
i

Architectural Implementation of Physiological

Signals Analysis

Final Year Project Report

Presented

 By

Javeria Ehsan

CIIT/FA19-EEE-023/ISB

Muzammil Arif

CIIT/FA19-EEE-002/ISB

In Partial Fulfillment

of the Requirement for the Degree of

Bachelors of Science in Electrical (Electronics) Engineering

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COMSATS UNIVERSITY ISLAMABAD

JULY 2023

Architectural Implementation of Physiological

Signals Analysis

Final Year Project Report

Presented

by

Javeria Ehsan

CIIT/FA19-EEE-023/ISB

Muzammil Arif

CIIT/FA19-EEE-002/ISB

In Partial Fulfillment

of the Requirement for the Degree of

Bachelors of Science in Electrical (Electronics) Engineering

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COMSATS UNIVERSITY ISLAMABAD

JULY 2023

ii

Declaration

We, hereby declare that this project is not copied from any

source. It is further declared that we have developed this

project and the report entirely on the basis of our personal

efforts made under the sincere guidance of our supervisor.

The work presented in this report has not been submitted

before in any other University or Institute of learning, if

found we shall stand responsible.

 Signature: ______________

 Name: Javeria Ehsan

 Signature: ______________

 Name: Muzammil Arif

COMSATS UNIVERSITY ISLAMABAD

 JULY 2023

iii

 Architectural Implementation of

Physiological Signals Analysis
An Undergraduate Final Year Project Report submitted to the

Department of

ELECTRICAL AND COMPUTER ENGINEERING

As a Partial Fulfillment for the award of Degree

Bachelors of Science in Electrical (Electronics) Engineering

 By

Name Registration Number

Javeria Ehsan CIIT/FA19-EEE-023/ISB

Muzammil Arif CIIT/FA19-EEE-002/ISB

Supervised by

Dr. M. Faisal Siddiqui

Tenured Associate Professor

 Dr. Ghufran Shafiq

 Assistant Professor

Department of Electrical and Computer Engineering

CU Islamabad

COMSATS UNIVERSITY ISLAMABAD

JULY 2023

iv

Final Approval
This Project Titled

Architectural Implementation of Physiological Signals Analysis

Submitted for the Degree of

Bachelors of Science in Electrical (Electronics) Engineering

by

Name Registration Number

Javeria Ehsan CIIT/FA19-EEE-023/ISB

Muzammil Arif CIIT/FA19-EEE-002/ISB

has been approved for

COMSATS UNIVERSITY ISLAMABAD

_____________________ _____________________

Supervisor Co-Supervisor

Dr. M. Faisal Siddiqui Dr. Ghufran Shafiq

Tenured Associate Professor Assistant Professor

______________________ ______________________

Internal Examiner-1 Internal Examiner-2

Dr. Dilshad Sabir Dr. Fasih Uddin Butt

Assistant Professor Professor

External Examiner

Dr. M. Naeem Ali Bhatti,

Tenured Associate Professor,

QAU, Islamabad

Head of Department of Electrical and Computer Engineering

v

Dedication

This study is wholeheartedly dedicated to heart patients for their everyday struggle.

Your strength and resilience inspire us all to keep pushing for more work to bring better

treatments, care, and awareness. Your unwavering spirit in the face of adversity is a

testament to the power of the human heart. May this work serve as a small reminder

that we stand with you every step of the way.

vi

Acknowledgements

First and foremost, all our praise and thanks be to Allah. We would like to express our

thankfulness for the wisdom and knowledge Allah has bestowed upon us. As we

complete this phase of our academic journey, we acknowledge that all our achievements

come from Allah. May we always be mindful of His infinite blessings.

We offer our deepest gratitude to our parents who taught us the philosophy of hard

work, honesty, and unflinching faith in Allah Almighty.

We extend our gratitude to our respectful teachers and mentors Dr. Muhammad Faisal

Siddiqui and Dr. Ghufran Shafiq for their guidance and support throughout this project.

Your unwavering commitment to our success and your tireless efforts to ensure that we

were able to navigate the challenges we faced are a testament to your dedication as an

educator. Without your guidance, we would not have been able to achieve the level of

success we had. Your valuable feedback on our work proved to be instrumental to our

success.

Finally, we are thankful to everyone who happened to be of great help in one way or

the other.

Javeria Ehsan

Muzammil Arif

vii

Table of Contents

1 Chapter – 1 .. 1

Introduction ... 1

1.1 Background: ... 1

1.2 Rare and Deadly Arrhythmias: ... 1

1.3 Research Aim ... 2

1.4 Limitations: ... 2

1.5 Problem Statement:.. 2

1.6 Proposed Solution: ... 2

1.7 Broader Impact (UN Sustainable Development Goals): 3

1.6.1 Targeted Sustainable Development Goals: 3

1.6.2 Potential Mapping: ... 4

1.7 Organization of the Report: .. 5

2 Chapter-2 .. 6

Literature Review of Automatic Arrhythmia Detection 6

2.1 Background .. 6

2.2 ECG Signal Processing and Feature Extraction 6

2.3 Classification Algorithms .. 9

2.4 Newly introduced Hardware Efficient Architectures 11

 EfficientNet .. 12

 MobileNet ... 12

2.5 Transfer Learning ... 12

2.6 Existing Hardware Solutions ... 13

2.7 Critical Analysis: ... 17

3 Chapter – 3 .. 18

Embarking into the Depths: Exploring Deep Learning, CNNs,
and Multiple Architectures ... 18

viii

3.1 End-To-End Learning ... 18

3.2 Deep Learning .. 18

3.3 Neural Networks ... 19

 Convolutional Neural Network (CNN) .. 21

 Transfer Learning ... 33

 ECG Databases ... 55

4 Chapter – 4 .. 56

Methodology .. 56

4.1 Experimental Setup .. 56

4.2 Implementation ... 57

 ECG Dataset Preparation: .. 57

 Model Selection: .. 58

 Designing of CNNs: ... 59

 Implementation of CNN Architectures .. 62

 Preprocessing .. 63

 Training and Evaluation ... 68

5 Chapter 5 ... 72

Results and Analysis/Comparison ... 72

5.1 EfficientNet (Method 1) Results and Comparison 72

 Overall Timing Comparison ... 72

 Average Time Comparison .. 73

 Accuracy Comparison .. 73

 Model Parameters and Size .. 74

 Model size, computational cost, and accuracy analysis: 74

5.2 EfficientNet (Method 1) Version 1 ... 75

 Performance Metrics .. 75

5.3 EfficientNet (Method 1) Version 2 ... 79

 Performance Metrics .. 79

 Performance Analysis: ... 83

5.4 Method 2 Comparison Analysis .. 84

ix

5.5 Modified EfficientNet (Method 2) Results and Comparison ... 84

 Analysis: ... 86

 Comparison with Method 1 .. 87

5.6 EfficientNet (Method 2) Version 1 ... 87

 Performance Metrics .. 87

5.7 EfficientNet (Method 2) Version 2 ... 91

 Performance Metrics .. 91

 Performance Analysis: ... 95

5.8 Method 2 Comparison Analysis: ... 95

5.9 MobileNet Results and Comparison Analysis 97

 Overall Timing Comparison: ... 97

 Accuracy Comparison .. 99

 Model size, computational cost, and accuracy Analysis: 100

5.10 MobileNetV1 (RGB) ... 102

 Performance Metrics Version 1 .. 102

5.11 MobileNetV2 (RGB) ... 105

 Performance Metrics Version: 2 .. 105

5.12 MobileNetV3_Small (RGB) .. 108

 Performance Metrics Version: 3 .. 108

5.13 Proposed System Comparison with state-of-art Models

 111

5.14 Proposed Model Results ... 111

 Architecture differences ... 113

5.15 Comparison Table: .. 117

 Analysis: ... 118

6 Chapter 6 ... 119

Conclusion ... 119

6.1 Conclusion ... 119

7 Appendix A ... 121

x

Appendix B .. 122

Appendix C .. 124

Appendix D .. 125

8 Appendix E.. 126

9 Appendix F .. 128

xi

List of Acronyms

MIT BIH………...............Massachusetts Institute of Technology-Beth Israel Hospital

PTB…..………………………………………Physikalisch-Technische Bundesanstalt

CNN…………………………………………………..Convolutional Neural Network

ECG……………………………………………………………......Electrocardiogram

CVDs…………………………..…………………………….Cardiovascular Diseases

DNN…………………………………………………………….Deep Neural Network

SGDs………………………………………………….Sustainable Development Goals

FPGA…………………………………………………Field Programmable Gate Array

DPU……………………………………………………Deep Learning Processing Unit

CPVT………………………Catecholaminergic Polymorphic Ventricular Tachycardia

ARVD/C………………...Arrhythmogenic right ventricular dysplasia/cardiomyopathy

ROC……………………………………………………….....Receiver operating curve

VT………………………………………………………...........Ventricular tachycardia

VF……………………………………………………………….Ventricular fibrillation

NAS………………………………………………………..Neural Architecture Search

CCE…………………………………………………………Categorical Cross Entropy

SCCE………………………………………………..Sparse Categorical Cross Entropy

SE…………………………………………………………….........Squeeze and Excite

GPU………………………………………………………….Graphics processing unit

TP…………………………………………………………………………True positive

TN………………………………………………………………………..True negative

FP………………………………………………………………………...False positive

FN…………………………………………………………………..........False negative

xii

List of Figures

Figure 1.1: UN SDGs [1] .. 3

Figure 2.1: Denoising using EMD. Error! Bookmark not defined.
Figure 2.2: Gradient Based Algorithm ... 8
Figure 2.3: Classification results on ARR, CHF, NSR classes.................................. 11
Figure 2.4: Transfer Learning Approach .. 13

Figure 2.5: Architecture of Co-processor [42] .. 14
Figure 2.6: Model used in above implementation [43] ... 15

Figure 3:1: End-To-End Learning .. 18
Figure 3.2: Hierarchy of Artificial Intelligence .. 19
Figure 3.3: Model predictions ... 19

Figure 3.4: A traditional Neural Network ... 20
Figure 3.5: Hidden Layer in a Neural Network .. 20
Figure 3.6: Representation of a Convolutional Neural Network 21
Figure 3.7: Visual representation of kernel (light grey) sliding across the padded

input (light blue) producing the corresponding output (light green) [47] 23
Figure 3.8: Max and Average Pooling of 2x2 filter .. 24

Figure 3.9: Sigmoid Activation Function ... 25
Figure 3.10: Softmax Activation Function Graph .. 26

Figure 3.11: ReLU Activation Function Graph .. 27
Figure 3.12: Epochs vs Loss ... 28

Figure 3.13: Epochs vs Accuracy .. 29
Figure 3.14: Errors in Machine Learning ... 32
Figure 3.15: Architectural Diagram of AlexNet ... 33

Figure 3.16: Architectural Diagram of Vgg16.. 34
Figure 3.17: Residual Block ... 36
Figure 3.18: ResNet Architecture .. 37

Figure 3.19: Stem Layer ... 39

Figure 3.20: Final Layer ... 39

Figure 3.21: Modules in EfficientNet Architecture .. 39
Figure 3.22: Sub-blocks in EfficientNet Architecture .. 40

Figure 3.23: MBConv Architecture .. 40
Figure 3.24: Squeeze and Excite Architecture .. 40
Figure 3.25: EfficientNet B0 Architecture ... 41

Figure 3.26: EfficientNet B1 Architecture ... 41
Figure 3.27: MBConv Architecture .. 42

Figure 3.28: FusedMBConv Architecture .. 43
Figure 3.29: SiLU Activation Function .. 44
Figure 3.30: Regular Convolution Depthwise and Pointwise Convolution [50] 44

Figure 3.31: Architecture of MobileNet [51].. 45
Figure 3.32: Depth wise Separable Convolution block .. 46

Figure 3.33: Depthwise Separable Convolution [52] ... 47
Figure 3.34: ReLU6 Activation Function ... 48

xiii

Figure 3.35: standard convolution followed by normalization and RELU (left).

Depth-wise convolution layer and pointwise convolution layer, each followed by

batch normalization and RELU (Right) ... 49
Figure 3.36: Linear Bottleneck and inverse Residual Block 51

Figure 3.37: Comparison of V3 large vs V3 small vs V2 [53] 54

Figure 4.1: Framework of proposed system ... 56

Figure 4.2: Downloading dataset from Kaggle API ... 57
Figure 4.3: Dataset split .. 58
Figure 4.4: Proposed ResNet18 model ... 59
Figure 4.5: Proposed VGG16 model .. 59

Figure 4.6: Proposed AlexNet model ... 59
Figure 4.7: Proposed EfficientNet model ... 60
Figure 4.8: Proposed MobileNet Version 1 model ... 61
Figure 4.9: Proposed MobileNet Version 2 model ... 61

Figure 4.10: Proposed MobileNet Version 3 model .. 62
Figure 4.11: 3D-Tensor Rearrangement ... 63
Figure 4.12: Pre-processing .. 63
Figure 4.13: Data-loaders ... 64

Figure 4.14: Modified Classifier ... 65
Figure 4.15: Freezing layers ... 65

Figure 4.16: Transfer learning as a feature extractor method used in this work 65

Figure 4.17: Modified layers in Method 2 .. 66

Figure 4.18: Approach 1 for updating weights ... 67
Figure 4.19: Approach 2 for updating weights ... 68

Figure 4.20: Built-in parameter for updating weights .. 68
Figure 4.21: Weights Visualization .. 70
Figure 4.22: Distribution of all classes in train(on left) and test folder(on right) 71

Figure 5.1 First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 75

Figure 5.2: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 76
Figure 5.3: ROC curve of B0 of size 32x32 .. 76

Figure 5.4: ROC curve of B0 of size 64x64 .. 76
Figure 5.5: ROC curve of B1 of size 64x64 .. 77

Figure 5.6: ROC curve of B1 of size 128x128 .. 77
Figure 5.7: First row from left B0 size 32x32 and second row 64x64 respectively .. 78

Figure 5.8: First row from left B1 size 64x64 and second row 128x128 respectively

.. 78
Figure 5.9: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 79
Figure 5.10: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 80
Figure 5.11: ROC curve of B0 of size 32x32 ... 80

Figure 5.12: ROC curve of B0 of size 64x64 ... 80
Figure 5.13: ROC curve of B1 of size 64x64 ... 81
Figure 5.14: ROC curve of B1 of size 128x128 ... 81

Figure 5.15: First row from left B0 size 32x32 and second row 64x64 respectively 82

xiv

Figure 5.16: First row from left B1 size 64x64 and second row 128x128 respectively

.. 82
Figure 5.17: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 87

Figure 5.18: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 88
Figure 5.19: ROC curve of B0 of size 32x32 ... 88
Figure 5.20: ROC curve of B0 of size 64x64 ... 89
Figure 5.21: ROC curve of B1 of size 64x64 ... 89

Figure 5.22: ROC curve of B1 of size 128x128 ... 89
Figure 5.23: First row from left B0 size 32x32 and second row 64x64 respectively . 90

Figure 5.24: First row from left B1 size 64x64 and 128x128 respectively 90

Figure 5.25: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 91
Figure 5.26: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively ... 92
Figure 5.27: ROC curve of B0 of size 32x32 ... 92

Figure 5.28: ROC curve of B0 of size 64x64 ... 93
Figure 5.29: ROC curve of B1 of size 64x64 ... 93
Figure 5.30: ROC curve of B1 of size 128x128 ... 94

Figure 5.31: From left B0 size 32x32 and second row 64x64 respectively.............. 94
Figure 5.32: From left B1 size 64x64 and second row 128x128 respectively............ 95
Figure 5.33: First column from left V1 size 32×32 and 64×64 and second column V1

size 128×128 and 224×224 respectively .. 102

Figure 5.34: MobileNetV1 32x32 ... 102
Figure 5.35: MobileNetV1 64x64 ... 103
Figure 5.36: MobileNetV1 128x128 ... 103

Figure 5.37: MobileNetV1 224x224 ... 103
Figure 5.38: Top row size 32×32, Bottom row size 64×64 104

Figure 5.39: Top row size 128×128, Bottom row size 224×224 104
Figure 5.40: First column from left V2 size 32×32 and 64×64 and second column V2

size 128×128 and 224×224 respectively .. 105
Figure 5.41: MobileNetV2 32x32 .. 105

Figure 5.42: MobileNetV2 64x64 .. 106

Figure 5.43: MobileNetV2 128x128 .. 106

Figure 5.44: MobileNetV2 224x224 ... 106
Figure 5.45: Top row size 32×32, Bottom row size 64×64 107

Figure 5.46: Top row size 128×128, Bottom row size 224×224 107
Figure 5.47: First column from left V2 size 32×32 and 64×64 and second column V2

size 128×128 and 224×224 respectively .. 108

Figure 5.48: MobileNetV3_Small 32x32 ... 108
Figure 5.49: MobileNetV3_Small 64x64 .. 109
Figure 5.50: MobileNetV3_Small 128x128 .. 109
Figure 5.51: MobileNetV3_Small 224x224 .. 109
.. 110

Figure 5.52: Top row size 32×32, Bottom row size 64×64 110
.. 110

Figure 5.53: Top row size 128×128, Bottom row size 224×224 110
Figure 5.54: Learning curves of EfficientNet B0 Version 1..................................... 111
Figure 5.55: Classification Report (on right) and Confusion Matrix (on left) 112

xv

Figure 5.56: ROC Curve ... 112
Figure 5.57: Classification Report (on right) and Confusion Matrix (on left)The

classification report of AlexNet has shown miss-classification for class F, class, Q,

and class S. The model is unable to detect these classes ... 113

Figure 5.58: Learning Curves ... 113
Figure 5.59: Learning Curves ... 114
Figure 5.60: Confusion Matrix ... 114
Figure 5.61: Classification Report .. 115
Figure 5.62: ROC Curve ... 115

Figure 5.63: Learning Curves ... 116
Figure 5.64: Confusion Matrix (on left) and Classification report (on right) 116

Figure A.7.1: Image resolution 32x32 .. 121
Figure A.7.3: Image resolution 64x64 .. 121
Figure B.7.1: testset [324]... 122
Figure B.7.2: testset[111].. 122
Figure B.7.3: testset[4].. 122

Figure B.7.4: testset[23855].. 122
Figure B.7.5: testset[22946].. 123
Figure B.7.6: testset[21948].. 123

Figure B.7.7: testset[2346].. 123
Figure D.7.1: ANSI/AAMI standards in ECG Class Interpretation [58].................. 125
Figure F.7.1: Function to visualize class prediction probabilities 128

Figure F.7.2: Configuration class ... 128

Figure F.7.3: ECG trainer class with multiple functions to train and evaluate model

.. 130

s

xvi

List of Tables
Table 1.1: Targeted SDGs ... 3

Table 1.2: Address SDGs in this work .. 4

Table 2.1: Comparison of different feature extraction methods 8
Table 2.2: Micro-architectures comparison .. 9
Table 2.3: Results of DVEEA-TL model.. 10

Table 2.4: Resource utilization ... 14
Table 2.5: ASIC details ... 15

Table 2.6: Parameters Details ... 15
Table 2.7: Classification Report.. 16
Table 2.8: Results of CNN models ... 16
Table 2.9: Comparative results with other hardware implementations 17

Table 3.1: AlexNet Layers .. 34
Table 3.2: Details of Vgg16 Layers .. 35
Table 3.3: Details of ResNet Layers ... 36
Table 3.4: EfficientNet baseline model version1 .. 42

Table 3.5: EfficientNet Resolution ... 42
Table 3.6: EfficientNet model version2-small .. 43

Table 3.7: MobileNet Body Architecture ... 49
Table 3.8: MobileNetV2 Body Architecture ... 53

Table 4.1: Dataset Specifications .. 57
Table 4.2: Class Labels ... 58

Table 4.3: Hyperparameters .. 69

Table 5.1: Overall Timing details of EfficientNet -V1 ... 72

Table 5.2: Overall Timing details EfficientNet-V2 .. 72
Table 5.3: Average time comparison of EfficientNet-V1 ... 73

Table 5.4: Average time comparison of EfficientNet-V2 ... 73

Table 5.5: Accuracy comparison of EfficientNet-V1 sizes .. 73
Table 5.6: Accuracy comparison of EfficientNet-V2 sizes .. 74
Table 5.7: Trainable Parameters comparison .. 74

