3 8 

1 -1 9 1 9 

0 20 1 6 -4 

7 10 2 -10 10 

0 -1 12 -1 0 

0 0 0 0 0 0 0 

0 -5 10 2 3 8 0 

0 1 -1 9 1 9 0 

0 0 20 1 6 -4 0 

0 7 10 2 -10 10 0 

0 0 -1 12 -1 0 0 

0 0 0 0 0 0 0 

 

 

 

 



31 

After the convolution is performed, the image size will reduce and the remaining operations 

will not perform correctly, so the padding will also help to have the same image size after the 

convolution. 

How do we know that the image needs padding? 

If the input image size is greater than the output image before padding, which means that the 

information is lost, then padding is necessary.  

Formula to calculate the size of the image before padding: 

Suppose the image is 5x5 and the filter is 3x3.  

𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = (𝑚 − 𝑓 + 1)(𝑛 − 𝑓 + 1)   4.1 

To check if an image is getting the same output size as an input image after performing padding, 

we use the following formula: 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑎𝑑𝑑𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = (𝑚 + 2𝑝 − 𝑓 + 1)(𝑛 + 2𝑝 − 𝑓 + 1) 4.2   

 

m=number of rows, n=number of columns, f=filter dimensions, p= number of rows and 

columns padded 

4.3 Architecture Description 

4.3.1 Convolution Layer: 

The convolution layer is the core building block of the CNN. It is responsible for performing 

the majority of the computations in the network [9]. 

Working of Convolution: 

 The filter, which is 3x3 in size, is like a small window that moves over the input image, taking 

one step at a time with a certain stride. It goes over every part of the image and multiplies the 

filter values with the corresponding pixel values of the image, resulting in the dot product 

calculation. 

This process is also called the Multiplication and Accumulation (MAC) process, where the 

pixel values of the image are multiplied by the filter values and then added up together. After 
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this operation, the output is stored in 2D. This operation is repeated until the entire image has 

been covered by the filter. 

MAC Process: 

  

 × 

 

 

 

Figure 4.5:  Operations of MAC process on an image matrix 

 (-5×-1)+(10×-1)+(2×-1)+(1×-1)+ (-1×8)+(9×-1)+(0×-1)+ (20×-1)+(1×-1)=-56 

(-10×-1)+(2×-1)+(3 ×-1)+(-1×-1)+ (8×9)+(1×-1)+(20×-1)+ (1×-1)+(6×-1)=30 

(2×-1)+(3×-1)+(8×-1)+(9×-1)+ (1×8)+(9×-1)+(1×-1)+ (6×-1)+(-4×-1)=-26 

(-1×-1)+(-1×-1)+(9×-1)+(0×-1)+ (20×8)+(1×-1)+(7×-1)+ (10×-1)+(2×-1)=131 

(-1×-1)+(9×-1)+(1×-1)+(20×-1)+ (1×8)+(6×-1)+(10×-1)+ (2×-1)+(10×-1)=-29 

(9×-1)+(-1×-1)+(9×-1)+(1×-1)+ (6×8)+(-4×-1)+(2×-1)+ (-10×-1)+(10×-1)=30 

(0×-1)+(20×-1)+(1×-1)+(7×-1)+ (10×-8)+(1×-1)+(7×-1)+ (10×-1)+(2×-1)=32 

(20×-1)+(1×-1)+(6×-1)+(2×-1)+ (10×-8)+(10×-1)+(12×-1)+ (-1×-1)+(0×-1)=-106 

 

To check the output of a convolved image with striding, we use the following formula: 

𝑆𝑡𝑟𝑖𝑑𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠: (
𝑚 + 2𝑝 − 𝑓 + 1

𝑠 + 1
)(

𝑛 + 2𝑝 − 𝑓 + 1

𝑠 + 1
) 

4.3 

 

In convolution, there will always be one stride. While performing convolution, padding will 

also be performed. Our image will be checked to see whether the padding is needed or not. 
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4.3.2 Maxpooling Layer 

A pooling layer is used to decrease the dimensions of the feature map produced by the 

convolution layer [2]. By reducing the dimensions, the memory and processing requirements 

in the following layers will be reduced. Maxpooling is a pooling technique that selects the 

highest value from the specific region of the feature map covered by the filter. As a result, the 

output from the maxpooling layer would be a feature map that highlights the most significant 

feature from the previous feature map. 

 

 

 

 

 

 

Figure 4.6: Process of Maxpooling on an image matrix 

If the input image has an even m x n shape then there will be a stride of two. If an input image 

has an odd m x n shape, then there will be one stride. 

4.3.2.1 Significance of Maxpooling: 

Maxpooling is a technique used in neural networks to reduce the size of feature maps and 

prevent overfitting. It has several benefits, such as: 

● Reducing the dimensionality of feature maps, which makes it easier and less expensive 

to process and store data. Additionally, max-pooling provides translation invariance, 

meaning that small translations in the input do not affect the output of the pooling 

operation. This is particularly useful in tasks such as object recognition, where the 

object's position in the image can vary. 

● Another important advantage of max-pooling is that it can help prevent overfitting. By 

reducing the size of the feature maps, it forces the network to learn only the most 

important features, preventing it from iterating on the training data and allowing it to 

better generalize to new data.  
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● Maxpooling also introduces non-linearity into the network, which enables it to learn 

more complex relationships between inputs and outputs. Most real-world problems are 

non-linear, so this is an important feature of neural networks. 

● Finally, max-pooling is a computationally efficient operation that can be performed 

quickly, making it easier to train deep neural networks with large amounts of data. 

Overall, max-pooling is a critical technique in neural networks that can improve the 

network's efficiency and performance, while also preventing overfitting and enhancing 

the network's ability to generalize to new data. 

4.3.3 Fully Connected Layer 

Fully connected layers convert a 2D array into a 1D array. 

Flatten Expression: 

 

 

 

 

 

Figure 4.7: Conversion of 2D array into 1D array using flatten technique 

 

4.3.3.1 Significance of a Fully Connected Layer: 

Flattening layers help in reducing the dimensions of the input, which can help reduce the 

trainable parameters in the network, improve the computational efficiency, and make the neural 

network architecture less complex and simple. 

