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Abstract 
 

Introduction: ECG Arrhythmias can occur for various reasons, including heart 

disease, medications, or genetic factors. Some arrhythmias are harmless, while others 

can be life-threatening. It is important to detect and diagnose arrhythmias accurately to 

provide timely and appropriate treatment. It is essential to ensure that ECG arrhythmia 

detection is done accurately to provide appropriate treatment and prevent 

complications. Therefore, it is important to use reliable and validated methods for 

detecting arrhythmias and to have experienced healthcare professionals who can 

interpret ECG signals accurately. In this work, CNNs are used for the detection of ECG 

Arrhythmias which will classify the arrhythmia into its respective class. A hardware-

friendly deep learning system is proposed for correct classification of Cardiac 

Arrhythmias. Methodology: The bio-medical signal processing world is evolving, to 

keep pace with advancement, scientists and researchers are compelled to achieve 

accuracy as it reflects the factuality and reliability of the research. To enhance the 

diagnostic procedure for automatic arrhythmia detection, our work presents proof of a 

concept for a lightweight, computationally inexpensive, and efficient Arrhythmia 

classifier that will reveal the potential clinical utility of ECG Arrhythmia signals for the 

detection and monitoring of certain cardiovascular conditions.  In this work, analysis is 

performed using different End-to-End Machine learning approaches, well-known CNN 

architectures i.e., AlexNet, ResNet18, VGG16, MobileNet, and EfficientNet with 

varying parameters are used to enhance the efficiency of the system and for an in-depth 

analysis. The proposed system is tested for classification on a well-known and 

publically available MIT BIH Arrhythmia and PTBDB image dataset. Furthermore, the 

analysis for all CNNs using Transfer Leaning as a feature extractor and fine-tuning the 

MobileNet architecture is performed. Results and Discussion: After training and 

evaluating, our proposed work highlighted architectures that possess fewer parameters 

and small model size, less average training, and testing time without compromising on 

accuracy. Our method of transfer learning showed improved accuracy by reducing 

overfitting in EfficientNet with maximum accuracy of 99.57%. While ResNet18 

outperformed state-of-art models with 99.33% accuracy. The VGG16 model showed 

98.70% accuracy. This work can further be utilized to implement on embedded 

devices.   
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Chapter – 1 

Introduction 

1.1 Background: 
In the world of Science and Technology, AI has recently garnered widespread acclaim. 

With increase in cardiovascular diseases (CVDs) researchers have considered using AI 

which can aid in clinical utility. ECG arrhythmia is an important group of CVDS which 

refers to an abnormal heart rhythm that is detected using an electrocardiogram (ECG) 

signal. An ECG signal measures the irregularities in the heart's rhythm. 

 

The accuracy of ECG arrhythmia detection depends on several factors: 

  Type of arrhythmia,  

 Quality of the ECG signal,  

 Experience and skill of the healthcare provider analyzing the ECG signal. 

A correctly trained healthcare professional with experience in interpreting ECG signals 

can detect arrhythmias with high accuracy. However, automated algorithms and 

machine learning techniques are also being developed to enhance accuracy and speed 

of Cardiac arrhythmia detection. 

Deep Learning has been used to classify different types of Cardiac Arrhythmias. For an 

ECG, accurate detection and classification is still a challenge as some types of 

arrhythmias may be difficult to detect using ECG alone, such as those that occur 

infrequently or those that are not sustained long enough to be captured on the recording.                               

 

1.2 Rare and Deadly Arrhythmias: 
Some arrhythmias are difficult to detect. What makes them difficult is the inconsistency 

of their occurrence. Some arrhythmias come and go, they are for short duration. Some 

are occasional that do not come to appear in routine ECG. For this purpose, prolonged 

ECG is required. The arrhythmias that fall under this category are paroxysmal 

arrhythmias such as Atrial Fibrillation.  

The rarity of arrhythmias is directly linked with prevalence in population such as 

Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (CPVT), 

and arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). These 

arrhythmias are the arrhythmias that exist in a small percentage of the population. 

Detecting rare arrhythmias may be challenging due to their low occurrence, lack of 

awareness, and the need for specialized diagnosis. 

The deadliest arrhythmia is ventricular arrhythmia that can cause sudden cardiac arrest 

where the heart suddenly stops beating. Ventricular fibrillation (VF) is a chaotic and 

dis-organized electrical activity of the ventricles, while ventricular tachycardia (VT) is 

a rapid heart rate originating in the ventricles. Both VF and VT can be fatal within 

minutes if not treated immediately. They are considered highly lethal arrhythmias and 
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require immediate medical attention, including defibrillation and advanced life support 

measures.  

 

1.3 Research Aim 
The objective of this report is to propose a hardware friendly architecture that can be 

deployed on tightly constraint environment. Expensive ECG systems make it less 

accessible to patients and healthcare providers in low-resource settings.  

The aim of this study is to examine various aspects, with a particular focus on hardware 

favorability, affordability, and simplicity. Hence, to analyze different End to End 

Learning Architectures suitable for personalized ECG monitoring. ECG has attained 

recognition due to the recent advancement in the field of bio medical signal processing. 

It has achieved new heights in recent years which demonstrates the potential clinical 

utility of ECG signals for the detection and monitoring of certain cardiovascular 

conditions. This work is going to open doors for further research and real-time 

implementation which will offer variety of diagnostics.  

 

1.4 Limitations: 
One of the most undermined and overlooked area in the research for the detection of 

Arrhythmia is inability to detect certain Arrhythmias. ECG arrhythmia detection 

systems can sometimes detect abnormal rhythms that are not actually present, leading 

to unnecessary diagnostic tests and interventions. In some cases, it can also miss 

abnormal rhythms, which can delay diagnosis and treatment. Despite advances in 

technology, ECG arrhythmia detection systems are not always accurate, particularly in 

cases where the arrhythmia is not obvious or the ECG recording quality is poor.  

 

1.5 Problem Statement: 
There exists scope for improvements for attaining more accuracy and reliability of the 

techniques as most of the research is focused on Arrhythmias that are easy to detect or 

Cardiac features that are not very challenging. Additionally, there is a need to make 

ECG arrhythmia detection more accessible and affordable, particularly in low-resource 

settings. 

This will reveal the potential clinical utility of ECG Arrhythmia signals for the 

detection, monitoring, and prevention of certain cardiovascular conditions.  

 

1.6 Proposed Solution: 
This work implements different Convolutional Neural Networks to analyze in terms of 

hardware favorability and reliability. Our lightweight hardware compatible 

Architecture will create a breakthrough in the field of ECG Arrhythmia detection which 

can be implemented on hardware devices saving costly machines, being a portable 
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device that can bring convenience with reliable accuracy. ECG arrhythmia detection is 

essential for advancing our understanding of the underlying mechanisms and risk 

factors for heart rhythm disorders and other cardiovascular diseases. 

1.7 Broader Impact (UN Sustainable Development Goals): 
There are 17 Sustainable Development Goals by United Nation that is its Agenda which 

provides a comprehensive framework to address social, economic, and environmental 

challenges faced world widely.  Every person is encouraged to put efforts and take 

initiatives to contribute to this achievement. They reflect the urgent need to address 

poverty, inequality, climate change, environmental degradation, and social injustice to 

create a better and more sustainable world for present and future generations.   

 

Figure 1.1: UN SDGs [1] 

1.6.1 Targeted Sustainable Development Goals: 
The targeted SDGs are given below: 

Table 1.1: Targeted SDGs 

# Sustainable Development 

Goals 

Addressed 

1 No poverty  

2 Zero Hunger  

3 Good Health and Well-

being 
✓ 

4 Quality Education ✓ 

5 Gender Equality  

6 Clean Water and Sanitation  

7 Affordable and Clean 

Energy 
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8 Decent Work and 

Economic Growth 

 

9 Industry, Innovation, and 

Infrastructure 
✓ 

10 Reduced Inequalities  

11 Sustainable cities and 

communities 

 

12 Responsible consumption 

and production 

 

13 Climate Action  

14 Life below water  

15 Life on Land  

16 Peace, Justice, and strong 

institutions 

 

17 Partnerships for the Goals ✓ 

                                                                   

 

1.6.2 Potential Mapping: 
Our work ECG Arrhythmia detection perfectly aligns with Good Health and Well-being 

goal of the UN's SDGs in a clear and impactful manner. Moreover, it also falls under 

the umbrella of Industry, Innovation and Infrastructure, and Quality Education. 

 

Table 1.2: Address SDGs in this work 

SDG Title Aim Addressed 

 

 

 

 

 

 

Good Health and Well-being 

 

 

 

 

 

Ensure Healthy lives and 

promote well-being for 

all ages. 

 Improved Healthcare 

Access 

 Cost and Resource 

efficiency 

 Enhanced Diagnosis 

accuracy 

 Empowering Patients and 

Professionals 

 Disease Prevention and 

Management 

Quality Education Promoting life-long 

learning for all. 

 leverage shared 

knowledge, and expertise. 

 Inculcating Inquisitiveness 

 Inclusive education 

 Access to up-to-date 

resources 
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Industry, Innovation, and 

Infrastructure 

  Improving existing 

practices 

 Technology advancement 

Partnerships for the Goals Strengthen the 

implementation means. 

 Collaboration and 

Teamwork 

                                                      

 

1.7 Organization of the Report:  
The next chapter is a detailed literature review, where all the previous work and state- 

of-art-methods are discussed. It will reveal the potential of AI in classification of 

Cardiac Arrhythmias. The 3rd chapter is detailed theory and discussion of implemented 

techniques. The 4th chapter is an implementation of this work to achieve the objective. 

Furthermore, the 5th chapter deals with the results and complete analysis of 

methodology and outcomes in terms of hardware complexity, utility, and reliability. In 

the 6th chapter conclusion is stated. Finally, the potential area for further research is 

revealed.  
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2 Chapter-2 

Literature Review of Automatic Arrhythmia 

Detection 

This chapter entails the literature review related to different aspects of research on 

Cardiac Arrhythmia Detection and a comparative study involving different Deep 

Neural Networks implementation and scope of being implemented on hardware 

devices.  

 

2.1 Background 
The year 1887 marks the inception of ECG. Since the birth of clinical 

electrocardiogram, many researchers continued to further analyze ways to get 

benefitted for clinical purposes [2]. From early beginning to present days, Artificial 

Intelligence has created massive breakthroughs in the field of health sciences. It has 

created room for improvements and opened new doors for medical applications. One 

of the purpose ECG is fulfilling is the detection of Cardiac Arrhythmias. It is an 

irregular heartbeat referred to as abnormal rhythm which is life threatening. Early 

detection and diagnosis can prevent the disease from worsening.   

 

2.2 ECG Signal Processing and Feature Extraction 
Like any signal, ECG signal can be represented in a time domain as well as frequency 

domain. Both representations have pros and cons. There exists different analysis based 

on both the representations. ECG signal is a very noisy signal which if interpreted needs 

to be denoised, so the artifacts are removed. This denoising can be done using different 

techniques. Some researchers used Empirical mode decomposition to break down noisy 

ECG signal into a finite set of small chunks [3].  

Not all small IMFs are noisy, so Spectral Flatness is measured for detection of noise 

after which if it appears to be noisy, as bandpass Butterworth filter is used. One can 

also use moving average filter for the baseline correction [4]. Another approach used 

to remove baseline wandering so there is no undesired interference is to use symlet 

scaling filter from wavelet transform and detrend operation. If some noise is still left 

the author used Savitzky-Golay filter [5]. There exists two kind of noises, baseline 

wandering which is low frequency noise and high frequency motion artifacts. To keep 

a signal raw, baseline correction is performed and a high-frequency noise filtering in 

sequence. ECG signals were preprocessed utilizing a 200-ms width median filter to 

remove the P waves and QRS complexes followed by a median filter of 600-ms to 

remove the T waves [6]. In this paper the author used second-order integer low-pass 

filter for the removal of the high-frequency noise components [7]. For denoising, this 

paper implements Daubechies wavelet of order four and to correct baseline moving 



7 

 

average filter is used [8]. In another paper denoising is performed using relaxed median 

filtering as moving average may not be an optimal choice since ECG signal has Q peak 

which may get compromised in averaging filters [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Denoising using EMD. 

ECG signal has different features based on which analysis is performed. A comparative 

study of different feature extraction methods is performed in which wavelet transform, 

independent components analysis, Eigenvector method, auto-regression method, linear 

prediction and Fast Fourier Transform is performed [10]. The comparative results 

shown in the paper are given in Figure 2.2. 

Another remarkable work is done using time domain morphology and gradient based 

algorithm for the feature extraction from PQRST complex [11]. The block diagram of 

implementation is given in the paper in Figure 2.3. 

This paper utilizes both fiducial and non-fiducial features by using the consecutive 

change of ECG power spectral density as significant feature . ECG fiducial features 

have been shown to exist, though but are diverse, making them challenging to use for 

human identification. The paper examined the viability to address this problem of 

simulating the human ECG and using it for identification in time, amplitude, and 

distance variations in the ECG features. Getting a cross feature matrix helps us 

accomplish this goal that is used to simulate the dynamic change in the fiducial features 

of the QRS [12]. 

A detailed survey of different feature extraction techniques is discussed in this paper 

[13].The main reason to use wavelet transforms is that they are localized both in the 

Original ECG Signal 

Empirical Mode 

Decomposition 

Noise 

Filtering 
Detect Noisy IMF using 

SF measures 

Denoised ECG Signal 
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time and frequency domains. This paper presents optimal mother wavelet, based on the 

wavelet transform, for feature extraction [14].  

 

Table 2.1: Comparison of different feature extraction methods 

Feature 

Extraction 

method 

Application 

Domain 

Competence SuiTable 

Classification 

Method 

Accuracy 

(%) 

AR Time-Frequency Classify Cardiac 

Arrhythmias 

QDF 96.6 

WT Time-Frequency Local analysis of fast time 

varying and non-regular 

signals 

ANN 92.20 

Eigenvector Frequency Signals composed of 

sinusoids buried in noise 

MME 98.06 

FFT Time-Frequency Short-term heart rate 

variability 

ANN 92.47 

LP Time No explicit assumptions for 

actual shape of the signal 

LDA 93.2 

ICA Time-Frequency Linear mixture of 

independent sources 

Fast ICA 90.13 

 

 

Figure 2.2: Gradient Based Algorithm 

In this research optimization using feature selection is performed. Features like 

temporal, morphological and statistical are taken for observations [15]. Since fiducial 

features involve high complexities which is why a low complexity feature extraction 

method is performed. In this context, discrete wavelet transform (DWT) with the Haar 

function being the mother wavelet, as our principal analysis method is performed [16].  

Multiresolution wavelet transformation is also the talk of the town. This paper used it 

for the QRS detector which achieved of sensitivity of 99.18% and a positive rate of 
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98.00% on validation data [17].  In this paper two different feature extraction techniques 

are applied simultaneously to obtain the feature vector. The wavelet transform is used 

to extract the coefficients of the transform as the features of each ECG segment while 

autoregressive modelling (AR) is also applied to obtain the temporal structures [18]. 

Pan Tompkins is very efficient way to detect QRS complexes. This paper performed 

Pan Tompkins algorithm for the detection of QRS complex [19]. 

 

2.3 Classification Algorithms 
Different algorithms are used for the detection of ECG Arrhythmia like SVM, ANN, 

Random Forest, but CNNs with state of art accuracies are the choice of every Machine 

learning practitioner. This paper implements Support Vector Machines [18], whereas a 

review of different deep learning models is given in this paper. It discussed CNNs, 

RNN, LSTM, DBN and GRU where CNN has proven to be dominant and a better suited 

classification method [20]. To achieve accuracies higher and improve the speed as well, 

simpler architectures are used. The architectures like VGG16 and MobileNetV2 are 

implemented with 0.95% validation accuracy [21]. This paper used VGG and compared 

the results with many states of art classifiers. The results of comparison is given below 

[22]: 

 

Table 2.2: Micro-architectures comparison 

Network Number of Layers Parameters Training Time Accuracy 

(%) 

GoogleNet 144 5.9 million 132 minutes 99.90 

ResNet 71 4.8 million 48 minutes 100 

EfficientNet 290 4.1 million 112 minutes 99.70 

MobileNet 154 2.4 million 53 minutes 100 

Proposed 

Classifier 

29 34 thousand 15 minutes 99.90 

 

 

1D CNNs are also used for ECG classification. Since the goal has always been accuracy 

and speed, this paper implements 1D CNN [23]. This work is used for real time patient 

specific heartbeat classification on VEB and SVEB classes. The paper claims that this 

method has achieved robustness, computationally is excellent and can be carried further 

for hardware implementation. The results proved that the proposed work out performs 

other state-of-art methods.  

AlexNet is an architecture with only 8 layers which makes it a choice for 

implementation where computations are tightly constraint. In the proposed model, a 

new dataset is made by the combination of the Kaggle dataset and the other, which is 

made by taking the real-time healthy and unhealthy datasets. The AlexNet transfer 
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learning approach is applied [24] for classifying Q, N, F, V and S classes. In this 

research, the DVEEA-TL model diagnoses heart abnormality in respect of accuracy 

during the training and validation stages as 99.9% and 99.8%, respectively. The results 

are given below: 

 

Table 2.3:  Results of DVEEA-TL model 

Performance matrices Training ( % ) Validation ( % ) 

Accuracy 99.9 99.8 

Classification miss rate 0.05 0.07 

Sensitivity 99.8 99.7 

Specificity 21.09 26.5 

Precision 90.9 99.80 

F1 score 0.98 0.97 

FPR 0.75 0.73 

FNR 0.002 0.002 

MCC 99.2 98.5 

Kappa Score 0.98 0.97 

 

 

 This paper implements ResNet50, AlexNet, and SqueezeNet where it showed an 

accuracy of 98.8%, 90.08%, and 91% for AlexNet, SqueezeNet, and ResNet50, 

respectively [25].  Another paper implements AlexNet, Resnet18, and GoogleNet [26]. 

The paper used 7 classes for the classification in which different optimizers such as 

SGDM, RMSprop, and Adam are used to observe the behavior of models. It is observed 

that fine-tuned AlexNet is a good choice with SGDM optimizer having accuracy 

99.09%. A survey was conducted which addressed the issues involved in classification, 

feature extraction, pre-processing of an ECG signal [27].   