Table 5.8: Model Size comparison ... 74
Table 5.9: Comparison of Version 1 vs Version 2 of Method 1 83
Table 5.10: EfficientNet -V1 with Method 2 .. 84
Table 5.11: EfficientNet –V2 with Method 2 ... 84
Table 5.12: EfficientNet -V1 with Method 2 .. 85

Table 5.13: EfficientNet-V2 with Method 2 ... 85
Table 5.14: EfficientNet-V1 with Method 2 ... 85
Table 5.15: EfficientNet-V2 with Method 2 ... 86
Table 5.16: Trainable parameters comparison in Method 2 86

Table 5.17: Model size comparison in Method 2.. 86
Table 5.18: Comparison of EfficientNet V1 and V2 with Method 2 96
Table 5.19: Method 1 and 2 comparisons for both versions of EfficientNet 97

Table 5.20: MobileNet -V1 Timing Results Comparison ... 97
Table 5.21: MobileNet-V2 Timing Results Comparison .. 98

xvii

Table 5.22: MobileNet-V3_Small Timing Results Comparison 98
Table 5.23: MobileNet-V1 Average Time Comparison ... 98
Table 5.24: MobileNet-V2 Average Time Comparison ... 99
Table 5.25: MobileNet-V3_Small Average Time Comparison 99

Table 5.26: MobileNet -V1 Accuracy comparison ... 99
Table 5.27: MobileNet -V2 Accuracy comparison ... 100
Table 5.28: MobileNet-V3_Small Accuracy comparison ... 100
Table 5.29: Trainable Parameters comparison .. 100
Table 5.30: Hyperparameters .. 111

Table 5.31: EfficientNet B0 V1 Results ... 111
Table 5.32: AlexNet Results ... 112

Table 5.33: ResNet18 Results ... 113

Table 5.34: VGG16 Results .. 115
Table 5.65: ROC Curve .. 116
Table 5.35: Comparison of proposed methodology with existing models 117

Table D.7.1: Versions of environments used in this work .. 125

xviii

Abstract

Introduction: ECG Arrhythmias can occur for various reasons, including heart

disease, medications, or genetic factors. Some arrhythmias are harmless, while others

can be life-threatening. It is important to detect and diagnose arrhythmias accurately to

provide timely and appropriate treatment. It is essential to ensure that ECG arrhythmia

detection is done accurately to provide appropriate treatment and prevent

complications. Therefore, it is important to use reliable and validated methods for

detecting arrhythmias and to have experienced healthcare professionals who can

interpret ECG signals accurately. In this work, CNNs are used for the detection of ECG

Arrhythmias which will classify the arrhythmia into its respective class. A hardware-

friendly deep learning system is proposed for correct classification of Cardiac

Arrhythmias. Methodology: The bio-medical signal processing world is evolving, to

keep pace with advancement, scientists and researchers are compelled to achieve

accuracy as it reflects the factuality and reliability of the research. To enhance the

diagnostic procedure for automatic arrhythmia detection, our work presents proof of a

concept for a lightweight, computationally inexpensive, and efficient Arrhythmia

classifier that will reveal the potential clinical utility of ECG Arrhythmia signals for the

detection and monitoring of certain cardiovascular conditions. In this work, analysis is

performed using different End-to-End Machine learning approaches, well-known CNN

architectures i.e., AlexNet, ResNet18, VGG16, MobileNet, and EfficientNet with

varying parameters are used to enhance the efficiency of the system and for an in-depth

analysis. The proposed system is tested for classification on a well-known and

publically available MIT BIH Arrhythmia and PTBDB image dataset. Furthermore, the

analysis for all CNNs using Transfer Leaning as a feature extractor and fine-tuning the

MobileNet architecture is performed. Results and Discussion: After training and

evaluating, our proposed work highlighted architectures that possess fewer parameters

and small model size, less average training, and testing time without compromising on

accuracy. Our method of transfer learning showed improved accuracy by reducing

overfitting in EfficientNet with maximum accuracy of 99.57%. While ResNet18

outperformed state-of-art models with 99.33% accuracy. The VGG16 model showed

98.70% accuracy. This work can further be utilized to implement on embedded

devices.

1

Chapter – 1

Introduction

1.1 Background:
In the world of Science and Technology, AI has recently garnered widespread acclaim.

With increase in cardiovascular diseases (CVDs) researchers have considered using AI

which can aid in clinical utility. ECG arrhythmia is an important group of CVDS which

refers to an abnormal heart rhythm that is detected using an electrocardiogram (ECG)

signal. An ECG signal measures the irregularities in the heart's rhythm.

The accuracy of ECG arrhythmia detection depends on several factors:

 Type of arrhythmia,

 Quality of the ECG signal,

 Experience and skill of the healthcare provider analyzing the ECG signal.

A correctly trained healthcare professional with experience in interpreting ECG signals

can detect arrhythmias with high accuracy. However, automated algorithms and

machine learning techniques are also being developed to enhance accuracy and speed

of Cardiac arrhythmia detection.

Deep Learning has been used to classify different types of Cardiac Arrhythmias. For an

ECG, accurate detection and classification is still a challenge as some types of

arrhythmias may be difficult to detect using ECG alone, such as those that occur

infrequently or those that are not sustained long enough to be captured on the recording.

1.2 Rare and Deadly Arrhythmias:
Some arrhythmias are difficult to detect. What makes them difficult is the inconsistency

of their occurrence. Some arrhythmias come and go, they are for short duration. Some

are occasional that do not come to appear in routine ECG. For this purpose, prolonged

ECG is required. The arrhythmias that fall under this category are paroxysmal

arrhythmias such as Atrial Fibrillation.

The rarity of arrhythmias is directly linked with prevalence in population such as

Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (CPVT),

and arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). These

arrhythmias are the arrhythmias that exist in a small percentage of the population.

Detecting rare arrhythmias may be challenging due to their low occurrence, lack of

awareness, and the need for specialized diagnosis.

The deadliest arrhythmia is ventricular arrhythmia that can cause sudden cardiac arrest

where the heart suddenly stops beating. Ventricular fibrillation (VF) is a chaotic and

dis-organized electrical activity of the ventricles, while ventricular tachycardia (VT) is

a rapid heart rate originating in the ventricles. Both VF and VT can be fatal within

minutes if not treated immediately. They are considered highly lethal arrhythmias and

2

require immediate medical attention, including defibrillation and advanced life support

measures.

1.3 Research Aim
The objective of this report is to propose a hardware friendly architecture that can be

deployed on tightly constraint environment. Expensive ECG systems make it less

accessible to patients and healthcare providers in low-resource settings.

The aim of this study is to examine various aspects, with a particular focus on hardware

favorability, affordability, and simplicity. Hence, to analyze different End to End

Learning Architectures suitable for personalized ECG monitoring. ECG has attained

recognition due to the recent advancement in the field of bio medical signal processing.

It has achieved new heights in recent years which demonstrates the potential clinical

utility of ECG signals for the detection and monitoring of certain cardiovascular

conditions. This work is going to open doors for further research and real-time

implementation which will offer variety of diagnostics.

1.4 Limitations:
One of the most undermined and overlooked area in the research for the detection of

Arrhythmia is inability to detect certain Arrhythmias. ECG arrhythmia detection

systems can sometimes detect abnormal rhythms that are not actually present, leading

to unnecessary diagnostic tests and interventions. In some cases, it can also miss

abnormal rhythms, which can delay diagnosis and treatment. Despite advances in

technology, ECG arrhythmia detection systems are not always accurate, particularly in

cases where the arrhythmia is not obvious or the ECG recording quality is poor.

1.5 Problem Statement:
There exists scope for improvements for attaining more accuracy and reliability of the

techniques as most of the research is focused on Arrhythmias that are easy to detect or

Cardiac features that are not very challenging. Additionally, there is a need to make

ECG arrhythmia detection more accessible and affordable, particularly in low-resource

settings.

This will reveal the potential clinical utility of ECG Arrhythmia signals for the

detection, monitoring, and prevention of certain cardiovascular conditions.

1.6 Proposed Solution:
This work implements different Convolutional Neural Networks to analyze in terms of

hardware favorability and reliability. Our lightweight hardware compatible

Architecture will create a breakthrough in the field of ECG Arrhythmia detection which

can be implemented on hardware devices saving costly machines, being a portable

3

device that can bring convenience with reliable accuracy. ECG arrhythmia detection is

essential for advancing our understanding of the underlying mechanisms and risk

factors for heart rhythm disorders and other cardiovascular diseases.

1.7 Broader Impact (UN Sustainable Development Goals):
There are 17 Sustainable Development Goals by United Nation that is its Agenda which

provides a comprehensive framework to address social, economic, and environmental

challenges faced world widely. Every person is encouraged to put efforts and take

initiatives to contribute to this achievement. They reflect the urgent need to address

poverty, inequality, climate change, environmental degradation, and social injustice to

create a better and more sustainable world for present and future generations.

Figure 1.1: UN SDGs [1]

1.6.1 Targeted Sustainable Development Goals:
The targeted SDGs are given below:

Table 1.1: Targeted SDGs

Sustainable Development

Goals

Addressed

1 No poverty

2 Zero Hunger

3 Good Health and Well-

being
✓

4 Quality Education ✓

5 Gender Equality

6 Clean Water and Sanitation

7 Affordable and Clean

Energy

4

8 Decent Work and

Economic Growth

9 Industry, Innovation, and

Infrastructure
✓

10 Reduced Inequalities

11 Sustainable cities and

communities

12 Responsible consumption

and production

13 Climate Action

14 Life below water

15 Life on Land

16 Peace, Justice, and strong

institutions

17 Partnerships for the Goals ✓

1.6.2 Potential Mapping:
Our work ECG Arrhythmia detection perfectly aligns with Good Health and Well-being

goal of the UN's SDGs in a clear and impactful manner. Moreover, it also falls under

the umbrella of Industry, Innovation and Infrastructure, and Quality Education.

Table 1.2: Address SDGs in this work

SDG Title Aim Addressed

Good Health and Well-being

Ensure Healthy lives and

promote well-being for

all ages.

 Improved Healthcare

Access

 Cost and Resource

efficiency

 Enhanced Diagnosis

accuracy

 Empowering Patients and

Professionals

 Disease Prevention and

Management

Quality Education Promoting life-long

learning for all.

 leverage shared

knowledge, and expertise.

 Inculcating Inquisitiveness

 Inclusive education

 Access to up-to-date

resources

5

Industry, Innovation, and

Infrastructure

 Improving existing

practices

 Technology advancement

Partnerships for the Goals Strengthen the

implementation means.

 Collaboration and

Teamwork

1.7 Organization of the Report:
The next chapter is a detailed literature review, where all the previous work and state-

of-art-methods are discussed. It will reveal the potential of AI in classification of

Cardiac Arrhythmias. The 3rd chapter is detailed theory and discussion of implemented

techniques. The 4th chapter is an implementation of this work to achieve the objective.

Furthermore, the 5th chapter deals with the results and complete analysis of

methodology and outcomes in terms of hardware complexity, utility, and reliability. In

the 6th chapter conclusion is stated. Finally, the potential area for further research is

revealed.

6

2 Chapter-2

Literature Review of Automatic Arrhythmia

Detection

This chapter entails the literature review related to different aspects of research on

Cardiac Arrhythmia Detection and a comparative study involving different Deep

Neural Networks implementation and scope of being implemented on hardware

devices.

2.1 Background
The year 1887 marks the inception of ECG. Since the birth of clinical

electrocardiogram, many researchers continued to further analyze ways to get

benefitted for clinical purposes [2]. From early beginning to present days, Artificial

Intelligence has created massive breakthroughs in the field of health sciences. It has

created room for improvements and opened new doors for medical applications. One

of the purpose ECG is fulfilling is the detection of Cardiac Arrhythmias. It is an

irregular heartbeat referred to as abnormal rhythm which is life threatening. Early

detection and diagnosis can prevent the disease from worsening.

2.2 ECG Signal Processing and Feature Extraction
Like any signal, ECG signal can be represented in a time domain as well as frequency

domain. Both representations have pros and cons. There exists different analysis based

on both the representations. ECG signal is a very noisy signal which if interpreted needs

to be denoised, so the artifacts are removed. This denoising can be done using different

techniques. Some researchers used Empirical mode decomposition to break down noisy

ECG signal into a finite set of small chunks [3].

Not all small IMFs are noisy, so Spectral Flatness is measured for detection of noise

after which if it appears to be noisy, as bandpass Butterworth filter is used. One can

also use moving average filter for the baseline correction [4]. Another approach used

to remove baseline wandering so there is no undesired interference is to use symlet

scaling filter from wavelet transform and detrend operation. If some noise is still left

the author used Savitzky-Golay filter [5]. There exists two kind of noises, baseline

wandering which is low frequency noise and high frequency motion artifacts. To keep

a signal raw, baseline correction is performed and a high-frequency noise filtering in

sequence. ECG signals were preprocessed utilizing a 200-ms width median filter to

remove the P waves and QRS complexes followed by a median filter of 600-ms to

remove the T waves [6]. In this paper the author used second-order integer low-pass

filter for the removal of the high-frequency noise components [7]. For denoising, this

paper implements Daubechies wavelet of order four and to correct baseline moving

7

average filter is used [8]. In another paper denoising is performed using relaxed median

filtering as moving average may not be an optimal choice since ECG signal has Q peak

which may get compromised in averaging filters [9].

Figure 2.1: Denoising using EMD.

ECG signal has different features based on which analysis is performed. A comparative

study of different feature extraction methods is performed in which wavelet transform,

independent components analysis, Eigenvector method, auto-regression method, linear

prediction and Fast Fourier Transform is performed [10]. The comparative results

shown in the paper are given in Figure 2.2.

Another remarkable work is done using time domain morphology and gradient based

algorithm for the feature extraction from PQRST complex [11]. The block diagram of

implementation is given in the paper in Figure 2.3.

This paper utilizes both fiducial and non-fiducial features by using the consecutive

change of ECG power spectral density as significant feature . ECG fiducial features

have been shown to exist, though but are diverse, making them challenging to use for

human identification. The paper examined the viability to address this problem of

simulating the human ECG and using it for identification in time, amplitude, and

distance variations in the ECG features. Getting a cross feature matrix helps us

accomplish this goal that is used to simulate the dynamic change in the fiducial features

of the QRS [12].

A detailed survey of different feature extraction techniques is discussed in this paper

[13].The main reason to use wavelet transforms is that they are localized both in the

Original ECG Signal

Empirical Mode

Decomposition

Noise

Filtering
Detect Noisy IMF using

SF measures

Denoised ECG Signal

8

time and frequency domains. This paper presents optimal mother wavelet, based on the

wavelet transform, for feature extraction [14].

Table 2.1: Comparison of different feature extraction methods

Feature

Extraction

method

Application

Domain

Competence SuiTable

Classification

Method

Accuracy

(%)

AR Time-Frequency Classify Cardiac

Arrhythmias

QDF 96.6

WT Time-Frequency Local analysis of fast time

varying and non-regular

signals

ANN 92.20

Eigenvector Frequency Signals composed of

sinusoids buried in noise

MME 98.06

FFT Time-Frequency Short-term heart rate

variability

ANN 92.47

LP Time No explicit assumptions for

actual shape of the signal

LDA 93.2

ICA Time-Frequency Linear mixture of

independent sources

Fast ICA 90.13

Figure 2.2: Gradient Based Algorithm

In this research optimization using feature selection is performed. Features like

temporal, morphological and statistical are taken for observations [15]. Since fiducial

features involve high complexities which is why a low complexity feature extraction

method is performed. In this context, discrete wavelet transform (DWT) with the Haar

function being the mother wavelet, as our principal analysis method is performed [16].

Multiresolution wavelet transformation is also the talk of the town. This paper used it

for the QRS detector which achieved of sensitivity of 99.18% and a positive rate of

9

98.00% on validation data [17]. In this paper two different feature extraction techniques

are applied simultaneously to obtain the feature vector. The wavelet transform is used

to extract the coefficients of the transform as the features of each ECG segment while

autoregressive modelling (AR) is also applied to obtain the temporal structures [18].

Pan Tompkins is very efficient way to detect QRS complexes. This paper performed

Pan Tompkins algorithm for the detection of QRS complex [19].

2.3 Classification Algorithms
Different algorithms are used for the detection of ECG Arrhythmia like SVM, ANN,

Random Forest, but CNNs with state of art accuracies are the choice of every Machine

learning practitioner. This paper implements Support Vector Machines [18], whereas a

review of different deep learning models is given in this paper. It discussed CNNs,

RNN, LSTM, DBN and GRU where CNN has proven to be dominant and a better suited

classification method [20]. To achieve accuracies higher and improve the speed as well,

simpler architectures are used. The architectures like VGG16 and MobileNetV2 are

implemented with 0.95% validation accuracy [21]. This paper used VGG and compared

the results with many states of art classifiers. The results of comparison is given below

[22]:

Table 2.2: Micro-architectures comparison

Network Number of Layers Parameters Training Time Accuracy

(%)

GoogleNet 144 5.9 million 132 minutes 99.90

ResNet 71 4.8 million 48 minutes 100

EfficientNet 290 4.1 million 112 minutes 99.70

MobileNet 154 2.4 million 53 minutes 100

Proposed

Classifier

29 34 thousand 15 minutes 99.90

1D CNNs are also used for ECG classification. Since the goal has always been accuracy

and speed, this paper implements 1D CNN [23]. This work is used for real time patient

specific heartbeat classification on VEB and SVEB classes. The paper claims that this

method has achieved robustness, computationally is excellent and can be carried further

for hardware implementation. The results proved that the proposed work out performs

other state-of-art methods.

AlexNet is an architecture with only 8 layers which makes it a choice for

implementation where computations are tightly constraint. In the proposed model, a

new dataset is made by the combination of the Kaggle dataset and the other, which is

made by taking the real-time healthy and unhealthy datasets. The AlexNet transfer

10

learning approach is applied [24] for classifying Q, N, F, V and S classes. In this

research, the DVEEA-TL model diagnoses heart abnormality in respect of accuracy

during the training and validation stages as 99.9% and 99.8%, respectively. The results

are given below:

Table 2.3: Results of DVEEA-TL model

Performance matrices Training (%) Validation (%)

Accuracy 99.9 99.8

Classification miss rate 0.05 0.07

Sensitivity 99.8 99.7

Specificity 21.09 26.5

Precision 90.9 99.80

F1 score 0.98 0.97

FPR 0.75 0.73

FNR 0.002 0.002

MCC 99.2 98.5

Kappa Score 0.98 0.97

 This paper implements ResNet50, AlexNet, and SqueezeNet where it showed an

accuracy of 98.8%, 90.08%, and 91% for AlexNet, SqueezeNet, and ResNet50,

respectively [25]. Another paper implements AlexNet, Resnet18, and GoogleNet [26].

The paper used 7 classes for the classification in which different optimizers such as

SGDM, RMSprop, and Adam are used to observe the behavior of models. It is observed

that fine-tuned AlexNet is a good choice with SGDM optimizer having accuracy

99.09%. A survey was conducted which addressed the issues involved in classification,

feature extraction, pre-processing of an ECG signal [27].

ECG scalogram is used for classification purposes. In this paper different micro

architectures are used. MobileNetV2, SqueezeNet, ShuffleNet, GoogleNet,

EfficientNet, and ResNet-18 are used and compared [28]. SqueezeNet proved to be

slightly advantageous. The paper classified ARR, CHF and NSR classes. Comparative

results are displayed in paper as:

11

Figure 2.3: Classification results on ARR, CHF, NSR classes

This paper implements ResNet, Inception, and Xception alongside more recent

EfficientNet and a spatiotemporal method involving convolutional LSTMs [29]. The

classes used in this paper are N, S, V, F and Q which are the standards of ANSI/AAMI.

Transfer learning is used to implement these models as a fine-tuning method. Input

shape for the networks is taken as 186x186x3 and ConvLSTM with 6 x 186 x 31 x 3

input shape. ResNet50 showed 99.40% accuracy whereas VGG16 and VGG19 with

99.20%. The ResNet50 version 2 showed 97.60% accuracy. EfficientNet B0 with

96.20%, ConvLSTM with 96.15%, Xception showed 94.40%, Inception V3 with

85.60% and Inception ResNet V2 with lowest 48.60% accuracy.