 

 

 

 

𝑟𝑒𝑠𝑢𝑙𝑡_𝑓𝑙𝑎𝑡 = 𝑖𝑛𝑝𝑢𝑡. 𝑓𝑙𝑎𝑡𝑡𝑒𝑛()      4.4 
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4.3.4 Activation Functions 

4.3.4.1 Rectified Linear Unit (ReLu): 

The function of ReLu is to convert all the negative numbers into the positive numbers. 

What does the activation function ReLu do? 

The rectified linear activation function or ReLu is a short is a piecewise linear function that 

will output the input directly if it is positive, otherwise, it will output zero. 

Why is ReLu most commonly used? 

The main advantage of using the ReLu function over other activation functions is that it does 

not activate all the neurons at the same time and avoid saturation and vanishing gradient during 

training [8]. Another reason to employ the ReLu function is its ability to reduce computational 

costs by eliminating the need to compute exponentials in hardware, which is necessary when 

utilizing the sigmoid non-linearity function. 

Expression of ReLu: 

 

 

 

 

 

Figure 4.8: Implementation of ReLu Activation Function 

4.3.4.2 Significance of ReLu: 

The ReLu (Rectified Linear Unit) activation function is frequently used in neural networks due 

to its several benefits.  

● Sparsity: 

ReLu can set the output of a neuron to zero when the input is negative, which leads to 

sparsity in the network. This sparsity helps prevent overfitting by reducing the number 

of parameters that the model needs to learn. 

● Efficiency: 

𝑦__𝑟𝑒𝑙𝑢 = 𝑛𝑝.𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0, 𝑖𝑛𝑝𝑢𝑡)        4.5 
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ReLu is a simple function that is computationally efficient, meaning that networks that 

use ReLu can be trained faster and require less memory to store. 

● Non-Linearity: 

ReLu has the ability to introduce non-linearity into the network. Most real-world 

problems are non-linear, and by introducing non-linearity, ReLu enables the network 

to learn more complex relationships between the inputs and the outputs. 

● Robustness to Vanishing Gradients: 

ReLu is also robust to the issue of vanishing gradients, which can occur in deep neural 

networks and make them difficult to train. Vanishing gradients occur when the 

gradients become very small, and the network stops learning. ReLu can help mitigate 

this problem by preventing the gradients from becoming too small. 

4.3.4.2 Sigmoid: 

Sigmoid is a mathematical function used in neural networks to introduce non-linearity. This 

function is usually used for binary classification problems that take any real value as input and 

maps the output values in the range of 0 to 1.When the input value is more positive the output 

value will be closer to the 1.0, while when the input is more negative the output will be closer 

to 0.0.  

Sigmoid Expression: 

𝑠𝑖𝑔_𝑜𝑢𝑡 =
1

(1+𝑛𝑝.𝑒𝑥𝑝(−𝑟𝑒𝑠𝑢𝑙𝑡_𝑓𝑙𝑎𝑡))
               4.6 

Sigmoid is also differentiable, which is important for gradient-based optimization methods 

used to train neural networks. Additionally, sigmoid can be used for normalization of the 

output of a neural network by scaling it to a range between 0 and 1. However, sigmoid is not 

always the best choice for an activation function. It can suffer from the vanishing gradient 

problem, where the gradients become very small as the input to the sigmoid function gets 

very large or very small, making it difficult to train deep neural networks using sigmoid. 
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 Significance of Softmax: 

The sigmoid function is a mathematical function that has a "S"-shaped curve. It is often used 

as an activation function in artificial neural networks. The sigmoid function has a number of 

properties that make it well-suited for this role. 

 Non-linearity:  

The sigmoid function is non-linear, which means that it does not have a linear 

relationship with its inputs. This is important for neural networks because it allows them 

to learn complex relationships between their inputs and outputs. 

 Smoothness:  

The sigmoid function is smooth, which means that it has no sharp edges. This is 

important for neural networks because it allows them to learn gradual changes in their 

inputs and outputs. 

 Output range:  

The sigmoid function outputs values between 0 and 1, which is a convenient range for 

representing probabilities. This is important for neural networks because they are often 

used for classification tasks, where the goal is to predict the probability that an input 

belongs to a particular class. 

4.3.4.3 Softmax: 

Softmax is a mathematical function used in the last layer of neural networks for classification 

tasks. Its main significance is that it gives the output of the network as a probability distribution 

over predicted classes, making it useful for multiclass classification problems. Softmax 

normalizes the output of the network so that the sum of the predicted probabilities of all the 

classes is equal to one, which ensures that the predicted probabilities can be compared with 

different inputs easily. 

Softmax Expression: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =
𝑒𝑥𝑝𝑖𝑛𝑝𝑢𝑡𝑠

∑𝑒𝑥𝑝𝑖𝑛𝑝𝑢𝑡𝑠
 

4.7 

Significance of Softmax: 

The advantage of softmax is that it is differentiable, which means that we can calculate its 

gradient for the network's weights and biases. This is important for training the network using 

techniques such as gradient descent.  
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Softmax is a powerful activation function that allows us to train neural networks using standard 

optimization techniques and make accurate predictions on classification tasks. 

Why is Sigmoid preferred over Softmax activation function? 

When we build a Convolutional Neural Network (CNN), we have to decide which activation 

function to use in the last layer of the network. The choice between sigmoid and softmax 

depends on the task at hand and the type of data we are working with [1]. 

Sigmoid is typically used in binary classification problems, where the goal is to classify inputs 

into one of two possible outcomes (e.g., spam vs. not spam). The sigmoid function maps any 

input to a value between 0 and 1, which can be interpreted as the probability of the input 

belonging to the positive class. Implementing the sigmoid function in Verilog coding is 

relatively simple and can be done using just a few logic gates. 

On the other hand, softmax is used in multiclass classification problems, where the goal is to 

classify inputs into one of several possible outcomes (e.g. cat, dog, or bird). The softmax 

function maps the inputs to a set of values that sum up to 1, which represent the probabilities 

of the inputs belonging to each class. Implementing softmax in hardware can be more complex 

than implementing sigmoid, as it involves more complex computations such as exponentiation 

and division. 
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5. Python System Model (Forward Propagation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Process of Convolutional Neural Network 
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5.1 Process of Convolutional Python Model 

This flow chart explains the overall workings of the Python model. The significance of this 

Python model is that it has helped us develop the hardware structure of convolutional neural 

networks on an FPGA. We have extracted the weights from the trained model and stored them 

in the memory. 