ECG scalogram is used for classification purposes. In this paper different micro 

architectures are used. MobileNetV2, SqueezeNet, ShuffleNet, GoogleNet, 

EfficientNet, and ResNet-18 are used and compared [28]. SqueezeNet proved to be 

slightly advantageous. The paper classified ARR, CHF and NSR classes. Comparative 

results are displayed in paper as: 
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Figure 2.3:  Classification results on ARR, CHF, NSR classes 

 

This paper implements ResNet, Inception, and Xception alongside more recent 

EfficientNet and a spatiotemporal method involving convolutional LSTMs [29]. The 

classes used in this paper are N, S, V, F and Q which are the standards of ANSI/AAMI. 

Transfer learning is used to implement these models as a fine-tuning method. Input 

shape for the networks is taken as 186x186x3 and ConvLSTM with 6 x 186 x 31 x 3 

input shape. ResNet50 showed 99.40% accuracy whereas VGG16 and VGG19 with 

99.20%. The ResNet50 version 2 showed 97.60% accuracy. EfficientNet B0 with 

96.20%, ConvLSTM with 96.15%, Xception showed 94.40%, Inception V3 with 

85.60% and Inception ResNet V2 with lowest 48.60% accuracy.  

The goal of this paper is to convert one dimensional (1-D) ECG signals to two 

dimensional (2-D) scalogram images with the help of Continuous Wavelet (CWT) [30]. 

Four different MIT BIH Databases are used such as Arrhythmia database, Normal Sinus 

Rhythm database, Malignant Ventricular Ectopy database and BIDMC Congestive 

heart failure database. The transfer learning technique for AlexNet pepped up with an 

accuracy of 95.67%. 

The number of classes used for classification are not very much consistent. Since some 

arrhythmias are difficult to detect and some are rare in population as stated in chapter 

1 makes it a difficult choice to come up with specific class as there is a lack of 

consistency regarding the usage of classes from MIT BIH Arrhythmia Database. Hence 

there is a lack of research. This paper used different number of classes from MIT BIH 

Arrhythmia database and compared the results [31]. It uses pre-trained EfficientNet B7 

model. Multi-class classifications of arrhythmia such as 17-class, 15-class, 13-class, 

and 12- class classifications are used. The proposed approach achieved the highest 

average of 99.23% accuracy for 13-class classification. 

 

2.4 Newly introduced Hardware Efficient Architectures 
EfficientNet and MobileNet architectures are newly introduced architectures which are 

solely made to reduce computational power by reducing number of parameters used at 

the same time enhancing accuracy of the model.  

 

   

                                           

                                       
                                            GoogleNet   ResNet18    MobileNetV2    SqueezeNet   ShuffleNet    EfficientNet 

100.5 

100 
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99 
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 EfficientNet 

In recent time researchers have started to focus more on these as they are made for 

hardware implementations. In a recent work, detection of Myocardial Infarction from 

12-Lead ECG using Eigen-domain representation is performed. This paper used 

EfficientNet V2 B2 as a transfer learning method which achieved 98.68% accuracy 

[32].  A fine-tuned EfficientNet B0 is used for the detection of Atrial Fibrillation [33]. 

The paper uses normal and A-fib classes to be classified using EfficientNet. It addressed 

data imbalance problems as well. The model showed accuracy of 96.79% and with data 

augmentation the accuracy is 95.86%. 

In a recent study a modified EfficientNet is used which has enhanced the accuracy and 

came with computational advantages [34]. In order to better assign weights of the 

features, an attention feature fusion module (AFF) was introduced into the network to 

replace the addition operation in the mobile inverted bottleneck convolution MBConv 

structure of the network. The model achieved 99.56% accuracy for 8 different types of 

heartbeat in the famous MIT BIH Arrhythmia database. This paper uses pre-trained 

EfficientNet B7 model. Multi-class classifications of arrhythmia such as 17-class, 15-

class, 13-class, and 12- class classifications are used. The proposed approach achieved 

the highest average of 99.23% accuracy for 13-class classification [31]. 

 MobileNet 

A latest work is done using MobileNet V1 architecture in which ensemble of 

Convolutional Auto encoders are used with Transfer learning [35]. It achieved 97.3% 

accuracy. It uses binary classification either normal or Arrhythmic.  Another approach 

is used to classify Arrhythmia through an ensemble classifier which combines 

MobileNetV2 and BiLSTM. I gives an accuracy of 91.7% [36]. The classes used in this 

work are NSR, AFIB, PVC and LBBB.  

 

2.5 Transfer Learning 
Developing a Model from scratch is time taking, so the concept of transfer learning is 

used. In transfer learning approach a model must take the previously trained or 

pretrained weights and apply that knowledge by passing the learned features in 

classification on a custom dataset. Its idea is to freeze all the learnable layers except the 

dense layer and only modify the number of classes used in custom dataset. More details 

can be found in chapter 3. Since we look to benefit from transfer learning as it saves 

computational power by allowing us to leverage the already trained network on millions 

of images and only pass it to a small dataset which in comparison is nothing. This paper 

implemented Transfer learning which increased accuracy from 3.67 to 4.89%. [37]. In 

this paper generative-adversarial-network-based auxiliary domain with a domain-

feature classifier negative-transfer-avoidance (GANAD-DFCNTA) algorithm was 

proposed to bridge the knowledge transfer from distant sources to target domains. Eight 

benchmark datasets were chosen, with four from ECG datasets and four from the distant 

domains: ImageNet, COCO, WordNet, and Sentiment140.  
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The proposed method in this paper used fine-tuned ResNet-18 with MIT-BIH 

arrhythmia dataset in accordance with the AAMI standards [38]. It achieved 90.8% 

accuracy using transfer learning.  This paper pretrained CNN on Icentia11K for the 

classification of AFIB. CNN predicts heart rate, rhythm and abnormal beat in short 

frame [39]. It is fine-tuned on the PhysioNet/CinC Challenge 2017 dataset. It shows 

that pre-training helped with a 6.57% accuracy rise.  

 

 

Figure 2.4: Transfer Learning Approach 

 

2.6 Existing Hardware Solutions 
Ever since ECG classification algorithms have existed, the aim is to go for hardware 

devices, but it is not an easy task because the algorithms are expensive, the 

computational power and resources are limited. This is why reliable and efficient 

architecture is a need that can better fit in a low resource setting which can be 

implemented on embedded devices.  

A wearable heart rate anomaly detection chip is designed [40]. It uses 16-bit floating 

pointer numbers for inference. The design of the chip was completed on the TSMC 65 

nm process. It has an area of 0.191 mm2, a core voltage of 1 V, an operating frequency 

of 20 MHz, a power of 1.1419 mW, and storage space of 5.12 kB. The architecture 

showed accuracy of 97.69% and a classification time of 0.3 ms for a single heartbeat.  

An efficient hardware architecture is presented by using 1D U-net. A two-stage pipeline 

Winograd structure is designed to increase computational power. It also addresses 

improving resource utilization and overall throughput. A Xilinx Zynq ZC706 board is 

used for the implementation [41]. The results show 1D U-net achieves an average 

accuracy of 95.55% for the pixel-level classification of five heartbeats. In this work the 

resource efficiency and computing efficiency reached 8.27 GOPS/kLUT and 123% 

respectively at clock frequency of 200 MHz A low power co-processor is used for the 

classification of Arrhythmia [42].  It consumes 8.75µW at 12 kHz, when implemented 

using 180nm Bulk CMOS technology. Architectural block is given as: 
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Figure 2.5: Architecture of Co-processor [42] 

 

The five classes N, V, F, S and Q are used for the classification of this work.  Class S 

and V are given more importance.  It achieved 97.35% accuracy for class-oriented 

scheme. Resource utilization and ASIC implementation is shown as: 

 

Table 2.4: Resource utilization 

Resources Total Available Resources Utilized Utilization (%) 

Slice LUT 303600 11125 3.66 

Slice REG 607200 4884 0.80 

F7 MUX 151800 1080 0.71 

F8 MUX 75900 255 0.33 

IOB 600 24 4 

BUFGCTRL 32 1 3.125 

Total Resources 1139132 17369 1.52 
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Table 2.5: ASIC details 

 

CMOS Process SCL 180nm 

Area 1.32𝑚𝑚2 

Voltage 1.98V 

Frequency 12kHz 

Dynamic Power 7.5403uW 

Static Power 1.2097uW 

 

An embedded system is designed for online and real time ECG classification [43]. The 

model is tuned to achieve an optimal result. This work has presented the hardware 

implementation with the predictive model embedded in an NVIDIA Jetson Nano 

processor. The waveforms for normal sinus, sudden death, arrhythmia, and 

supraventricular arrhythmia are used in this research. The proposed CNN is shown 

below: 

 

Figure 2.6: Model used in above implementation [43] 

 

Instead of ReLU, LeakyReLU as activation function, as it may increase speed and break 

the zero slope. The parameters and results of this work are given below:  

 

Table 2.6: Parameters Details 

Training Parameters Description/values 

Optimizer Adam 

Loss Cross Entropy 

Mini-Batch Size 16 

Epochs 100 

Training Dataset 80% 

Validation Dataset 20% 
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Table 2.7: Classification Report 

Class Precision Recall F1-Score Accuracy 

(%) 

Loss 

Arrhythmia 0.99 0.95 0.97  

 

0.9596 

 

 

0.0859 

Normal Sinus 0.99 0.93 0.95 

Sudden Death 1.00 1.00 1.00 

Supraventricular 

Arrhythmia 

0.91 0.96 0.93 

 

 

The average accuracy is 95.96%.  

An ultra-high energy processor is developed [44]. In this work different techniques have 

been proposed. 

 reconfigurable SNN/ANN inference architecture 

 reconfigurable on-chip learning architecture 

 dual-purpose binary encoding scheme of ECG heartbeats 

Fabricated with a 28nm CMOS technology, the proposed design consumes energy of 

0.3µJ while achieving accuracy of 97.36%.  

Home-care oriented classifier for Embedded Systems is proposed in this paper [45].  

Parameters quantization strategy and Channel-level pruning are used to optimize the 

network.  

A reconfigurable accelerator hardware architecture is designed to accelerate the 

convolution computation on FPGA.  The model achieved a promising F1 score of 

0.913% and 86.7% exact match ratio, in which parameters and FLOPs are significantly 

penalized. Real-time analysis is performed. The average processing time is 2.895 s.  

Recently ectopic beat classification is proposed on STM32 –based edge device [46]. 

The classes used in this work are S, V, N, F, and Q. The research uses k-fold cross-

validation to choose the best model for hardware implementation. It showed using a 5-

layer CNN with pixel 56 could get better performance than an 8- layer CNN simplified 

AlexNet with accuracy of 99.89%. Moreover, the combination of SEmbedNet with an 

input image size of pixel 56 and STM32 can achieve the benefits of 1.3s and 1.1 W per 

heartbeat in the classification task, and it only takes about 4 seconds. A multiple-

STM32 cross-validation platform is built to reduce the validation time. It can process 

over a hundred thousand heartbeats in just 6.4 hours. 

Classification results are shown below: 

 

Table 2.8: Results of CNN model 

Input 

Size 

(Pixels) 

SEmbedNet Simplified AlexNet Simplified 

GoogleNet 

Latency 

(s) 

Power 

(W) 

Sen. Pre. Acc. Sen. Pre. Acc. Sen. Pre. Acc. 

56 88.82 97.03 99.89 79.04 N/A 99.78 82.17 87.58 99.16 1.33 1.10 

112 91.29 95.66 99.84 80.42 98.90 99.73 79.93 87.11 98.71 5.34 1.30 
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This paper also compares the proposed methodology with other hardware 

implementations. The results of comparison are show below: 

 

The architectures like VGG16 and MobileNetV2 are implemented on Raspberry Pi 

which showed 0.90 and 0.94 respectively [21]. 

 

Table 2.9: Comparative results with other hardware implementations 

Author Year Method Class Type Hardware Total 

Accuracy      

(%) 

S.Raj [9] 2018 DOST+LSTM (N, S, V, F, Q) V 96.08 

Y.Zhao [11] 2019 ANN (N, S, V, F) V 98.00 

Y.Xu [10] 2019 SVM (N, S, V) V 89.00 

N.Wang [12] 2019 CNN (N, S, V, F, Q) N/A 99.00 

Proposed 2022 CWT+CNN (N, S, V, F, Q) V 99.89 

 

2.7 Critical Analysis: 
Different techniques exist for the removal of noise and extracting features in an ECG 

signal. Empirically, the algorithms are expensive, the computational power and 

resources are limited. This is why reliable and efficient architecture is a need that can 

better fit in a low resource setting which can be implemented on embedded devices.  

If the goal is to design a hardware or propose a hardware architecture, smaller and 

simpler Architectures are more suitable for that. Factually, different applications have 

different architecture more suited to them and the inconsistency of the classes in MIT 

BIH Arrhythmia used throughout the research needs to be studied further. Data 

imbalance needs to be taken care of.  
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3 Chapter – 3 

Embarking into the Depths: Exploring Deep 

Learning, CNNs, and Multiple Architectures 

 

This chapter provides all the details relevant to this research. It contains background 

knowledge of implementation. It entails knowledge of software and hardware 

techniques that lead to completion of this work. This chapter covers a Machine Learning 

technique known as End-to-End learning. 

It has enough information related to Deep learning, Transfer Learning, Neural 

Networks, and CNN Architectures like EfficientNet, MobileNet, VGG16, AlexNet and 

Resnet18.  

 

3.1 End-To-End Learning 
In End-To-End learning, model learns all the steps during initial and final output phase, 

hence reducing the effort. In this way models are trained to automatically extract 

features, learn, and work with the data. 

 

 

 

 

 

 

 

 

 

  

Figure 3.1: End-To-End Learning 

3.2  Deep Learning  
In today’s fast paced world, Artificial Intelligence has been introduced to almost 

everything. From our very own homes to offices and in between, everything is under 

the spell of AI. Deep Learning is the heart of Machine Learning that comes from fact 

that we add more layers to learn from the data. As the name “Deep” suggests it is used 

for very large data, hence having extensive layers.  

 

Raw Data 

Automatic feature 

extraction and learning 

  Output 
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Figure 3.2:  Hierarchy of Artificial Intelligence 

 

In a traditional deep learning network unstructured and labelled data is fed to a model 

which acts as a black box. As a result of what the model learned, it predicts the output. 

But how do models learn? It learns by calculating the difference in the predicted output 

and actual true label, the model trains itself to minimize the difference. Unstructured 

data are qualitative in nature such as an image where we can experience a variety of 

features in different ways. Other examples are audio, video etc. Unlike structured data 

which are quantitative such as product databases, a list of housing prices against size or 

area, etc. In deep learning, the input data passes through the layers where features are 

extracted and predicts output through a classifier layer, respectively. 

 
 

Figure 3.3: Model predictions 

 

 

Deep learning is a vast concept, and it possesses different techniques that are application 

specified. Some of the techniques are CNNs, RNNs, LSTM, GANs, RBFNs, auto 

encoders. The focus of this work is on Convolutional Neural Networks for a multi-class 

classification problem. To fully understand CNNs, it is important to dive into Neural 

Networks first.  

 

3.3 Neural Networks 
A simple Neural Network comprises of artificial neurons stacked to form a single layer 

which learns and gets smarter by analyzing the data patterns. It contains three layers 

Artificial Intelligence

Machine Learning

Neural Network

Deep Learning
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i.e., input layer, hidden layer, and output layer. Neural Networks are inspired by the 

Human Brain, its structure and functionality. Neurons are connected in a stack, process 

the information, and generate output. The input layer accepts input features from the 

outside raw data. No computations are being performed here. From the input layer 

nodes pass information to the hidden layer or layers. In the hidden layer computation is 

performed which transfers the details to the output layer. The output layer brings up the 

learned information to predict.   

 

 
Figure 3.4: A traditional Neural Network 

 

Each neuron in a former layer is connected to the neurons present in the next layer. 

These layers are also called fully connected or dense layers because of their dense 

connections. Hence deeper layers with more neurons make up a deep neural network. 

In the hidden layers a mathematical computation is performed which is represented as: 

                                                    𝑌 = 𝑤 ∗ 𝑋 + b 

 

Where 𝑤 is the weight containing vector of each connection  

𝑋 is the input feature vector. 

b is a scalar bias that is added to the product of weight and input 

𝑌 is the output feature vector or number of neurons in that layer. 

In this way the weights are updated forming a forward propagation.  

 
Figure 3.5: Hidden Layer in a Neural Network 

 

 

For very deep neural networks deeper features can be extracted but with more layers 

comes more neurons. Having said that deeper networks are prone to overfitting because 

of redundancy as there is a possibility of overlapping of features.  
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  Convolutional Neural Network (CNN) 

A typical Convolutional Neural Network can be thought as a combination of two 

components: 

 Feature Extraction 

 Classification 

A convolutional neural network is amalgamation of multiple layers namely convolution 

layer, pooling layer, fully connected layers used for classification of images. These 

layers work on a multi-dimensional input feature map and can perform different 

operations which can be unattainable using Artificial Neural Networks. In a simple 

Convolutional Neural Network, input is fed to the first convolutional layer where 

features are extracted after it goes through pooling layer. As we move through, the 

feature dimensions become smaller, and depth becomes larger at each convolution 

before being flattened into a vector for the fully connected layer. The fully connected 

layer at the end is used as a classifier.  

 

 
 

 
 

 

 

 

Figure 3.6: Representation of a Convolutional Neural Network 

 

3.3.1.1 Dimensional Convolutional Layer 

This layer employs a 2D kernel or filter which moves across the 2D input and generates 

a corresponding 2D output (also known as feature maps). These kernels contain weights 

that require training, such as a 3 × 3 kernel having 9 weights and a bias. Once these 

weights are trained, the kernels can extract significant information from the input 

feature map, which is a contrast to an ANN. A convolutional layer can extract 

meaningful features better than fully connected layers for an image. The reason being 

Shrinking Feature Extraction 1D Vector 
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that the coherency or correlation between a group of pixels gets lost in a fully connected 

layer where the image is flattened into a 1D vector. A kernel provides the following 

advantages: 

 The kernel operates on a group of pixels that maintain their correlation; hence they 

result in better feature extraction than a fully connected layer where the image 

flattens into 1D vector. 

 A kernel decreases the operations and parameters significantly.  

 It extracts more information from the image.  

Convolutional layer can have multiple input channels and kernels. Kernel operates a 

sliding protocol for each channel in multiple input channels and the outputs are summed 

into a single output channel by element-wise summation. This equation defines a single 

convolution operation: 

∑ ∑ 𝐼(𝑢, 𝑣)𝐾(𝑖 − 𝑢, 𝑗 − 𝑣)

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝑘

 

 

 𝑖, = output pixel at location (𝑖,), 

𝑘 = kernel size,  

𝐾 = kernel,  

𝐼 = input feature map.  