The goal of this paper is to convert one dimensional (1-D) ECG signals to two

dimensional (2-D) scalogram images with the help of Continuous Wavelet (CWT) [30].

Four different MIT BIH Databases are used such as Arrhythmia database, Normal Sinus

Rhythm database, Malignant Ventricular Ectopy database and BIDMC Congestive

heart failure database. The transfer learning technique for AlexNet pepped up with an

accuracy of 95.67%.

The number of classes used for classification are not very much consistent. Since some

arrhythmias are difficult to detect and some are rare in population as stated in chapter

1 makes it a difficult choice to come up with specific class as there is a lack of

consistency regarding the usage of classes from MIT BIH Arrhythmia Database. Hence

there is a lack of research. This paper used different number of classes from MIT BIH

Arrhythmia database and compared the results [31]. It uses pre-trained EfficientNet B7

model. Multi-class classifications of arrhythmia such as 17-class, 15-class, 13-class,

and 12- class classifications are used. The proposed approach achieved the highest

average of 99.23% accuracy for 13-class classification.

2.4 Newly introduced Hardware Efficient Architectures
EfficientNet and MobileNet architectures are newly introduced architectures which are

solely made to reduce computational power by reducing number of parameters used at

the same time enhancing accuracy of the model.

 GoogleNet ResNet18 MobileNetV2 SqueezeNet ShuffleNet EfficientNet

100.5

100

99.5

99

98.5

98

97.5

97

12

 EfficientNet

In recent time researchers have started to focus more on these as they are made for

hardware implementations. In a recent work, detection of Myocardial Infarction from

12-Lead ECG using Eigen-domain representation is performed. This paper used

EfficientNet V2 B2 as a transfer learning method which achieved 98.68% accuracy

[32]. A fine-tuned EfficientNet B0 is used for the detection of Atrial Fibrillation [33].

The paper uses normal and A-fib classes to be classified using EfficientNet. It addressed

data imbalance problems as well. The model showed accuracy of 96.79% and with data

augmentation the accuracy is 95.86%.

In a recent study a modified EfficientNet is used which has enhanced the accuracy and

came with computational advantages [34]. In order to better assign weights of the

features, an attention feature fusion module (AFF) was introduced into the network to

replace the addition operation in the mobile inverted bottleneck convolution MBConv

structure of the network. The model achieved 99.56% accuracy for 8 different types of

heartbeat in the famous MIT BIH Arrhythmia database. This paper uses pre-trained

EfficientNet B7 model. Multi-class classifications of arrhythmia such as 17-class, 15-

class, 13-class, and 12- class classifications are used. The proposed approach achieved

the highest average of 99.23% accuracy for 13-class classification [31].

 MobileNet

A latest work is done using MobileNet V1 architecture in which ensemble of

Convolutional Auto encoders are used with Transfer learning [35]. It achieved 97.3%

accuracy. It uses binary classification either normal or Arrhythmic. Another approach

is used to classify Arrhythmia through an ensemble classifier which combines

MobileNetV2 and BiLSTM. I gives an accuracy of 91.7% [36]. The classes used in this

work are NSR, AFIB, PVC and LBBB.

2.5 Transfer Learning
Developing a Model from scratch is time taking, so the concept of transfer learning is

used. In transfer learning approach a model must take the previously trained or

pretrained weights and apply that knowledge by passing the learned features in

classification on a custom dataset. Its idea is to freeze all the learnable layers except the

dense layer and only modify the number of classes used in custom dataset. More details

can be found in chapter 3. Since we look to benefit from transfer learning as it saves

computational power by allowing us to leverage the already trained network on millions

of images and only pass it to a small dataset which in comparison is nothing. This paper

implemented Transfer learning which increased accuracy from 3.67 to 4.89%. [37]. In

this paper generative-adversarial-network-based auxiliary domain with a domain-

feature classifier negative-transfer-avoidance (GANAD-DFCNTA) algorithm was

proposed to bridge the knowledge transfer from distant sources to target domains. Eight

benchmark datasets were chosen, with four from ECG datasets and four from the distant

domains: ImageNet, COCO, WordNet, and Sentiment140.

13

The proposed method in this paper used fine-tuned ResNet-18 with MIT-BIH

arrhythmia dataset in accordance with the AAMI standards [38]. It achieved 90.8%

accuracy using transfer learning. This paper pretrained CNN on Icentia11K for the

classification of AFIB. CNN predicts heart rate, rhythm and abnormal beat in short

frame [39]. It is fine-tuned on the PhysioNet/CinC Challenge 2017 dataset. It shows

that pre-training helped with a 6.57% accuracy rise.

Figure 2.4: Transfer Learning Approach

2.6 Existing Hardware Solutions
Ever since ECG classification algorithms have existed, the aim is to go for hardware

devices, but it is not an easy task because the algorithms are expensive, the

computational power and resources are limited. This is why reliable and efficient

architecture is a need that can better fit in a low resource setting which can be

implemented on embedded devices.

A wearable heart rate anomaly detection chip is designed [40]. It uses 16-bit floating

pointer numbers for inference. The design of the chip was completed on the TSMC 65

nm process. It has an area of 0.191 mm2, a core voltage of 1 V, an operating frequency

of 20 MHz, a power of 1.1419 mW, and storage space of 5.12 kB. The architecture

showed accuracy of 97.69% and a classification time of 0.3 ms for a single heartbeat.

An efficient hardware architecture is presented by using 1D U-net. A two-stage pipeline

Winograd structure is designed to increase computational power. It also addresses

improving resource utilization and overall throughput. A Xilinx Zynq ZC706 board is

used for the implementation [41]. The results show 1D U-net achieves an average

accuracy of 95.55% for the pixel-level classification of five heartbeats. In this work the

resource efficiency and computing efficiency reached 8.27 GOPS/kLUT and 123%

respectively at clock frequency of 200 MHz A low power co-processor is used for the

classification of Arrhythmia [42]. It consumes 8.75µW at 12 kHz, when implemented

using 180nm Bulk CMOS technology. Architectural block is given as:

14

Figure 2.5: Architecture of Co-processor [42]

The five classes N, V, F, S and Q are used for the classification of this work. Class S

and V are given more importance. It achieved 97.35% accuracy for class-oriented

scheme. Resource utilization and ASIC implementation is shown as:

Table 2.4: Resource utilization

Resources Total Available Resources Utilized Utilization (%)

Slice LUT 303600 11125 3.66

Slice REG 607200 4884 0.80

F7 MUX 151800 1080 0.71

F8 MUX 75900 255 0.33

IOB 600 24 4

BUFGCTRL 32 1 3.125

Total Resources 1139132 17369 1.52

15

Table 2.5: ASIC details

CMOS Process SCL 180nm

Area 1.32𝑚𝑚2

Voltage 1.98V

Frequency 12kHz

Dynamic Power 7.5403uW

Static Power 1.2097uW

An embedded system is designed for online and real time ECG classification [43]. The

model is tuned to achieve an optimal result. This work has presented the hardware

implementation with the predictive model embedded in an NVIDIA Jetson Nano

processor. The waveforms for normal sinus, sudden death, arrhythmia, and

supraventricular arrhythmia are used in this research. The proposed CNN is shown

below:

Figure 2.6: Model used in above implementation [43]

Instead of ReLU, LeakyReLU as activation function, as it may increase speed and break

the zero slope. The parameters and results of this work are given below:

Table 2.6: Parameters Details

Training Parameters Description/values

Optimizer Adam

Loss Cross Entropy

Mini-Batch Size 16

Epochs 100

Training Dataset 80%

Validation Dataset 20%

16

Table 2.7: Classification Report

Class Precision Recall F1-Score Accuracy

(%)

Loss

Arrhythmia 0.99 0.95 0.97

0.9596

0.0859

Normal Sinus 0.99 0.93 0.95

Sudden Death 1.00 1.00 1.00

Supraventricular

Arrhythmia

0.91 0.96 0.93

The average accuracy is 95.96%.

An ultra-high energy processor is developed [44]. In this work different techniques have

been proposed.

 reconfigurable SNN/ANN inference architecture

 reconfigurable on-chip learning architecture

 dual-purpose binary encoding scheme of ECG heartbeats

Fabricated with a 28nm CMOS technology, the proposed design consumes energy of

0.3µJ while achieving accuracy of 97.36%.

Home-care oriented classifier for Embedded Systems is proposed in this paper [45].

Parameters quantization strategy and Channel-level pruning are used to optimize the

network.

A reconfigurable accelerator hardware architecture is designed to accelerate the

convolution computation on FPGA. The model achieved a promising F1 score of

0.913% and 86.7% exact match ratio, in which parameters and FLOPs are significantly

penalized. Real-time analysis is performed. The average processing time is 2.895 s.

Recently ectopic beat classification is proposed on STM32 –based edge device [46].

The classes used in this work are S, V, N, F, and Q. The research uses k-fold cross-

validation to choose the best model for hardware implementation. It showed using a 5-

layer CNN with pixel 56 could get better performance than an 8- layer CNN simplified

AlexNet with accuracy of 99.89%. Moreover, the combination of SEmbedNet with an

input image size of pixel 56 and STM32 can achieve the benefits of 1.3s and 1.1 W per

heartbeat in the classification task, and it only takes about 4 seconds. A multiple-

STM32 cross-validation platform is built to reduce the validation time. It can process

over a hundred thousand heartbeats in just 6.4 hours.

Classification results are shown below:

Table 2.8: Results of CNN model

Input

Size

(Pixels)

SEmbedNet Simplified AlexNet Simplified

GoogleNet

Latency

(s)

Power

(W)

Sen. Pre. Acc. Sen. Pre. Acc. Sen. Pre. Acc.

56 88.82 97.03 99.89 79.04 N/A 99.78 82.17 87.58 99.16 1.33 1.10

112 91.29 95.66 99.84 80.42 98.90 99.73 79.93 87.11 98.71 5.34 1.30

17

This paper also compares the proposed methodology with other hardware

implementations. The results of comparison are show below:

The architectures like VGG16 and MobileNetV2 are implemented on Raspberry Pi

which showed 0.90 and 0.94 respectively [21].

Table 2.9: Comparative results with other hardware implementations

Author Year Method Class Type Hardware Total

Accuracy

(%)

S.Raj [9] 2018 DOST+LSTM (N, S, V, F, Q) V 96.08

Y.Zhao [11] 2019 ANN (N, S, V, F) V 98.00

Y.Xu [10] 2019 SVM (N, S, V) V 89.00

N.Wang [12] 2019 CNN (N, S, V, F, Q) N/A 99.00

Proposed 2022 CWT+CNN (N, S, V, F, Q) V 99.89

2.7 Critical Analysis:
Different techniques exist for the removal of noise and extracting features in an ECG

signal. Empirically, the algorithms are expensive, the computational power and

resources are limited. This is why reliable and efficient architecture is a need that can

better fit in a low resource setting which can be implemented on embedded devices.

If the goal is to design a hardware or propose a hardware architecture, smaller and

simpler Architectures are more suitable for that. Factually, different applications have

different architecture more suited to them and the inconsistency of the classes in MIT

BIH Arrhythmia used throughout the research needs to be studied further. Data

imbalance needs to be taken care of.

\

18

3 Chapter – 3

Embarking into the Depths: Exploring Deep

Learning, CNNs, and Multiple Architectures

This chapter provides all the details relevant to this research. It contains background

knowledge of implementation. It entails knowledge of software and hardware

techniques that lead to completion of this work. This chapter covers a Machine Learning

technique known as End-to-End learning.

It has enough information related to Deep learning, Transfer Learning, Neural

Networks, and CNN Architectures like EfficientNet, MobileNet, VGG16, AlexNet and

Resnet18.

3.1 End-To-End Learning
In End-To-End learning, model learns all the steps during initial and final output phase,

hence reducing the effort. In this way models are trained to automatically extract

features, learn, and work with the data.

Figure 3.1: End-To-End Learning

3.2 Deep Learning
In today’s fast paced world, Artificial Intelligence has been introduced to almost

everything. From our very own homes to offices and in between, everything is under

the spell of AI. Deep Learning is the heart of Machine Learning that comes from fact

that we add more layers to learn from the data. As the name “Deep” suggests it is used

for very large data, hence having extensive layers.

Raw Data

Automatic feature

extraction and learning

 Output

19

Figure 3.2: Hierarchy of Artificial Intelligence

In a traditional deep learning network unstructured and labelled data is fed to a model

which acts as a black box. As a result of what the model learned, it predicts the output.

But how do models learn? It learns by calculating the difference in the predicted output

and actual true label, the model trains itself to minimize the difference. Unstructured

data are qualitative in nature such as an image where we can experience a variety of

features in different ways. Other examples are audio, video etc. Unlike structured data

which are quantitative such as product databases, a list of housing prices against size or

area, etc. In deep learning, the input data passes through the layers where features are

extracted and predicts output through a classifier layer, respectively.

Figure 3.3: Model predictions

Deep learning is a vast concept, and it possesses different techniques that are application

specified. Some of the techniques are CNNs, RNNs, LSTM, GANs, RBFNs, auto

encoders. The focus of this work is on Convolutional Neural Networks for a multi-class

classification problem. To fully understand CNNs, it is important to dive into Neural

Networks first.

3.3 Neural Networks
A simple Neural Network comprises of artificial neurons stacked to form a single layer

which learns and gets smarter by analyzing the data patterns. It contains three layers

Artificial Intelligence

Machine Learning

Neural Network

Deep Learning

20

i.e., input layer, hidden layer, and output layer. Neural Networks are inspired by the

Human Brain, its structure and functionality. Neurons are connected in a stack, process

the information, and generate output. The input layer accepts input features from the

outside raw data. No computations are being performed here. From the input layer

nodes pass information to the hidden layer or layers. In the hidden layer computation is

performed which transfers the details to the output layer. The output layer brings up the

learned information to predict.

Figure 3.4: A traditional Neural Network

Each neuron in a former layer is connected to the neurons present in the next layer.

These layers are also called fully connected or dense layers because of their dense

connections. Hence deeper layers with more neurons make up a deep neural network.

In the hidden layers a mathematical computation is performed which is represented as:

 𝑌 = 𝑤 ∗ 𝑋 + b

Where 𝑤 is the weight containing vector of each connection

𝑋 is the input feature vector.

b is a scalar bias that is added to the product of weight and input

𝑌 is the output feature vector or number of neurons in that layer.

In this way the weights are updated forming a forward propagation.

Figure 3.5: Hidden Layer in a Neural Network

For very deep neural networks deeper features can be extracted but with more layers

comes more neurons. Having said that deeper networks are prone to overfitting because

of redundancy as there is a possibility of overlapping of features.

21

 Convolutional Neural Network (CNN)

A typical Convolutional Neural Network can be thought as a combination of two

components:

 Feature Extraction

 Classification

A convolutional neural network is amalgamation of multiple layers namely convolution

layer, pooling layer, fully connected layers used for classification of images. These

layers work on a multi-dimensional input feature map and can perform different

operations which can be unattainable using Artificial Neural Networks. In a simple

Convolutional Neural Network, input is fed to the first convolutional layer where

features are extracted after it goes through pooling layer. As we move through, the

feature dimensions become smaller, and depth becomes larger at each convolution

before being flattened into a vector for the fully connected layer. The fully connected

layer at the end is used as a classifier.

Figure 3.6: Representation of a Convolutional Neural Network

3.3.1.1 Dimensional Convolutional Layer

This layer employs a 2D kernel or filter which moves across the 2D input and generates

a corresponding 2D output (also known as feature maps). These kernels contain weights

that require training, such as a 3 × 3 kernel having 9 weights and a bias. Once these

weights are trained, the kernels can extract significant information from the input

feature map, which is a contrast to an ANN. A convolutional layer can extract

meaningful features better than fully connected layers for an image. The reason being

Shrinking Feature Extraction 1D Vector

22

that the coherency or correlation between a group of pixels gets lost in a fully connected

layer where the image is flattened into a 1D vector. A kernel provides the following

advantages:

 The kernel operates on a group of pixels that maintain their correlation; hence they

result in better feature extraction than a fully connected layer where the image

flattens into 1D vector.

 A kernel decreases the operations and parameters significantly.

 It extracts more information from the image.

Convolutional layer can have multiple input channels and kernels. Kernel operates a

sliding protocol for each channel in multiple input channels and the outputs are summed

into a single output channel by element-wise summation. This equation defines a single

convolution operation:

∑ ∑ 𝐼(𝑢, 𝑣)𝐾(𝑖 − 𝑢, 𝑗 − 𝑣)

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝑘

 𝑖, = output pixel at location (𝑖,),

𝑘 = kernel size,

𝐾 = kernel,

𝐼 = input feature map.

Multiple kernels allow for each kernel to have its own output channel.

No. of output channels = No. of kernels

The output dimensions depend on the input size and kernel size. For example, if we

apply a 3 × 3 convolution (kernel size of 3) on an input image with dimensions 256 ×

256 × 3, and use 32 kernels, the resulting output dimensions will be 254 × 254 × 32.

This is generalized in the following equations:

 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 𝑙 × 𝑚 × 𝑛

 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 𝑖 × 𝑗 × 𝑘

 𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = (𝑙 − 𝑖 + 1) × (𝑚 − 𝑗 + 1) × 𝑘

𝑙 × 𝑚 = dimension for a single input channel

𝑛 = no. of input channels

𝑖 × 𝑗 = dimension for a single kernel (normally 𝑖 = 𝑗)

𝑘 = no. of kernels

The figure below represents blue matrix as a single channel 2D input feature map, the

single 3x3 kernel displayed as light grey, convolves with the input, and produces a

single channel output feature map. The figure demonstrates how padding can help

conserve the dimensions i.e., the output dimensions are the same as the input without

padding.

23

Figure 3.7: Visual representation of kernel (light grey) sliding across the padded

input (light blue) producing the corresponding output (light green) [47]

From the figure above, we can visualize how padding can help us to conserve the

dimensions i.e., the output dimensions are the same as the input without padding.

Padding such as zero-padding or replicate is one of the useful techniques to preserve

these dimensions.

3.3.1.2 Pooling Layer

Pooling layer is typically used after one or more Convolutional layers. The main

objective of a pooling layer is to lessen the spatial dimensions (i.e., height and width)

of the input feature map, while keeping the number of channels consistent. By reducing

the spatial dimensions of the input feature map, the Pooling layer helps to reduce the

computational cost and memory requirements of the subsequent layers in the CNN,

while also preventing overfitting by introducing some degree of translation invariance

to the learned features.

Mostly used Max Pooling layer, which operates by dividing the feature maps into non-

overlapping known as pooling regions and generating the maximum value within each

sub-region as the corresponding output pixel. This has the effect of down sampling the

input feature map, while retaining the most salient features.

Pooling layers include Average Pooling, which computes the average value within each

sub-region, and L2-norm Pooling, which computes the square root of the sum of squares

within each sub-region. However, Max Pooling is the most widely used type of pooling

layer due to its effectiveness and simplicity.

However, too much pooling can result in loss of information and spatial resolution, so

the choice of pooling size and stride should be carefully considered depending on the

specific application.

24

2 3 1 9

4 7 3 5

8 2 2 2

1 3 4 5

Figure 3.8: Max and Average Pooling of 2x2 filter

3.3.1.3 Activation Layer

Convolutional layers have a function called the activation function. This function

allows the linear output to be transformed into non-linear so that real world scenarios

can be performed. Hence, it introduces non-linearity in the network. This means, the

network can learn non-linear and more complex relationships between input and the

output data. Activation layer may also be used as a separate layer to give flexibility in

dataflow manipulation. In addition to this, the activation layer normalizes the output of

the previous layer to improve the efficiency of the network. It limits the weighted sum

of input in a specific range. But all the layers in CNN do not require activation layer.

For example, the pooling layer is a linear operation, so it does not require an activation

function.

Activation function is represented as:

 𝑌 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑤 ∗ 𝑋 + 𝑏)

Where activation can be a ReLU function, SoftMax, Sigmoid, tanh etc.

It can also be used as a separate layer which gives flexibility in manipulating the

dataflow. The most used activation functions are given below.

3.3.1.3.1 Sigmoid

The sigmoid function is an activation function which is a mapping of input value to a

value between 0 and 1, which translated as probability of the input belonging to a

particular class. The sigmoid activation function is used in binary classification because

it scales the values between 0 and 1. Then we can select a threshold value e.g., 0.5

above which will be classified as true and vice versa. Mathematically this can be

represented as:

 𝑎 (𝑧) = 1 / (1 + 𝑒 − 𝑧)

4 4.5

3.25 3.25

2 3 1 9

4 7 3 5

8 2 2 2

1 3 4 5

7 9

8 5

Average pooling with 2x2

filter and stride 2.