5.1.1 Explanation of Process 

Stage 1: 

An image is loaded from a CSV file, and then it is processed. First, the shape of the input image 

and the expected output image are calculated and then compared to check if the size of  the 

image is greater than the size of the output image or not. 

Stage 2:  

If the input image is larger than the output image, the program checks whether padding is 

needed or not. If padding is required (same padding), the program will prompt the user to enter 

the number of rows and columns they want to pad. The user can also specify the value of pixels 

they want to pad with, such as 0, 1, -1, or other values. If the input image size is smaller than 

or equal to the output image size, the program will not pad (valid pad) the image and move on 

to the next stage. 

Stage 3: 

In stage 3, we enter the values of filters and how many dimensions of a filter are required. 

When we are done with it, it displays the matrix of a filter. Here we are using a 3x3 filter.  

The reasons for using the 3x3 filter over other filters, e.g., 5x5, 7x7, are as follows: 

1. Firstly, it requires fewer parameters (weights) to learn, which makes it faster to train 

and requires less memory to store.  

2. Secondly, a 3x3 filter can capture more fine-grained details in an image, such as edges 

and corners. This is important for image recognition tasks.  

3. Thirdly, using a 3x3 filter allows for better translation invariance, which means the 

network can recognize the same feature in different parts of the image.  
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4. Lastly, a 3x3 filter can be used in a technique called depth-wise separable convolution, 

which reduces the number of parameters in a neural network while maintaining high 

accuracy. 

Stage 4: 

In stage 4 of the process, a convolution operation is performed on the image. A filter is moved 

over all pixels and performs the multiply and accumulate (MAC) process, storing the resulting 

values in a new matrix that will be our output feature map. 

As the MNIST dataset consists of grayscale handwritten digits, each image has 2 channels. 

Therefore, our filter will cover these two channels. However, if we were using a 3-channel 

RGB picture, we would need 3 filters for each of the 3 channels, and the results would be 

combined at the end. 

Stage 5: 

The output feature map will then go to the layer of ReLu, where it will remove all the negative 

values (less than 0) by replacing them with 0 and keep all the positive values as they are. ReLu 

has a straightforward interpretation. When the input to a neuron is positive, the neuron fires, 

and when it is negative, the neuron does not fire. This makes it easier to understand what the 

network is doing and why it is making certain predictions. 

Stage 6: 

Maxpooling is a process in which a 2x2 window moves over the output feature map of the 

ReLu layer. The maximum value within the window is selected and stored in a new matrix. 

Since unnecessary pixels have already been removed from the image in the ReLu layer, this 

step further reduces the size of the image and the number of pixels. 

The stride parameter is used to slide the window over the image. The code checks the 

dimensions of the image before selecting the stride value. If the image dimensions are even, 

the window moves with a stride of 2. If the dimensions are odd, the window moves with a 

stride of 1. This ensures that all parts of the image are covered by the window. 

Stage 7: 

In this stage, which is the flattening layer, it is used to convert the output of the previous layer 

into a one-dimensional array. 
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Stage 8: 

This is the last stage and the last layer of the convolutional neural network where we see the 

probability of our output. The output with the highest probability will be the correct 

classification answer. Sigmoid is not a good choice for implementing in the last layer of CNN, 

but we have preferred it because it’s hardware is easier to design as compared to Softmax.  

The choice also depends on the problems that are being addressed. For example, for binary 

classification problems, sigmoid is a good choice, while for multi-class classification problems, 

softmax is preferred. 
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6.  Python System Model (Back Propagation) 

Back Propagation plays a significant role in training the neural network. In this process the 

errors are calculated and transfer back to every layer where the weights parameters adjust their 

value according to error. 

6.1 Back Propagation Introduction 

Backpropagation is an important technique used in neural networks to train them for various 

tasks such as classification, regression, and other prediction problems. In convolutional neural 

networks (CNNs), backpropagation is used to adjust the weights of the network during the 

training phase. 

CNNs are a type of neural network that is well suited for image processing tasks. They work 

by applying a series of filters to the input image, extracting the relevant features, and passing 

those features through the process to the fully connected layer, where it makes the prediction. 

During the training phase, the trainable parameters (weights) of the filter are fully connected 

and adjusted using backpropagation.  

So far, we are following this flow. Now we are going to perform backward calculations, which 

will result in updating weights. 

 

 

 

 

Figure 6.1: Block Diagram of back propagation in Python Model 
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Backpropagation minimizes the error between the predicted output and the actual output. It is 

a process to calculate the gradient loss of the function with respect to each weight in the 

network. The loss functions tell us how the network is performing on the given data, and the 

gradient of loss tells us how much weight needs to be adjusted. 

Keeping figure-6.1 in mind, the logic flow chart is drawn: 

 

 

 

The figures 6.2 and figure 6.3 shows that the change in every layer in forward and backward 

propagations, the change in parameters affects the next parameter, similarly, in the reverse  

direction, every error changes the parameter. For backpropagation, we use the chain rule. 

Figure 6.2: Logical Diagram of forward propagation in Python Model 

Figure 6.3: Logical Diagram of backward propagation in Python Model 
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6.2 Finding the Back Propagation Equation: 

To find the equation and verify it, we will assume the dimension of a model 

 

Trainable parameter in the suppose model: 

W1= (3, 3)    W2= (1, 4)     b1= (1, 1)     b2= (1, 1) 

Total 15 trainable parameters (suppose model) 

 

Loss Function: (Binary Classification) 

Loss to find for single image: 

𝐿 = −𝑌𝑖 𝑙𝑜𝑔(𝑌̂𝑖) − 1(1 − 𝑌𝑖) 𝑙𝑜𝑔(1 − 𝑌̂𝑖)                        6.1 

Loss to find on the batch of image: 

𝐿 =
1

𝑚
(−𝑌𝑖 𝑙𝑜𝑔(𝑌̂𝑖) − 1(1 − 𝑌𝑖) 𝑙𝑜𝑔(1 − 𝑌̂𝑖))    6.2 

 

Our objective is to minimize loss values for w1, w2, b1, b2. 