Multiple kernels allow for each kernel to have its own output channel.  

No. of output channels = No. of kernels  

The output dimensions depend on the input size and kernel size. For example, if we 

apply a 3 × 3 convolution (kernel size of 3) on an input image with dimensions 256 × 

256 × 3, and use 32 kernels, the resulting output dimensions will be 254 × 254 × 32. 

This is generalized in the following equations: 

 

                                   𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 𝑙 ×  𝑚 ×  𝑛  

                                       𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 𝑖 ×  𝑗 ×  𝑘  

                                  𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = (𝑙 −  𝑖 +  1)  × (𝑚 −  𝑗 +  1)  ×  𝑘  

 

𝑙 ×  𝑚 = dimension for a single input channel 

𝑛 = no. of input channels 

𝑖 ×  𝑗 = dimension for a single kernel (normally 𝑖 = 𝑗) 

𝑘 = no. of kernels 

The figure below represents blue matrix as a single channel 2D input feature map, the 

single 3x3 kernel displayed as light grey, convolves with the input, and produces a 

single channel output feature map. The figure demonstrates how padding can help 

conserve the dimensions i.e., the output dimensions are the same as the input without 

padding.  
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Figure 3.7: Visual representation of kernel (light grey) sliding across the padded 

input (light blue) producing the corresponding output (light green) [47] 

 

From the figure above, we can visualize how padding can help us to conserve the 

dimensions i.e., the output dimensions are the same as the input without padding. 

Padding such as zero-padding or replicate is one of the useful techniques to preserve 

these dimensions.  

 

3.3.1.2 Pooling Layer 

Pooling layer is typically used after one or more Convolutional layers. The main 

objective of a pooling layer is to lessen the spatial dimensions (i.e., height and width) 

of the input feature map, while keeping the number of channels consistent. By reducing 

the spatial dimensions of the input feature map, the Pooling layer helps to reduce the 

computational cost and memory requirements of the subsequent layers in the CNN, 

while also preventing overfitting by introducing some degree of translation invariance 

to the learned features. 

Mostly used Max Pooling layer, which operates by dividing the feature maps into non-

overlapping known as pooling regions and generating the maximum value within each 

sub-region as the corresponding output pixel. This has the effect of down sampling the 

input feature map, while retaining the most salient features. 

Pooling layers include Average Pooling, which computes the average value within each 

sub-region, and L2-norm Pooling, which computes the square root of the sum of squares 

within each sub-region. However, Max Pooling is the most widely used type of pooling 

layer due to its effectiveness and simplicity. 

However, too much pooling can result in loss of information and spatial resolution, so 

the choice of pooling size and stride should be carefully considered depending on the 

specific application. 
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2 3 1 9 

4 7 3 5 

8 2 2 2 

1 3 4 5 

 

 

 

 

 

  

Figure 3.8: Max and Average Pooling of 2x2 filter 

 

 

3.3.1.3 Activation Layer 

Convolutional layers have a function called the activation function. This function 

allows the linear output to be transformed into non-linear so that real world scenarios 

can be performed. Hence, it introduces non-linearity in the network. This means, the 

network can learn non-linear and more complex relationships between input and the 

output data. Activation layer may also be used as a separate layer to give flexibility in 

dataflow manipulation. In addition to this, the activation layer normalizes the output of 

the previous layer to improve the efficiency of the network. It limits the weighted sum 

of input in a specific range. But all the layers in CNN do not require activation layer. 

For example, the pooling layer is a linear operation, so it does not require an activation 

function.  

Activation function is represented as:  

                                        𝑌 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑤 ∗  𝑋 +  𝑏)  

Where activation can be a ReLU function, SoftMax, Sigmoid, tanh etc.  

It can also be used as a separate layer which gives flexibility in manipulating the 

dataflow. The most used activation functions are given below. 

3.3.1.3.1 Sigmoid  

The sigmoid function is an activation function which is a mapping of input value to a 

value between 0 and 1, which translated as probability of the input belonging to a 

particular class. The sigmoid activation function is used in binary classification because 

it scales the values between 0 and 1. Then we can select a threshold value e.g., 0.5 

above which will be classified as true and vice versa. Mathematically this can be 

represented as: 

                                                  𝑎 (𝑧)  =  1 / (1 +  𝑒 − 𝑧)  

4 4.5 

3.25 3.25 

2 3 1 9 

4 7 3 5 

8 2 2 2 

1 3 4 5 

7 9 

8 5 

Average pooling with 2x2 

filter and stride 2. 

Max pooling with 2x2 filter 

and stride 2. 
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Where z is the input to the activation function and a (z) is the corresponding output. By 

plotting the graph, we can see that the output of the activation function is exactly 1 or 

0 when the input 𝑧 approaches +∞ or -∞ respectively i.e.:  

                          

lim
𝑧→ +∞

𝑎(𝑧) = 1, lim
𝑧→ −∞

𝑎(𝑧) = 0 

 

 

                          
Figure 3.9: Sigmoid Activation Function 

 

 

One of the drawbacks of the sigmoid function is that it can cause a problem called 

"vanishing gradients" when used in intermediate layers. This happens when the 

gradients of the loss function regarding the weights become very small, slowing down 

the convergence or fails to converge to global minima or maxima, which can make it 

difficult for the network to learn. Hence, this type of activation function is usually used 

at the last layer or the classifier as a result, other activation functions such as the ReLU 

function are often used instead of the sigmoid function in intermediate layers. 

3.3.1.3.2 SoftMax 

The softmax function takes a vector of real-valued inputs and applies the exponential 

function to each element of the vector. It then divides the sum of all exponentials to 

normalize the resulting values. Its output is a vector of probabilities that adds up to 1. 

This function is used for a multi-class classification problem with a goal to predict the 

probability of each class, given the input. Hence, it is used at the last layer or the 

classification layer. The length of the vector is equal to the number of classes. The class 

with the highest probability among all the probabilities is considered and the data point 

will belong to that class. 

Mathematically representation of Softmax function is as follows: 
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𝑎(𝑧) =   
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

     𝑓𝑜𝑟 𝑗 = 1, … , 𝐾. 

Where 𝑧𝑗 is the input value for 𝑗th class, 𝐾 is the total number of classes, and 𝑎 (𝑧) is 

the softmax value for 𝑗th class. 

One of the advantages of the softmax function is that it produces a smooth and 

differentiable output, which makes it suitable for use in gradient-based optimization 

algorithms, such as stochastic gradient descent, which are commonly used to train 

neural networks. 

 

                 
Figure 3.10: Softmax Activation Function Graph 

 

3.3.1.3.3 ReLU 

ReLU or rectified linear unit is biologically inspired, as it resembles the firing pattern 

of real neurons in the brain. Due to its simplicity, computational advantage, and 

efficiency, it is very popular. It is resilient to vanishing gradient problem which helps 

the model to in training and better performance hence they are mostly used in 

intermediate layers. ReLU function does not activate all the neurons at the same time 

as neurons will be deactivated when the output is 0 or less than 0.  

It is a linear-piecewise activation function that allows positive values to accentuate, 

otherwise returns 0. Mathematically it is represented as:  

                                                   𝑎 (𝑧) = max (0, 𝑧) 
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Figure 3.11: ReLU Activation Function Graph 

 

3.3.1.4 Loss and Loss Function 

Generally, loss is the error associated with the CNN model given the input. It is 

calculated using predicted value minus actual value/label. Let us denote the loss as 𝐿𝑖 

for the 𝑖th training example.                                                    

   𝐿𝑖 =  𝑦̂ 𝑖 –  𝑦 𝑖 

Where 𝑦̂ 𝑖 is the predicted value and 𝑦 𝑖 is the actual value for 𝑖th training example. 

A loss function evaluates the solution which will be used by the optimizer. Normally 

during training, it is calculated over the entire batch by averaging the individual losses 

in that batch. Similarly, this averaging can be extended over the entire dataset which 

gives out the overall average loss function of the CNN model. In machine learning 

different types of loss functions exist like MSE, Hinge Loss, and Cross Entropy etc. 

These loss functions are being used depending upon the nature of the problem you are 

working on. For a binary class problem binary cross entropy is usually used. For multi-

class problem categorical cross entropy is used. There is sparse categorical entropy as 

well for multi-class problems.  

 

 Categorical Cross Entropy (CCE) generates a one-hot array containing the 

probability for each category. 

 Sparse Categorical Cross Entropy (SCCE) generates an index of the most 

likely to match category. 

 

For Categorical Entropy Loss, the actual value which is a binary corresponds to a single 

class while the prediction is a probability. Since the last activation function in the CNN 

model is a SoftMax activation that returns the probability for classification. This loss 

function costs on the difference between the probability and the expected value. Hence 

larger cost/penalty for larger difference from the actual value. It is represented as: 

 

                                                   𝐶𝐶𝐸 =
1

𝑁
 ∑ 𝑡𝑖 log (𝑝𝑖)

𝑁
1  
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Where 𝑡𝑖 is the ground-truth which is one-hot encoded, 𝑝𝑖 is the probability of softmax, 

n is the number of classes and N is the total number of images over which the loss is 

calculated by taking average. 

 

3.3.1.5 Epochs 

Epochs represents a full iteration of the dataset during training. The entire dataset is 

analyzed by the model in one epoch, and parameters are adjusted as the model learns 

the data. The number of epochs to run depends on a variety of variables, including the 

size and the complexity of the model. Having a set number of epochs for which the 

validation loss stays constant is a smart idea. Less epochs can lead to underfitting, 

whereas many epochs can lead to overfitting. The number of epochs is determined using 

a variety of methods: 

 

 Manual choosing: Begin with a small number of epochs and gradually expand 

it. When the performance on the validation set starts to decline, you can stop. 

 Early Stopping: When a metric stop improving, the training process is 

automatically terminated. 

 Cross Validation: The dataset is partitioned into several folds, and in each 

epoch, the model is trained and assessed on several folds. 

 

3.3.1.6  Learning Rate 

The parameters are updated in small steps while the model is trained. It is crucial since 

it determines how quickly or slowly a model reaches the best parameters for minimizing 

the loss.  

With a high learning rate, the model updates parameters in greater increments, which 

could lead to a faster convergence. The model may overshoot the optimal parameter 

values and fail to converge, leading to subpar performance, if the learning rate is set too 

high. On the other hand, a low learning rate causes the model to take smaller steps and 

converge more slowly. The model may become stuck in local minima or plateaus if the 

learning rate is set too low, which will hinder convergence and extend training times. 

                            
Figure 3.12: Epochs vs Loss 
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For an optimal learning rate manual selection or scheduler is used.  

Manual Selection: You can start with a reasonable initial learning rate based on 

empirical guidelines or previous experience.  

Scheduler: You can use predefined learning rate schedules, such as decreasing the 

learning rate by a fixed factor after a certain number of epochs or when a specific 

condition is met. Usually step decay is used.  

Grid Search: You can try different learning rates and see which model behaves better.  

 

 

3.3.1.7 Learning curves 

Loss of updates after each batch results in fluctuations. Too much noise or jumping loss 

can never converge to local minima while larger batch sizes with no noise at 

all/fluctuation can stuck in local minima. Little or less fluctuation is a good solution. 

The gap between training and validation accuracy shows overfitting.    

 

                     
Figure 3.13:  Epochs vs Accuracy 

 

     

Batch Size 

It is the number of images used for training in a single iteration.  

Smaller batch sizes enable quick computations and reduce the number of training 

samples needed in a single iteration.  

Memory:  

Larger batch sizes call for more memory, which may not be enough to accommodate 

them, resulting in out-of-memory problems that impair performance.  

On the other hand, lower batch sizes need less memory, which is advantageous in 

contexts with memory restrictions. 

Convergence:  

More randomness is introduced into the training process when smaller batch sizes are 

used. This stochasticity can function as a type of regularization, aiding the model's 

ability to generalize and possibly enhancing its performance on unobserved data. 

Since the model updates its parameters more frequently with smaller batch sizes, the 

model may explore the solution space more extensively. The model may be able to 

identify better solutions and escape local minimum points as a result.  
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Smaller batch sizes could occasionally lead to a faster convergence of the model during 

training. This is so that the model can be tuned more carefully and prevent overshooting 

the ideal values by using smaller updates to the parameters. 

Generalization Ability: 

Small batches generalize well and allow us to start learning before seeing all the data 

and it is highly probable to converge on optimal solution. While larger batch generalizes 

poorly hence impacts on the performance and it is less likely to converge on optimal 

solution. Generally, it is taken as a power of 2. Batch size 16 or 32 is a usual choice. 

But it depends on the dataset and application.  

 

 

3.3.1.8 Optimizer 

Optimizers are the learning algorithm used to update the weights and biases which aid 

in reduction of cost function in back propagation. There are different optimizers used 

in machine learning like Stochastic Gradient Descent (SGD) and Adaptive Moment 

Estimation (Adam) optimizers. Difference in both most used optimizers is given below:  

Updating Model Parameters:  

SGD computes the loss function’s gradient with respect to the parameters for each 

example in the training data and steps in the direction of the negative gradient at a fixed 

learning rate. On the other hand, Adam uses a more sophisticated update rule that 

includes both momentum and second-order adaptive learning rate information. This 

allows Adam to adaptively adjust the learning rate based on gradient history, which in 

some cases can result in faster convergence and better performance.  

Momentum:  

Adam uses momentum, a technique that speeds up the convergence process. 

Momentum adds a fraction of the previous update to the current update, which can help 

the optimizer bypass local minima and reach convergence faster. SGD, on the other 

hand, does not consider Momentum by default, although it can also be combined with 

Momentum in the form of variants such as SGD with Momentum.  

Adaptive Learning Rate: 

 Adam adjusts the learning rate for each parameter based on the estimated second-order 

moments of the gradients, allowing the learning rate to be adaptively scaled for different 

parameters. This can be particularly useful in scenarios where the gradients of different 

parameters are of significantly different magnitudes. SGD, on the other hand, uses a 

fixed learning rate for all parameters throughout the training process, which may not be 

optimal for all scenarios. 

Parameter Updates:  

Adam updates the model's parameters using a combination of the gradient of the loss 

function and the accumulated momentum and adaptive learning rate information. SGD, 

on the other hand, updates the parameters using only the gradient of the loss function 

scaled by a fixed learning rate. 
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Memory Requirements:  

Adam requires additional memory to store the accumulated momentum and adaptive 

learning rate information for each parameter, which can increase the memory 

requirements compared to SGD, which only requires storing the gradients. 

 

3.3.1.9 Training /Test/Validation set. 

Generally, a dataset is split into train set, test set and validation set. The training set is 

with large samples on which the model learns patterns and test set is used to make 

prediction which is the unseen data. While validation set is used to make predictions 

during training to understand and observe how well a model generalized on new data. 

Since weights update in training set while back propagation is turned off during 

validation set makes it possible to observe the behavior of model in predicting while 

training so quick changes can be made for a better generalization ability and optimized 

parameters.   

 

3.3.1.10 Bias-Variance Trade-off  

Bias and variance are two important concepts that describe the performance and 

generalization ability of a model.  

Bias: 

Bias is the error that results from using a simple model to approximate a complex real-

world problem. A biased model is more likely to consistently commit systematic 

mistakes. It might oversimplify the underlying information or issue, leading to wrong 

forecasts. High bias can cause underfitting, where the model performs poorly on both 

the training data and new, unobserved data and fails to capture the underlying patterns 

in the data. 

Variance: 

Variance is the error caused by the model's sensitivity to the training set that was 

employed. A high variance model could be too complex and sensitive to the training 

data, which adds in overfitting. When a model performs well on training data but 

struggles to generalize to fresh, untried data, overfitting has taken place. Poor 

generalization performance might result from high variance since the model may be 

highly specialized to the training data and unable to accommodate new input data. 

Trade-off: 

A model's complexity and flexibility increase when its bias is minimized, which may 

lead to larger variance as the model becomes more sensitive to the particular training 

data. On the other hand, a model becomes more stable and less prone to overfitting 

when its variance is lowered, but it may also introduce more bias because it loses 

flexibility. 

Balance: 

Balancing bias and variance is an important goal in machine learning model 

development. A model with high bias may require more complex features or a larger 

dataset to capture underlying patterns, while a model with high variance may require 
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regularization techniques such as regularization or increasing the training data size to 

reduce overfitting.  

 

3.3.1.11 Metrics 

There exists different methods or metrics to evaluate the model’s ability to predict 

correctly. Since the nature of this work being multi-classification problem, different 

metrics are used to observe model’s behavior and accurate detection. One of which is 

Confusion Matrix. It is a representation of the true positive, true negative, false positive, 

and false-negative cases.  

To evaluate model’s performance, it gives out predicted labels and actual labels. Based 

on confusion matrix classification report is made which entails precision, recall, F1 

score. In order to interpret a confusion matrix, you can observe the values in the 

diagonal (TP and TN) which is the accurate predictions made by the model. 

The off-diagonal (FP and FN) values represent incorrect predictions made by the model. 

 

A well-performing model possesses higher true positive and true negative, and a lower 

false positive and false negative shows correct predictions. The model with a high 

number of false positive and false negative, indicates inaccurate predictions. 

 

                       
Figure 3.14: Errors in Machine Learning 

 

 

Accuracy is a measure of correct predictions, calculated as  

                          

                                       (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁) 

Precision is a measure of true positives among the positives predicted by the model, 

calculated as                      

   

             𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

Recall is a measure of true positives among the actual positives, calculated as  

     

                                                      𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) 

F1-score is a measure of harmonic mean of precision and recall, calculated as  
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                                 2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

 

3.3.1.12 Receiver operating curve (ROC)  

Area under the ROC is used to represent each class and its average. The ROC is plotted 

with the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on the 

y-axis. The range of AUC is between 0 and 1. If the AUC is 1 then this means that the 

model is a good classifier. If AUC is below 0.5, it means random classification.  

  Transfer Learning  

It is a technique where model is trained on pre-trained network taking benefits of 

previously trained weights. It is an art of reusing a model leveraging the knowledge of 

previous features to improve performance of new task by saving significant amount of 

time and resources. Transfer learning can be implemented as 

 Feature Extractor 

 Fine-tuning Network 

In transfer learning as a fixed feature extractor, the model takes the pretrained 

knowledge and passes it on the new data by only adjusting the new number of classes 

in the classifier layer. While in fine tuning model is trained and modified to re-train to 

achieve specific goal.  