Max pooling with 2x2 filter

and stride 2.

25

Where z is the input to the activation function and a (z) is the corresponding output. By

plotting the graph, we can see that the output of the activation function is exactly 1 or

0 when the input 𝑧 approaches +∞ or -∞ respectively i.e.:

lim
𝑧→ +∞

𝑎(𝑧) = 1, lim
𝑧→ −∞

𝑎(𝑧) = 0

Figure 3.9: Sigmoid Activation Function

One of the drawbacks of the sigmoid function is that it can cause a problem called

"vanishing gradients" when used in intermediate layers. This happens when the

gradients of the loss function regarding the weights become very small, slowing down

the convergence or fails to converge to global minima or maxima, which can make it

difficult for the network to learn. Hence, this type of activation function is usually used

at the last layer or the classifier as a result, other activation functions such as the ReLU

function are often used instead of the sigmoid function in intermediate layers.

3.3.1.3.2 SoftMax

The softmax function takes a vector of real-valued inputs and applies the exponential

function to each element of the vector. It then divides the sum of all exponentials to

normalize the resulting values. Its output is a vector of probabilities that adds up to 1.

This function is used for a multi-class classification problem with a goal to predict the

probability of each class, given the input. Hence, it is used at the last layer or the

classification layer. The length of the vector is equal to the number of classes. The class

with the highest probability among all the probabilities is considered and the data point

will belong to that class.

Mathematically representation of Softmax function is as follows:

26

𝑎(𝑧) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, … , 𝐾.

Where 𝑧𝑗 is the input value for 𝑗th class, 𝐾 is the total number of classes, and 𝑎 (𝑧) is

the softmax value for 𝑗th class.

One of the advantages of the softmax function is that it produces a smooth and

differentiable output, which makes it suitable for use in gradient-based optimization

algorithms, such as stochastic gradient descent, which are commonly used to train

neural networks.

Figure 3.10: Softmax Activation Function Graph

3.3.1.3.3 ReLU

ReLU or rectified linear unit is biologically inspired, as it resembles the firing pattern

of real neurons in the brain. Due to its simplicity, computational advantage, and

efficiency, it is very popular. It is resilient to vanishing gradient problem which helps

the model to in training and better performance hence they are mostly used in

intermediate layers. ReLU function does not activate all the neurons at the same time

as neurons will be deactivated when the output is 0 or less than 0.

It is a linear-piecewise activation function that allows positive values to accentuate,

otherwise returns 0. Mathematically it is represented as:

 𝑎 (𝑧) = max (0, 𝑧)

27

Figure 3.11: ReLU Activation Function Graph

3.3.1.4 Loss and Loss Function

Generally, loss is the error associated with the CNN model given the input. It is

calculated using predicted value minus actual value/label. Let us denote the loss as 𝐿𝑖

for the 𝑖th training example.

 𝐿𝑖 = 𝑦̂ 𝑖 – 𝑦 𝑖

Where 𝑦̂ 𝑖 is the predicted value and 𝑦 𝑖 is the actual value for 𝑖th training example.

A loss function evaluates the solution which will be used by the optimizer. Normally

during training, it is calculated over the entire batch by averaging the individual losses

in that batch. Similarly, this averaging can be extended over the entire dataset which

gives out the overall average loss function of the CNN model. In machine learning

different types of loss functions exist like MSE, Hinge Loss, and Cross Entropy etc.

These loss functions are being used depending upon the nature of the problem you are

working on. For a binary class problem binary cross entropy is usually used. For multi-

class problem categorical cross entropy is used. There is sparse categorical entropy as

well for multi-class problems.

 Categorical Cross Entropy (CCE) generates a one-hot array containing the

probability for each category.

 Sparse Categorical Cross Entropy (SCCE) generates an index of the most

likely to match category.

For Categorical Entropy Loss, the actual value which is a binary corresponds to a single

class while the prediction is a probability. Since the last activation function in the CNN

model is a SoftMax activation that returns the probability for classification. This loss

function costs on the difference between the probability and the expected value. Hence

larger cost/penalty for larger difference from the actual value. It is represented as:

 𝐶𝐶𝐸 =
1

𝑁
 ∑ 𝑡𝑖 log (𝑝𝑖)

𝑁
1

28

Where 𝑡𝑖 is the ground-truth which is one-hot encoded, 𝑝𝑖 is the probability of softmax,

n is the number of classes and N is the total number of images over which the loss is

calculated by taking average.

3.3.1.5 Epochs

Epochs represents a full iteration of the dataset during training. The entire dataset is

analyzed by the model in one epoch, and parameters are adjusted as the model learns

the data. The number of epochs to run depends on a variety of variables, including the

size and the complexity of the model. Having a set number of epochs for which the

validation loss stays constant is a smart idea. Less epochs can lead to underfitting,

whereas many epochs can lead to overfitting. The number of epochs is determined using

a variety of methods:

 Manual choosing: Begin with a small number of epochs and gradually expand

it. When the performance on the validation set starts to decline, you can stop.

 Early Stopping: When a metric stop improving, the training process is

automatically terminated.

 Cross Validation: The dataset is partitioned into several folds, and in each

epoch, the model is trained and assessed on several folds.

3.3.1.6 Learning Rate

The parameters are updated in small steps while the model is trained. It is crucial since

it determines how quickly or slowly a model reaches the best parameters for minimizing

the loss.

With a high learning rate, the model updates parameters in greater increments, which

could lead to a faster convergence. The model may overshoot the optimal parameter

values and fail to converge, leading to subpar performance, if the learning rate is set too

high. On the other hand, a low learning rate causes the model to take smaller steps and

converge more slowly. The model may become stuck in local minima or plateaus if the

learning rate is set too low, which will hinder convergence and extend training times.

Figure 3.12: Epochs vs Loss

29

For an optimal learning rate manual selection or scheduler is used.

Manual Selection: You can start with a reasonable initial learning rate based on

empirical guidelines or previous experience.

Scheduler: You can use predefined learning rate schedules, such as decreasing the

learning rate by a fixed factor after a certain number of epochs or when a specific

condition is met. Usually step decay is used.

Grid Search: You can try different learning rates and see which model behaves better.

3.3.1.7 Learning curves

Loss of updates after each batch results in fluctuations. Too much noise or jumping loss

can never converge to local minima while larger batch sizes with no noise at

all/fluctuation can stuck in local minima. Little or less fluctuation is a good solution.

The gap between training and validation accuracy shows overfitting.

Figure 3.13: Epochs vs Accuracy

Batch Size

It is the number of images used for training in a single iteration.

Smaller batch sizes enable quick computations and reduce the number of training

samples needed in a single iteration.

Memory:

Larger batch sizes call for more memory, which may not be enough to accommodate

them, resulting in out-of-memory problems that impair performance.

On the other hand, lower batch sizes need less memory, which is advantageous in

contexts with memory restrictions.

Convergence:

More randomness is introduced into the training process when smaller batch sizes are

used. This stochasticity can function as a type of regularization, aiding the model's

ability to generalize and possibly enhancing its performance on unobserved data.

Since the model updates its parameters more frequently with smaller batch sizes, the

model may explore the solution space more extensively. The model may be able to

identify better solutions and escape local minimum points as a result.

30

Smaller batch sizes could occasionally lead to a faster convergence of the model during

training. This is so that the model can be tuned more carefully and prevent overshooting

the ideal values by using smaller updates to the parameters.

Generalization Ability:

Small batches generalize well and allow us to start learning before seeing all the data

and it is highly probable to converge on optimal solution. While larger batch generalizes

poorly hence impacts on the performance and it is less likely to converge on optimal

solution. Generally, it is taken as a power of 2. Batch size 16 or 32 is a usual choice.

But it depends on the dataset and application.

3.3.1.8 Optimizer

Optimizers are the learning algorithm used to update the weights and biases which aid

in reduction of cost function in back propagation. There are different optimizers used

in machine learning like Stochastic Gradient Descent (SGD) and Adaptive Moment

Estimation (Adam) optimizers. Difference in both most used optimizers is given below:

Updating Model Parameters:

SGD computes the loss function’s gradient with respect to the parameters for each

example in the training data and steps in the direction of the negative gradient at a fixed

learning rate. On the other hand, Adam uses a more sophisticated update rule that

includes both momentum and second-order adaptive learning rate information. This

allows Adam to adaptively adjust the learning rate based on gradient history, which in

some cases can result in faster convergence and better performance.

Momentum:

Adam uses momentum, a technique that speeds up the convergence process.

Momentum adds a fraction of the previous update to the current update, which can help

the optimizer bypass local minima and reach convergence faster. SGD, on the other

hand, does not consider Momentum by default, although it can also be combined with

Momentum in the form of variants such as SGD with Momentum.

Adaptive Learning Rate:

 Adam adjusts the learning rate for each parameter based on the estimated second-order

moments of the gradients, allowing the learning rate to be adaptively scaled for different

parameters. This can be particularly useful in scenarios where the gradients of different

parameters are of significantly different magnitudes. SGD, on the other hand, uses a

fixed learning rate for all parameters throughout the training process, which may not be

optimal for all scenarios.

Parameter Updates:

Adam updates the model's parameters using a combination of the gradient of the loss

function and the accumulated momentum and adaptive learning rate information. SGD,

on the other hand, updates the parameters using only the gradient of the loss function

scaled by a fixed learning rate.

31

Memory Requirements:

Adam requires additional memory to store the accumulated momentum and adaptive

learning rate information for each parameter, which can increase the memory

requirements compared to SGD, which only requires storing the gradients.

3.3.1.9 Training /Test/Validation set.

Generally, a dataset is split into train set, test set and validation set. The training set is

with large samples on which the model learns patterns and test set is used to make

prediction which is the unseen data. While validation set is used to make predictions

during training to understand and observe how well a model generalized on new data.

Since weights update in training set while back propagation is turned off during

validation set makes it possible to observe the behavior of model in predicting while

training so quick changes can be made for a better generalization ability and optimized

parameters.

3.3.1.10 Bias-Variance Trade-off

Bias and variance are two important concepts that describe the performance and

generalization ability of a model.

Bias:

Bias is the error that results from using a simple model to approximate a complex real-

world problem. A biased model is more likely to consistently commit systematic

mistakes. It might oversimplify the underlying information or issue, leading to wrong

forecasts. High bias can cause underfitting, where the model performs poorly on both

the training data and new, unobserved data and fails to capture the underlying patterns

in the data.

Variance:

Variance is the error caused by the model's sensitivity to the training set that was

employed. A high variance model could be too complex and sensitive to the training

data, which adds in overfitting. When a model performs well on training data but

struggles to generalize to fresh, untried data, overfitting has taken place. Poor

generalization performance might result from high variance since the model may be

highly specialized to the training data and unable to accommodate new input data.

Trade-off:

A model's complexity and flexibility increase when its bias is minimized, which may

lead to larger variance as the model becomes more sensitive to the particular training

data. On the other hand, a model becomes more stable and less prone to overfitting

when its variance is lowered, but it may also introduce more bias because it loses

flexibility.

Balance:

Balancing bias and variance is an important goal in machine learning model

development. A model with high bias may require more complex features or a larger

dataset to capture underlying patterns, while a model with high variance may require

32

regularization techniques such as regularization or increasing the training data size to

reduce overfitting.

3.3.1.11 Metrics

There exists different methods or metrics to evaluate the model’s ability to predict

correctly. Since the nature of this work being multi-classification problem, different

metrics are used to observe model’s behavior and accurate detection. One of which is

Confusion Matrix. It is a representation of the true positive, true negative, false positive,

and false-negative cases.

To evaluate model’s performance, it gives out predicted labels and actual labels. Based

on confusion matrix classification report is made which entails precision, recall, F1

score. In order to interpret a confusion matrix, you can observe the values in the

diagonal (TP and TN) which is the accurate predictions made by the model.

The off-diagonal (FP and FN) values represent incorrect predictions made by the model.

A well-performing model possesses higher true positive and true negative, and a lower

false positive and false negative shows correct predictions. The model with a high

number of false positive and false negative, indicates inaccurate predictions.

Figure 3.14: Errors in Machine Learning

Accuracy is a measure of correct predictions, calculated as

 (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

Precision is a measure of true positives among the positives predicted by the model,

calculated as

 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃)

Recall is a measure of true positives among the actual positives, calculated as

 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁)

F1-score is a measure of harmonic mean of precision and recall, calculated as

33

 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

3.3.1.12 Receiver operating curve (ROC)

Area under the ROC is used to represent each class and its average. The ROC is plotted

with the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on the

y-axis. The range of AUC is between 0 and 1. If the AUC is 1 then this means that the

model is a good classifier. If AUC is below 0.5, it means random classification.

 Transfer Learning

It is a technique where model is trained on pre-trained network taking benefits of

previously trained weights. It is an art of reusing a model leveraging the knowledge of

previous features to improve performance of new task by saving significant amount of

time and resources. Transfer learning can be implemented as

 Feature Extractor

 Fine-tuning Network

In transfer learning as a fixed feature extractor, the model takes the pretrained

knowledge and passes it on the new data by only adjusting the new number of classes

in the classifier layer. While in fine tuning model is trained and modified to re-train to

achieve specific goal.

3.3.2.1 AlexNet Architecture

AlexNet architecture is widely known as a winner of ImageNet ILSVRC challenge due

to its revolutionary amendments in a typical CNN. For example, ReLU being

introduced for the first time as a replacement to tanh and sigmoid functions which were

slower to train.

Moreover, drop out was first introduced to overcome overfitting as well as Local

Response Normalization (LRN) for better generalization with ReLU as the learned

variable being unnecessarily high. The idea behind is to amplify excited neurons and

dampen the neighboring pixels. This architecture has a total of 8 layers from which 5

are convolutional layers, 3 are fully connected layers with max pooling and dropout

being used. It has 62.3 million learnable parameters.

Figure 3.15: Architectural Diagram of AlexNet

Input

M
a

x
 P

o
o

li
n

g

D
en

se

F

V

N

Q

S
M

M
a

x
 P

o
o

li
n

g

C
o

n
v

o
lu

ti
o

n

R
e
L

U

M
a

x
 P

o
o

li
n

g

F
la

tt
e
n

D
en

se

R
e
L

U
 +

 d
r
o

p
o

u
t

0
.5

C
o

n
v

o
lu

ti
o

n

R
e
L

U

C
o

n
v

o
lu

ti
o

n

R
e
L

U

C
o

n
v

o
lu

ti
o

n

R
e
L

U

C
o

n
v

o
lu

ti
o

n

R
e
L

U

D
en

se

R
e
L

U
 +

 d
r
o

p
o

u
t

0
.5

34

Table 3.1: AlexNet Layers
Layer # of Filters Stride Padding Filter Size Output

Feature map

Input layer - - - - 227x227x3

Conv1 96 4 - 11x11 55x55x96

Conv2 256 1 2 5x5 27x27x256

Conv3 384 1 1 3x3 13x13x384

Conv4 384 1 1 3x3 13x13x384

Conv5 256 1 1 3x3 13x13x256

FC - - - - 4096

FC - - - - 4096

FC - - - - 1000

Note that in case of customized input, the output size of a convolution layer is

calculated as:

 𝑂𝑢𝑡𝑝𝑢𝑡 = ((𝐼𝑛𝑝𝑢𝑡 − 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒)/ 𝑠𝑡𝑟𝑖𝑑𝑒) + 1

3.3.2.2 VGG16 Architecture

VGG architecture came out of the need for reduced computational time and parameters.

It has different variants which only differ in the number of layers. VGG16 has a total

of 16 layers out of which 13 are convolutional layers, 3 dense layers and 5 max pooling

layers which are not learnable. Since AlexNet has variable kernels size for different

layers which increases the parameters while vgg16 has a fixed kernel size of 3x3 in all

layers with stride 1 and max pool kernel size of 2x2 and a stride of 2. The idea behind

is to reduce the number of parameters.

Figure 3.16: Architectural Diagram of Vgg16

35

Table 3.2: Details of Vgg16 Layers

Layer # of Filters Stride Padding Filter Size Output

Feature map

Input layer - - - - 224x224x3

Conv1 64 1 same 3x3 224x224x64

Conv2 128 1 same 3x3 112x112x128

Conv3 256 1 same 3x3 56x56x256

Conv4 512 1 same 3x3 28x28x512

Conv5 512 1 same 3x3 14x14x512

FC - - - - 4096

FC - - - - 4096

FC - - - - 1000

Conv1 and Conv2 have 2 convolutional layers stacked while Conv3, Conv4 and Conv5

have 3 convolutional layers stacked in a block. Same padding means the output shape

is same as of the input. It has 138 million parameters.

3.3.2.3 ResNet18 Architecture

ResNet18 is a small architecture with 18 trainable layers. It introduced skipping

connections which are used solely to overcome the problem of vanishing gradient.

Vanishing gradient happens when the gradients of loss function fail to update properly

as they become so small leading to 0 where no more updates to weights occur. It leads

to stagnant learning process. For this problem to be eradicated, skipping connections

are introduced so if the gradient becomes too small it skips that and move to deeper

layer providing improved learning instead of slowed process. It uses a residual block

which is repeated throughout the model. Instead of learning the mapping from input to

output it learns the mapping from input to output plus the identity function that is a

short connection called identity connection. Due to which no vanishing gradient occurs.

This architecture has 2 pooling layers 3x3 max pooling at the start and 7x7 average

pooling at the end. It has a total of 11 million parameters.

36

Figure 3.17: Residual Block

Table 3.3: Details of ResNet Layers

Layer # of Filters Stride Padding Filter Size Output

Feature map

Input layer - - - - 227x227x3

Conv1 64 2 1,1,1,1 7x7 112x112x64

Conv2 64 1 0.5,1,1,1 3x3 56x56x64

Conv3 128 1 0.5,1,1,1 3x3 28x28x128

Conv4 256 1 0.5,1,1,1 3x3 14x14x256

Conv5 512 1 0.5,1,1,1 3x3 7x7x512

FC - - - - 1000

37

Figure 3.18: ResNet Architecture

38

3.3.2.4 EfficientNet Architecture

Since many state-of art ConvNets have hit memory limits researchers looked for

resource efficient architecture without compromising on accuracy. The problem with

deep networks is that lots of computation happens, with lots of layers comes lots of

processing. It becomes time consuming. In a traditional convolutional neural network,

we often scale depth only, but EfficientNet came up with the idea of compound scaling

in which we not only scale depth, but width and resolution can also be scaled. By scaling

depth means adding more layers, by scaling resolution means size of an image is

increased, by scaling width means channels/features are increased. The paper

performed experiment and proposed that by scaling only one of these can lead to

saturation as a point reaches where no more scaling helps. Thus, the idea of compound

scaling emerged. In compound scaling resolution, width and depth are scaled together.

How much depth, width, resolution scaling is required?

For compound scaling network scaling factor F is represented as

 𝑭 = 𝜶. βθ. γθ

Where α is the depth,

𝜷 is the width,

𝜸 is the resolution,

𝜽 is a hyper-parameter.

Using grid search it is decided that depth = 1.2, width= 1.1, resolution =1.15 and θ= 1

3.3.2.5 EfficientNet series

EfficientNet was made to give better results in reasonable parameters. The EfficientNet

model has a series starting from a baseline model B0 which is scaled to achieve up to

B7. These models are not human designed, but they are made by NAS (neural

architecture search). EfficientNet has come up with version 2 as well which proved to

have better accuracy and less computational time. It also has B0-B7 series additionally

consists of small, medium, and large models which are made by adding layers in stage

5 and 6 as shown below. This architecture proves to be superior to many state of art

models. More details can be found in the paper [48].

3.3.2.5.1 EfficientNet B0 and B1

EfficientNet B0 and B1 are used in this research as the aim of the work is to propose

hardware efficient architecture hence taking the benefits of lower series of the

architecture.

The common part in whole EfficientNet series is the stem and final layer. The details

of the EfficientNet Architecture are given below [49].

39

Figure 3.19: Stem Layer

Figure 3.20: Final Layer

Each model in the series has 7 blocks with varying sub-blocks as we move from B0 to

B7. The total number of layers in B0 are 310 and B1 are 439 but they can only be made

by reusing only 5 modules as given below:

Figure 3.21: Modules in EfficientNet Architecture

These modules together make sub blocks which are given as:

• Module 1 is a starting point for the sub-blocks.