Gradient descent: 

𝑤1 = 𝑤1 − 𝜂
𝛿𝐿

𝛿𝑤1
             𝑤2 = 𝑤2 − 𝜂

𝛿𝐿

𝛿𝑤2
           𝑏1 = 𝑏1 − 𝜂

𝛿𝐿

𝛿𝑏1
               𝑏2 = 𝑏2 − 𝜂

𝛿𝐿

𝛿𝑏2
 

 

 

 

 
Figure 6.4: Simplest Logical Diagram Representation 
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6.3 Artificial Neural Network (ANN): 

Starting from the ANN part. In figure figure-6.1 of the forward propagation logic diagram, in 

ANN portion, we have neurons from the fully connected layer that have trainable parameters. 

Z2 is showing the output of the weights and bias, which are coming from the previous layer 

then passing through the sigmoid which gives output A2, and then loss. 

 

 

 

 

 

 

6.3.1 Forward Propagation Equation of ANN: 

𝑍2 = 𝑤2𝐹 + 𝑏2         6.3 

𝐴2 = 𝛿(𝑍2)               6.4 

6.3.2 Backward Propagation Equation of ANN: 

𝜕𝐿

𝜕𝑤2
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝑤2
                   

6.5 

𝜕𝐿

𝜕𝑏2
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝑏2
                       

6.6 

For backward propagation we take partial derivatives, but partial derivatives are not directly 

possible so chain rule is apply. It is applied because w2 and b2 are indirectly related to loss. 

Let’s take one single image to get the equations of 
𝜕𝐿

𝜕𝑤2
 then we can scale our calculations for 

more than one image.  

Let’s assume, 𝑎2 is representing single image. It can be any image of any MNIST dataset. 

 

Figure 6.5: Block Diagram of Artificial Neural Networks (ANN) 
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𝜕𝐿

𝜕𝑎2
=

𝜕

𝜕𝑎2

[𝑌𝑖 log(𝑎2) − (1 − 𝑌𝑖) log(1 − 𝑎2)] 

𝜕𝐿

𝜕𝑎2
=

−𝑌𝑖

𝑎2
+ 

(1 − 𝑌𝑖)

(1 − 𝑎2)
 

𝜕𝐿

𝜕𝑎2
= 

−𝑌𝑖(1 − 𝑌𝑖) + 𝑎2(1 − 𝑌𝑖)

(1 − 𝑎2)
 

𝜕𝐿

𝜕𝑎2
= 

−𝑌𝑖 + 𝑌𝑖𝑎2 + 𝑎2 − 𝑌𝑖𝑎2

(1 − 𝑎2)
 

𝝏𝑳

𝝏𝒂𝟐
= 

(𝒂𝟐 − 𝒀𝒊)

𝒂𝟐(𝟏 − 𝒂𝟐)
 

𝜕𝐴2

𝜕𝑍2
=  𝛿(𝑍2)[1 − 𝛿(𝑍2)] 

𝝏𝑨𝟐

𝝏𝒁𝟐
= 𝒂𝟐[𝟏 − 𝒂𝟐] 

𝜕𝑍2

𝜕𝑤2
= 

𝜕

𝜕𝑤2
(𝑤2𝐹 + 𝑏2) 

𝜕𝑍2

𝜕𝑤2
= 𝐹 + 0 

𝜕𝑍2

𝜕𝑤2
=  𝐹         

𝜕𝑍2

𝜕𝑏2
=  0 

𝜕𝐿

𝜕𝑤2
=

𝑎2 − 𝑌𝑖

𝑎2(1 − 𝑎2)
× 𝑎2(1 − 𝑎2) × 𝐹  

𝝏𝑳

𝝏𝒘𝟐
= (𝒂𝟐 − 𝒀𝒊)×F      

Replacing the 𝑎2 (single image) with 𝐴2 which is multiple image: 

𝝏𝑳

𝝏𝒘𝟐
= (𝑨𝟐 − 𝒀𝒊)×𝑭𝑻 
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𝜕𝐿

𝜕𝑏2
=

𝑎2 − 𝑌𝑖

𝑎2(1 − 𝑎2)
× 𝑎2(1 − 𝑎2) × 1  

𝜕𝐿

𝜕𝑏2
= = (𝑨𝟐 − 𝒀𝒊) 

When we will work with multiple images ‘m’ (
1

𝑚
 will be multiplied with formulas) 

6.4 Convolutional Neural Network (CNN): 

In the CNN part, we will find the backpropagation of the Maxpooling Layer and Convolution 

Layer. In the below picture, we have written all the equations that are derived from the logic 

diagram.  

 

In the CNN part, we have w1 and b1: 

𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝐹
× 

𝜕𝐹

𝜕𝑃1
× 

𝜕𝑃1

𝜕𝐴1
× 

𝜕𝐴1

𝜕𝑍1
× 

𝜕𝑍1

𝜕𝑤1
 

𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝐹
× 

𝜕𝐹

𝜕𝑃1
× 

𝜕𝑃1

𝜕𝐴1
× 

𝜕𝐴1

𝜕𝑍1
× 

𝜕𝑍1

𝜕𝑏1
 

 

 

 

 

   

Flatten Back Propagation 

Pooling Back Propagation 

Will be derive from back 

propagation of convolution 

Figure 6.6: Logical  Diagramm of  CNN in an i mage using the Python  Model 
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6.4.1 Forward Propagation Equation of CNN: 

𝑍2 = 𝑤2𝐹 + 𝑏2    

    𝐴2 = 𝛿(𝑍2) 

𝐴1 = 𝑟𝑒𝑙𝑢(𝑍1)                                           𝑍1 = 𝑐𝑜𝑛𝑣(𝑥,𝑤1)+ 𝑏1 

𝑃1 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝐴1)                            F=flatten (𝑃1) 

𝑍2 = 𝑤2𝐹 + 𝑏2                                           𝐴2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍2) 

We have to find: 

𝑤1 = 𝑤1 − 𝜂
𝛿𝐿

𝛿𝑤1
                        𝑏1 = 𝑏1 − 𝜂

𝛿𝐿

𝛿𝑏1
 

𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝐹
× 

𝜕𝐹

𝜕𝑃1
× 

𝜕𝑃1

𝜕𝐴1
× 

𝜕𝐴1

𝜕𝑍1
× 

𝜕𝑍1

𝜕𝑤1
 

𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝐹
× 

𝜕𝐹

𝜕𝑃1
× 

𝜕𝑃1

𝜕𝐴1
× 

𝜕𝐴1

𝜕𝑍1
× 

𝜕𝑍1

𝜕𝑏1
 

 

 

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
= 𝐴2 − 𝑌𝑖 

𝑍2 = 𝑤1𝐹 + 𝑏1        
𝜕𝑍1

𝜕𝐹
 = 𝑤1 

As there are no trainable parameters here in flatten layer, instead of taking derivatives we just 

do the reverse operation on it. 