 

3.3.2.1 AlexNet Architecture 

AlexNet architecture is widely known as a winner of ImageNet ILSVRC challenge due 

to its revolutionary amendments in a typical CNN. For example, ReLU being 

introduced for the first time as a replacement to tanh and sigmoid functions which were 

slower to train. 

Moreover, drop out was first introduced to overcome overfitting as well as Local 

Response Normalization (LRN) for better generalization with ReLU as the learned 

variable being unnecessarily high. The idea behind is to amplify excited neurons and 

dampen the neighboring pixels. This architecture has a total of 8 layers from which 5 

are convolutional layers, 3 are fully connected layers with max pooling and dropout 

being used. It has 62.3 million learnable parameters. 

 

 

 

     

                                      

 

 

 

 

 

Figure 3.15: Architectural Diagram of AlexNet 
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Table 3.1:  AlexNet Layers 
Layer # of Filters Stride Padding Filter Size Output 

Feature map 

Input layer - - - - 227x227x3 

Conv1 96 4 - 11x11 55x55x96 

Conv2 256 1 2 5x5 27x27x256 

Conv3 384 1 1 3x3 13x13x384 

Conv4 384 1 1 3x3 13x13x384 

Conv5 256 1 1 3x3 13x13x256 

FC - - - - 4096 

FC - - - - 4096 

FC - - - - 1000 

 

 

 

Note that in case of customized input, the output size of a convolution layer is 

calculated as:  

                             𝑂𝑢𝑡𝑝𝑢𝑡 =  ((𝐼𝑛𝑝𝑢𝑡 − 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒)/ 𝑠𝑡𝑟𝑖𝑑𝑒)  +  1 

 

3.3.2.2 VGG16 Architecture 

VGG architecture came out of the need for reduced computational time and parameters. 

It has different variants which only differ in the number of layers. VGG16 has a total 

of 16 layers out of which 13 are convolutional layers, 3 dense layers and 5 max pooling 

layers which are not learnable. Since AlexNet has variable kernels size for different 

layers which increases the parameters while vgg16 has a fixed kernel size of 3x3 in all 

layers with stride 1 and max pool kernel size of 2x2 and a stride of 2. The idea behind 

is to reduce the number of parameters. 

 
 

Figure 3.16: Architectural Diagram of Vgg16 
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Table 3.2:  Details of Vgg16 Layers 

Layer # of Filters Stride Padding Filter Size Output 

Feature map 

Input layer - - - - 224x224x3 

Conv1 64 1 same 3x3 224x224x64 

Conv2 128 1 same 3x3 112x112x128 

Conv3 256 1 same 3x3 56x56x256 

Conv4 512 1 same 3x3 28x28x512 

Conv5 512 1 same 3x3 14x14x512 

FC - - - - 4096 

FC - - - - 4096 

FC - - - - 1000 

 

 

Conv1 and Conv2 have 2 convolutional layers stacked while Conv3, Conv4 and Conv5 

have 3 convolutional layers stacked in a block. Same padding means the output shape 

is same as of the input. It has 138 million parameters. 

 

3.3.2.3 ResNet18 Architecture 

ResNet18 is a small architecture with 18 trainable layers. It introduced skipping 

connections which are used solely to overcome the problem of vanishing gradient. 

Vanishing gradient happens when the gradients of loss function fail to update properly 

as they become so small leading to 0 where no more updates to weights occur. It leads 

to stagnant learning process. For this problem to be eradicated, skipping connections 

are introduced so if the gradient becomes too small it skips that and move to deeper 

layer providing improved learning instead of slowed process. It uses a residual block 

which is repeated throughout the model. Instead of learning the mapping from input to 

output it learns the mapping from input to output plus the identity function that is a 

short connection called identity connection. Due to which no vanishing gradient occurs. 

This architecture has 2 pooling layers 3x3 max pooling at the start and 7x7 average 

pooling at the end. It has a total of 11 million parameters.  
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Figure 3.17: Residual Block 

 

Table 3.3: Details of ResNet Layers 

 

 

 

Layer # of Filters Stride Padding Filter Size Output 

Feature map 

Input layer - - - - 227x227x3 

Conv1 64 2 1,1,1,1 7x7 112x112x64 

Conv2 64 1 0.5,1,1,1 3x3 56x56x64 

Conv3 128 1 0.5,1,1,1 3x3 28x28x128 

Conv4 256 1 0.5,1,1,1 3x3 14x14x256 

Conv5 512 1 0.5,1,1,1 3x3 7x7x512 

FC - - - - 1000 
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Figure 3.18:  ResNet Architecture 
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3.3.2.4 EfficientNet Architecture 

Since many state-of art ConvNets have hit memory limits researchers looked for 

resource efficient architecture without compromising on accuracy. The problem with 

deep networks is that lots of computation happens, with lots of layers comes lots of 

processing. It becomes time consuming. In a traditional convolutional neural network, 

we often scale depth only, but EfficientNet came up with the idea of compound scaling 

in which we not only scale depth, but width and resolution can also be scaled. By scaling 

depth means adding more layers, by scaling resolution means size of an image is 

increased, by scaling width means channels/features are increased. The paper 

performed experiment and proposed that by scaling only one of these can lead to 

saturation as a point reaches where no more scaling helps. Thus, the idea of compound 

scaling emerged. In compound scaling resolution, width and depth are scaled together.  

How much depth, width, resolution scaling is required? 

For compound scaling network scaling factor F is represented as 

                                          𝑭 =  𝜶. βθ. γθ 

Where α is the depth, 

𝜷 is the width, 

𝜸 is the resolution, 

𝜽 is a hyper-parameter.  

 

Using grid search it is decided that depth = 1.2, width= 1.1, resolution =1.15 and θ= 1 

 

 

3.3.2.5 EfficientNet series 

EfficientNet was made to give better results in reasonable parameters. The EfficientNet 

model has a series starting from a baseline model B0 which is scaled to achieve up to 

B7. These models are not human designed, but they are made by NAS (neural 

architecture search).  EfficientNet has come up with version 2 as well which proved to 

have better accuracy and less computational time. It also has B0-B7 series additionally 

consists of small, medium, and large models which are made by adding layers in stage 

5 and 6 as shown below. This architecture proves to be superior to many state of art 

models. More details can be found in the paper [48]. 

3.3.2.5.1 EfficientNet B0 and B1    

EfficientNet B0 and B1 are used in this research as the aim of the work is to propose 

hardware efficient architecture hence taking the benefits of lower series of the 

architecture.  

The common part in whole EfficientNet series is the stem and final layer. The details 

of the EfficientNet Architecture are given below [49]. 
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Figure 3.19: Stem Layer 

 
Figure 3.20: Final Layer 

 

Each model in the series has 7 blocks with varying sub-blocks as we move from B0 to 

B7. The total number of layers in B0 are 310 and B1 are 439 but they can only be made 

by reusing only 5 modules as given below: 

 
Figure 3.21: Modules in EfficientNet Architecture 

 

 

 

 

 

 

 

 

 

These modules together make sub blocks which are given as: 

• Module 1 is a starting point for the sub-blocks. 

• Module 2 is a starting point for the first sub-block of all the 7 main blocks except the 1st one. 

• Module 3 is connected as a skipping connection to all the sub-blocks. 

• Module 4 is for combining the skipping connection in the first sub-blocks. 

• Module 5 for each sub-block is connected to its previous sub-block in a skipping connection and 

they are combined using this module. 

 

 

 

• Sub-block 2 is the first sub-block in rest of the blocks. 

• Sub-block 3 is used for any sub-block except the first one in rest of the blocks. 
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Figure 3.22: Sub-blocks in EfficientNet Architecture 

 

The MBConv block and Squeeze and Excite (SE) block is given as: 

 

 
Figure 3.23: MBConv Architecture 

 

Figure 3.24: Squeeze and Excite Architecture 

 

 

Below are the details for EfficientNet B0 and B1 architectures.  

 



41 

 

 
Figure 3.25: EfficientNet B0 Architecture 

 
Figure 3.26: EfficientNet B1 Architecture 

 

Drawback of EfficientNet-V1 

 Training with large image size is slow. 

 Depthwise convolution is expensive.  

 Equally scaling up creates doubling in all stages. 

Benefits of EfficientNet V2 

 Less training time. 

 More accuracy 

 Depthwise Convolutions are slow in early stages but are effective later. 

 To compensate for the loss receptive field, depthwise conv3×3 and expansion 

conv1×1 exchanged with single traditional conv3×3 known as FusedMBConv. 
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Table 3.4:  EfficientNet baseline model version1 

Stage 𝒊 Operator Resolution # Channels  # Layers 

1 Conv3x3 224x224 32 1 

2 MBConv1, k3x3 112x112 16 1 

3 MBConv6, k3x3 112x112 24 2 

4 MBConv6, k5x5 56x56 40 2 

5 MBConv6, k3x3 28x28 80 3 

6 MBConv6, k5x5 14x14 112 3 

7 MBConv6, k5x5 14x14 192 4 

8 MBConv6, k3x3 7x7 320 1 

9 Conv1x1, Pooling, FC 7x7 1280 1 

 

Table 3.5: EfficientNet Resolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: MBConv Architecture 

Model Series Resolution 

B0 224 

B1 240 

B2 260 

B3 300 

B4 380 

B5 456 

B6 528 

B7 600 
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Table 3.6: EfficientNet model version2-small 

 

 

                                                  
Figure 3.28: FusedMBConv Architecture 

 

3.3.2.5.2 Details of the prominent layers  

Sigmoid Linear Unit (SiLU)/Swish function         

The network uses swish activation function which captures a wider range of values and 

gradients. It prevents vanishing gradient problems as ReLU nullifies the negative values 

and only allows positive values, but SiLU allows both positive and negative values 

providing wide range of values. 

It is a product of linear and sigmoid function given as: 

                                                𝑺𝒊𝑳𝑼(𝒙)  =  𝒙 ∗  𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒙)        

Stage 𝒊 Operator Stride # Channels  # Layers 

0 Conv3x3 2 24 1 

1 FusedMBConv1, k3x3 1 24 2 

2 FusedMBConv4, k3x3 2 48 4 

3 FusedMBConv4, k3x3 2 64 4 

4 MBConv4, k3x3, SE 0.25 2 128 6 

5 MBConv6, k3x3, SE 0.25 1 160 9 

6 MBConv6, k3x3, SE 0.25 2 256 15 

7 Conv1x1, Pooling, FC - 1280 1 
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Below is the MATLAB plot that shows how SiLU looks like 

          
Figure 3.29: SiLU Activation Function 

 

Identity 

ResNet18 uses the skipping connections concept which takes some of the previous 

layer’s output and passes it down to overcome vanishing gradient. Just like ResNet, 

EfficientNet uses identity to achieve it. It improves gradient flow and makes a direct 

flow from previous layers to the next layers. 

 

Depthwise Separable Convolution 

Instead of traditional convolution which perform channel wise and spatial wise 

convolution in one go. DSC is introduced which reduces the multiplications by 

incorporating depthwise and pointwise Convolution separately. It performs depthwise 

convolution first and then pointwise convolution which decreases the trainable 

parameters by a large number. It applies one filter per channel whereas pointwise 

convolution creates a linear combination of its output. 

 

 
Figure 3.30: Regular Convolution Depthwise and Pointwise Convolution [50] 

 

 

Traditional 

Convolution 

Depthwise Pointwise 
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Squeeze and excite used by inverted residual block (MBConv) 

It allows us to emphasize important features and suppress subordinate ones. Instead of 

assigning weights to the channels equally, it will dynamically assign the high weight 

for the foremost channels.  

Zero Padding 

To maintain spatial size of the feature map, padding is done by adding zeros to the 

border so original information is preserved and to extract fine details without losing 

information.  

Batch Normalization  

As the name says this helps to normalize the previous layer output so the training is 

stable. 

Multiply 

It is used to rescale channels in Squeeze and Excite block. Its role is to emphasize or 

de-emphasize certain features based on importance and relevance.  

Edge residual  

Edge residual is a type of inverted residual block that adds additional edge features to 

the input feature map before depthwise separable convolution. These edges features 

will capture the edge details which are useful for building efficient neural networks that 

can run on resource-constrained devices while still maintaining high accuracy. 

To find the output size of layers one can use this formula: 

 

              𝑶𝒖𝒕𝒑𝒖𝒕_𝒔𝒊𝒛𝒆 =  (𝒊𝒏𝒑𝒖𝒕_𝒔𝒊𝒛𝒆 −  𝒌𝒆𝒓𝒏𝒆𝒍_𝒔𝒊𝒛𝒆 +  𝟐 ∗ 𝒑𝒂𝒅𝒅𝒊𝒏𝒈) / 𝒔𝒕𝒓𝒊𝒅𝒆 +  𝟏 

 

3.3.2.6 MobileNet Architectures 

MobileNet is a convolutional neural network architecture that utilizes depth wise 

separable convolutions to build efficient and lightweight models for mobile and 

embedded vision applications. The key feature of MobileNet is its use of depth wise 

separable filters, as illustrated in 1. This approach enables the network to reduce 

the number of parameters and computations while maintaining high accuracy. 

 
Figure 3.31: Architecture of MobileNet [51] 
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3.3.2.7 MobileNet Versions 

MobileNet is a family of models that have been designed to achieve high accuracy with 

fewer parameters, making them suitable for mobile and embedded devices. The original 

MobileNet model, known as MobileNetV1, uses depth-wise separable convolutions to 

achieve a good trade-off between accuracy and efficiency. The MobileNet architecture 

has been further improved in subsequent versions, with MobileNetV2 adding linear 

bottlenecks and inverted residuals to the depth-wise separable convolutions which can 

accelerate convergence and prevent degradation then in MobileNetV3 introducing h-

swish and h-sigmoid activation functions and improved architecture search techniques. 

The MobileNet models come in various sizes, ranging from small (e.g., MobileNet V1 

0.25) to large (e.g., MobileNetV3 Large), allowing users to choose the right model for 

their specific application based on the trade-off between accuracy and efficiency. 

 

3.3.2.7.1 MobileNetV1, V2 and V3 

In the present research, MobileNetV1, V2 and V3 architectures were employed due to 

their potential to provide hardware-efficient solutions. As the primary goal was to 

develop a resource-efficient model, leveraging the advantages of these three versions 

was deemed appropriate. MobileNetV1, V2 and V3 are a series of convolution neural 

network architectures that are designed for efficient mobile and embedded vision 

applications. Due to their streamlined structure and depth-wise separable convolution 

filters they are used in these types of applications. Therefore, incorporating these 

architectures in the study is expected to yield optimal results while minimizing the 

computational burden. 

 

3.3.2.8 MobileNetV1: 

 

Figure 3.32: Depth wise Separable Convolution block 
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3.3.2.8.1 Details of the prominent layers  

Depth-wise convolutional layer 

This layer applies a separate 3x3 convolution filter to each of the channels of the input 

image, resulting in a set of output channels that is equal to the number of input channels. 

The same filter was used across all input channels, so that the network learns to extract 

the same type of features across all channels. This operation helps to capture spatial 

dependencies within the image that are specific to each channel, the depth-wise 

convolutional layer can learn channel-specific features that are optimized for the spatial 

location of that channel in the input image. 

Point-wise convolutional layer 

This layer applies a 1x1 convolutional filter to the output of the depth-wise 

convolutional layer, the point-wise convolution performs a linear combination of the 

input channels, allowing the network to learn a weighted sum of the feature maps 

produced by the previous depth-wise convolutional layer. The output we get has 

reduced the number of channels compared to the input, which helps to reduce the 

computational cost of the subsequent layer. 

This point-wise convolutional layer helps to reduce the computational cost of the 

network but also increases the representation power of the network enables to learn 

non-linear interactions between the input channels. This is because the weights of the 

1x1 convolutional filter are learned during the training process to allow to learn more 

complex features interactions that may not be captured by the depth-wise convolutional 

layer alone. MobileNetV1 uses both batch normalization and ReLU non-linearity for 

both layers. 

                         

Figure 3.33: Depthwise Separable Convolution [52] 

 

Down-sampling layer 

A down-sampling layer is a type of layer in a convolutional neural network that reduces 

the spatial dimensions of feature maps. The down-sampling layers are implemented 

using a depth-wise separable convolution with a stride of 2 in the depth-wise 

convolutional operation this allows mobilenetv1 architecture to reduce the spatial 
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dimensions of the feature maps while maintaining a high level of accuracy on image 

classification tasks. 

 

Fully Connected Layer 

The purpose of the fully connected layers in a convolutional neural network (CNN) is 

to perform the final classification of the input image. These layers take the output of 

the last convolutional layer or the last pooling layer as input and produce a vector of 

class probabilities as output. 

In MobileNetv1, the final layers of the network consist of a global average pooling layer 

followed by a fully connected layer with a SoftMax activation function, which produces 

the final classification output.  

 

Activation Function 
 ReLU6 (activation Function): 

 Real world data is non-linear. 

 Computationally fast 

 Zero if it is negative and 6 if it is positive. 

 ReLU6 is used due to its robustness when used with low-precision computation 

based on MobileNetV1. 

The ReLU6 activation function can be represented mathematically as: 

ReLU6(x) = min (max (x, 0), 6) 

. 

 
Figure 3.34: ReLU6 Activation Function 
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Batch Normalization 

 Used as regularization technique. 

 Performance and stability of the model 

 Higher learning rates  

1x1 convolution 

 Pointwise convolution. 

 Reduces the number of channels and the computational cost. 

 Non-linearity in the network. 

 Reduces the number of parameters. 