• Module 2 is a starting point for the first sub-block of all the 7 main blocks except the 1st one.

• Module 3 is connected as a skipping connection to all the sub-blocks.

• Module 4 is for combining the skipping connection in the first sub-blocks.

• Module 5 for each sub-block is connected to its previous sub-block in a skipping connection and

they are combined using this module.

• Sub-block 2 is the first sub-block in rest of the blocks.

• Sub-block 3 is used for any sub-block except the first one in rest of the blocks.

40

Figure 3.22: Sub-blocks in EfficientNet Architecture

The MBConv block and Squeeze and Excite (SE) block is given as:

Figure 3.23: MBConv Architecture

Figure 3.24: Squeeze and Excite Architecture

Below are the details for EfficientNet B0 and B1 architectures.

41

Figure 3.25: EfficientNet B0 Architecture

Figure 3.26: EfficientNet B1 Architecture

Drawback of EfficientNet-V1

 Training with large image size is slow.

 Depthwise convolution is expensive.

 Equally scaling up creates doubling in all stages.

Benefits of EfficientNet V2

 Less training time.

 More accuracy

 Depthwise Convolutions are slow in early stages but are effective later.

 To compensate for the loss receptive field, depthwise conv3×3 and expansion

conv1×1 exchanged with single traditional conv3×3 known as FusedMBConv.

42

Table 3.4: EfficientNet baseline model version1

Stage 𝒊 Operator Resolution # Channels # Layers

1 Conv3x3 224x224 32 1

2 MBConv1, k3x3 112x112 16 1

3 MBConv6, k3x3 112x112 24 2

4 MBConv6, k5x5 56x56 40 2

5 MBConv6, k3x3 28x28 80 3

6 MBConv6, k5x5 14x14 112 3

7 MBConv6, k5x5 14x14 192 4

8 MBConv6, k3x3 7x7 320 1

9 Conv1x1, Pooling, FC 7x7 1280 1

Table 3.5: EfficientNet Resolution

Figure 3.27: MBConv Architecture

Model Series Resolution

B0 224

B1 240

B2 260

B3 300

B4 380

B5 456

B6 528

B7 600

43

Table 3.6: EfficientNet model version2-small

Figure 3.28: FusedMBConv Architecture

3.3.2.5.2 Details of the prominent layers

Sigmoid Linear Unit (SiLU)/Swish function

The network uses swish activation function which captures a wider range of values and

gradients. It prevents vanishing gradient problems as ReLU nullifies the negative values

and only allows positive values, but SiLU allows both positive and negative values

providing wide range of values.

It is a product of linear and sigmoid function given as:

 𝑺𝒊𝑳𝑼(𝒙) = 𝒙 ∗ 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒙)

Stage 𝒊 Operator Stride # Channels # Layers

0 Conv3x3 2 24 1

1 FusedMBConv1, k3x3 1 24 2

2 FusedMBConv4, k3x3 2 48 4

3 FusedMBConv4, k3x3 2 64 4

4 MBConv4, k3x3, SE 0.25 2 128 6

5 MBConv6, k3x3, SE 0.25 1 160 9

6 MBConv6, k3x3, SE 0.25 2 256 15

7 Conv1x1, Pooling, FC - 1280 1

44

Below is the MATLAB plot that shows how SiLU looks like

Figure 3.29: SiLU Activation Function

Identity

ResNet18 uses the skipping connections concept which takes some of the previous

layer’s output and passes it down to overcome vanishing gradient. Just like ResNet,

EfficientNet uses identity to achieve it. It improves gradient flow and makes a direct

flow from previous layers to the next layers.

Depthwise Separable Convolution

Instead of traditional convolution which perform channel wise and spatial wise

convolution in one go. DSC is introduced which reduces the multiplications by

incorporating depthwise and pointwise Convolution separately. It performs depthwise

convolution first and then pointwise convolution which decreases the trainable

parameters by a large number. It applies one filter per channel whereas pointwise

convolution creates a linear combination of its output.

Figure 3.30: Regular Convolution Depthwise and Pointwise Convolution [50]

Traditional

Convolution

Depthwise Pointwise

45

Squeeze and excite used by inverted residual block (MBConv)

It allows us to emphasize important features and suppress subordinate ones. Instead of

assigning weights to the channels equally, it will dynamically assign the high weight

for the foremost channels.

Zero Padding

To maintain spatial size of the feature map, padding is done by adding zeros to the

border so original information is preserved and to extract fine details without losing

information.

Batch Normalization

As the name says this helps to normalize the previous layer output so the training is

stable.

Multiply

It is used to rescale channels in Squeeze and Excite block. Its role is to emphasize or

de-emphasize certain features based on importance and relevance.

Edge residual

Edge residual is a type of inverted residual block that adds additional edge features to

the input feature map before depthwise separable convolution. These edges features

will capture the edge details which are useful for building efficient neural networks that

can run on resource-constrained devices while still maintaining high accuracy.

To find the output size of layers one can use this formula:

 𝑶𝒖𝒕𝒑𝒖𝒕_𝒔𝒊𝒛𝒆 = (𝒊𝒏𝒑𝒖𝒕_𝒔𝒊𝒛𝒆 − 𝒌𝒆𝒓𝒏𝒆𝒍_𝒔𝒊𝒛𝒆 + 𝟐 ∗ 𝒑𝒂𝒅𝒅𝒊𝒏𝒈) / 𝒔𝒕𝒓𝒊𝒅𝒆 + 𝟏

3.3.2.6 MobileNet Architectures

MobileNet is a convolutional neural network architecture that utilizes depth wise

separable convolutions to build efficient and lightweight models for mobile and

embedded vision applications. The key feature of MobileNet is its use of depth wise

separable filters, as illustrated in 1. This approach enables the network to reduce

the number of parameters and computations while maintaining high accuracy.

Figure 3.31: Architecture of MobileNet [51]

46

3.3.2.7 MobileNet Versions

MobileNet is a family of models that have been designed to achieve high accuracy with

fewer parameters, making them suitable for mobile and embedded devices. The original

MobileNet model, known as MobileNetV1, uses depth-wise separable convolutions to

achieve a good trade-off between accuracy and efficiency. The MobileNet architecture

has been further improved in subsequent versions, with MobileNetV2 adding linear

bottlenecks and inverted residuals to the depth-wise separable convolutions which can

accelerate convergence and prevent degradation then in MobileNetV3 introducing h-

swish and h-sigmoid activation functions and improved architecture search techniques.

The MobileNet models come in various sizes, ranging from small (e.g., MobileNet V1

0.25) to large (e.g., MobileNetV3 Large), allowing users to choose the right model for

their specific application based on the trade-off between accuracy and efficiency.

3.3.2.7.1 MobileNetV1, V2 and V3

In the present research, MobileNetV1, V2 and V3 architectures were employed due to

their potential to provide hardware-efficient solutions. As the primary goal was to

develop a resource-efficient model, leveraging the advantages of these three versions

was deemed appropriate. MobileNetV1, V2 and V3 are a series of convolution neural

network architectures that are designed for efficient mobile and embedded vision

applications. Due to their streamlined structure and depth-wise separable convolution

filters they are used in these types of applications. Therefore, incorporating these

architectures in the study is expected to yield optimal results while minimizing the

computational burden.

3.3.2.8 MobileNetV1:

Figure 3.32: Depth wise Separable Convolution block

47

3.3.2.8.1 Details of the prominent layers

Depth-wise convolutional layer

This layer applies a separate 3x3 convolution filter to each of the channels of the input

image, resulting in a set of output channels that is equal to the number of input channels.

The same filter was used across all input channels, so that the network learns to extract

the same type of features across all channels. This operation helps to capture spatial

dependencies within the image that are specific to each channel, the depth-wise

convolutional layer can learn channel-specific features that are optimized for the spatial

location of that channel in the input image.

Point-wise convolutional layer

This layer applies a 1x1 convolutional filter to the output of the depth-wise

convolutional layer, the point-wise convolution performs a linear combination of the

input channels, allowing the network to learn a weighted sum of the feature maps

produced by the previous depth-wise convolutional layer. The output we get has

reduced the number of channels compared to the input, which helps to reduce the

computational cost of the subsequent layer.

This point-wise convolutional layer helps to reduce the computational cost of the

network but also increases the representation power of the network enables to learn

non-linear interactions between the input channels. This is because the weights of the

1x1 convolutional filter are learned during the training process to allow to learn more

complex features interactions that may not be captured by the depth-wise convolutional

layer alone. MobileNetV1 uses both batch normalization and ReLU non-linearity for

both layers.

Figure 3.33: Depthwise Separable Convolution [52]

Down-sampling layer

A down-sampling layer is a type of layer in a convolutional neural network that reduces

the spatial dimensions of feature maps. The down-sampling layers are implemented

using a depth-wise separable convolution with a stride of 2 in the depth-wise

convolutional operation this allows mobilenetv1 architecture to reduce the spatial

48

dimensions of the feature maps while maintaining a high level of accuracy on image

classification tasks.

Fully Connected Layer

The purpose of the fully connected layers in a convolutional neural network (CNN) is

to perform the final classification of the input image. These layers take the output of

the last convolutional layer or the last pooling layer as input and produce a vector of

class probabilities as output.

In MobileNetv1, the final layers of the network consist of a global average pooling layer

followed by a fully connected layer with a SoftMax activation function, which produces

the final classification output.

Activation Function
 ReLU6 (activation Function):

 Real world data is non-linear.

 Computationally fast

 Zero if it is negative and 6 if it is positive.

 ReLU6 is used due to its robustness when used with low-precision computation

based on MobileNetV1.

The ReLU6 activation function can be represented mathematically as:

ReLU6(x) = min (max (x, 0), 6)

.

Figure 3.34: ReLU6 Activation Function

49

Batch Normalization

 Used as regularization technique.

 Performance and stability of the model

 Higher learning rates

1x1 convolution

 Pointwise convolution.

 Reduces the number of channels and the computational cost.

 Non-linearity in the network.

 Reduces the number of parameters.

Figure 3.35: standard convolution followed by normalization and RELU (left). Depth-

wise convolution layer and pointwise convolution layer, each followed by batch

normalization and RELU (Right)

Table 3.7: MobileNet Body Architecture
Type / Stride Filter Shape Input Size

Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3

Conv dw 1/ s1 3 × 3 × 32 𝑑𝑤 112 × 112 × 32

Conv / s1 1 × 1 × 32 × 𝟔4 112 × 112 × 32

Conv dw / s2 3 × 3 × 𝟔4 𝑑𝑤 112 × 112 × 𝟔4

Conv / s1 1 × 1 × 𝟔4 × 128 5𝟔 × 5𝟔 × 𝟔4

Conv dw / s1 3 × 3 × 128 𝑑𝑤 5𝟔 × 5𝟔 × 128

Conv / s1 1 × 1 × 128 × 128 5𝟔 × 5𝟔 × 128

Conv dw / s2 3 × 3 × 128 𝑑𝑤 5𝟔 × 5𝟔 × 128

Conv / s1 1 × 1 × 128 × 25𝟔 28 × 28 × 128

1 dw: Depth wise
2 Avg Pool: Average pooling

50

Conv dw / s1 3 × 3 × 25𝟔 𝑑𝑤 28 × 28 × 25𝟔

Conv / s1 1 × 1 × 25𝟔 × 25𝟔 28 × 28 × 25𝟔

Conv dw / s2 3 × 3 × 25𝟔 𝑑𝑤 28 × 28 × 25𝟔

Conv / s1 1 × 1 × 25𝟔 × 512 14 × 14 × 25𝟔

5 × Conv dw / s1

conv / s1

3 × 3 × 512 𝑑𝑤

1 × 1 × 512 × 512

14 × 14 × 512

14 × 14 × 512

Conv dw / s2 3 × 3 × 512 𝑑𝑤 14 × 14 × 512

Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512

Conv dw / s2 3 × 3 × 1024 𝑑𝑤 7 × 7 × 1024

Conv / s1 1 × 1 × 102 × 1024 7 × 7 × 1024

Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024

FC / s1 1024 × 1000 1 × 1 × 1024

Softmax / s1 Classifier 1 × 1 × 1000

3.3.2.9 Proposed Novelty

There are two new hyper-parameters introduced in the MobileNetV1:

1) Width Multiplier

2) Resolution Multiplier

3.3.2.9.1 Width multiplier

Width multiplier is introduced to control the number of channels or controls the overall

width of the network which is determined by the number of filters in each layer. It is a

global Hyperparameters that is used to construct smaller and less computationally

expensive models. Its value lies between 0 and 1. A smaller width multiplier will reduce

the number of filters in the network and make it more computationally efficient, while

a larger width multiplier will increase the number of filters and improve the accuracy

of the network.

𝐃𝒌 · 𝐃𝑲 · 𝛂𝐌 · 𝐃𝑭 · 𝐃𝑭 + 𝛂𝐌 · 𝛂𝐍 · 𝐃𝑭 · 𝐃𝑭

3.3.2.9.2 Resolution multiplier

This Second hyper-parameter is used to decrease the computational cost of a neural

network is a resolution multiplier this hyper-parameter reduces the resolution of the

input image and this subsequently reduces the input to every layer by the same factor if

we have a smaller resolution multiplier it reduces the size of the input images and make

the network more computationally efficient, while a larger resolution multiplier make

the input images larger in size potentially improve the network’s accuracy.

51

The resolution and width multipliers in MobileNetV1 allow for the creation of

lightweight neural networks that can achieve high accuracy on tasks such as image

classification while using fewer computational resources.

𝐃𝒌 · 𝐃𝑲 · 𝛂𝐌 · 𝛒𝐃𝑭 · 𝛒𝐃𝑭 + 𝛂𝐌 · 𝛂𝐍 · 𝛒𝐃𝑭 · 𝛒𝐃𝑭

3.3.2.10 MobileNetV2

Figure 3.36: Linear Bottleneck and inverse Residual Block

 The bottleneck residual block has three convolution layers.

 The last two layers in MobileNetV1 are depth-wise convolution and 1 x 1 point-

to-point convolution layers.

 In MobileNetV1, the pointwise convolution either keeps the number of channels

the same or doubles them, while in the bottleneck residual block, the 1 x 1

convolution layer reduces the number of channels.

52

 The first layer in the bottleneck residual block is the 1 x 1 expansion layer,

which expands the data by increasing the number of channels.

 The second layer in the bottleneck residual block is the depth-wise convolution

layer, which we already know from MobileNetv1.

 The bottleneck residual block includes a residual connection, which works the

same way as in ResNet.

 ReLU6 is used as the activation function in each layer of the bottleneck residual

block except the projection layer.

 The projection layer only has a batch normalization layer because introducing

nonlinearity with ReLU6 will decrease the performance as the output from the

projection layer is of low dimension.

The motivation for inserting shortcuts in like that of the classical residual connections

we want to improve the ability of a gradient to propagate across multiplier layers.

The basic building block is a bottleneck depth-separable convolution with residuals.

The detailed structure of this block was shown in the table below.

Input Operator Output

𝒉 × 𝒘 × 𝒌 1×1 conv2d, ReLU6 ℎ × 𝑤 × (𝑡𝑘)

𝒉 × 𝒘 × 𝒌 3×3 depth-wise s=s ℎ

𝑠
×

𝑤

𝑠
× (𝑡𝑘)

𝒉

𝒔
×

𝒘

𝒔
× 𝒕𝒌

Linear 1×1 conv2d ℎ

𝑠
×

𝑤

𝑠
× 𝑘′

Figure 3.36: Bottleneck Architecture

The architecture of MobileNetV2 contains the initially fully convolution layer with 32

filters, which was then followed by 19 residual bottleneck layers described in the table

below.

We have used the ReLU6 as non-linearity because of its robustness when we used with

low precision computation as a common practice in modern networks, we employ a

kernel size of 3 × 3, which is a standard choice. Additionally, we incorporate dropout

and batch normalization techniques during the training process.

53

Table 3.8: MobileNetV2 Body Architecture

Input Operator t c n s

𝟐𝟐𝟒𝟐 × 𝟑 conv2D - 32 1 2

𝟏𝟏𝟐𝟐 × 𝟑𝟐 bottleneck 1 16 1 1

𝟏𝟏𝟐𝟐 × 𝟏𝟔 bottleneck 6 24 2 2

𝟓𝟔𝟐 × 𝟐𝟒 bottleneck 6 32 3 2

𝟐𝟖𝟐 × 𝟑𝟐 bottleneck 6 64 4 2

𝟏𝟒𝟐 × 𝟔𝟒 bottleneck 6 96 3 1

𝟏𝟒𝟐 × 𝟗𝟔 bottleneck 6 160 3 2

𝟕𝟐 × 𝟏𝟔𝟎 bottleneck 6 320 1 1

𝟕𝟐 × 𝟑20 conv2D 1 × 1 - 1280 1 1

𝟕𝟐 × 𝟏𝟐𝟖𝟎 avgpool 7 × 7 - - 1 -

𝟏 × 𝟏 × 𝟏𝟐𝟖𝟎 conv2D 1 × 1 - k - -

Drawback of MobileNet-V1

 Limited accuracy compared to larger models.

Benefits of MobileNet-V2

 Improved performance with higher accuracy.

 Better generalization capabilities.

 Flexibility and customizability in architecture and Hyperparameters.

 Multi-scale feature extraction for tasks like object detection and segmentation.

3.3.2.11 MobileNetV3

MobileNetV3 is a family of lightweight neural network architectures designed for

efficient and high-performance deep learning on resource-constrained devices.

MobileNetV3 aims to strike a balance between model size, computational efficiency,

and accuracy. The "Small" variant of MobileNetV3 is specifically designed to be even

more lightweight, making it suitable for mobile and embedded applications. It achieves

this by leveraging efficient depth-wise separable convolutions, squeeze-and-excitation

modules, and improved architecture design. Despite its compact size, MobileNetV3-

Small demonstrates impressive performance on various computer vision tasks such as

image classification and object detection. It offers a practical solution for deploying

deep learning models on devices with limited computational resources, enabling a wide

range of applications in real-world scenarios.

54

While MobileNetV3-Large is a high-performance and efficient neural network

architecture. It achieves a balance between accuracy and computational efficiency. It

incorporates advanced features like inverted residual blocks and attention mechanisms.

MobileNetV3 Large can achieve state-of-the-art performance on various computer

vision tasks.

This architecture was implemented as a function of different resolutions and

multipliers.so in given below figure we can see that the MobileNetV3-Small

outperforms the MobileNetV3-Large with multiplier scaled to match the performance.

Figure 3.37: Comparison of V3 large vs V3 small vs V2 [53]

MobileNetV3 is defined as two models: MobileNetV3-Large and MobileNetV3-Small.

These models are targeted at high and low resource use cases respectively for more

details please refer [53] .

Drawback of MobileNet-V2

 Increased computational complexity compared to MobileNet-V1 due to the

addition of new features and techniques.

Benefits of MobileNet-V3

 Further improved accuracy compared to MobileNet-V2.

 Enhanced efficiency and performance with advanced design choices.

 Introduces the concept of network architecture search (NAS) for optimizing

model design.

 Offers both "Small" and "Large" variants for different resource constraints and

application needs.

 Demonstrates state-of-the-art performance on various computer vision tasks.

55

 ECG Databases

The famous Databases for ECG that are publically available are PhysioNet’s MIT BIH

Arrhythmia that is most commonly used [54]. PTBD Database is another ECG dataset

widely available [55]. UC Irvine Machine Learning repository has Arrhythmia dataset

[56]. All these are non-image databases. Since CNNs except images, these files are

carefully being converted into images.

56

4 Chapter – 4

Methodology

This chapter entails the tools and software used in the study to perform classification,

analysis, and other computational tasks.