𝐹 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑃1)            
𝜕𝐹

𝜕𝑃1
= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑃1) or reshape.( 𝑃1. 𝑠ℎ𝑎𝑝𝑒) 

 

 

 

 

 

We have find out these values 
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𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝐹
× 

𝜕𝐹

𝜕𝑃1
× 

𝜕𝑃1

𝜕𝐴1
× 

𝜕𝐴1

𝜕𝑍1
× 

𝜕𝑍1

𝜕𝑤1
 

𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝐴2
 ×  

𝜕𝐴2

𝜕𝑍2
× 

𝜕𝑍2

𝜕𝐹
× 

𝜕𝐹

𝜕𝑃1
× 

𝜕𝑃1

𝜕𝐴1
× 

𝜕𝐴1

𝜕𝑍1
× 

𝜕𝑍1

𝜕𝑏1
 

 

 

 

6.5 Back Propagation on Maxpooling:  

The matrix we got at P2 is 2x2 which has 4 elements, and they are errors. P2=[
𝑋1 𝑋2
𝑋3 𝑋4

] errors. 

There are also no trainable parameters in the maxpooling layer, we will do the reverse 

operation. 

𝐴1 = [

1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

]                          𝑃1 = ⌈
4 8
12 16

⌉ 

Suppose we have a 4x4 matrix, and on that matrix, we applied a 2x2 window of max-pooling 

operation that gives us a 2x2 output matrix. When we have to do backpropagation, we will do 

the reverse operation of the 2x2 matrix. 

The maximum values that we will get are the errors, and the remaining values in A1 of 2x2 

will not progress further. It means the error values will be replaced back to their original 

positions in matrix A1, but the other values will be replaced with zero. 

[

0 0 0 0
0 4 0 8
0 0 0 0
0 12 0 16

]  
𝜕𝐿

𝜕𝐴1
 

So,    
𝜕𝐿

𝜕𝐴1
= {

𝜕𝐿

𝜕𝑃𝑥𝑦
, 𝑖𝑓 𝐴𝑚𝑥𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐴2 − 𝑌𝑖  

𝑤2 

𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑃1) or reshape.( 𝑃1. 𝑠ℎ𝑎𝑝𝑒) 

Maxpooling 
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6.6 Rectified Linear Unit (ReLu):  

Here we will find the equations that will give us the back propagations results if ReLu layer. 

6.6.1 Forward Propagation on ReLu: 

𝐴1 = 𝑟𝑒𝑙𝑢(𝑍1) 

6.6.2 Backward Propagation on ReLu: 

No trainable parameters, reverse operation. 

𝜕𝐴1

𝜕𝑍1
= {

1, 𝑖𝑓 𝑍1𝑥𝑦 > 0

0,  𝑖𝑓 𝑍1𝑥𝑦 < 0
 

6.7 Back Propagation on the Convolution Layer:  

Consider X as an image. We have a trainable parameter in the convolution layer. 

X   ×   𝑍1 

 

𝑋 = [

𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑋32 𝑋33

] ×   𝑤 = ⌈
𝑤11 𝑤12

𝑤21 𝑤22
⌉ =>  𝑍1 = ⌈

𝑍11 𝑍12

𝑍21 𝑍22
⌉ 

The equations of the Z1 matrix are: 

𝑍11 = 𝑋11𝑊11 + 𝑋12𝑊12 + 𝑋21𝑊21 + 𝑋22𝑊22 + 𝑏1 

𝑍12 = 𝑋12𝑊11 + 𝑋13𝑊12 + 𝑋22𝑊21 + 𝑋23𝑊22 + 𝑏1 

𝑍23 = 𝑋21𝑊11 + 𝑋22𝑊12 + 𝑋31𝑊21 + 𝑋32𝑊22 + 𝑏1 

𝑍22 = 𝑋22𝑊11 + 𝑋23𝑊12 + 𝑋32𝑊21 + 𝑋33𝑊22 + 𝑏1 

These are the forward propagations of the convolution of X and W, which results in the Z 

matrix. 

 

W1, b1 (2x2) 

 

(3x3) 
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We have to look for the backward propagation matrix.So for backward propagation, 
𝜕𝐿

𝜕𝑍1
 the 

matrix is: 

𝜕𝐿

𝜕𝑍1
= 

[
 
 
 

𝜕𝐿

𝜕𝑍11

𝜕𝐿

𝜕𝑍12

𝜕𝐿

𝜕𝑍21

𝜕𝐿

𝜕𝑍22]
 
 
 

 

Firstly we will find for b1 :
𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝑍1
 𝑥 

𝜕𝑍1

𝜕𝑏1
.  To find 

𝜕𝑍1

𝜕𝑏1
 differentiate 𝑍1 with respect to 

b1. 

𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝑍1
 ×  

𝜕𝑍1

𝜕𝑏1
 

 

𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝑍11
 ×  

𝜕𝑍11

𝜕𝑏1
+ 

𝜕𝐿

𝜕𝑍12
 ×  

𝜕𝑍12

𝜕𝑏1
+

𝜕𝐿

𝜕𝑍21
 ×  

𝜕𝑍21

𝜕𝑏1
+ 

𝜕𝐿

𝜕𝑍22
 ×  

𝜕𝑍22

𝜕𝑏1
  

The values in the square box are already in the matrix of 
𝜕𝐿
𝜕𝑍1

.  

We have to find out the values that are enclosed in the dashed square box. The partial derivative   

of   𝑍11, 𝑍12,𝑍21, 𝑍22with respect to b1 will be 1. 

The equations will become: 

𝜕𝐿

𝜕𝑏1
=

𝜕𝐿

𝜕𝑍11
 +  

𝜕𝐿

𝜕𝑍12
 +

𝜕𝐿

𝜕𝑍21
 + 

𝜕𝐿

𝜕𝑍22
 

𝜕𝐿

𝜕𝑏1
= 𝑠𝑢𝑚(

𝜕𝐿

𝜕𝑍1
) 

Now we will find out 
𝜕𝐿

𝜕𝑤1
 with respect to w1 

𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝑍1
 ×  

𝜕𝑍1

𝜕𝑤1
. 