 
Figure 3.35: standard convolution followed by normalization and RELU (left). Depth-

wise convolution layer and pointwise convolution layer, each followed by batch 

normalization and RELU (Right) 

 

Table 3.7: MobileNet Body Architecture 
Type / Stride Filter Shape Input Size 

Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3 

Conv dw 1/ s1 3 × 3 × 32 𝑑𝑤 112 × 112 × 32 

Conv / s1 1 × 1 × 32 × 𝟔4 112 × 112 × 32 

Conv dw / s2 3 × 3 × 𝟔4 𝑑𝑤 112 × 112 × 𝟔4 

Conv / s1 1 × 1 × 𝟔4 × 128 5𝟔 × 5𝟔 × 𝟔4 

Conv dw / s1 3 × 3 × 128 𝑑𝑤 5𝟔 × 5𝟔 × 128 

Conv / s1 1 × 1 × 128 × 128 5𝟔 × 5𝟔 × 128 

Conv dw / s2 3 × 3 × 128 𝑑𝑤 5𝟔 × 5𝟔 × 128 

Conv / s1 1 × 1 × 128 × 25𝟔 28 × 28 × 128 

                                                 
1 dw: Depth wise 
2 Avg Pool: Average pooling  
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Conv dw / s1 3 × 3 × 25𝟔 𝑑𝑤 28 × 28 × 25𝟔 

Conv / s1 1 × 1 × 25𝟔 × 25𝟔 28 × 28 × 25𝟔 

Conv dw / s2 3 × 3 × 25𝟔 𝑑𝑤 28 × 28 × 25𝟔 

Conv / s1 1 × 1 × 25𝟔 × 512 14 × 14 × 25𝟔 

5 × Conv dw / s1 

conv / s1 

3 × 3 × 512 𝑑𝑤 

1 × 1 × 512 × 512 

14 × 14 × 512 

14 × 14 × 512 

Conv dw / s2 3 × 3 × 512 𝑑𝑤 14 × 14 × 512 

Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512 

Conv dw / s2 3 × 3 × 1024 𝑑𝑤 7 × 7 × 1024 

Conv / s1 1 × 1 × 102 × 1024 7 × 7 × 1024 

Avg Pool / s1 Pool 7 × 7  7 × 7 × 1024 

FC / s1 1024 × 1000  1 × 1 × 1024 

Softmax / s1 Classifier 1 × 1 × 1000 

 

 

3.3.2.9 Proposed Novelty 

There are two new hyper-parameters introduced in the MobileNetV1: 

1) Width Multiplier 

2) Resolution Multiplier 

 

3.3.2.9.1 Width multiplier 

Width multiplier is introduced to control the number of channels or controls the overall 

width of the network which is determined by the number of filters in each layer. It is a 

global Hyperparameters that is used to construct smaller and less computationally 

expensive models. Its value lies between 0 and 1. A smaller width multiplier will reduce 

the number of filters in the network and make it more computationally efficient, while 

a larger width multiplier will increase the number of filters and improve the accuracy 

of the network. 

 

𝐃𝒌  ·  𝐃𝑲  ·  𝛂𝐌 ·  𝐃𝑭  ·  𝐃𝑭  +  𝛂𝐌 ·  𝛂𝐍 ·  𝐃𝑭  · 𝐃𝑭  

 

3.3.2.9.2 Resolution multiplier 

This Second hyper-parameter is used to decrease the computational cost of a neural 

network is a resolution multiplier this hyper-parameter reduces the resolution of the 

input image and this subsequently reduces the input to every layer by the same factor if 

we have a smaller resolution multiplier it reduces the size of the input images and make 

the network more computationally efficient, while a larger resolution multiplier make 

the input images larger in size potentially improve the network’s accuracy. 
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The resolution and width multipliers in MobileNetV1 allow for the creation of 

lightweight neural networks that can achieve high accuracy on tasks such as image 

classification while using fewer computational resources. 

 

𝐃𝒌  ·  𝐃𝑲  ·  𝛂𝐌 ·  𝛒𝐃𝑭  ·  𝛒𝐃𝑭  +  𝛂𝐌 ·  𝛂𝐍 ·  𝛒𝐃𝑭  ·  𝛒𝐃𝑭  

 

 

 

3.3.2.10 MobileNetV2 

 
Figure 3.36: Linear Bottleneck and inverse Residual Block 

 

 

 The bottleneck residual block has three convolution layers. 

 The last two layers in MobileNetV1 are depth-wise convolution and 1 x 1 point-

to-point convolution layers. 

 In MobileNetV1, the pointwise convolution either keeps the number of channels 

the same or doubles them, while in the bottleneck residual block, the 1 x 1 

convolution layer reduces the number of channels. 
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 The first layer in the bottleneck residual block is the 1 x 1 expansion layer, 

which expands the data by increasing the number of channels. 

 The second layer in the bottleneck residual block is the depth-wise convolution 

layer, which we already know from MobileNetv1. 

 The bottleneck residual block includes a residual connection, which works the 

same way as in ResNet. 

 ReLU6 is used as the activation function in each layer of the bottleneck residual 

block except the projection layer. 

 The projection layer only has a batch normalization layer because introducing 

nonlinearity with ReLU6 will decrease the performance as the output from the 

projection layer is of low dimension. 

 

The motivation for inserting shortcuts in like that of the classical residual connections 

we want to improve the ability of a gradient to propagate across multiplier layers. 

 

The basic building block is a bottleneck depth-separable convolution with residuals. 

The detailed structure of this block was shown in the table below. 

 

Input  Operator Output 

𝒉 × 𝒘 × 𝒌 1×1 conv2d, ReLU6 ℎ × 𝑤 × (𝑡𝑘) 

𝒉 × 𝒘 × 𝒌 3×3 depth-wise s=s ℎ

𝑠
×

𝑤

𝑠
× (𝑡𝑘) 

𝒉

𝒔
×

𝒘

𝒔
× 𝒕𝒌 

Linear 1×1 conv2d ℎ

𝑠
×

𝑤

𝑠
× 𝑘′ 

 

Figure 3.36: Bottleneck Architecture 

 

The architecture of MobileNetV2 contains the initially fully convolution layer with 32 

filters, which was then followed by 19 residual bottleneck layers described in the table 

below. 

We have used the ReLU6 as non-linearity because of its robustness when we used with 

low precision computation as a common practice in modern networks, we employ a 

kernel size of 3 × 3, which is a standard choice. Additionally, we incorporate dropout 

and batch normalization techniques during the training process. 
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Table 3.8: MobileNetV2 Body Architecture 

Input Operator t c n s 

𝟐𝟐𝟒𝟐  × 𝟑 conv2D - 32 1 2 

𝟏𝟏𝟐𝟐  × 𝟑𝟐 bottleneck 1 16 1 1 

𝟏𝟏𝟐𝟐  × 𝟏𝟔 bottleneck 6 24 2 2 

𝟓𝟔𝟐  × 𝟐𝟒 bottleneck 6 32 3 2 

𝟐𝟖𝟐  × 𝟑𝟐 bottleneck 6 64 4 2 

𝟏𝟒𝟐  × 𝟔𝟒 bottleneck 6 96 3 1 

𝟏𝟒𝟐  × 𝟗𝟔 bottleneck 6 160 3 2 

𝟕𝟐  × 𝟏𝟔𝟎 bottleneck 6 320 1 1 

𝟕𝟐  × 𝟑20 conv2D 1 × 1 - 1280 1 1 

𝟕𝟐  × 𝟏𝟐𝟖𝟎 avgpool 7 × 7 - - 1 - 

𝟏 × 𝟏 × 𝟏𝟐𝟖𝟎 conv2D 1 × 1 - k - - 

  

Drawback of MobileNet-V1 

 Limited accuracy compared to larger models. 

Benefits of MobileNet-V2 

 Improved performance with higher accuracy. 

 Better generalization capabilities. 

 Flexibility and customizability in architecture and Hyperparameters. 

 Multi-scale feature extraction for tasks like object detection and segmentation. 

 

3.3.2.11 MobileNetV3 

MobileNetV3 is a family of lightweight neural network architectures designed for 

efficient and high-performance deep learning on resource-constrained devices. 

MobileNetV3 aims to strike a balance between model size, computational efficiency, 

and accuracy. The "Small" variant of MobileNetV3 is specifically designed to be even 

more lightweight, making it suitable for mobile and embedded applications. It achieves 

this by leveraging efficient depth-wise separable convolutions, squeeze-and-excitation 

modules, and improved architecture design. Despite its compact size, MobileNetV3-

Small demonstrates impressive performance on various computer vision tasks such as 

image classification and object detection. It offers a practical solution for deploying 

deep learning models on devices with limited computational resources, enabling a wide 

range of applications in real-world scenarios. 
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While MobileNetV3-Large is a high-performance and efficient neural network 

architecture. It achieves a balance between accuracy and computational efficiency. It 

incorporates advanced features like inverted residual blocks and attention mechanisms. 

MobileNetV3 Large can achieve state-of-the-art performance on various computer 

vision tasks.  

This architecture was implemented as a function of different resolutions and 

multipliers.so in given below figure we can see that the MobileNetV3-Small 

outperforms the MobileNetV3-Large with multiplier scaled to match the performance. 

 

 
 

Figure 3.37:   Comparison of V3 large vs V3 small vs V2 [53] 

 

MobileNetV3 is defined as two models: MobileNetV3-Large and MobileNetV3-Small. 

These models are targeted at high and low resource use cases respectively for more 

details please refer [53] . 

 

Drawback of MobileNet-V2 

 Increased computational complexity compared to MobileNet-V1 due to the 

addition of new features and techniques. 

Benefits of MobileNet-V3 

 Further improved accuracy compared to MobileNet-V2. 

 Enhanced efficiency and performance with advanced design choices. 

 Introduces the concept of network architecture search (NAS) for optimizing 

model design. 

 Offers both "Small" and "Large" variants for different resource constraints and 

application needs. 

 Demonstrates state-of-the-art performance on various computer vision tasks. 
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 ECG Databases 

The famous Databases for ECG that are publically available are PhysioNet’s MIT BIH 

Arrhythmia that is most commonly used [54]. PTBD Database is another ECG dataset 

widely available [55]. UC Irvine Machine Learning repository has Arrhythmia dataset 

[56]. All these are non-image databases. Since CNNs except images, these files are 

carefully being converted into images.  
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4 Chapter – 4 

 

Methodology 

 

This chapter entails the tools and software used in the study to perform classification, 

analysis, and other computational tasks.  

The proposed methodology used Transfer Learning approach2 (subsequently referred 

as method 1 in this report) to implement all the CNNs that are being selected for the 

work and later modified Transfer Learning3 (subsequently referred as method 2 in this 

report) is implemented for EfficientNet. In the other part a comparison is made with 

previous methods literature. The details are discussed in the below section. Following 

is the agenda of this work:  

 

                           

 

 

 

 

 

 

 

                             

 

 

 

                                                 

Figure 4.1: Framework of proposed system 

 

4.1 Experimental Setup  

 

Programming Languages: Python, MATLAB 

Frameworks: TensorFlow / Keras, PyTorch 

Tools/Software and Environment: Google Collaboratory Notebook, MATLAB 

                                                 
2 Method 1 
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Dataset: MIT BIH Arrhythmia Database and PTBDB  

 

4.2 Implementation 
This chapter outlines our proposed method’s procedure, which is divided into two 

independent parts. The first part, known as CNN Selection and Implementation, 

involves preparing the dataset, training, evaluating, and finalizing the CNN 

architecture. Later part is comparison with other state-of-art models.  

 

 ECG Dataset Preparation:     

Various datasets are available for ECG, but the only famous Arrhythmia dataset is from 

MIT BIH Arrhythmia and PTB Database. For Deep Learning, large dataset is required. 

As CNN accepts Images so the image version of MIT BIH Arrhythmia Database and 

PTBDB available on Kaggle is used [57].  

The dataset has been used for ECG Classification using Deep Learning Architectures 

and Transfer Learning. The signal has normal, and cases affected by different 

Arrhythmias and Myocardial Infarction. Kaggle allows direct Dataset access through 

its APIs. Since the dataset is from Kaggle, instead of downloading the dataset which 

takes up space locally, Kaggle API token is used to download dataset for a runtime 

virtually. You must run commands in the following manner.  

 

 
Figure 4.2: Downloading dataset from Kaggle API 

 

The dataset has train and test folders each with total 6 Classes 'F','M','N', 'Q', 'S','V'. The 

F, N, V, Q, S classes are recommended by ANSI/AAMI standards.  

 

Table 4.1: Dataset Specifications 

 

 

 

 

 

API Token 
Generated 

json file 
loading

install 
kaggle

make 
directory

copy json 
file to new 
directory

allocate 
permission

dataset url
download 
and unzip

Samples:  109446 

Categories: 5 

Classes:  {N, V, Q, F, S} 

Sampling Frequency:  125Hz 

Samples:  14552 

Categories: 2 

Classes:  {N,  M} 

Sampling Frequency:  125Hz 

Dataset 

MIT BIT Arrhythmia PTB Database 
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Table 4.2: Class Labels 

 

                                           Class Labels and Names 

 

N                        S                           Q                  V                    F                  M  

Normal       Supraventricular    Unclassifiable   PVC        Fusion of        Myocardial  

                         Premature                                           Ventricular and        Infarction 

                                                                                            Normal   

 

 

Since the training folder has 99199 images and the testing folder has 24799 images. 

Validation data was created of 90/10 split from the training folder. At this point, aim is 

not care about less data in validation as testing data is already available separately. The 

only motive right now is to observe the behavior during training for understanding 

purpose. As train test split has data leakage possibility, split folder library is used to 

create a separate folder to avoid data leakage.          

 
Figure 4.3:   Dataset split 

 Model Selection: 

Considering the hardware favorability, memory size, parameters, performance and 

computational ability, CNN architecture is being chosen. We aim for a lightweight, 

small, and less complex network that can be deployed on tightly constraint hardware. 

Based on simplicity and hardware friendliness we chose these networks: 

 AlexNet 

 VGG16 

 ResNet18 

 MobileNet (V1/V2) 

 EfficientNet B0-B1 (V1/V2) 



59 

 

 Designing of CNNs: 

The design specifications of implemented convolutional neural networks is given 

below:  

 

 
Figure 4.4: Proposed ResNet18 model 

 

 
Figure 4.5: Proposed VGG16 model 

 

                       
Figure 4.6: Proposed AlexNet model 
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EfficientNet 

As we are already familiar with EfficientNet series B0-B7 discussed previously. B0 

being a baseline model uses compound scaling in implementation of higher models. In 

this research we have implemented EfficientNet version 1 and version 2 for B0 and B1 

models. Since we aim to have an efficient network in terms of hardware favorability 

which compelled us to take benefits of these lower series models. These models were 

computationally efficient, meaning they could run on hardware with limited resources 

without compromising the performance. Additionally, the simple architecture allowed 

for faster training and testing times while still achieving high accuracy.  

            

 
Figure 4.7:  Proposed EfficientNet model 

 

 

These models are implemented using Transfer Learning as a feature extractor approach, 

pretrained on imagenet weights. The minimum size EfficientNet accepts is 32 so 

keeping hardware compatibility in mind 32 is taken as a starting size. For B0 the size 

is 32x32 and we tested on a slightly bigger size like 64x64 also for comparing impact 

of sizes. As EfficientNet has compound scaling so we arbitrarily decided 64x64 size 

and we tested on a slightly bigger 128x128 size as well. This work implements 

EfficientNet with both the methods discussed below. Further a comparison is made 

which is discussed in the next chapter. 

AlexNet, ResNet18, VGG16 are implemented using transfer learning method. Since the 

accuracy achieved is outstanding there is no need to significantly increase parameters 
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with only a slight increase in accuracy hence method 2 is not implemented for these 

models. 

 

MobileNet 

 
Figure 4.8: Proposed MobileNet Version 1 model 

 

 
Figure 4.9: Proposed MobileNet Version 2 model 
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Figure 4.10:  Proposed MobileNet Version 3 model 

 

These models are implemented using Transfer Learning as well as fine tuning 

optimizing some of the Hyperparameters, pretrained on ImageNet weights. The 

minimum size MobileNet accepts is 32 so keeping hardware compatibility in mind 32 

is taken as a starting size. For MobileNetV1 the size is 32x32 and we tested on a slightly 

bigger size like 64x64, 128x128, and 224x224 also for comparing impact of sizes. 

Further a comparison is made which is discussed in the next chapter. 

 Implementation of CNN Architectures  

A very famous Pythonic styled PyTorch framework is used to implement EfficientNet, 

ResNet18, VGG16 and AlexNet.  

Importing all the necessary libraries. Since we are running on Google Colab Notebook, 

we used “tqdm” package for displaying progress bar which will be useful during 

training and testing for timing analysis. The notebook has some functions created for 

displaying images, plotting, and calculating accuracy. Since PyTorch uses (channel, 

height, width) convention whereas matplotlib uses (height, width, channel) convention. 

So, the 3D tensor is arranged accordingly. One thing worth noting is that matplotlib 

uses “viridis” color map by default. Since we desire Grayscale images even after 

converting to grayscale matplotlib displays colored images. To tackle this problem, we 

pass a parameter cmap='gray' to ensure the display is in grayscale as well.   
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Figure 4.11: 3D-Tensor Rearrangement 
 

 Preprocessing 

Next step is to apply transformation on the dataset. It is an important step of 

preprocessing before passing towards neural network. There are plenty of options 

available in transforms method. Our point of interest is conversion of RGB images to 

single channel grayscale, resizing the images to desired size and convert images in the 

range [0, 255] to a float tensor of shape (C, H, W) in the range [0.0, 1.0]. The reason 

for doing so is to normalize the pixel values to a common scale. Besides many activation 

functions like sigmoid and ReLU are in the range 0 to 1. Another reason is to reduce 

the memory requirements since many deep learning models have 32-bit floating point 

precision by default. All the transforms are being applied using compose method in 

which all the transforms work at a time whereas there is another way known as 

sequential method in which transforms are being applied sequentially. The transforms 

are applied on the train, test, and validation folders. 

 

 

 

 

 

 

 

 

 

                                           

Figure 4.12: Pre-processing 
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4.2.5.1 Exploratory Analysis 

The next step is to do some exploratory analysis to check images in each folder and 

display some images to ensure the color and size of image has been transformed.  

Now we will ready the train, validate, and test loader for which we used DataLoader 

from torch.utils.data.  

The DataLoader class is used to wrap a dataset and provides several useful features, 

such as: 

 

Batch loading: It loads the data in batches of a specified size. 

Shuffle: It shuffles the data before each epoch, helping in improving model's accuracy 

and generalization. 

Parallel loading: It can load the data in parallel using multiple workers, speeding the 

data loading process. 

Overall, the DataLoader class simplifies the process of loading and preprocessing data 

for deep learning applications in PyTorch. 

 
Figure 4.13: Data-loaders 

 

Except AlexNet all the architectures are imported from timm library that provides a 

collection of state-of-the-art computer vision models and efficient training utilities.  

 

4.2.5.2 Transfer Learning  

We create our model with weights pretrained on imagenet for transfer learning. 