The proposed methodology used Transfer Learning approach2 (subsequently referred

as method 1 in this report) to implement all the CNNs that are being selected for the

work and later modified Transfer Learning3 (subsequently referred as method 2 in this

report) is implemented for EfficientNet. In the other part a comparison is made with

previous methods literature. The details are discussed in the below section. Following

is the agenda of this work:

Figure 4.1: Framework of proposed system

4.1 Experimental Setup

Programming Languages: Python, MATLAB

Frameworks: TensorFlow / Keras, PyTorch

Tools/Software and Environment: Google Collaboratory Notebook, MATLAB

2 Method 1
3 Method 2

Proposed

System

Implementation

Dataset

CNN model

selection

Training

Testing

Future

Work

Hardware

and

Software

Co-Design

57

Dataset: MIT BIH Arrhythmia Database and PTBDB

4.2 Implementation
This chapter outlines our proposed method’s procedure, which is divided into two

independent parts. The first part, known as CNN Selection and Implementation,

involves preparing the dataset, training, evaluating, and finalizing the CNN

architecture. Later part is comparison with other state-of-art models.

 ECG Dataset Preparation:

Various datasets are available for ECG, but the only famous Arrhythmia dataset is from

MIT BIH Arrhythmia and PTB Database. For Deep Learning, large dataset is required.

As CNN accepts Images so the image version of MIT BIH Arrhythmia Database and

PTBDB available on Kaggle is used [57].

The dataset has been used for ECG Classification using Deep Learning Architectures

and Transfer Learning. The signal has normal, and cases affected by different

Arrhythmias and Myocardial Infarction. Kaggle allows direct Dataset access through

its APIs. Since the dataset is from Kaggle, instead of downloading the dataset which

takes up space locally, Kaggle API token is used to download dataset for a runtime

virtually. You must run commands in the following manner.

Figure 4.2: Downloading dataset from Kaggle API

The dataset has train and test folders each with total 6 Classes 'F','M','N', 'Q', 'S','V'. The

F, N, V, Q, S classes are recommended by ANSI/AAMI standards.

Table 4.1: Dataset Specifications

API Token
Generated

json file
loading

install
kaggle

make
directory

copy json
file to new
directory

allocate
permission

dataset url
download
and unzip

Samples: 109446

Categories: 5

Classes: {N, V, Q, F, S}

Sampling Frequency: 125Hz

Samples: 14552

Categories: 2

Classes: {N, M}

Sampling Frequency: 125Hz

Dataset

MIT BIT Arrhythmia PTB Database

58

Table 4.2: Class Labels

 Class Labels and Names

N S Q V F M

Normal Supraventricular Unclassifiable PVC Fusion of Myocardial

 Premature Ventricular and Infarction

 Normal

Since the training folder has 99199 images and the testing folder has 24799 images.

Validation data was created of 90/10 split from the training folder. At this point, aim is

not care about less data in validation as testing data is already available separately. The

only motive right now is to observe the behavior during training for understanding

purpose. As train test split has data leakage possibility, split folder library is used to

create a separate folder to avoid data leakage.

Figure 4.3: Dataset split

 Model Selection:

Considering the hardware favorability, memory size, parameters, performance and

computational ability, CNN architecture is being chosen. We aim for a lightweight,

small, and less complex network that can be deployed on tightly constraint hardware.

Based on simplicity and hardware friendliness we chose these networks:

 AlexNet

 VGG16

 ResNet18

 MobileNet (V1/V2)

 EfficientNet B0-B1 (V1/V2)

59

 Designing of CNNs:

The design specifications of implemented convolutional neural networks is given

below:

Figure 4.4: Proposed ResNet18 model

Figure 4.5: Proposed VGG16 model

Figure 4.6: Proposed AlexNet model

60

EfficientNet

As we are already familiar with EfficientNet series B0-B7 discussed previously. B0

being a baseline model uses compound scaling in implementation of higher models. In

this research we have implemented EfficientNet version 1 and version 2 for B0 and B1

models. Since we aim to have an efficient network in terms of hardware favorability

which compelled us to take benefits of these lower series models. These models were

computationally efficient, meaning they could run on hardware with limited resources

without compromising the performance. Additionally, the simple architecture allowed

for faster training and testing times while still achieving high accuracy.

Figure 4.7: Proposed EfficientNet model

These models are implemented using Transfer Learning as a feature extractor approach,

pretrained on imagenet weights. The minimum size EfficientNet accepts is 32 so

keeping hardware compatibility in mind 32 is taken as a starting size. For B0 the size

is 32x32 and we tested on a slightly bigger size like 64x64 also for comparing impact

of sizes. As EfficientNet has compound scaling so we arbitrarily decided 64x64 size

and we tested on a slightly bigger 128x128 size as well. This work implements

EfficientNet with both the methods discussed below. Further a comparison is made

which is discussed in the next chapter.

AlexNet, ResNet18, VGG16 are implemented using transfer learning method. Since the

accuracy achieved is outstanding there is no need to significantly increase parameters

ENet

Architecture

Version 1

B0

32x32x1

Version 2

Transfer

Learning

64x64x1 64x64x1 186x186x1

B1

Models

128x128x1

Transfer

Learning

Transfer

Learning
Transfer

Learning

Transfer

Learning

61

with only a slight increase in accuracy hence method 2 is not implemented for these

models.

MobileNet

Figure 4.8: Proposed MobileNet Version 1 model

Figure 4.9: Proposed MobileNet Version 2 model

62

Figure 4.10: Proposed MobileNet Version 3 model

These models are implemented using Transfer Learning as well as fine tuning

optimizing some of the Hyperparameters, pretrained on ImageNet weights. The

minimum size MobileNet accepts is 32 so keeping hardware compatibility in mind 32

is taken as a starting size. For MobileNetV1 the size is 32x32 and we tested on a slightly

bigger size like 64x64, 128x128, and 224x224 also for comparing impact of sizes.

Further a comparison is made which is discussed in the next chapter.

 Implementation of CNN Architectures

A very famous Pythonic styled PyTorch framework is used to implement EfficientNet,

ResNet18, VGG16 and AlexNet.

Importing all the necessary libraries. Since we are running on Google Colab Notebook,

we used “tqdm” package for displaying progress bar which will be useful during

training and testing for timing analysis. The notebook has some functions created for

displaying images, plotting, and calculating accuracy. Since PyTorch uses (channel,

height, width) convention whereas matplotlib uses (height, width, channel) convention.

So, the 3D tensor is arranged accordingly. One thing worth noting is that matplotlib

uses “viridis” color map by default. Since we desire Grayscale images even after

converting to grayscale matplotlib displays colored images. To tackle this problem, we

pass a parameter cmap='gray' to ensure the display is in grayscale as well.

63

Figure 4.11: 3D-Tensor Rearrangement

 Preprocessing

Next step is to apply transformation on the dataset. It is an important step of

preprocessing before passing towards neural network. There are plenty of options

available in transforms method. Our point of interest is conversion of RGB images to

single channel grayscale, resizing the images to desired size and convert images in the

range [0, 255] to a float tensor of shape (C, H, W) in the range [0.0, 1.0]. The reason

for doing so is to normalize the pixel values to a common scale. Besides many activation

functions like sigmoid and ReLU are in the range 0 to 1. Another reason is to reduce

the memory requirements since many deep learning models have 32-bit floating point

precision by default. All the transforms are being applied using compose method in

which all the transforms work at a time whereas there is another way known as

sequential method in which transforms are being applied sequentially. The transforms

are applied on the train, test, and validation folders.

Figure 4.12: Pre-processing

Import

transform from

torchvision

Grayscale

(1)
Resize ToTensor

Load

Image

PyTorch

Conventio

n

Permute

Matplotlib

Conventio

n

64

4.2.5.1 Exploratory Analysis

The next step is to do some exploratory analysis to check images in each folder and

display some images to ensure the color and size of image has been transformed.

Now we will ready the train, validate, and test loader for which we used DataLoader

from torch.utils.data.

The DataLoader class is used to wrap a dataset and provides several useful features,

such as:

Batch loading: It loads the data in batches of a specified size.

Shuffle: It shuffles the data before each epoch, helping in improving model's accuracy

and generalization.

Parallel loading: It can load the data in parallel using multiple workers, speeding the

data loading process.

Overall, the DataLoader class simplifies the process of loading and preprocessing data

for deep learning applications in PyTorch.

Figure 4.13: Data-loaders

Except AlexNet all the architectures are imported from timm library that provides a

collection of state-of-the-art computer vision models and efficient training utilities.

4.2.5.2 Transfer Learning

We create our model with weights pretrained on imagenet for transfer learning.

Since we are accommodating to transfer learning, we need to set few things in a

particular way such as:

 The number of classes returned by a pretrained imagenet is 1000. But our

multiclass problem has only 6 classes. Hence, we need to modify the linear

classifier layer of the network in such a way it has 6 out_features.

Data Loader

Train loader Test loader Valid loader

Shuffle Batch Size Dataset

65

Figure 4.14: Modified Classifier

 Since the all the layers are frozen in transfer learning, we achieve it by setting

requires_grad to false so parameters are not updated in those layers. Only the

first and last layer is trainable so the pre learned weights are only transferred to

custom classes.

Figure 4.15: Freezing layers

Notice that we updated the linear classifier to 6 classes but how?

There exist two methods to do so.

Figure 4.16: Transfer learning as a feature extractor method used in this work.

The first way, where you directly modify the last layer to have an out_features of 6, is

a simple and straightforward approach. However, if the pre-trained model was trained

on a significantly different dataset, this may not give the best results as the features

learned by the pre-trained model may not be optimal for the new task.

The second way, where you replace the last layer with a new set of layers, allows you

to customize the architecture of the classifier to better suit your new task and reduce

overfitting. This is useful if the number of classes in the new task is significantly

different from the classes in the pre-trained model.

Input
Freeze

Model

Trainable

Classifier

Method 1

Modify last
layer

Replace default
classes with

custom classes

Method 2

Replace last
layer

Add new set of
fully connected

layers

66

Either way, you should ensure that the input size of the next layer(s) matches the output

size of the pre-trained model's last layer (in your case, 1280), so that the output of the

pre-trained layers can be fed into the new layer(s) correctly. Additionally, make sure

that the activation functions and dropout rates are appropriate for your task.

Overall, both approaches can be effective, and the choice between them depends on the

specific requirements of your task and the architecture of the pre-trained model.

ResNet18 and VGG16 showed good results with method 1 while on EfficientNet

method 2 showed better results.

The second method takes slightly more time, and it has more parameters but better

accuracy. Since imagenet dataset is very much different from ECG Dataset, hence

method 2 is preferable. It also reduces overfitting by varying dropout and out_feature.

One can see which value fits better for custom dataset. The sequential block used in

method 2 for the implementation of EfficientNet is given below.

Figure 4.17: Modified layers in Method 2

While adding sequential block, you do not need to pass softmax activation function

before the linear classifier since PyTorch comes with CrossEntropyLoss which already

contains Softmax so it will be redundant to add another softmax.

4.2.5.3 Contribution to knowledge

For a network to be conductive to hardware needs to accept smaller size and single

channel so the layers can be designed efficiently on hardware such as FPGAs.

To accomplish this the size taken for a B0 network is 32x32 and 64x64 with single

grayscale channel. The comparative analysis is carried out for different sizes to

understand how it affects the memory, parameters, timings, and other hardware

constraints.

Since all the CNNs accept 3 channels RGB images, converting the RGB images to

grayscale was performed. One can use the transforms method as done in this work or

OpenCV to achieve it. But the primary obstacle is the conversion of 3 channels to 1

channel as the model accepts only 3 channels and throw errors if not realized.

The flexibility of PyTorch’s timm library allows us to overcome this very easily.

4.2.5.3.1 Potential methods to attain single channel.

 Train grayscale version of imagenet from scratch, too expensive?

Linear with

out_feature

625

ReLu
Dropout

(p=0.3) ReLu

Linear with

out_feature

6

Linear with

out_feature

256

67

 Modify the first hidden layer input channels from three to one. But how the next

layer will behave to this change that expects 3 channels output to be passed on

it?

The model's architecture is fixed due to the training of weights for a specific

configuration of the input. Altering the initial layer would render the remaining weights

ineffective. Neural networks are designed to extract complex features from lower-level

features as they move deeper into the network. Eliminating the initial layers of a

convolutional neural network would break this feature hierarchy, as subsequent layers

would not receive the expected input features. This is because the second layer has been

trained to anticipate the features of the first layer and changing it would disrupt the flow

of feature extraction through the model.

 One simple approach is to create a new dimension and repeat the image array

three times within it. This effectively converts the grayscale image into a three-

channel image, where each channel contains the same grayscale values. But this

is not an efficient way if your bigger goal is hardware compatibility. Having 3

channels each of similar information would add up in nothing but computations.

 It is possible to modify the weights of a model's first convolutional layer and

achieve the desired goal. While modifying the weights of the first layer can

result in reduced accuracy, the model can still be fine-tuned for improved

performance.

Modifying the weights of the first layer does not render the rest of the weights useless,

contrary to what others may have suggested. To accomplish this, you will need to add

code that modifies the pretrained weights when loading them into your 1-channel

model. This can be done by summing the weight tensor over the dimension of the input

channels.

The organization of the weight tensor varies depending on the framework being used.

For instance, in PyTorch, the default weight tensor organization is {out channels, in

channels, kernel height, kernel width}, while in TensorFlow, it is {kernel height, kernel

width, in channels, out channels}. You will need to figure out how to grab the weights

of the first convolutional layer in your network and modify them before assigning them

to the 1-channel model.

Figure 4.18: Approach 1 for updating weights.

Replace 3 channels in first layer to 1
channel

copy the sum (in the channel axis)
of the weights to the new layer

68

The similar thing can be done using this approach:

Figure 4.19: Approach 2 for updating weights.

The simplest way that timm offers is to set in_chans=1

Figure 4.20: Built-in parameter for updating weights.

As not all pre trained models are available in timm just like Alexnet. So, it is important

to know other ways to achieve single channel.

For MobileNet Architecture, fine-tuning is performed to get the most out of transfer

learning. After training a model traditionally, the model is trained again with a new

learning rate of 0.0001 and for a batch size of 32 from 16. It is worth noting that the

model's last four layers are removed and output from the Global Average Pooling layer

is to be reshaped to pass it to the classifier layer. The final 22 layers of MobileNet's

version 1 and version 3 are trained, for version 2 only the final 25 layers are trained.

This proved to be promising as the results achieved are astonishing. This is not an

optimal choice; one can vary and observe the behavior and choose whatever best suits

one's goal.

 Training and Evaluation

The next step after updating model to cater to our needs is to pass the model to the

device which is GPU. For training and testing, Colab GPU and NVIDIA GPU cards

with CUDA compute capability are used.
Summary of the model gives details about the size of model, trainable and non-trainable

parameters, and parameters of each layer with its output shape which will be beneficial

in deciding hardware utility.

Before the training of the model begins, we need to define which optimizer is used,

which loss function it will follow, how training and testing accuracies and losses will

be calculated. Since during training drop out is turned on as the weights gets updated

Replace 3 channels in first layer to 1
channel

update dictionary by calling
weights of first layer

model = timm.create_model (CFG.model_name, pretrained=True, in_chans=1)

69

during backpropagation and gets off during validation, for that we only set gradient for

training loop in ECGTrainer class.

For the training, we used Adam Optimizer, nn.CrossEntropyLoss. It combines the

nn.LogSoftmax function and the nn.NLLLoss function into a single class. In other

words, nn.CrossEntropyLoss takes in raw logits or scores from the last layer of the

neural network and applies a softmax function to them. The softmax function converts

the logits into a probability distribution over the classes. The class with the largest

probability is then considered the predicted class. The Hyperparameters used for the

implementation are stated below:

Table 4.3: Hyperparameters

 Batch Size Learning Rate Optimizer Epochs Criterion

 16 0.001 Adam 10 Cross Entropy Loss

One can experiment with removing ReLU from linear classifier and varying dropout or

putting dropout before the ReLU function.

4.2.6.1 Weights

We saved the best weights so every time validation loss decreases from first time, it

will save in a dictionary. The weights are saved in .pt format which contains weight and

bias of the model that can be used for further inference. Netron is a free tool to

visualize .pt files. The visualization is shown below. You can hover over the modules,

and it shows the details. Or one can convert .pt file into HDF format to view hierarchy

of the model using HDF viewer.

70

Figure 4.21: Weights Visualization

The results of training and testing will be discussed in the next chapter.

4.2.6.2 Evaluation/Testing

Once the training is over, it must be evaluated on the whole test data to check the overall

performance. The metrics used to evaluate the model are as follows.

1. Confusion Matrix

2. Categorical Accuracy

3. Precision

4. Recall

5. F1 Score

6. ROC_AUC Curve

4.2.6.2.1 Timing Analysis

The major impediment here is the time taken by a model to train and test the input.

Since our interest is hardware integration, for which timing will be crucial. To evaluate

time taken by a model to train in one epoch and single test time we can use notebook’s

tqdm package which displays a progress bar with iterations per second.

4.2.6.2.2 TQDM Package

The time duration for training can be displayed using tqdm. It tells each epoch time and

iterations/seconds. But no image takes equal time in training and testing, so we are

interested in average time of each epoch and average single testing time.

71

4.2.6.2.3 Profiler Run

Besides we can run profiler or timer on a cell where we can predict a single image. The

detailed analysis is discussed in the next chapter with a comparison with varied sizes.

4.2.6.3 Class Imbalance

Class imbalance occurs when one or more classes have significantly less or more

samples as compared to the other classes in the dataset. Class imbalance is very

common in machine learning where the distribution of classes in the training data is not

equal. This can lead to a biased model that performs poorly on the underrepresented

classes.

To eradicate class imbalance, there are multiple techniques to be used such as

oversampling the minority class, under sampling the majority class, or using cost-

sensitive learning algorithms. Another creative way is to use Generative Adversarial

Networks (GANs) for data generation. Other approaches include data augmentation,

ensemble learning, and synthetic data generation.

Figure 4.22: Distribution of all classes in train(on left) and test folder(on right)

4.2.6.4 Handling Imbalance

It's important to note that the appropriate technique to address class imbalance depends

on the specific problem and the available data. Additionally, the evaluation of the model

should be done using appropriate metrics, such as precision, recall, F1-score that

consider the class imbalance.

Unfortunately, this is one of the factors causing overfitting that will be addressed in the

next chapter.

Since ECG signal is a critical signal with lots of critical information. Performing data

augmentation on certain datasets can be challenging, as cropping or clipping signals

can result in information loss, while extending them or creating larger windows may

introduce overlap with other classes.

72

5 Chapter 5

Results and Analysis/Comparison

The results of training and evaluating CNNs are given in this section. Analysis is

performed in context of hardware compatibility for which different aspects are

considered as stated below:

 Computational Time

 Model Size

 Accuracy of the model

5.1 EfficientNet (Method 1) Results and Comparison

 Overall Timing Comparison

Table 5.1: Overall Timing details of EfficientNet -V1

Table 5.2: Overall Timing details EfficientNet-V2

Model-V1

Size

(Height ×Width)

Training Time

(s)

Testing Time

(s)

B0

32𝑥32 3527 103

64𝑥64 4139 112

B1

64𝑥64 4076

103

128𝑥128 4777 127

Model-V2

Size

(Height × Width)

Training Time

(s)

Testing Time

(s)

B0

32𝑥32 3855 101

64𝑥64 4078 106

B1

64𝑥64 4045 103

128𝑥128 4624 133

73

 Average Time Comparison

Table 5.3: Average time comparison of EfficientNet-V1

Table 5.4: Average time comparison of EfficientNet-V2

 Accuracy Comparison

Table 5.5: Accuracy comparison of EfficientNet-V1 sizes

Model-V1

Size

(Height × Width)

Average

Training Time

per Epoch

(minutes)

Average Testing

Time per Image

(Milli-seconds)

B0

32𝑥32 5.878 4.15

64𝑥64 6.898 4.51

B1

64𝑥64 6.828 4.15

128𝑥128 7.96 5.12

Model-V2

Size

(Height × Width)

Average

Training Time

per Epoch

(minutes)

Average Testing

Time per Image

(Milli-seconds)

B0

32𝑥32 6.425 4.07

64𝑥64 6.796 4.27

B1

64𝑥64 6.741 4.15

128𝑥128 7.706 5.36

Model-V1
Size

(Height × Width)

Accuracy

(%)

B0

32𝑥32 86.13

64𝑥64 93.95

B1

64𝑥64 93.14

128𝑥128 98.15

74

Table 5.6: Accuracy comparison of EfficientNet-V2 sizes

 Model Parameters and Size

Table 5.7: Trainable Parameters comparison

Model B0 B1 B0 B1

Version V1 V2

Parameters Size (MB) 15.31 24.87 22.38 26.20

Trainable Parameters 7,686 7,686 7,686 7,686

Total Parameters 4,014,658 6,520,294 5,865,814 6,867,162

Table 5.8: Model Size comparison

Model B0 B0 B1 B1 B0 B0 B1 B1

Version V1 V2

Input Dimensions 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1

Model Size (MB) 19.99 33.85 51.10 129.95 26.02 36.35 44.81 100.11

 Model size, computational cost, and accuracy analysis:

The results above showed that by increasing size comes more computational expenses

but better accuracy. The benefits of transfer learning can be seen here as out of total

parameters in table above only 7,686 are trainable thus saving us a lot of computational

power. While comparing V1 with V2, we can observe that we got better accuracy with

better computational cost. To understand the comparison let’s take B0 size 32x32 of

version 1 from above table which has 86.13% accuracy with 5.878 minutes of average

training and 4.15ms single shot testing time and B1 with size 64x64 of version 1 with

93.14% accuracy with 6.828 minutes training and 4.15ms single shot testing time. But

if you look closely at the B1 64x64 from version 2 you can see it has better accuracy of

95.62% with 6.741 minutes training and 4.15ms single shot testing time which is better

Model-V2
Size

(Height × Width)

Accuracy

(%)

B0

32𝑥32 87.93

64𝑥64 95.44

B1

64𝑥64 95.62

128𝑥128 99.16

75

than going for 64x64 size of B1 in version 1. So, if the choice has to be made one can

opt for V2 instead of moving to B1 of V1 from B0 of V1.