𝜕𝐿

𝜕𝑤1
= [

𝜕𝐿

𝜕𝑤11

𝜕𝐿

𝜕𝑤12

𝜕𝐿

𝜕𝑤21

𝜕𝐿

𝜕𝑤22

]                
𝜕𝐿

𝜕𝑍1
= [

𝜕𝐿

𝜕𝑍11

𝜕𝐿

𝜕𝑍12

𝜕𝐿

𝜕𝑍21

𝜕𝐿

𝜕𝑍22

] 
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𝜕𝐿

𝜕𝑤11
=

𝜕𝐿

𝜕𝑍11
 ×  

𝜕𝑍11

𝜕𝑤11
+ 

𝜕𝐿

𝜕𝑍12
 ×  

𝜕𝑍12

𝜕𝑤11
+

𝜕𝐿

𝜕𝑍21
 ×  

𝜕𝑍21

𝜕𝑤11
+ 

𝜕𝐿

𝜕𝑍22
 ×  

𝜕𝑍22

𝜕𝑤11
  

𝜕𝐿

𝜕𝑤12
=

𝜕𝐿

𝜕𝑍11
 ×  

𝜕𝑍11

𝜕𝑤12
+ 

𝜕𝐿

𝜕𝑍12
 ×  

𝜕𝑍12

𝜕𝑤12
+

𝜕𝐿

𝜕𝑍21
 ×  

𝜕𝑍21

𝜕𝑤12
+ 

𝜕𝐿

𝜕𝑍22
 ×  

𝜕𝑍22

𝜕𝑤12
 

𝜕𝐿

𝜕𝑤21
=

𝜕𝐿

𝜕𝑍11
 ×  

𝜕𝑍11

𝜕𝑤21
+ 

𝜕𝐿

𝜕𝑍12
 ×  

𝜕𝑍12

𝜕𝑤21
+

𝜕𝐿

𝜕𝑍21
 ×  

𝜕𝑍21

𝜕𝑤21
+ 

𝜕𝐿

𝜕𝑍22
 ×  

𝜕𝑍22

𝜕𝑤21
 

𝜕𝐿

𝜕𝑤22
=

𝜕𝐿

𝜕𝑍11
 ×  

𝜕𝑍11

𝜕𝑤22
+ 

𝜕𝐿

𝜕𝑍12
 ×  

𝜕𝑍12

𝜕𝑤22
+

𝜕𝐿

𝜕𝑍21
 ×  

𝜕𝑍21

𝜕𝑤22
+ 

𝜕𝐿

𝜕𝑍22
 ×  

𝜕𝑍22

𝜕𝑤22
 

 

The square box values are in the matrix 
𝜕𝐿

 𝜕𝑍1
. The values that are enclosed in the dashed box 

are what we have to find out.  

Using Equation of  𝑍11, 𝑍12, , 𝑍21 and 𝑍22  as previously described 

𝜕𝐿

𝜕𝑤11
=

𝜕𝐿

𝜕𝑍11
𝑋11   +  

𝜕𝐿

𝜕𝑍12
 𝑋12 +

𝜕𝐿

𝜕𝑍21
 𝑋21 + 

𝜕𝐿

𝜕𝑍22
 𝑋22  

𝜕𝐿

𝜕𝑤12
=

𝜕𝐿

𝜕𝑍11
𝑋12   +  

𝜕𝐿

𝜕𝑍12
 𝑋13 +

𝜕𝐿

𝜕𝑍21
 𝑋22 + 

𝜕𝐿

𝜕𝑍22
 𝑋23  

𝜕𝐿

𝜕𝑤21
=

𝜕𝐿

𝜕𝑍11
𝑋21   +  

𝜕𝐿

𝜕𝑍12
 𝑋22 +

𝜕𝐿

𝜕𝑍21
 𝑋31 + 

𝜕𝐿

𝜕𝑍22
 𝑋32  

𝜕𝐿

𝜕𝑤22
=

𝜕𝐿

𝜕𝑍11
𝑋22   +  

𝜕𝐿

𝜕𝑍12
 𝑋23 +

𝜕𝐿

𝜕𝑍21
 𝑋32 + 

𝜕𝐿

𝜕𝑍22
 𝑋33  

𝑋 = [

𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑋32 𝑋33

]     
𝜕𝐿

𝜕𝑍1
= [

𝜕𝐿

𝜕𝑍11

𝜕𝐿

𝜕𝑍12

𝜕𝐿

𝜕𝑍21

𝜕𝐿

𝜕𝑍22

] 
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6.7.1 Results of Back Propagation of Convolution Layer: 

𝝏𝑳

𝝏𝒘𝟏
= 𝒄𝒐𝒏𝒗(𝒊𝒏𝒑𝒖𝒕,

𝝏𝑳

𝝏𝒁𝟏
) 

𝝏𝑳

𝝏𝒃𝟏
= 𝒔𝒖𝒎(𝒊𝒏𝒑𝒖𝒕,

𝝏𝑳

𝝏𝒁𝟏
) 

The image, which is input, is getting convolved with the partial derivative of 
𝜕𝐿

 𝜕𝑍1
 .  
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7. Results of Python Model 

 The figure 7.1 and 7.3 shows validation accuracy graph of the model on the validation 

set over the course of training. The figure 7.1 and 7.3 shows training accuracy graph of 

the model on the training set over the course of training. 

 The figure 7.2 and 7.4 shows validation loss graph of the model on the validation set 

over the course of training. The figure 7.2 and 7.4 training loss graph of the model on 

the training set over the course of training. 

7.1 Python model using Keras and TensorFlow: 

 

7.2 Python Native Model: 

 

Training  Validation  

Figure 7.1: Validation Accuracy and Training Accuracy Figure 7.2: Validation Loss and Training Loss 

Figure7.3: Validation Accuracy and Training Accuracy Figure 7.4: Validation Loss and Training Loss 
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8. Analysis of Results: 

We want to see the validation accuracy and loss curves to be steadily increasing, and the 

training accuracy and loss curves to be steadily decreasing. This indicates that the model is 

learning and generalizing to new data as it is trained. 

However, if the validation accuracy curve starts to plateau, this indicates that the model is 

overfitting to the training data. In this case, we can try to regularize the model, such as by 

adding dropout or L2 regularization. 