Since we are accommodating to transfer learning, we need to set few things in a 

particular way such as: 

 The number of classes returned by a pretrained imagenet is 1000. But our 

multiclass problem has only 6 classes. Hence, we need to modify the linear 

classifier layer of the network in such a way it has 6 out_features.  
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Figure 4.14: Modified Classifier 
 

 Since the all the layers are frozen in transfer learning, we achieve it by setting 

requires_grad to false so parameters are not updated in those layers. Only the 

first and last layer is trainable so the pre learned weights are only transferred to 

custom classes.  

            

Figure 4.15: Freezing layers 
 

Notice that we updated the linear classifier to 6 classes but how? 

There exist two methods to do so.     

 
Figure 4.16: Transfer learning as a feature extractor method used in this work. 

 

The first way, where you directly modify the last layer to have an out_features of 6, is 

a simple and straightforward approach. However, if the pre-trained model was trained 

on a significantly different dataset, this may not give the best results as the features 

learned by the pre-trained model may not be optimal for the new task. 

The second way, where you replace the last layer with a new set of layers, allows you 

to customize the architecture of the classifier to better suit your new task and reduce 

overfitting. This is useful if the number of classes in the new task is significantly 

different from the classes in the pre-trained model. 
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Either way, you should ensure that the input size of the next layer(s) matches the output 

size of the pre-trained model's last layer (in your case, 1280), so that the output of the 

pre-trained layers can be fed into the new layer(s) correctly. Additionally, make sure 

that the activation functions and dropout rates are appropriate for your task. 

 

Overall, both approaches can be effective, and the choice between them depends on the 

specific requirements of your task and the architecture of the pre-trained model. 

ResNet18 and VGG16 showed good results with method 1 while on EfficientNet 

method 2 showed better results.  

The second method takes slightly more time, and it has more parameters but better 

accuracy. Since imagenet dataset is very much different from ECG Dataset, hence 

method 2 is preferable. It also reduces overfitting by varying dropout and out_feature. 

One can see which value fits better for custom dataset. The sequential block used in 

method 2 for the implementation of EfficientNet is given below.  

 

 

 

 

 

Figure 4.17: Modified layers in Method 2 

 

While adding sequential block, you do not need to pass softmax activation function 

before the linear classifier since PyTorch comes with CrossEntropyLoss which already 

contains Softmax so it will be redundant to add another softmax. 

 

4.2.5.3 Contribution to knowledge 

For a network to be conductive to hardware needs to accept smaller size and single 

channel so the layers can be designed efficiently on hardware such as FPGAs. 

To accomplish this the size taken for a B0 network is 32x32 and 64x64 with single 

grayscale channel. The comparative analysis is carried out for different sizes to 

understand how it affects the memory, parameters, timings, and other hardware 

constraints.  

Since all the CNNs accept 3 channels RGB images, converting the RGB images to 

grayscale was performed. One can use the transforms method as done in this work or 

OpenCV to achieve it. But the primary obstacle is the conversion of 3 channels to 1 

channel as the model accepts only 3 channels and throw errors if not realized.  

The flexibility of PyTorch’s timm library allows us to overcome this very easily.  

 

4.2.5.3.1 Potential methods to attain single channel. 

 

 Train grayscale version of imagenet from scratch, too expensive?  

Linear with 

out_feature 

625 

ReLu 
Dropout 

(p=0.3) ReLu 

Linear with 

out_feature 

6 

Linear with 

out_feature 

256 



67 

 

 Modify the first hidden layer input channels from three to one. But how the next 

layer will behave to this change that expects 3 channels output to be passed on 

it?  

The model's architecture is fixed due to the training of weights for a specific 

configuration of the input. Altering the initial layer would render the remaining weights 

ineffective. Neural networks are designed to extract complex features from lower-level 

features as they move deeper into the network. Eliminating the initial layers of a 

convolutional neural network would break this feature hierarchy, as subsequent layers 

would not receive the expected input features. This is because the second layer has been 

trained to anticipate the features of the first layer and changing it would disrupt the flow 

of feature extraction through the model. 

 

 One simple approach is to create a new dimension and repeat the image array 

three times within it. This effectively converts the grayscale image into a three-

channel image, where each channel contains the same grayscale values. But this 

is not an efficient way if your bigger goal is hardware compatibility. Having 3 

channels each of similar information would add up in nothing but computations.  

 It is possible to modify the weights of a model's first convolutional layer and 

achieve the desired goal. While modifying the weights of the first layer can 

result in reduced accuracy, the model can still be fine-tuned for improved 

performance. 

Modifying the weights of the first layer does not render the rest of the weights useless, 

contrary to what others may have suggested. To accomplish this, you will need to add 

code that modifies the pretrained weights when loading them into your 1-channel 

model. This can be done by summing the weight tensor over the dimension of the input 

channels. 

The organization of the weight tensor varies depending on the framework being used. 

For instance, in PyTorch, the default weight tensor organization is {out channels, in 

channels, kernel height, kernel width}, while in TensorFlow, it is {kernel height, kernel 

width, in channels, out channels}. You will need to figure out how to grab the weights 

of the first convolutional layer in your network and modify them before assigning them 

to the 1-channel model. 

 

 

Figure 4.18: Approach 1 for updating weights. 

Replace 3 channels in first layer to 1 
channel

copy the sum (in the channel axis) 
of the weights to the new layer
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The similar thing can be done using this approach: 

 

      
Figure 4.19: Approach 2 for updating weights. 
 

The simplest way that timm offers is to set in_chans=1  
 

Figure 4.20: Built-in parameter for updating weights. 
 

As not all pre trained models are available in timm just like Alexnet. So, it is important 

to know other ways to achieve single channel.  

 

For MobileNet Architecture, fine-tuning is performed to get the most out of transfer 

learning. After training a model traditionally, the model is trained again with a new 

learning rate of 0.0001 and for a batch size of 32 from 16. It is worth noting that the 

model's last four layers are removed and output from the Global Average Pooling layer 

is to be reshaped to pass it to the classifier layer.  The final 22 layers of MobileNet's 

version 1 and version 3 are trained, for version 2 only the final 25 layers are trained.  

This proved to be promising as the results achieved are astonishing. This is not an 

optimal choice; one can vary and observe the behavior and choose whatever best suits 

one's goal.  

 

 Training and Evaluation 

The next step after updating model to cater to our needs is to pass the model to the 

device which is GPU. For training and testing, Colab GPU and NVIDIA GPU cards 

with CUDA compute capability are used.  
Summary of the model gives details about the size of model, trainable and non-trainable 

parameters, and parameters of each layer with its output shape which will be beneficial 

in deciding hardware utility.  

Before the training of the model begins, we need to define which optimizer is used, 

which loss function it will follow, how training and testing accuracies and losses will 

be calculated. Since during training drop out is turned on as the weights gets updated 

Replace 3 channels in first layer to 1 
channel

update dictionary by calling 
weights of first layer

model = timm.create_model (CFG.model_name, pretrained=True, in_chans=1)  
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during backpropagation and gets off during validation, for that we only set gradient for 

training loop in ECGTrainer class. 

For the training, we used Adam Optimizer, nn.CrossEntropyLoss. It combines the 

nn.LogSoftmax function and the nn.NLLLoss function into a single class. In other 

words, nn.CrossEntropyLoss takes in raw logits or scores from the last layer of the 

neural network and applies a softmax function to them. The softmax function converts 

the logits into a probability distribution over the classes. The class with the largest 

probability is then considered the predicted class. The Hyperparameters used for the 

implementation are stated below: 

 

Table 4.3: Hyperparameters 

 

      Batch Size         Learning Rate        Optimizer        Epochs               Criterion 

            

 

 

            16                     0.001                   Adam            10               Cross Entropy Loss  

 

 

One can experiment with removing ReLU from linear classifier and varying dropout or 

putting dropout before the ReLU function.  

 

 

4.2.6.1 Weights 

We saved the best weights so every time validation loss decreases from first time, it 

will save in a dictionary. The weights are saved in .pt format which contains weight and 

bias of the model that can be used for further inference. Netron is a free tool to 

visualize .pt files. The visualization is shown below. You can hover over the modules, 

and it shows the details. Or one can convert .pt file into HDF format to view hierarchy 

of the model using HDF viewer.  
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Figure 4.21: Weights Visualization 

 

The results of training and testing will be discussed in the next chapter.  

 

4.2.6.2 Evaluation/Testing 

Once the training is over, it must be evaluated on the whole test data to check the overall 

performance. The metrics used to evaluate the model are as follows.  

1. Confusion Matrix  

2. Categorical Accuracy  

3. Precision  

4. Recall 

5. F1 Score 

6. ROC_AUC Curve  

 

4.2.6.2.1 Timing Analysis 

The major impediment here is the time taken by a model to train and test the input. 

Since our interest is hardware integration, for which timing will be crucial. To evaluate 

time taken by a model to train in one epoch and single test time we can use notebook’s 

tqdm package which displays a progress bar with iterations per second.   

4.2.6.2.2 TQDM Package 

The time duration for training can be displayed using tqdm. It tells each epoch time and 

iterations/seconds. But no image takes equal time in training and testing, so we are 

interested in average time of each epoch and average single testing time.  
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4.2.6.2.3 Profiler Run 

Besides we can run profiler or timer on a cell where we can predict a single image. The 

detailed analysis is discussed in the next chapter with a comparison with varied sizes. 

 
4.2.6.3 Class Imbalance 

Class imbalance occurs when one or more classes have significantly less or more 

samples as compared to the other classes in the dataset. Class imbalance is very 

common in machine learning where the distribution of classes in the training data is not 

equal. This can lead to a biased model that performs poorly on the underrepresented 

classes.  

To eradicate class imbalance, there are multiple techniques to be used such as 

oversampling the minority class, under sampling the majority class, or using cost-

sensitive learning algorithms. Another creative way is to use Generative Adversarial 

Networks (GANs) for data generation. Other approaches include data augmentation, 

ensemble learning, and synthetic data generation.  

                                                   

 
 

Figure 4.22: Distribution of all classes in train(on left) and test folder(on right) 

 

 

4.2.6.4 Handling Imbalance 

It's important to note that the appropriate technique to address class imbalance depends 

on the specific problem and the available data. Additionally, the evaluation of the model 

should be done using appropriate metrics, such as precision, recall, F1-score that 

consider the class imbalance. 

Unfortunately, this is one of the factors causing overfitting that will be addressed in the 

next chapter.  

Since ECG signal is a critical signal with lots of critical information. Performing data 

augmentation on certain datasets can be challenging, as cropping or clipping signals 

can result in information loss, while extending them or creating larger windows may 

introduce overlap with other classes.  
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5 Chapter 5 

Results and Analysis/Comparison 

The results of training and evaluating CNNs are given in this section. Analysis is 

performed in context of hardware compatibility for which different aspects are 

considered as stated below:  

 Computational Time  

  Model Size  

 Accuracy of the model 

5.1 EfficientNet (Method 1) Results and Comparison  

 Overall Timing Comparison 

Table 5.1: Overall Timing details of EfficientNet -V1 

 

Table 5.2: Overall Timing details EfficientNet-V2 

 

Model-V1 

 

Size 

(Height ×Width) 

Training Time 

(s) 

 

Testing Time 

(s) 

 

B0 

32𝑥32 3527 103 

64𝑥64 4139 112 

B1 

64𝑥64 4076 

 
103 

128𝑥128 4777 127 

Model-V2 

 

Size 

(Height × Width) 

Training Time 

(s) 

 

 

Testing Time 

(s) 

 

B0 

32𝑥32 3855 101 

64𝑥64 4078 106 

B1 

64𝑥64 4045 103 

128𝑥128 4624 133 
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 Average Time Comparison 

Table 5.3: Average time comparison of EfficientNet-V1 

 

Table 5.4: Average time comparison of EfficientNet-V2 

 

 

 Accuracy Comparison 

 

Table 5.5:  Accuracy comparison of EfficientNet-V1 sizes 

 

 

 

 

 

 

 

                                                                

                                                                               

 

 

 

 

Model-V1 

Size 

(Height × Width) 

Average 

Training Time 

per Epoch 

(minutes) 

Average Testing 

Time per Image 

(Milli-seconds) 

B0 

32𝑥32 5.878 4.15 

64𝑥64 6.898 4.51 

B1 

64𝑥64 6.828 4.15 

128𝑥128 7.96 5.12 

Model-V2 

Size 

(Height × Width) 

Average 

Training Time 

per Epoch 

(minutes)  

Average Testing 

Time per Image 

(Milli-seconds) 

B0 

32𝑥32 6.425 4.07 

64𝑥64 6.796 4.27 

B1 

64𝑥64 6.741 4.15 

128𝑥128 7.706 5.36 

Model-V1 
Size 

(Height × Width) 

Accuracy 

(%) 

B0 

32𝑥32 86.13 

64𝑥64 93.95 

B1 

64𝑥64 93.14 

128𝑥128 98.15 
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Table 5.6: Accuracy comparison of EfficientNet-V2 sizes 
 

  

 

 

 

 

 

 

 

 

 

 Model Parameters and Size 

Table 5.7: Trainable Parameters comparison 

Model B0 B1 B0 B1 

Version V1 V2 

Parameters Size (MB) 15.31 24.87 22.38 26.20 

Trainable Parameters 7,686 7,686 7,686 7,686 

Total Parameters 4,014,658 6,520,294 5,865,814 6,867,162 

 

Table 5.8: Model Size comparison 

Model B0 B0 B1 B1 B0 B0 B1 B1 

Version V1 V2 

Input Dimensions 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 

Model Size (MB) 19.99 33.85 51.10 129.95 26.02 36.35 44.81 100.11 

 Model size, computational cost, and accuracy analysis:  

The results above showed that by increasing size comes more computational expenses 

but better accuracy. The benefits of transfer learning can be seen here as out of total 

parameters in table above only 7,686 are trainable thus saving us a lot of computational 

power. While comparing V1 with V2, we can observe that we got better accuracy with 

better computational cost. To understand the comparison let’s take B0 size 32x32 of 

version 1 from above table which has 86.13% accuracy with 5.878 minutes of average 

training and 4.15ms single shot testing time and B1 with size 64x64 of version 1 with 

93.14% accuracy with 6.828 minutes training and 4.15ms single shot testing time. But 

if you look closely at the B1 64x64 from version 2 you can see it has better accuracy of 

95.62% with 6.741 minutes training and 4.15ms single shot testing time which is better 

Model-V2 
Size 

(Height × Width) 

Accuracy 

(%) 

B0 

32𝑥32 87.93 

64𝑥64 95.44 

B1 

64𝑥64 95.62 

128𝑥128 99.16 
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than going for 64x64 size of B1 in version 1. So, if the choice has to be made one can 

opt for V2 instead of moving to B1 of V1 from B0 of V1. 

5.2 EfficientNet (Method 1) Version 1 

 Performance Metrics 

Confusion Matrix 

 

 

 
Figure 5.1  First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 

Classification report 
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Figure 5.2:   First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 
 

 
Figure 5.3:  ROC curve of B0 of size 32x32 

 

 
Figure 5.4:  ROC curve of B0 of size 64x64 
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Figure 5.5:  ROC curve of B1 of size 64x64 

 

 
 

Figure 5.6:  ROC curve of B1 of size 128x128 
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Learning Curves 

 

 

 
Figure 5.7:  First row from left B0 size 32x32 and second row 64x64 respectively 

 

 
Figure 5.8: First row from left B1 size 64x64 and second row 128x128 respectively 
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5.3 EfficientNet (Method 1) Version 2 

 Performance Metrics 

Confusion Matrix 

 

 
 

 
 

Figure 5.9:  First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 
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Figure 5.10: First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 

 

 
Figure 5.11: ROC curve of B0 of size 32x32 

 

 
Figure 5.12: ROC curve of B0 of size 64x64 
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Figure 5.13: ROC curve of B1 of size 64x64 

 

 
Figure 5.14: ROC curve of B1 of size 128x128 
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Learning Curves 

 

 
Figure 5.15:  First row from left B0 size 32x32 and second row 64x64 respectively 

 

 
 

Figure 5.16: First row from left B1 size 64x64 and second row 128x128 respectively 
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 Performance Analysis: 

A class-wise distribution of predictions made by the model can be displayed using a 

confusion matrix. The predicted results are on y-axis while true on x-axis. The 

confusion matrix for a multiclass problem is a bit tricky. The diagonal elements are 

correctly predicted samples. The higher the diagonal the better it is. The off diagonal is 

the misclassification of classes. The classes with the highest off-diagonal values are the 

ones that are most frequently misclassified. If the diagonal values are high and the off-

diagonal values are low, then the model is performing well. If the off-diagonal values 

are high, then the model is frequently misclassifying samples, and further investigation 

is required to improve the model's performance. Based on confusion matrix, a 

classification report is generated. Through precision, recall and F1 score we can 

interpret the impact of class imbalance as well as the overfitting caused by the model. 

The lower sizes seemed to be confused by the model as smaller size has blurring effect 

which can cause similarity in classes while with size being increased the model learned 

the complex features and patterns, hence making good predictions.  

A similar thing is noticed in learning curves as well where there is overfitting as one 

can observe less convergence which gets better on moving to a bigger size where the 

model has a good fit. To observe the impact of imbalance on the learning of model 

AUC is plotted above. The plot has false positive rate (FPR) on the x-axis and a true 

positive rate (TPR) on the y-axis. The range of AUC is between 0 and 1. If the AUC is 

1 or closer to 1 then this means that the model is a good classifier. If AUC is below 0.5, 

it means random classification occurred.  To interpret the curve, the class closer to top 

left shows is a good class in terms of classification. As in the AUC plots above normal 

class is mostly poor this is since normal class have large imbalance compared to other 

classes. A detailed comparison of method 1 is given in a table below:  

 

Comparison of V1 and V2 with Method 1: 

Table 5.9: Comparison of Version 1 vs Version 2 of Method 1 

Model B0 B1 B0 B1 

Version V1 V2 

Image 

Dimensions 

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 

Accuracy 

(%) 

86.13 93.95 93.14 98.15 87.93 95.44 95.62 99.16 

Testing Time 

(ms) 

4.15 4.51 4.15 5.12 4.07 4.27 4.15 5.36 

Training Time 

(minutes) 

5.878 6.898 6.828 7.96 6.425 6.796 6.741 7.706 

Trainable 

Parameters 

7,686 7,686 7,686 7,686 7,686 7,686 7,686 7,686 

Total 

Parameters 

4,014,658 4,014,658 6,520294 6,520,294 5,865,814 

 

5,865,814 

 

6,867,162 6,867,162 
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5.4 Method 2 Comparison Analysis 
In comparison with version 2, the EfficientNet model’s accuracy has increased when 

moved from version 1 to version 2. While comparing V1 with V2, we can observe that 

we got better accuracy with better computational cost. To understand the comparison 

let’s take B0 size 32x32 of version 1 from above table which has 86.13% accuracy with 

5.878 minutes of average training and 4.15ms single shot testing time and B1 with size 

64x64 of version 1 with 93.14% accuracy with 6.828 minutes training and 4.15ms 

single shot testing time. But if you look closely at the B1 64x64 from version 2 you can 

see it has better accuracy of 95.62% with 6.741 minutes training and 4.15ms single shot 

testing time which is better than going for 64x64 size of B1 in version 1. So, if the 

choice must be made one can opt for V2 instead of moving to B1 of V1 from B0 of V1. 