5.2 EfficientNet (Method 1) Version 1

 Performance Metrics

Confusion Matrix

Figure 5.1 First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

Classification report

76

Figure 5.2: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

Figure 5.3: ROC curve of B0 of size 32x32

Figure 5.4: ROC curve of B0 of size 64x64

77

Figure 5.5: ROC curve of B1 of size 64x64

Figure 5.6: ROC curve of B1 of size 128x128

78

Learning Curves

Figure 5.7: First row from left B0 size 32x32 and second row 64x64 respectively

Figure 5.8: First row from left B1 size 64x64 and second row 128x128 respectively

79

5.3 EfficientNet (Method 1) Version 2

 Performance Metrics

Confusion Matrix

Figure 5.9: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

80

Figure 5.10: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

Figure 5.11: ROC curve of B0 of size 32x32

Figure 5.12: ROC curve of B0 of size 64x64

81

Figure 5.13: ROC curve of B1 of size 64x64

Figure 5.14: ROC curve of B1 of size 128x128

82

Learning Curves

Figure 5.15: First row from left B0 size 32x32 and second row 64x64 respectively

Figure 5.16: First row from left B1 size 64x64 and second row 128x128 respectively

83

 Performance Analysis:

A class-wise distribution of predictions made by the model can be displayed using a

confusion matrix. The predicted results are on y-axis while true on x-axis. The

confusion matrix for a multiclass problem is a bit tricky. The diagonal elements are

correctly predicted samples. The higher the diagonal the better it is. The off diagonal is

the misclassification of classes. The classes with the highest off-diagonal values are the

ones that are most frequently misclassified. If the diagonal values are high and the off-

diagonal values are low, then the model is performing well. If the off-diagonal values

are high, then the model is frequently misclassifying samples, and further investigation

is required to improve the model's performance. Based on confusion matrix, a

classification report is generated. Through precision, recall and F1 score we can

interpret the impact of class imbalance as well as the overfitting caused by the model.

The lower sizes seemed to be confused by the model as smaller size has blurring effect

which can cause similarity in classes while with size being increased the model learned

the complex features and patterns, hence making good predictions.

A similar thing is noticed in learning curves as well where there is overfitting as one

can observe less convergence which gets better on moving to a bigger size where the

model has a good fit. To observe the impact of imbalance on the learning of model

AUC is plotted above. The plot has false positive rate (FPR) on the x-axis and a true

positive rate (TPR) on the y-axis. The range of AUC is between 0 and 1. If the AUC is

1 or closer to 1 then this means that the model is a good classifier. If AUC is below 0.5,

it means random classification occurred. To interpret the curve, the class closer to top

left shows is a good class in terms of classification. As in the AUC plots above normal

class is mostly poor this is since normal class have large imbalance compared to other

classes. A detailed comparison of method 1 is given in a table below:

Comparison of V1 and V2 with Method 1:

Table 5.9: Comparison of Version 1 vs Version 2 of Method 1

Model B0 B1 B0 B1

Version V1 V2

Image

Dimensions

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1

Accuracy

(%)

86.13 93.95 93.14 98.15 87.93 95.44 95.62 99.16

Testing Time

(ms)

4.15 4.51 4.15 5.12 4.07 4.27 4.15 5.36

Training Time

(minutes)

5.878 6.898 6.828 7.96 6.425 6.796 6.741 7.706

Trainable

Parameters

7,686 7,686 7,686 7,686 7,686 7,686 7,686 7,686

Total

Parameters

4,014,658 4,014,658 6,520294 6,520,294 5,865,814

5,865,814

6,867,162 6,867,162

84

5.4 Method 2 Comparison Analysis
In comparison with version 2, the EfficientNet model’s accuracy has increased when

moved from version 1 to version 2. While comparing V1 with V2, we can observe that

we got better accuracy with better computational cost. To understand the comparison

let’s take B0 size 32x32 of version 1 from above table which has 86.13% accuracy with

5.878 minutes of average training and 4.15ms single shot testing time and B1 with size

64x64 of version 1 with 93.14% accuracy with 6.828 minutes training and 4.15ms

single shot testing time. But if you look closely at the B1 64x64 from version 2 you can

see it has better accuracy of 95.62% with 6.741 minutes training and 4.15ms single shot

testing time which is better than going for 64x64 size of B1 in version 1. So, if the

choice must be made one can opt for V2 instead of moving to B1 of V1 from B0 of V1.

5.5 Modified EfficientNet (Method 2) Results and

Comparison
Overall Timing Comparison:

Table 5.10: EfficientNet -V1 with Method 2

Table 5.11: EfficientNet –V2 with Method 2

Model-V1

Size

(Height ×

Width)

Training Time

(s)

Testing Time

(s)

B0

32𝑥32 3641

99

64𝑥64 3828 97

B1

64𝑥64 4190

108

128𝑥128 4706 121

Model-V2

Size

(Height ×

Width)

Training Time

(s)

Testing Time

(s)

B0

32𝑥32 3799

99

64𝑥64 4156 113

B1

64𝑥64 4077

104

128𝑥128 4705 129

85

Average Time Comparison

Table 5.12: EfficientNet -V1 with Method 2

Table 5.13: EfficientNet-V2 with Method 2

Accuracy Comparison:

Table 5.14: EfficientNet-V1 with Method 2

Model-V1

Size

(Height ×

Width)

Average Training

Time per Epoch

(minutes)

Average Testing

Time per Image

(milli-seconds)

B0

32𝑥32 6.06

3.99

64𝑥64 6.38 3.91

B1

64𝑥64 6.98

4.35

128𝑥128 7.84 4.87

Model-V2

Size

(Height ×

Width)

Average Training

Time per Epoch

(minutes)

Average Testing

Time per Image

(milli-seconds)

B0

32𝑥32 6.33

3.99

64𝑥64 6.92 4.55

B1

64𝑥64 6.79

4.19

128𝑥128 7.84 5.20

Model-V1

Size

(Height ×

Width)

Accuracy

(%)

B0

32𝑥32 89.05

64𝑥64 96.16

B1

64𝑥64 94.78

128𝑥128 98.89

86

Table 5.15: EfficientNet-V2 with Method 2

Model Parameters and Size

Table 5.16: Trainable parameters comparison in Method 2

Model B0 B1 B0 B1

Version V1 V2

Parameters Size (MB) 18.96 28.51 26.02 29.84

Trainable Parameters 962,423 962,423 962,423 962,423

Total Parameters 4,969,395 7,475,031 6,820,551 7,821,899

Table 5.17: Model size comparison in Method 2

Model B0 B0 B1 B1 B0 B0 B1 B1

Version V1 V2

Input Dimensions 𝟑𝟐𝒙𝟑𝟐𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟏𝟐𝟖𝒙𝟏𝟐𝟖𝒙𝟏 𝟑𝟐𝒙𝟑𝟐𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟔𝟒𝒙𝟔𝟒𝒙𝟏 𝟏𝟐𝟖𝒙𝟏𝟐𝟖𝒙𝟏

Model Size (MB) 23.65 37.51 54.77 133.61 29.68 40.01 48.47 103.77

 Analysis:

The results above showed that by increasing size comes more computational expenses

but better accuracy. The benefits of transfer learning can be seen here as out of total

parameters in table above only 962,423 are trainable thus saving us a lot of

computational power. While comparing V1 with V2, we can observe that we got better

accuracy with better computational cost. To understand the comparison let’s take B0

size 32x32 of version 1 from above table which has 89.05% accuracy with 6.07 minutes

of average training and 3.99ms single testing time and B1 with size 64x64 of version 1

Model-V2

Size

(Height ×

Width)

Accuracy

(%)

B0

32𝑥32 90.60

64𝑥64 96.67

B1

64𝑥64 96.32

128𝑥128 99.12

87

with 94.78% accuracy with 6.98 minutes training and 4.35ms single sample testing

time. But if you look closely to B1 64x64 from version 2 you can see it have better

accuracy of 96.32% with 6.79 minutes training and 4.19ms single sample testing time

which is better than going for 64x64 size of B1 in version 1. So if the choice has to be

made one can opt for V2 instead of moving to B1 of V1 from B0 of V1.

 Comparison with Method 1

But when compared to Method 1 stated above, the trainable parameters are increased

due to additional layers being added. Whereas the accuracy achieved is better except

for B1 size 128x128 in version 2 of both the method has a slight difference which is not

uncommon. Overall, Method 2 is better with accuracy but at the cost of increased

parameters for training.

5.6 EfficientNet (Method 2) Version 1

 Performance Metrics

Confusion Matrix

Figure 5.17: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

88

Classification Report

Figure 5.18: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

Figure 5.19: ROC curve of B0 of size 32x32

89

Figure 5.20: ROC curve of B0 of size 64x64

Figure 5.21: ROC curve of B1 of size 64x64

Figure 5.22: ROC curve of B1 of size 128x128

90

 Learning Curves

Figure 5.23: First row from left B0 size 32x32 and second row 64x64 respectively

Figure 5.24: First row from left B1 size 64x64 and 128x128 respectively

91

5.7 EfficientNet (Method 2) Version 2

 Performance Metrics

Confusion Matrix

Figure 5.25: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

Classification Report

92

Figure 5.26: First row from left B0 size 32x32 and 64x64 and second row B1 size

64x64 and 128x128 respectively

Figure 5.27: ROC curve of B0 of size 32x32

93

Figure 5.28: ROC curve of B0 of size 64x64

Figure 5.29: ROC curve of B1 of size 64x64

94

Figure 5.30: ROC curve of B1 of size 128x128

Learning Curves

Figure 5.31: From left B0 size 32x32 and second row 64x64 respectively

95

Figure 5.32: From left B1 size 64x64 and second row 128x128 respectively

 Performance Analysis:

The confusion matrix is a valuable tool for evaluating the performance of a multiclass

model by displaying the class-wise distribution of predictions. The diagonal elements

represent correctly predicted samples, and the higher the values on the diagonal, the

better the model's performance. The off-diagonal elements indicate misclassifications

between classes, with higher values indicating more frequent misclassifications. A

well-performing model will have high diagonal values and low off-diagonal values. If

the off-diagonal values are high, further investigation is needed to improve the model's

performance. The confusion matrix is used to generate a classification report that

includes precision, recall, and F1 score. These metrics provide insights into the impact

of class imbalance and overfitting on the model's performance. In the case of smaller

sizes, the model may experience confusion due to blurring effects, resulting in similar

classes being misclassified. However, as the size increases, the model learns complex

features and patterns, leading to better predictions. This observation is supported by the

learning curves, which show improved convergence and reduced overfitting with larger

sizes, indicating a better fit of the model.

5.8 Method 2 Comparison Analysis:

The only difference here is the better accuracy and classification by the model.

Compared to Method 1, this method has a good strategy for overfitting reduction as the

96

AUC got better. Learning curves are also comparatively better. Accuracy improved but

as it is said earlier, the parameters are increased. A detailed comparison of method 2 is

given below:

Comparison of V1 and V2 with Method 2:

Table 5.18: Comparison of EfficientNet V1 and V2 with Method 2

Model B0 B1 B0 B1

Version V1 V2

Image

Dimensions

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1

Accuracy

(%)

89.0518 96.16 94.786 98.89 90.60 96.67 96.32 99.12

Testing Time

(ms)

3.99 3.91 4.35 4.87 3.99 4.55 7.84 5.20

Training Time

(minutes)

6.06 6.38 6.98 7.84 6.33 6.92 6.79 4.19

Trainable

Parameters

962,423 962,423 962,423 962,423 962,423 962,423 962,423 962,423

Total

Parameters

4,969,395 4,969,395 7,475,031 7,475,031 6,820,551 6,820,551 7,821,899 7,821,899

While comparing V1 with V2, we can observe that we got better accuracy with better

computational cost. So, if the choice must be made one can opt for V2 instead of moving

to B1 of V1 from B0 of V1.

Comparing Method 1 with Method 2 of EfficientNet

Method 1

Model B0 B1 B0 B1

Version V1 V2

Image

Dimensions

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1

Accuracy

(%)

86.13 93.95 93.14 98.15 87.93 95.44 95.62 99.16

Testing Time

(ms)

4.15 4.51 4.15 5.12 4.07 4.27 4.15 5.36

Training Time

(minutes)

5.878 6.898 6.828 7.96 6.425 6.796 6.741 7.706

Trainable

Parameters

7,686 7,686 7,686 7,686 7,686 7,686 7,686 7,686

Total

Parameters

4,014,658 4,014,658 6,520294 6,520,294 5,865,814

5,865,814

6,867,162 6,867,162

97

By adding a drop out, overfitting has reduced significantly. Method 2 has better

Accuracy but, the parameters are now increased as new layers are being added. Whereas

method 1 has poor ROC curves and by incorporating new layers it has been improved.

5.9 MobileNet Results and Comparison Analysis

 Overall Timing Comparison:

Table 5.20: MobileNet -V1 Timing Results Comparison

Method 2

Table 5.19: Method 1 and 2 comparisons for both versions of EfficientNet

Model B0 B1 B0 B1

Version V1 V2

Image

Dimensions

32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1 32𝑥32𝑥1 64𝑥64𝑥1 64𝑥64𝑥1 128𝑥128𝑥1

Accuracy

(%)

89.0518 96.16 94.786 98.89 90.60 96.67 96.32 99.12

Testing Time

(ms)

3.99 3.91 4.35 4.87 3.99 4.55 7.84 5.20

Training Time

(minutes)

6.06 6.38 6.98 7.84 6.33 6.92 6.79 4.19

Trainable

Parameters

962,423 962,423 962,423 962,423 962,423 962,423 962,423 962,423

Total

Parameters

4,969,395 4,969,395 7,475,031 7,475,031 6,820,551 6,820,551 7,821,899 7,821,899

Model-V1

Size

(Height × Width ×

channel)

Training Time

(s)

Testing Time

(s)

V1

32×32×3 4195 39.5

64 × 64×3 4304 41.5

128 × 128×3 4500 43.2

224 × 224×3 4895 48.5

98

Table 5.21: MobileNet-V2 Timing Results Comparison

Table 5.22: MobileNet-V3_Small Timing Results Comparison

Average Timing Analysis

Table 5.23: MobileNet-V1 Average Time Comparison

Model-V2

Size

(Height × Width ×

channel)

Training Time

(s)

Testing Time

(s)

V2

32×32×3 3650 37.4

64 × 64×3 4120 37.8

128 × 128×3 4460 39.2

224 × 224×3 4790 53.5

Model-V2

Size

(Height × Width ×

channel)

Training Time

(s)

Testing Time

(s)

V3

32×32×3 3855 37.3

64 × 64×3 4001 39.5

128 × 128×3 4293 41.6

224 × 224×3 5201 50.8

Model

Size

(Height × Width)

Average

Training Time

per Epoch

(minutes)

Average Testing

Time per Image

(Milli-seconds)

V1

32×32×3 6.99 1.59

64 × 64×3 7.17 1.67

128 × 128×3 7.52 1.74

224 × 224×3 8.15 1.95

99

Table 5.24: MobileNet-V2 Average Time Comparison

Table 5.25: MobileNet-V3_Small Average Time Comparison

 Accuracy Comparison

Table 5.26: MobileNet -V1 Accuracy comparison

Model

Size

(Height × Width)

Average

Training Time

per Epoch

(minutes)

Average Testing

Time per Image

(Milli-seconds)

V2

32×32×3 5.75 1.50

64 × 64×3 6.86 1.52

128 × 128×3 7.42 1.58

224 × 224×3 7.94 2.15

Model

Size

(Height × Width)

Average

Training Time

per Epoch

(minutes)

Average Testing

Time per Image

(Milli-seconds)

V3- Small

32×32×3 5.62 1.53

64 × 64×3 6.66 1.61

128 × 128×3 7.15 1.63

224 × 224×3 8.66 2.01

Model
Size

(Height × Width)

Accuracy

(%)

V1

32×32 99.65

64 × 64 99.91

128 × 128 99.90

224 × 224 99.97

100

Table 5.27: MobileNet-V2 Accuracy comparison

Table 5.28: MobileNet-V3_Small Accuracy comparison

Table 5.29: Trainable Parameters comparison

 Model size, computational cost, and accuracy Analysis:

The combined analysis, considering both the comparison of computational parameters

(computation time, expenses, model size) and the training/testing times:

The results presented indicate the need to strike a balance between various parameters

when selecting a model. By increasing the model size, computational time and expenses

tend to rise, but with the potential for improved accuracy. There is a trade-off between

computational costs and accuracy, and it becomes crucial to carefully consider these

factors.

Model
Size

(Height × Width)

Accuracy

(%)

V2

32×32 98.88

64 × 64 99.86

128 × 128 99.88

224 × 224 99.92

Model
Size

(Height × Width)

Accuracy

(%)

V3

32×32 92.85%

64 × 64 99.81%

128 × 128 99.90%

224 × 224 99.97%

Version V1 V2 V3_Small

Parameters Size (MB) 16.23 MB 13.50 MB 9.57 MB

Trainable Parameters 4,231,976 3,504,872 2,542,856

Total Parameters 4,253,864 3,538,984 2,554,968

101

Comparing MobileNet-V1, MobileNet-V2, and MobileNet-V3, MobileNet-V2

emerges as a balanced choice. It offers a compromise between computational cost, time,

and model size. With a smaller size of 13.50 MB and a lower number of trainable

parameters compared to MobileNet-V1, MobileNet-V2 provides efficient resource

utilization. MobileNet-V2 achieves high accuracy across all image sizes, with the

largest size (224x224) achieving an impressive accuracy of 99.92%.

MobileNet-V3_Small, with its lower computational cost and potentially faster

processing time, presents an alternative option. It has a smaller model size of 9.57 MB

and lower trainable parameters compared to MobileNet-V2. Although it sacrifices a bit

of accuracy, particularly for smaller image sizes, it offers acceptable accuracy levels

for most practical applications.

On the other hand, MobileNet-V1 boasts higher accuracy, especially for larger image

sizes, but comes with a larger model size of 16.23 MB and higher computational

requirements. MobileNet-V1 may be preferred when maximum accuracy is critical and

computational constraints are not a significant concern.

Considering the training and testing times, MobileNet-V2 demonstrates faster training

times compared to MobileNet-V1 and MobileNet-V3, across various image sizes.

MobileNet-V2 consistently outperforms the other models in terms of training

efficiency. When it comes to testing time, MobileNet-V1 and MobileNet-V2 have

similar performance, with MobileNet-V2 slightly edging out in some cases. MobileNet-

V3 generally exhibits slightly higher testing times.

Conclusion

Overall, MobileNet-V2 appears as the most balanced and computationally efficient

choice among the three models. It offers a compromise between accuracy,

computational costs, time, and model size. MobileNet-V3_Small can be a suitable

alternative if a slight decrease in accuracy is acceptable in exchange for lower

computational requirements. MobileNet-V1, with its larger model size and

computational demands, is preferred when maximum accuracy is crucial, particularly

for larger image sizes.