If the validation loss curve starts to increase, this indicates that the model is not learning. In 

this case, we can try to increase the learning rate or the number of epochs. 
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9. Verilog Implementation of a CNN Accelerator 

In applications involving image and signal processing, convolutional neural networks (CNNs) 

are a typical type of artificial neural network. CNNs, on the other hand, are computationally 

demanding and consume many resources. 

Specialized hardware accelerators have been created to effectively complete the convolutional 

procedures needed to solve this problem. The main objective of our proposed accelerator is to 

target the low area and energy-efficient design of mobile/edge training hardware. The 

accelerator's training has been evaluated for MNIST handwritten digits 0–9.  

9.1 Blocks of the CNN Accelerator: 

A typical CNN accelerator employing Verilog, which is a hardware description language, can 

be easily divided into multiple parts. 

The first part is the input buffer, which stores the input data that needs to be processed. The 

buffer is created to effectively store input data, which is often in the form of a two-dimensional 

matrix or image. 

The accelerator's primary computational duty is then completed by the convolutional core. The 

processing components execute the process of convolution on the input data from the 

convolutional core. A single multiplication and addition process is carried out by each 

processing component, and the output can be obtained by combining the results. 

The output buffer is made to efficiently manage the vast amounts of data generated by the 

convolutional core and stores all results generated by the convolutional operation. 

To make the output data less complex and smaller in size, the pooling layer down samples it. 

There are several methods, like average pooling and maximum pooling that can be used to 

implement the pooling layer. 

The CNN accelerator's final output is generated by the fully connected layer following a series 

of matrix multiplications. 
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Figure9.1: Block Diagram of CNN with Verilog 

Overall, the Verilog block diagram of a CNN accelerator gives a high-level understanding of 

the accelerator's design. Each component in the block diagram has properties and functionality 

that are described using the Verilog language. A hardware synthesis tool is then used to convert 

the Verilog code into real hardware. 

9.2 Description of each block of the CNN Accelerator: 

9.2.1 Convolution Layer: 

A convolutional layer in CNN applies a series of learnable filters (also known as kernels) to 

the input data to extract features and learn spatial hierarchies. Concerning Verilog 

implementation, the following is a brief description of a convolutional layer: 

A convolutional layer in Verilog can be developed by combining memory access, 

multiplication, and addition operations. The layer comprised various crucial parts, including: 

1. Input Buffer: An input buffer stores the input data, such as an image. The input data 

is temporarily stored in this buffer, providing quick access throughout the convolution 

process. 
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2. Convolution Operation: The convolution operation is the primary calculation of a 

convolutional layer. To create feature maps, a series of filters must be applied to the 

input data. A matching patch of the input data is convolved with a small matrix of 

weights that comprise each filter. 

● Weight Memory: A weight memory is used to store the filter weights. The 

filter weights are stored in this memory, which is accessible throughout the 

convolution process. 

● Filter Multiplication: Using a set of multipliers, the input data is multiplied by 

the filter weights. The input data and the filter weights are multiplied element 

by element by these multipliers. 

● Accumulation: Adders are used to collect the multiplication results to provide 

the output values for the convolution process. 

3. Activation Function: An activation function is frequently used to induce non-linearity 

after the convolution procedure. ReLu (Rectified Linear Unit) or sigmoid functions are 

frequently used as activation functions. Combinational logic can be used to achieve this 

phase in Verilog. 

4. Output Buffer: An output buffer is used to hold the feature maps that are generated by 

the convolutional layer. This buffer stores the interim findings and enables quick access 

during the CNN's later layers or stages. 

 

Convolutional layers are implemented in Verilog by building and connecting the above-

mentioned parts. Pre-trained filter weights may be used to initialize the weight memory. The 

convolution procedure is carried out by cycling through the filters and executing the 

appropriate multiplications and additions as the input data streams through the layer. The 

generated feature maps are then stored in the output buffer after being processed by the 

activation function. 
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Figure 9.2: In-depth block diagram of Convolution Layer in HDL 

 

A convolutional layer implementation in a CNN might need complicated Verilog code, which 

is dependent on several different factors like filter sizes, data accuracy, parallelism, and 

memory organization. The implementation procedure may be made simpler, and the 

performance of the convolutional layer in Verilog can be improved with the support of libraries, 

IP cores, or high-level synthesis (HLS) tools provided by vendors like Xilinx or Intel. 

9.2.2 Pooling Layer: 

The spatial dimensions of the feature maps created by the convolutional layers are reduced by 

a pooling layer in a convolutional neural network (CNN). It helps in parameter reduction, 

feature map down sampling, and the introduction of a kind of translation invariance. A pooling 

layer in the context of a Verilog implementation is described briefly as follows: 

Max pooling and average pooling are two methods that may be used to construct a pooling 

layer in Verilog. The layer is made up of the following key elements. 
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1. Input Buffer: An input buffer is used to hold the feature maps that the convolutional 

layer returns. The feature maps are temporarily stored in this buffer during the pooling 

process. 

2.  Pooling Operation: Applying a pooling operation to the input feature maps is the 

primary part of a pooling layer's computation. 

● Pooling Window: A fixed-size window that slides across the input feature maps 

is typically 2x2 or 3x3. The neighborhood of values across which the pooling 

operation is applied is defined by this window. 

● Max Pooling: The maximum value found within the pooling window is chosen 

as the representative value for that window when using the max pooling 

operation, for example. The most important characteristic in that area is 

captured with the aid of this operation. 

3.  Output Buffer: An output buffer is used to hold the down sampled feature maps that 

are part of the pooling layer's output. This buffer stores the interim findings and enables 

quick access during the CNN's subsequent layers or stages. 

 

Figure 9.3: In-depth block diagram of Pooling Layer in HDL 

The above-mentioned elements must be designed and connected to construct a pooling layer in 

Verilog. The pooling action is carried out by sliding the pooling window across the input 

feature maps as they are streamed through the layer. The output buffer is subsequently used to 

hold the resultant down sampled feature maps. 
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9.2.3 Fully Connected: 

In a neural network, a fully connected layer, also referred to as a dense layer, links every neuron 

in the previous layer to every neuron in the current layer to generate a completely connected 

graph. In the context of Verilog implementation, the following is a brief description of a 

completely linked layer: 

A completely linked layer may be created in Verilog by multiplying the matrix, adding the 

bias, and then applying the activation function. The layer is made up of the following key 

elements: 

1. Input Buffer: An input buffer stores the input data from the previous layer. To 

temporarily store the input data while performing matrix multiplication, this buffer is 

used. 