5.5 Modified EfficientNet (Method 2) Results and 

Comparison  
Overall Timing Comparison: 

Table 5.10: EfficientNet -V1 with Method 2 

 

Table 5.11: EfficientNet –V2 with Method 2 

Model-V1 

 

Size 

(Height × 

Width) 

Training Time 

(s) 

 

Testing Time 

(s) 

 

B0 

32𝑥32 3641 

 
99 

64𝑥64 3828 97 

B1 

64𝑥64 4190 

 
108 

128𝑥128 4706 121 

Model-V2 

 

Size 

(Height × 

Width) 

Training Time 

(s) 

 

 

Testing Time 

(s) 

 

B0 

32𝑥32 3799 

 
99 

64𝑥64 4156 113 

B1 

64𝑥64 4077 

 
104 

128𝑥128 4705 129 
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Average Time Comparison 

Table 5.12: EfficientNet -V1 with Method 2 

 

 

Table 5.13:  EfficientNet-V2 with Method 2 

 

 

Accuracy Comparison: 

Table 5.14:  EfficientNet-V1 with Method 2 

 

 

 

 

 

 

 

                                                                          

                                                        

                                                              

 

 

 

Model-V1 

Size 

(Height × 

Width) 

Average Training 

Time per Epoch 

(minutes) 

Average Testing 

Time per Image 

(milli-seconds) 

B0 

32𝑥32 6.06 

 
3.99 

64𝑥64 6.38 3.91 

B1 

64𝑥64 6.98 

 
4.35 

128𝑥128 7.84 4.87 

Model-V2 

Size 

(Height × 

Width) 

Average Training 

Time per Epoch 

(minutes)  

Average Testing 

Time per Image 

(milli-seconds) 

B0 

32𝑥32 6.33 

 
3.99 

64𝑥64 6.92 4.55 

B1 

64𝑥64 6.79 

 
4.19 

128𝑥128 7.84 5.20 

Model-V1 

Size 

(Height × 

Width) 

Accuracy 

(%) 

B0 

32𝑥32 89.05 

 

64𝑥64 96.16 

B1 

64𝑥64 94.78 

 

128𝑥128 98.89 
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Table 5.15: EfficientNet-V2 with Method 2 

 

 

 

                                                                    

 

 

 

 

 

 

 

 

 

 

Model Parameters and Size 

Table 5.16: Trainable parameters comparison in Method 2 

Model B0 B1 B0 B1 

Version V1 V2 

Parameters Size (MB) 18.96 28.51 26.02 29.84 

Trainable Parameters 962,423 962,423 962,423 962,423 

Total Parameters 4,969,395 7,475,031 6,820,551 7,821,899 

 

Table 5.17:  Model size comparison in Method 2 
 

Model B0 B0 B1 B1 B0 B0 B1 B1 

Version V1 V2 

Input Dimensions 𝟑𝟐𝒙𝟑𝟐𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟏𝟐𝟖𝒙𝟏𝟐𝟖𝒙𝟏 𝟑𝟐𝒙𝟑𝟐𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟏𝟐𝟖𝒙𝟏𝟐𝟖𝒙𝟏 

Model Size (MB) 23.65 37.51 54.77 133.61 29.68 40.01 48.47 103.77 

 

 Analysis:  

The results above showed that by increasing size comes more computational expenses 

but better accuracy. The benefits of transfer learning can be seen here as out of total 

parameters in table above only 962,423 are trainable thus saving us a lot of 

computational power. While comparing V1 with V2, we can observe that we got better 

accuracy with better computational cost. To understand the comparison let’s take B0 

size 32x32 of version 1 from above table which has 89.05% accuracy with 6.07 minutes 

of average training and 3.99ms single testing time and B1 with size 64x64 of version 1 

Model-V2 

Size 

(Height × 

Width) 

Accuracy 

(%) 

B0 

32𝑥32 90.60 

 

64𝑥64 96.67 

B1 

64𝑥64 96.32 

 

128𝑥128 99.12 
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with 94.78% accuracy with 6.98 minutes training and 4.35ms single sample testing 

time. But if you look closely to B1 64x64 from version 2 you can see it have better 

accuracy of 96.32% with 6.79 minutes training and 4.19ms single sample testing time 

which is better than going for 64x64 size of B1 in version 1. So if the choice has to be 

made one can opt for V2 instead of moving to B1 of V1 from B0 of V1. 

 Comparison with Method 1 

But when compared to Method 1 stated above, the trainable parameters are increased 

due to additional layers being added. Whereas the accuracy achieved is better except 

for B1 size 128x128 in version 2 of both the method has a slight difference which is not 

uncommon. Overall, Method 2 is better with accuracy but at the cost of increased 

parameters for training. 

 

5.6 EfficientNet (Method 2) Version 1 

 Performance Metrics  

 

Confusion Matrix 

 

 
 

 
 

Figure 5.17: First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 
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Classification Report 

 

 

 
Figure 5.18: First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 

 

 
Figure 5.19: ROC curve of B0 of size 32x32 
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Figure 5.20: ROC curve of B0 of size 64x64 

 

 
Figure 5.21: ROC curve of B1 of size 64x64 

 
Figure 5.22: ROC curve of B1 of size 128x128 
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   Learning Curves 

 

 

 
Figure 5.23: First row from left B0 size 32x32 and second row 64x64 respectively 

 

 

 

 
Figure 5.24: First row from left B1 size 64x64 and 128x128 respectively 



91 

 

5.7 EfficientNet (Method 2) Version 2 

 Performance Metrics 

 

Confusion Matrix 

 

 
 

Figure 5.25:  First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 

Classification Report 
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Figure 5.26: First row from left B0 size 32x32 and 64x64 and second row B1 size 

64x64 and 128x128 respectively 
 

 

 
Figure 5.27: ROC curve of B0 of size 32x32 
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Figure 5.28: ROC curve of B0 of size 64x64 

 

 

 
Figure 5.29: ROC curve of B1 of size 64x64 
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Figure 5.30: ROC curve of B1 of size 128x128 

 

Learning Curves 

 

 

 
Figure 5.31:   From left B0 size 32x32 and second row 64x64 respectively 
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Figure 5.32: From left B1 size 64x64 and second row 128x128 respectively 

 

 Performance Analysis: 

The confusion matrix is a valuable tool for evaluating the performance of a multiclass 

model by displaying the class-wise distribution of predictions. The diagonal elements 

represent correctly predicted samples, and the higher the values on the diagonal, the 

better the model's performance. The off-diagonal elements indicate misclassifications 

between classes, with higher values indicating more frequent misclassifications. A 

well-performing model will have high diagonal values and low off-diagonal values. If 

the off-diagonal values are high, further investigation is needed to improve the model's 

performance. The confusion matrix is used to generate a classification report that 

includes precision, recall, and F1 score. These metrics provide insights into the impact 

of class imbalance and overfitting on the model's performance. In the case of smaller 

sizes, the model may experience confusion due to blurring effects, resulting in similar 

classes being misclassified. However, as the size increases, the model learns complex 

features and patterns, leading to better predictions. This observation is supported by the 

learning curves, which show improved convergence and reduced overfitting with larger 

sizes, indicating a better fit of the model. 

 

5.8 Method 2 Comparison Analysis:  
 

The only difference here is the better accuracy and classification by the model. 

Compared to Method 1, this method has a good strategy for overfitting reduction as the 
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AUC got better. Learning curves are also comparatively better. Accuracy improved but 

as it is said earlier, the parameters are increased. A detailed comparison of method 2 is 

given below:  

 

Comparison of V1 and V2 with Method 2: 

Table 5.18: Comparison of EfficientNet V1 and V2 with Method 2 

 

Model B0 B1 B0 B1 

Version V1 V2 

Image 

Dimensions 

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 

Accuracy 

(%) 

89.0518 96.16 94.786 98.89 90.60 96.67 96.32 99.12 

Testing Time 

(ms) 

3.99 3.91 4.35 4.87 3.99 4.55 7.84 5.20 

Training Time 

(minutes) 

6.06 6.38 6.98 7.84 6.33 6.92 6.79 4.19 

Trainable 

Parameters 

962,423 962,423 962,423 962,423 962,423 962,423 962,423 962,423 

Total 

Parameters 

4,969,395 4,969,395 7,475,031 7,475,031 6,820,551 6,820,551 7,821,899 7,821,899 

 

While comparing V1 with V2, we can observe that we got better accuracy with better 

computational cost. So, if the choice must be made one can opt for V2 instead of moving 

to B1 of V1 from B0 of V1. 

 

Comparing Method 1 with Method 2 of EfficientNet 

Method 1 

Model B0 B1 B0 B1 

Version V1 V2 

Image 

Dimensions 

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 

Accuracy 

(%) 

86.13 93.95 93.14 98.15 87.93 95.44 95.62 99.16 

Testing Time 

(ms) 

4.15 4.51 4.15 5.12 4.07 4.27 4.15 5.36 

Training Time 

(minutes) 

5.878 6.898 6.828 7.96 6.425 6.796 6.741 7.706 

Trainable 

Parameters 

7,686 7,686 7,686 7,686 7,686 7,686 7,686 7,686 

Total 

Parameters 

4,014,658 4,014,658 6,520294 6,520,294 5,865,814 

 

5,865,814 

 

6,867,162 6,867,162 
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By adding a drop out, overfitting has reduced significantly. Method 2 has better 

Accuracy but, the parameters are now increased as new layers are being added. Whereas 

method 1 has poor ROC curves and by incorporating new layers it has been improved.   

5.9 MobileNet Results and Comparison Analysis 

 Overall Timing Comparison: 

Table 5.20: MobileNet -V1 Timing Results Comparison 

 

 

 

 

Method 2 

Table 5.19:  Method 1 and 2 comparisons for both versions of EfficientNet 

Model B0 B1 B0 B1 

Version V1 V2 

Image 

Dimensions 

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 

Accuracy 

(%) 

89.0518 96.16 94.786 98.89 90.60 96.67 96.32 99.12 

Testing Time 

(ms) 

3.99 3.91 4.35 4.87 3.99 4.55 7.84 5.20 

Training Time 

(minutes) 

6.06 6.38 6.98 7.84 6.33 6.92 6.79 4.19 

Trainable 

Parameters 

962,423 962,423 962,423 962,423 962,423 962,423 962,423 962,423 

Total 

Parameters 

4,969,395 4,969,395 7,475,031 7,475,031 6,820,551 6,820,551 7,821,899 7,821,899 

Model-V1 

 

Size 

(Height × Width × 

channel) 

Training Time 

(s) 

 

 

Testing Time 

(s) 

 

V1 

32×32×3  4195 39.5 

64 × 64×3 4304 41.5 

128 × 128×3 4500 43.2 

224 × 224×3 4895 48.5 
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Table 5.21:  MobileNet-V2 Timing Results Comparison 

 

Table 5.22: MobileNet-V3_Small Timing Results Comparison 

 

Average Timing Analysis 

 

Table 5.23: MobileNet-V1 Average Time Comparison 

 

 

Model-V2 

 

Size 

(Height × Width × 

channel) 

 

Training Time 

(s) 

 

 

Testing Time 

(s) 

 

V2 

32×32×3  3650 37.4 

64 × 64×3 4120 37.8 

128 × 128×3 4460 39.2 

224 × 224×3 4790 53.5 

Model-V2 

Size 

(Height × Width × 

channel) 

Training Time 

(s) 

 

 

Testing Time 

(s) 

 

V3 

32×32×3  3855 37.3 

64 × 64×3 4001 39.5 

128 × 128×3 4293 41.6 

224 × 224×3 5201 50.8 

Model 

Size 

(Height × Width) 

Average 

Training Time 

per Epoch 

(minutes) 

Average Testing 

Time per Image 

(Milli-seconds) 

V1 

32×32×3 6.99 1.59 

64 × 64×3 7.17 1.67 

128 × 128×3 7.52 1.74 

224 × 224×3 8.15 1.95 
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Table 5.24: MobileNet-V2 Average Time Comparison 

 

Table 5.25: MobileNet-V3_Small Average Time Comparison 

 

 Accuracy Comparison 

Table 5.26: MobileNet -V1 Accuracy comparison 

 

 

 

 

 

Model 

Size 

(Height × Width) 

Average 

Training Time 

per Epoch 

(minutes) 

Average Testing 

Time per Image 

(Milli-seconds) 

V2 

32×32×3  5.75 1.50 

64 × 64×3 6.86 1.52 

128 × 128×3 7.42 1.58 

224 × 224×3 7.94 2.15 

Model 

Size 

(Height × Width) 

Average 

Training Time 

per Epoch 

(minutes) 

Average Testing 

Time per Image 

(Milli-seconds) 

V3- Small 

32×32×3  5.62 1.53 

64 × 64×3 6.66 1.61 

128 × 128×3 7.15 1.63 

224 × 224×3 8.66 2.01 

Model 
Size 

(Height × Width) 

Accuracy 

(%) 

V1 

32×32 99.65 

64 × 64 99.91 

128 × 128 99.90 

224 × 224 99.97 
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Table 5.27: MobileNet-V2 Accuracy comparison 

 

Table 5.28: MobileNet-V3_Small Accuracy comparison 

 

Table 5.29: Trainable Parameters comparison 

 

 

 Model size, computational cost, and accuracy Analysis: 

The combined analysis, considering both the comparison of computational parameters 

(computation time, expenses, model size) and the training/testing times: 

The results presented indicate the need to strike a balance between various parameters 

when selecting a model. By increasing the model size, computational time and expenses 

tend to rise, but with the potential for improved accuracy. There is a trade-off between 

computational costs and accuracy, and it becomes crucial to carefully consider these 

factors. 

Model 
Size 

(Height × Width) 

Accuracy 

(%) 

V2 

32×32 98.88 

64 × 64 99.86 

128 × 128 99.88 

224 × 224 99.92 

Model 
Size 

(Height × Width) 

Accuracy 

(%) 

V3 

32×32 92.85% 

64 × 64 99.81% 

128 × 128 99.90% 

224 × 224 99.97% 

Version V1 V2 V3_Small 

Parameters Size (MB) 16.23 MB 13.50 MB 9.57 MB 

Trainable Parameters 4,231,976 3,504,872 2,542,856 

Total Parameters 4,253,864 3,538,984 2,554,968 
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Comparing MobileNet-V1, MobileNet-V2, and MobileNet-V3, MobileNet-V2 

emerges as a balanced choice. It offers a compromise between computational cost, time, 

and model size. With a smaller size of 13.50 MB and a lower number of trainable 

parameters compared to MobileNet-V1, MobileNet-V2 provides efficient resource 

utilization. MobileNet-V2 achieves high accuracy across all image sizes, with the 

largest size (224x224) achieving an impressive accuracy of 99.92%. 

MobileNet-V3_Small, with its lower computational cost and potentially faster 

processing time, presents an alternative option. It has a smaller model size of 9.57 MB 

and lower trainable parameters compared to MobileNet-V2. Although it sacrifices a bit 

of accuracy, particularly for smaller image sizes, it offers acceptable accuracy levels 

for most practical applications. 

On the other hand, MobileNet-V1 boasts higher accuracy, especially for larger image 

sizes, but comes with a larger model size of 16.23 MB and higher computational 

requirements. MobileNet-V1 may be preferred when maximum accuracy is critical and 

computational constraints are not a significant concern. 

Considering the training and testing times, MobileNet-V2 demonstrates faster training 

times compared to MobileNet-V1 and MobileNet-V3, across various image sizes. 

MobileNet-V2 consistently outperforms the other models in terms of training 

efficiency. When it comes to testing time, MobileNet-V1 and MobileNet-V2 have 

similar performance, with MobileNet-V2 slightly edging out in some cases. MobileNet-

V3 generally exhibits slightly higher testing times. 

 

Conclusion 

Overall, MobileNet-V2 appears as the most balanced and computationally efficient 

choice among the three models. It offers a compromise between accuracy, 

computational costs, time, and model size. MobileNet-V3_Small can be a suitable 

alternative if a slight decrease in accuracy is acceptable in exchange for lower 

computational requirements. MobileNet-V1, with its larger model size and 

computational demands, is preferred when maximum accuracy is crucial, particularly 

for larger image sizes. 
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5.10 MobileNetV1 (RGB) 

 Performance Metrics Version 1 

Confusion Matrix 

 

 

Figure 5.33: First column from left V1 size 32×32 and 64×64 and second column V1 

size 128×128 and 224×224 respectively 

 

Classification Report: 

 

Figure 5.34: MobileNetV1 32x32 
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Figure 5.35: MobileNetV1 64x64 

 

Figure 5.36: MobileNetV1 128x128 

 

Figure 5.37: MobileNetV1 224x224 

 

 

Learning Curves: 

 



104 

 

 
Figure 5.38: Top row size 32×32, Bottom row size 64×64 

 

 

 
 

Figure 5.39: Top row size 128×128, Bottom row size 224×224 
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5.11   MobileNetV2 (RGB) 

 Performance Metrics Version: 2 

Confusion matrix 

 

 
 

 

Figure 5.40: First column from left V2 size 32×32 and 64×64 and second column V2 

size 128×128 and 224×224 respectively 

 

Classification Report: 

 
Figure 5.41:  MobileNetV2 32x32 
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Figure 5.42:  MobileNetV2 64x64 

 
Figure 5.43:  MobileNetV2 128x128 

 

Figure 5.44: MobileNetV2 224x224 

 

 

Learning Curves: 
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Figure 5.45: Top row size 32×32, Bottom row size 64×64 

 

 

 

 

 
Figure 5.46: Top row size 128×128, Bottom row size 224×224 
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5.12    MobileNetV3_Small (RGB) 

    Performance Metrics Version: 3  

Confusion matrix 

 

 

 
Figure 5.47: First column from left V2 size 32×32 and 64×64 and second column V2 

size 128×128 and 224×224 respectively 

 

Classification Report: 

 

 

Figure 5.48: MobileNetV3_Small 32x32 
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Figure 5.49:  MobileNetV3_Small 64x64 

 

Figure 5.50:  MobileNetV3_Small 128x128 

 

Figure 5.51:  MobileNetV3_Small 224x224 

 

Learning Curves: 
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Figure 5.52: Top row size 32×32, Bottom row size 64×64 
 

 

 

 

Figure 5.53: Top row size 128×128, Bottom row size 224×224 
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5.13   Proposed System Comparison with state-of-art Models  
 

5.14   Proposed Model Results 
 

AlexNet, ResNet18, VGG16, EfficientNet are implemented for comparison with state 

of art models.  

Table 5.30: Hyperparameters 
 

 

 

EfficientNet here is implemented using Method -2 discussed in this work as it got better 

results.  

 

Table 5.31: EfficientNet B0 V1 Results 
 

 

 

 

Batch Size 

 

Learning Rate 

 

Epochs 

 

 

Optimizer 

 

 

Criterion 

16 

 

 

0.001 

 

 

10 

 

Adam 

 

Cross Entropy 

Loss 

Model 

Size 

(Height 𝒙Width) 

Average 

Training 

Time per 

epoch 

(minutes) 

 

Average 

Testing 

Time per 

image 

(ms) 

 

Accuracy 

(%) 

Trainable 

Parameters 

Parameters 

Size 

(MB) 

Total Size 

(MB) 

EfficientNet 

B0-V1 

 

186𝑥186 

 

9.538 

 

5.766 

 

99.57 

 

962,423 

 

18.96 

 

178.10 
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Figure 5.54: Learning curves of EfficientNet B0 Version 1 

 

                                                   Performance Metrics  

 

 
Figure 5.55: Classification Report (on right) and Confusion Matrix (on left) 

                            

 
Figure 5.56: ROC Curve 
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Table 5.32: AlexNet Results 

 

 
Figure 5.57: Classification Report (on right) and Confusion Matrix (on left)The 

classification report of AlexNet has shown miss-classification for class F, class, Q, 

and class S. The model is unable to detect these classes. 

 
Figure 5.58: Learning Curves 

 

 

    Architecture differences 

AlexNet has a different architecture compared to other CNNs like EfficientNet, 

ResNet18, and VGG16. It has fewer layers and may not have as much capacity to learn 

complex patterns from the dataset. It's possible that the other CNN architectures are 

better suited to the dataset in terms of their capacity to capture the patterns present in 

the ECG signal images in the dataset used for this work. 

Model 

Size 

(HeightxWidth) 

Average 

Training 

Time per 

epoch 

(mins) 

 

Average 

Testing 

Time per 

image 

(ms) 

 

Accuracy 

(%) 

Trainable 

Parameters 

Parameters 

Size 

(MB) 

Total Size 

(MB) 

AlexNet 

 

186𝑥186 

 

6.86 

 

4.51 

 

78.2 

 

24,582 

 

217.49 

 

223.09 
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Table 5.33: ResNet18 Results 
 

 

                                      

 
Figure 5.59: Learning Curves 

                                       

 

        
Figure 5.60: Confusion Matrix 

 

Model 

Size 

(HeightxWidth) 
Average 

Training Time 

per epoch 

(mins) 

 

Average 

Testing 

Time per 

image 

(ms) 

 

Accuracy 

(%) 

Trainable 

Parameters 

Parameters 

Size 

(MB) 

Total Size 

(MB) 

ResNet

18 

 

186𝑥186 

 

7.97 

 

5.20 

 

99.33 

 

3,078 

 

42.62 

 

95.62 
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Figure 5.61: Classification Report 

 
Figure 5.62: ROC Curve 

 

 

Table 5.34: VGG16 Results 

 

 

 

Model 

Size 

(HeightxWidth) 

Average 

Training 

Time per 

epoch 

(mins) 

 

Average 

Testing 

Time per 

image 

(ms) 

 

Accuracy 

(%) 

Trainable 

Parameters 

Parameters 

Size 

(MB) 

Total Size 

(MB) 

VGG16 

 

186𝑥186 

 

12.81 

 

8.024 

 

98.70 

 

24,582 

 

512.25 

 

661.95 
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Figure 5.63: Learning Curves 

                                      

 
Figure 5.64: Confusion Matrix (on left) and Classification report (on right) 

 

                                                              

 
 

Figure 5.65: ROC Curve 

False Positive Rate 
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5.15   Comparison Table: 

Table 5.35: Comparison of proposed methodology with existing models 

 

 

 

 

                                                 
4 ECG heartbeat classification using Wavelet transform and different Neural network Architectures. 
5 ECG Classification for Detecting ECG Arrhythmia Empowered with Deep Learning Approaches 
6 ECG heartbeat classification using deep transfer learning with convolutional neural network and STFT 

technique. 

 

Specifications 

 

Paper 14 [29] 

 

 

Paper 25 [25] 

 

Paper 36 [38] 

 

Proposed 

Goal Arrhythmia Classification Arrhythmia Detection Arrhythmia Detection Arrhythmia Classification 

Approach Transfer learning with fine 

tuning 

Transfer learning as a 

feature extractor 

 

Transfer learning with 

fine tuning 

Transfer Learning as a 

feature extractor  

Dataset MIT BIH Arrhythmia 

Database 

MIT BIH Arrhythmia 

Fused with Real Time Data 

MIT BIH Arrhythmia  

Database 

MIT BIH Arrhythmia 

Database and 

PTBDB 

Classes N S V F Q N S V F Q N S V F F M N Q S V 

Model  vgg16 

 vgg19 

 resnet50 

 resnet50 V2 

 EfficientNet B0 

 V1,ConvLSTM 

 Xception 

 Inception V3 

 Inception ResNet 

V2 

 

 

 ResNet50 

 AlexNet 

 SqueezeNet 

 ResNet18  AlexNet 

 ResNet18 

 Vgg16 

 EfficientNet B0-V1 

 

Channels 3 - 1 1 

Accuracy (%) 99.20, 99.20, 99.40, 97.60, 

96.20, 96.15, 94.40, 85.60, 

48.60 

91 , 98.8, 90.08 90.8                   78.2 

99.33 

98.70 

99.57 

respectively 

 

Scope Misclassification in 

ConvLSTM 

 

Computational 

Complexities 

 

Lack of standard 

classes reporting 

Imbalance 



118 

 

 

 Analysis: 

If we make a comparison of our proposed models (AlexNet, ResNet18, VGG16, and 

EfficientNet-B0 version 1) with implementations mentioned in the table above, we can 

conclude that our ResNet18 has out-performed paper 3 in the table. While EfficientNet 

B0 Version 1 out-performed paper 1.  Moreover, for the classification of N, V, S, F, 

and Q classes the models implemented in this work are a better choice which can further 

be used to build hardware.   

The hardware implementations given in the literature review chapter can be 

implemented using these proposed models which give better accuracy. Further analysis 

can be performed which can save computational cost, is more reliable and can be 

transformed into a lightweight, portable ECG Arrhythmia Classifier.  
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6 Chapter 6 

Conclusion 

6.1  Conclusion 
In this work, multiple Convolutional Neural Networks are implemented in the search 

of finding a hardware friendly architecture. CNN Architecture is selected which showed 

very good accuracy without much compromise on the computational ability. 

Techniques have been mentioned in the prior section that how EfficientNet Method 2 

showed better results than Method 1. While our proposed models outperformed other 

state-of-art models. The highest accuracy 99.57% is achieved by a model is of 

EfficientNet B0 V1 of size 186x186 whereas ResNet18 showed 99.33% accuracy 

having size 186x186. While EfficientNet V2 of size 128x128 showed 99.12% and 

99.16% accuracy for Method-1 and Method-2 respectively. At this point accuracy is 

not the only concern but a bigger concern is the computational cost, parameters, and 

model size. ResNet18 has lowest trainable parameters which are only 3,078. But time 

it took is slightly more than most of other models implemented. The lowest time taken 

by a model to train, and test is EfficientNet B0 V1 of 32x32 size which only took 

training time of 5.876 minutes on average. While EfficientNet B0 V1 Method 1 with 

64x64 has 3.91 average testing time. As the details of all the models are given in this 

report, one can decide to move forward with the most suitable model for their 

environment and carry this work further. Due to limited resources in real scenarios, 

these computationally inexpensive models can be implemented on hardware. 

While MobileNet architecture that is being trained with fine tuning has proved to be 

fruitful. The accuracy achieved is remarkable. MobileNet V3_small has got better 

accuracy than other versions as well as it has provided less computational time. On the 

other hand, MobileNet V1 has larger model size and computational requirements. 

6.2 Limitations 

The main limitation of this work is data imbalance, it would be better to come up with 

a data augmentation technique or build ECG Images from scratch which must not 

compromise on information pruning and leads to better results and reduction of 

overfitting unlike in this work. More sizes can be tested with varying batch sizes and 

trained for higher number of epochs as the GPU resources were limited in this work, so 

we only trained for 10 epochs. Other techniques like scheduler can be incorporated 

whereas one can also modify layers or vary dropout probability to observe the behavior. 

In future, MobileNet can be implemented on grayscale images for analyzing 

performance.  

6.3 Challenges and Future Direction 

In future, a decision can be made on which classifier is best suited for the application. 

Since there is a trade-off between accuracy and size. If the goal is to design a hardware 

or propose a hardware architecture, EfficientNet and MobileNet are more suitable for 

that. With one cannot deny the fact that different applications have different architecture 

more suited to them. The inconsistency of the classes in MIT BIH Arrhythmia needs to 
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be studied further. Data imbalance needs to be addressed. Data augmentation can be 

performed in a more sophisticated way as ECG Signal is a crucial signal, and 

information can easily be pruned. 

This work can be extended to Hardware and Software Co-Design which entails 

compressing and compiling the model into a set of executables. The Deep Learning 

Processing Unit (DPU) can be then implemented on the FPGA. Finally, the model can 

be deployed on the FPGA for inference. 
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7 Appendix A 

 

 

 

Grayscale Resized images: The images are resized and converted to single channel 

grayscale. The blurred effect is due to small resolution of an image. 

 

                                   
Figure A.7.1: Image resolution 32x32        Figure A.7.2: Image resolution 128x128 

                                        

                                                      
Figure A.7.3: Image resolution 64x64        Figure A.7.4: Image resolution 186x186 
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Appendix B 

             

        
                               

 

Figure B.7.1: testset [324] 

      
Figure B.7.2: testset[111] 

 

     
Figure B.7.3: testset[4] 

 

           

                       
Figure B.7.4: testset[23855] 
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Figure B.7.5: testset[22946] 

  

                  

                     
 

Figure B.7.6: testset[21948] 
 

             

                           
 

Figure B.7.7: testset[2346] 
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Appendix C 

For example, replacing the first layer.  

 

With the following layer: 

 

And then copy the sum (in the channel axis) of the weights to the new layer, for 

example, the shape of the original weights was: 

Modified: 

 

The similar thing can be done using this approach: 

First Layer: 

 

 

 

 

 

Update state_dict:  

 

Modified Layer: 

 

 
 

In this way the channels are modified from 3 to 1.  

The simplest way that timm offers is:  

 

 

model.conv1.weight.data = model.conv1.weight.data.sum(axis=1).reshape(64, 1, 7, 7) 

torch.Size([64, 3, 7, 7]) 

(conv1): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) 

print(model.conv_stem) 

>>Conv2dSame(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) 

model.conv_stem = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) 

model.state_dict()['conv_stem.weight'] = 

model.state_dict()['conv_stem.weight'].sum(dim=1, keepdim=True) 

print(model.conv_stem) 

 

>>Conv2dSame(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) 

model = timm.create_model(CFG.model_name,pretrained=True, in_chans=1)  
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Appendix D 

 

 

 

 

 
Figure D.7.1: ANSI/AAMI standards in ECG Class Interpretation [58] 

 

 

 

Table D.7.1:  Versions of environments used in this work 

 

                                                                  Versions 

 

                 Python            PyTorch           TensorFlow           Keras          MATLAB  

 

  

                 3.9.16           2.0.0+cu118               2.11.0                 2.11.0             2018a 
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8 Appendix E 

 

Python Programming Language 

Python is a versatile and popular programming language with a wide range of uses in 

numerous industries. It appeals to both beginners and experts due to its simplicity, 

readability, and usability. It is an interpretive, object-oriented, and dynamically typed 

high-level language.    

 

MATLAB  

The name of a programming environment, MATLAB, which is short for "matrix 

laboratory," refers to the program's primary use of matrices and arrays. It offers a 

comprehensive collection of built-in tools and routines that may be utilized to tackle a 

variety of computational issues. 

Users can interactively explore and analyze their data using MATLAB's robust 

graphical user interface (GUI). It can interface with other languages like C, C++, and 

Python and supports a variety of data kinds like numerical, text, and image data. 

  

TensorFlow and Keras Framework 

TensorFlow is an open-source machine learning framework made by Google that is 

used for many deep learning methods to implement neural networks. On top of that lies 

Keras which is an API that contains all the models for classification, regression which 

allows easier implementation of the neural networks. 

 

PyTorch Framework 

Based on the Torch framework, PyTorch is an open-source library. This robust deep 

learning framework is a favorite among programmers and academics because it 

provides a wealth of capabilities, great GPU acceleration support, and an intuitive API.  

It is largely created by Facebook's AI Research lab (FAIR), and deep learning models 

are produced using it frequently. Dynamic computation graphs, as opposed to static 

computation graphs used in other deep learning frameworks, allow for faster 

experimentation, better flexibility, and simpler debugging. PyTorch enables developers 

to create and train neural networks utilizing these dynamic computation graphs. We are 

using PyTorch version 2.0.0+cu118, where "cu118" refers to CUDA version 11.1.8, a 

patch version of CUDA 11.1. Version numbers for PyTorch are often combined with 

the relevant CUDA version number to create the version names. 

 

Google Collaboratory Notebook 

For launching and executing Python code on the cloud, particularly for data science and 

machine learning activities, Google Colab offers a potent and simple-to-use platform. 

While it does have certain restrictions in that it only offers a small number of computing 

resources. When working with huge datasets or complicated models, this might be a 

bottleneck and force customers to either pay for more resources or migrate to a different 
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platform entirely. We trained our networks using the GPU resources offered by Google 

Colab. Depending on its availability, the GPU used on Google Colab varies from 

session to session. 

The GPU available on Google Colab varies from session to session depending on its 

availability. These are the GPU available in Google Colab:  

 

 NVIDIA Tesla K80 

 NVIDIA Tesla T4 

 NVIDIA P4 

 NVIDIA P100 

 NVIDIA V100 

We have used standard package that comes with Tesla T4 GPUs usually.  
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9 Appendix F 

 

 

1  Visualize Ground Truth and class prediction probabilities  

 

def view_classify (image, ps, label):  

class_name = ['F', 'M' ,'N', 'Q', 'S', 'V']     

classes = np.array(class_name) 

ps = ps.cpu().data.numpy().squeeze() 

image = image.permute(1,2,0) 

ax2.barh(classes, ps) 

    Function call 

view_classify(image, ps.squeeze(0), label) 

 

 

Figure F.7.1:  Function to visualize class prediction probabilities 

 

𝟐      Class CFG 

class CFG: 

epochs= number of epochs 

lr= learning rate 

batch = batch size for dataset 

size= Input image size  

model = model name that is imported  

train_path= dataset directories for loading training data 

test_path= dataset directories for loading testing data 
 

Figure F.7.2:   Configuration class 

 

 

𝟑   Class ECGTrainer  

 

class ECGTrainer(): 

Initialize class instance and its parameters criterion, optimizer, scheduler  

     

    def __init__(self, criterion=None, optimizer=None, schedular=None): 

        self.criterion = criterion 

        self.optimizer = optimizer 

        self.schedular = schedular 

        self.train_loss = [] 

        self.train_acc = [] 

        self.valid_loss = [] 

        self.valid_acc = [] 
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   Function train_batch_loop 

 

    def train_batch_loop(self, model, trainloader): 

        train_loss = 0.0 

        train_acc = 0.0 

         

        for images, labels in tqdm(trainloader):  

            images = images.to(device) 

            labels = labels.to(device) 

             

            logits = model(images) 

            loss = self.criterion(logits, labels) 

             

            self.optimizer.zero_grad() 

            loss.backward() 

            self.optimizer.step() 

             

            train_loss += loss.item() 

            train_acc += accuracy(logits, labels) 

             

        return train_loss / len(trainloader), train_acc / len(trainloader)  

 

   Function valid_batch_loop 

 

    def valid_batch_loop(self, model, validloader): 

        valid_loss = 0.0 

        valid_acc = 0.0 

         

        for images, labels in tqdm(validloader): 

            images = images.to(device)  

            labels = labels.to(device) 

             

            logits = model(images) 

            loss = self.criterion(logits, labels) 

             

            valid_loss += loss.item() 

            valid_acc += accuracy(logits, labels) 

             

        return valid_loss / len(validloader), valid_acc / len(validloader) 

            
 
Function to fit model to the dataset 
 

    def fit(self, model, trainloader, validloader, epochs): 

        valid_min_loss = np.Inf  

         

        for i in range(epochs): 

            model.train() 

            avg_train_loss, avg_train_acc = self.train_batch_loop(model, trainloader) 
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            model.eval() 

            avg_valid_loss, avg_valid_acc = self.valid_batch_loop(model, validloader) 

             

            if avg_valid_loss <= valid_min_loss: 

                print("Valid_loss decreased {} --> {}".format(valid_min_loss, avg_valid_loss)) 

                torch.save(model.state_dict(),' modelWeights_path.pt') 

                valid_min_loss = avg_valid_loss 

 

            self.train_loss.append(avg_train_loss) 

            self.train_acc.append(avg_train_acc) 

            self.valid_loss.append(avg_valid_loss) 

            self.valid_acc.append(avg_valid_acc) 

 

            print("Epoch : {} Train Loss : {:.6f} Train Acc : {:.6f}".format(i+1, avg_train_loss, 

avg_train_acc)) 

            print("Epoch : {} Valid Loss : {:.6f} Valid Acc : {:.6f}".format(i+1, avg_valid_loss, 

avg_valid_acc)) 
 
 

 

 

Figure F.7.3: ECG trainer class with multiple functions to train and evaluate model 
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