2. Weight Memory: A weight memory stores the weights used to link the neurons of the 

previous layer to those of the current layer. During the matrix multiplication process, 

this memory is accessed to obtain the weights. 

3. Matrix Multiplication: The matrix multiplication operation is the primary calculation 

of a fully linked layer. The output values for each neuron in the current layer are created 

by multiplying each element of the input data by the corresponding weight and then 

adding the results. 

● Weight Memory Access: The connections between the neurons in the previous 

and current layers are used to access the weights from the weight memory. 

● Element-wise Multiplication: A set of multipliers is used to execute element-

wise multiplication on the input data and corresponding weights. 

● Accumulation: Adders are used to collect the multiplication results in order to 

provide the output values for the fully linked layer. 

4. Bias Addition: After the matrix has been multiplied, a bias term is added to the output 

value of each neuron. The bias values are applied to the output values using adders after 

being stored in a biased memory. 

5. Activation Function: In order to add non-linearity, an activation function is often 

applied to the output values. ReLu (Rectified Linear Unit) or sigmoid functions are 

frequently used as activation functions. 
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Figure 9.3: Block diagram of Fully Connected Layer in HDL 

 

The Verilog implementation of a fully connected layer involves designing and interconnecting 

the components mentioned above. The input data is streamed through the layer, and the matrix 

multiplication operation is performed by cycling through the weights and applying the 

necessary multiplications and additions. The resulting output values are then passed through 

the bias addition and activation function stages. 
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10. Verilog Implementation of Convolutional Neural 

Network: Results 

 

 

 

 

 

 

 

 

 

 

 

Convolution Layer Result 

Maxpooling Layer Result 

Figure 0.1: Results of CNN layers in Verilog 

Activation Layer Results 
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11. Outcome 

The size and power of the neural network model tend to grow as the number of layers does as 

well. So, we used a layer-pruning and weight-quantization-based network compression 

method. As we have used only a single convolutional layer, the CNN accelerator can 

significantly speed up computations and use less energy than conventional CPU-based 

solutions by optimizing each component for performance and efficiency.  

We have developed an improved CNN as a result that is shallower, uses fewer filters, and has 

smaller bit widths for the parameters of weight while still being highly accurate. We picked a 

modest CNN along with the MNIST dataset for the training and validation, with the target 

accuracy set at 95% or above to demonstrate the viability of the suggested architecture and 

design methods. 
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12. Future Work 

A few possible areas for future work, to either improve performance or extend functionality, 

are listed below: 

12.1 Testing the Accelerator on Another Neural Network Model: 

This future work has a potential research direction for evaluating the different neural network 

model in the developed ASIC based Neural Network Accelerator. By applying the accelerator 

to a different model, researchers can analyze its compatibility, efficiency, and overall 

performance in a wider range of deep learning applications. This future work helps to assess 

the generalizability and versatility of the accelerator design and provides insights into its 

effectiveness in different neural network architectures. It can also uncover any potential 

limitations or areas for improvement, guiding future iterations or modifications to enhance the 

accelerator's performance and adaptability. 

12.2 Improvement in energy efficiency, reduce latency, reduce 

cost: 

There is always a room for the improvement the performance and for optimizing the design. 

 Improve energy efficiency:  

ASIC-based neural network accelerators can be made more energy efficient by using 

lower-power transistors and by optimizing the design for energy efficiency. 

 Support new neural network architectures:  

ASIC-based neural network accelerators can be made to support new neural network 

architectures by using programmable logic or by using a heterogeneous architecture 

that combines ASICs with other types of processors. 

 Reduce cost:  

ASIC-based neural network accelerators can be made to be more cost-effective by using 

standard cell libraries and by increasing the number of units that are produced. 

As these technologies continue to develop, we can expect to see even more powerful and 

efficient ASIC-based neural network accelerators that will be used in a wide variety of 

applications. 
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12.3 Potential Applications of ASIC based Neural Network 

Accelerator: 

Some of the applications are listed below: 

12.3.1 Self-Driving Cars: 

ASIC-based neural network accelerators could be used to power the computer vision systems 

that are used in self-driving cars. These systems need to be able to process large amounts of 

data in real time, and ASIC-based neural network accelerators could provide the necessary 

performance and efficiency. 

12.3.2 Medical Imaging: 

ASIC-based neural network accelerators could be used to power the systems that are used to 

analyze medical images, such as MRI scans and CT scans. These systems need to be able to 

process large amounts of data quickly, and ASIC-based neural network accelerators could 

provide the necessary performance and efficiency. 

12.3.3 Virtual Reality: 

ASIC-based neural network accelerators could be used to power the systems that are used to 

create virtual reality experiences. These systems need to be able to process large amounts of 

data in real time, and ASIC-based neural network accelerators could provide the necessary 

performance and efficiency. 

12.3.4 Airborne Weapons: 

ASIC-based neural network accelerators could be used to power the systems that are used to 

control and guide airborne weapons, such as missiles and drones. These systems need to be 

able to process large amounts of data quickly, and ASIC-based neural network accelerators 

could provide the necessary performance and efficiency. 

12.3.5 Cancerous Cell Detections: 

ASIC-based neural network accelerators could be used to power the systems that are used to 

detect cancerous cells in medical images, such as MRI scans and CT scans. These systems need 

to be able to process large amounts of data quickly, and ASIC-based neural network 

accelerators could provide the necessary performance and efficiency. 
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12.3.6 Telecommunications: 

ASIC-based neural network accelerators could be used to power the systems that are used to 

transmit and receive data over telecommunications networks. These systems need to be able to 

process large amounts of data quickly, and ASIC-based neural network accelerators could 

provide the necessary performance and efficiency. 
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List of Acronyms 

ASIC…………………………………………………...Application Specific Integrated Circuit 

FPGA………………………………………………………...Field Programmable Gate Array 

CNN………………………………………………………… Convolutional Neural Network 

DNN…………………………………………………............ Deep Neural Network 

ANN………………………………………………………….Artificial Neural Network 

FC…………………………………………………….............Fully Connected 

 

 