102

5.10 MobileNetV1 (RGB)

 Performance Metrics Version 1

Confusion Matrix

Figure 5.33: First column from left V1 size 32×32 and 64×64 and second column V1

size 128×128 and 224×224 respectively

Classification Report:

Figure 5.34: MobileNetV1 32x32

103

Figure 5.35: MobileNetV1 64x64

Figure 5.36: MobileNetV1 128x128

Figure 5.37: MobileNetV1 224x224

Learning Curves:

104

Figure 5.38: Top row size 32×32, Bottom row size 64×64

Figure 5.39: Top row size 128×128, Bottom row size 224×224

105

5.11 MobileNetV2 (RGB)

 Performance Metrics Version: 2

Confusion matrix

Figure 5.40: First column from left V2 size 32×32 and 64×64 and second column V2

size 128×128 and 224×224 respectively

Classification Report:

Figure 5.41: MobileNetV2 32x32

106

Figure 5.42: MobileNetV2 64x64

Figure 5.43: MobileNetV2 128x128

Figure 5.44: MobileNetV2 224x224

Learning Curves:

107

Figure 5.45: Top row size 32×32, Bottom row size 64×64

Figure 5.46: Top row size 128×128, Bottom row size 224×224

108

5.12 MobileNetV3_Small (RGB)

 Performance Metrics Version: 3

Confusion matrix

Figure 5.47: First column from left V2 size 32×32 and 64×64 and second column V2

size 128×128 and 224×224 respectively

Classification Report:

Figure 5.48: MobileNetV3_Small 32x32

109

Figure 5.49: MobileNetV3_Small 64x64

Figure 5.50: MobileNetV3_Small 128x128

Figure 5.51: MobileNetV3_Small 224x224

Learning Curves:

110

Figure 5.52: Top row size 32×32, Bottom row size 64×64

Figure 5.53: Top row size 128×128, Bottom row size 224×224

111

5.13 Proposed System Comparison with state-of-art Models

5.14 Proposed Model Results

AlexNet, ResNet18, VGG16, EfficientNet are implemented for comparison with state

of art models.

Table 5.30: Hyperparameters

EfficientNet here is implemented using Method -2 discussed in this work as it got better

results.

Table 5.31: EfficientNet B0 V1 Results

Batch Size

Learning Rate

Epochs

Optimizer

Criterion

16

0.001

10

Adam

Cross Entropy

Loss

Model

Size

(Height 𝒙Width)

Average

Training

Time per

epoch

(minutes)

Average

Testing

Time per

image

(ms)

Accuracy

(%)

Trainable

Parameters

Parameters

Size

(MB)

Total Size

(MB)

EfficientNet

B0-V1

186𝑥186

9.538

5.766

99.57

962,423

18.96

178.10

112

Figure 5.54: Learning curves of EfficientNet B0 Version 1

 Performance Metrics

Figure 5.55: Classification Report (on right) and Confusion Matrix (on left)

Figure 5.56: ROC Curve

113

Table 5.32: AlexNet Results

Figure 5.57: Classification Report (on right) and Confusion Matrix (on left)The

classification report of AlexNet has shown miss-classification for class F, class, Q,

and class S. The model is unable to detect these classes.

Figure 5.58: Learning Curves

 Architecture differences

AlexNet has a different architecture compared to other CNNs like EfficientNet,

ResNet18, and VGG16. It has fewer layers and may not have as much capacity to learn

complex patterns from the dataset. It's possible that the other CNN architectures are

better suited to the dataset in terms of their capacity to capture the patterns present in

the ECG signal images in the dataset used for this work.

Model

Size

(HeightxWidth)

Average

Training

Time per

epoch

(mins)

Average

Testing

Time per

image

(ms)

Accuracy

(%)

Trainable

Parameters

Parameters

Size

(MB)

Total Size

(MB)

AlexNet

186𝑥186

6.86

4.51

78.2

24,582

217.49

223.09

114

Table 5.33: ResNet18 Results

Figure 5.59: Learning Curves

Figure 5.60: Confusion Matrix

Model

Size

(HeightxWidth)
Average

Training Time

per epoch

(mins)

Average

Testing

Time per

image

(ms)

Accuracy

(%)

Trainable

Parameters

Parameters

Size

(MB)

Total Size

(MB)

ResNet

18

186𝑥186

7.97

5.20

99.33

3,078

42.62

95.62

115

Figure 5.61: Classification Report

Figure 5.62: ROC Curve

Table 5.34: VGG16 Results

Model

Size

(HeightxWidth)

Average

Training

Time per

epoch

(mins)

Average

Testing

Time per

image

(ms)

Accuracy

(%)

Trainable

Parameters

Parameters

Size

(MB)

Total Size

(MB)

VGG16

186𝑥186

12.81

8.024

98.70

24,582

512.25

661.95

116

Figure 5.63: Learning Curves

Figure 5.64: Confusion Matrix (on left) and Classification report (on right)

Figure 5.65: ROC Curve

False Positive Rate

117

5.15 Comparison Table:

Table 5.35: Comparison of proposed methodology with existing models

4 ECG heartbeat classification using Wavelet transform and different Neural network Architectures.
5 ECG Classification for Detecting ECG Arrhythmia Empowered with Deep Learning Approaches
6 ECG heartbeat classification using deep transfer learning with convolutional neural network and STFT

technique.

Specifications

Paper 14 [29]

Paper 25 [25]

Paper 36 [38]

Proposed

Goal Arrhythmia Classification Arrhythmia Detection Arrhythmia Detection Arrhythmia Classification

Approach Transfer learning with fine

tuning

Transfer learning as a

feature extractor

Transfer learning with

fine tuning

Transfer Learning as a

feature extractor

Dataset MIT BIH Arrhythmia

Database

MIT BIH Arrhythmia

Fused with Real Time Data

MIT BIH Arrhythmia

Database

MIT BIH Arrhythmia

Database and

PTBDB

Classes N S V F Q N S V F Q N S V F F M N Q S V

Model vgg16

 vgg19

 resnet50

 resnet50 V2

 EfficientNet B0

 V1,ConvLSTM

 Xception

 Inception V3

 Inception ResNet

V2

 ResNet50

 AlexNet

 SqueezeNet

 ResNet18 AlexNet

 ResNet18

 Vgg16

 EfficientNet B0-V1

Channels 3 - 1 1

Accuracy (%) 99.20, 99.20, 99.40, 97.60,

96.20, 96.15, 94.40, 85.60,

48.60

91 , 98.8, 90.08 90.8 78.2

99.33

98.70

99.57

respectively

Scope Misclassification in

ConvLSTM

Computational

Complexities

Lack of standard

classes reporting

Imbalance

118

 Analysis:

If we make a comparison of our proposed models (AlexNet, ResNet18, VGG16, and

EfficientNet-B0 version 1) with implementations mentioned in the table above, we can

conclude that our ResNet18 has out-performed paper 3 in the table. While EfficientNet

B0 Version 1 out-performed paper 1. Moreover, for the classification of N, V, S, F,

and Q classes the models implemented in this work are a better choice which can further

be used to build hardware.

The hardware implementations given in the literature review chapter can be

implemented using these proposed models which give better accuracy. Further analysis

can be performed which can save computational cost, is more reliable and can be

transformed into a lightweight, portable ECG Arrhythmia Classifier.

119

6 Chapter 6

Conclusion

6.1 Conclusion
In this work, multiple Convolutional Neural Networks are implemented in the search

of finding a hardware friendly architecture. CNN Architecture is selected which showed

very good accuracy without much compromise on the computational ability.

Techniques have been mentioned in the prior section that how EfficientNet Method 2

showed better results than Method 1. While our proposed models outperformed other

state-of-art models. The highest accuracy 99.57% is achieved by a model is of

EfficientNet B0 V1 of size 186x186 whereas ResNet18 showed 99.33% accuracy

having size 186x186. While EfficientNet V2 of size 128x128 showed 99.12% and

99.16% accuracy for Method-1 and Method-2 respectively. At this point accuracy is

not the only concern but a bigger concern is the computational cost, parameters, and

model size. ResNet18 has lowest trainable parameters which are only 3,078. But time

it took is slightly more than most of other models implemented. The lowest time taken

by a model to train, and test is EfficientNet B0 V1 of 32x32 size which only took

training time of 5.876 minutes on average. While EfficientNet B0 V1 Method 1 with

64x64 has 3.91 average testing time. As the details of all the models are given in this

report, one can decide to move forward with the most suitable model for their

environment and carry this work further. Due to limited resources in real scenarios,

these computationally inexpensive models can be implemented on hardware.

While MobileNet architecture that is being trained with fine tuning has proved to be

fruitful. The accuracy achieved is remarkable. MobileNet V3_small has got better

accuracy than other versions as well as it has provided less computational time. On the

other hand, MobileNet V1 has larger model size and computational requirements.

6.2 Limitations

The main limitation of this work is data imbalance, it would be better to come up with

a data augmentation technique or build ECG Images from scratch which must not

compromise on information pruning and leads to better results and reduction of

overfitting unlike in this work. More sizes can be tested with varying batch sizes and

trained for higher number of epochs as the GPU resources were limited in this work, so

we only trained for 10 epochs. Other techniques like scheduler can be incorporated

whereas one can also modify layers or vary dropout probability to observe the behavior.

In future, MobileNet can be implemented on grayscale images for analyzing

performance.

6.3 Challenges and Future Direction

In future, a decision can be made on which classifier is best suited for the application.

Since there is a trade-off between accuracy and size. If the goal is to design a hardware

or propose a hardware architecture, EfficientNet and MobileNet are more suitable for

that. With one cannot deny the fact that different applications have different architecture

more suited to them. The inconsistency of the classes in MIT BIH Arrhythmia needs to

120

be studied further. Data imbalance needs to be addressed. Data augmentation can be

performed in a more sophisticated way as ECG Signal is a crucial signal, and

information can easily be pruned.

This work can be extended to Hardware and Software Co-Design which entails

compressing and compiling the model into a set of executables. The Deep Learning

Processing Unit (DPU) can be then implemented on the FPGA. Finally, the model can

be deployed on the FPGA for inference.

121

7 Appendix A

Grayscale Resized images: The images are resized and converted to single channel

grayscale. The blurred effect is due to small resolution of an image.

Figure A.7.1: Image resolution 32x32 Figure A.7.2: Image resolution 128x128

Figure A.7.3: Image resolution 64x64 Figure A.7.4: Image resolution 186x186

122

Appendix B

Figure B.7.1: testset [324]

Figure B.7.2: testset[111]

Figure B.7.3: testset[4]

Figure B.7.4: testset[23855]

123

Figure B.7.5: testset[22946]

Figure B.7.6: testset[21948]

Figure B.7.7: testset[2346]

124

Appendix C

For example, replacing the first layer.

With the following layer:

And then copy the sum (in the channel axis) of the weights to the new layer, for

example, the shape of the original weights was:

Modified:

The similar thing can be done using this approach:

First Layer:

Update state_dict:

Modified Layer:

In this way the channels are modified from 3 to 1.

The simplest way that timm offers is:

model.conv1.weight.data = model.conv1.weight.data.sum(axis=1).reshape(64, 1, 7, 7)

torch.Size([64, 3, 7, 7])

(conv1): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)

print(model.conv_stem)

>>Conv2dSame(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)

model.conv_stem = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)

model.state_dict()['conv_stem.weight'] =

model.state_dict()['conv_stem.weight'].sum(dim=1, keepdim=True)

print(model.conv_stem)

>>Conv2dSame(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)

model = timm.create_model(CFG.model_name,pretrained=True, in_chans=1)

125

Appendix D

Figure D.7.1: ANSI/AAMI standards in ECG Class Interpretation [58]

Table D.7.1: Versions of environments used in this work

 Versions

 Python PyTorch TensorFlow Keras MATLAB

 3.9.16 2.0.0+cu118 2.11.0 2.11.0 2018a

126

8 Appendix E

Python Programming Language

Python is a versatile and popular programming language with a wide range of uses in

numerous industries. It appeals to both beginners and experts due to its simplicity,

readability, and usability. It is an interpretive, object-oriented, and dynamically typed

high-level language.

MATLAB

The name of a programming environment, MATLAB, which is short for "matrix

laboratory," refers to the program's primary use of matrices and arrays. It offers a

comprehensive collection of built-in tools and routines that may be utilized to tackle a

variety of computational issues.

Users can interactively explore and analyze their data using MATLAB's robust

graphical user interface (GUI). It can interface with other languages like C, C++, and

Python and supports a variety of data kinds like numerical, text, and image data.

TensorFlow and Keras Framework

TensorFlow is an open-source machine learning framework made by Google that is

used for many deep learning methods to implement neural networks. On top of that lies

Keras which is an API that contains all the models for classification, regression which

allows easier implementation of the neural networks.

PyTorch Framework

Based on the Torch framework, PyTorch is an open-source library. This robust deep

learning framework is a favorite among programmers and academics because it

provides a wealth of capabilities, great GPU acceleration support, and an intuitive API.

It is largely created by Facebook's AI Research lab (FAIR), and deep learning models

are produced using it frequently. Dynamic computation graphs, as opposed to static

computation graphs used in other deep learning frameworks, allow for faster

experimentation, better flexibility, and simpler debugging. PyTorch enables developers

to create and train neural networks utilizing these dynamic computation graphs. We are

using PyTorch version 2.0.0+cu118, where "cu118" refers to CUDA version 11.1.8, a

patch version of CUDA 11.1. Version numbers for PyTorch are often combined with

the relevant CUDA version number to create the version names.

Google Collaboratory Notebook

For launching and executing Python code on the cloud, particularly for data science and

machine learning activities, Google Colab offers a potent and simple-to-use platform.

While it does have certain restrictions in that it only offers a small number of computing

resources. When working with huge datasets or complicated models, this might be a

bottleneck and force customers to either pay for more resources or migrate to a different

127

platform entirely. We trained our networks using the GPU resources offered by Google

Colab. Depending on its availability, the GPU used on Google Colab varies from

session to session.

The GPU available on Google Colab varies from session to session depending on its

availability. These are the GPU available in Google Colab:

 NVIDIA Tesla K80

 NVIDIA Tesla T4

 NVIDIA P4

 NVIDIA P100

 NVIDIA V100

We have used standard package that comes with Tesla T4 GPUs usually.

128

9 Appendix F

1 Visualize Ground Truth and class prediction probabilities

def view_classify (image, ps, label):

class_name = ['F', 'M' ,'N', 'Q', 'S', 'V']

classes = np.array(class_name)

ps = ps.cpu().data.numpy().squeeze()

image = image.permute(1,2,0)

ax2.barh(classes, ps)

 Function call

view_classify(image, ps.squeeze(0), label)

Figure F.7.1: Function to visualize class prediction probabilities

𝟐 Class CFG

class CFG:

epochs= number of epochs

lr= learning rate

batch = batch size for dataset

size= Input image size

model = model name that is imported

train_path= dataset directories for loading training data

test_path= dataset directories for loading testing data

Figure F.7.2: Configuration class

𝟑 Class ECGTrainer

class ECGTrainer():

Initialize class instance and its parameters criterion, optimizer, scheduler

 def __init__(self, criterion=None, optimizer=None, schedular=None):

 self.criterion = criterion

 self.optimizer = optimizer

 self.schedular = schedular

 self.train_loss = []

 self.train_acc = []

 self.valid_loss = []

 self.valid_acc = []

129

 Function train_batch_loop

 def train_batch_loop(self, model, trainloader):

 train_loss = 0.0

 train_acc = 0.0

 for images, labels in tqdm(trainloader):

 images = images.to(device)

 labels = labels.to(device)

 logits = model(images)

 loss = self.criterion(logits, labels)

 self.optimizer.zero_grad()

 loss.backward()

 self.optimizer.step()

 train_loss += loss.item()

 train_acc += accuracy(logits, labels)

 return train_loss / len(trainloader), train_acc / len(trainloader)

 Function valid_batch_loop

 def valid_batch_loop(self, model, validloader):

 valid_loss = 0.0

 valid_acc = 0.0

 for images, labels in tqdm(validloader):

 images = images.to(device)

 labels = labels.to(device)

 logits = model(images)

 loss = self.criterion(logits, labels)

 valid_loss += loss.item()

 valid_acc += accuracy(logits, labels)

 return valid_loss / len(validloader), valid_acc / len(validloader)

Function to fit model to the dataset

 def fit(self, model, trainloader, validloader, epochs):

 valid_min_loss = np.Inf

 for i in range(epochs):

 model.train()

 avg_train_loss, avg_train_acc = self.train_batch_loop(model, trainloader)

130

 model.eval()

 avg_valid_loss, avg_valid_acc = self.valid_batch_loop(model, validloader)

 if avg_valid_loss <= valid_min_loss:

 print("Valid_loss decreased {} --> {}".format(valid_min_loss, avg_valid_loss))

 torch.save(model.state_dict(),' modelWeights_path.pt')

 valid_min_loss = avg_valid_loss

 self.train_loss.append(avg_train_loss)

 self.train_acc.append(avg_train_acc)

 self.valid_loss.append(avg_valid_loss)

 self.valid_acc.append(avg_valid_acc)

 print("Epoch : {} Train Loss : {:.6f} Train Acc : {:.6f}".format(i+1, avg_train_loss,

avg_train_acc))

 print("Epoch : {} Valid Loss : {:.6f} Valid Acc : {:.6f}".format(i+1, avg_valid_loss,

avg_valid_acc))

Figure F.7.3: ECG trainer class with multiple functions to train and evaluate model

131

Bibliography

[1]U. Nations. Sustainable Development Goals. Available:

https://www.un.org/en/sustainable-development-goals

[2]S. S. Barold, "Willem Einthoven and the birth of clinical electrocardiography a

hundred years ago," Cardiac electrophysiology review, vol. 7, p. 99, 2003.

[3]L. R. Kumari, Y. P. Sai, N. Balaji, and K. Viswada, "FPGA based arrhythmia

detection," Procedia Computer Science, vol. 57, pp. 970-979, 2015.

[4]S. Dalal and V. P. Vishwakarma, "Classification of ECG signals using multi-

cumulants based evolutionary hybrid classifier," Scientific Reports, vol. 11, p.

15092, 2021.

[5]A. Diker, D. Avci, E. Avci, and M. Gedikpinar, "A new technique for ECG signal

classification genetic algorithm Wavelet Kernel extreme learning machine,"

Optik, vol. 180, pp. 46-55, 2019.

[6]P. Yang, D. Wang, W.-B. Zhao, L.-H. Fu, J.-L. Du, and H. Su, "Ensemble of

kernel extreme learning machine based random forest classifiers for automatic

heartbeat classification," Biomedical Signal Processing and Control, vol. 63,

p. 102138, 2021.

[7]C.-C. Lin and C.-M. Yang, "Heartbeat classification using normalized RR intervals

and morphological features," Mathematical Problems in Engineering, vol.

2014, pp. 1-11, 2014.

[8]H. M. Rai, A. Trivedi, and S. Shukla, "ECG signal processing for abnormalities

detection using multi-resolution wavelet transform and Artificial Neural

Network classifier," Measurement, vol. 46, pp. 3238-3246, 2013.

[9]A. Kumar M and A. Chakrapani, "Classification of ECG signal using FFT based

improved Alexnet classifier," Plos one, vol. 17, p. e0274225, 2022.

http://www.un.org/en/sustainable-development-goals

132

[10]F. M. Vaneghi, M. Oladazimi, F. Shiman, A. Kordi, M. Safari, and F. Ibrahim, "A

comparative approach to ECG feature extraction methods," in 2012 Third

International Conference on Intelligent Systems Modelling and Simulation,

2012, pp. 252-256.

[11]E. Mazomenos, T. Chen, A. Acharyya, A. Bhattacharya, J. Rosengarten, and K.

Maharatna, "A time-domain morphology and gradient based algorithm for

ECG feature extraction," in 2012 IEEE International conference on industrial

technology, 2012, pp. 117-122.

[12]A. Biran and A. Jeremic, "ECG bio-identification using Fréchet classifiers: A

proposed methodology based on modeling the dynamic change of the ECG

features," Biomedical Signal Processing and Control, vol. 82, p. 104575,

2023.

[13]S. Karpagachelvi, M. Arthanari, and M. Sivakumar, "ECG feature extraction

techniques-a survey approach," arXiv preprint arXiv:1005.0957, 2010.

[14]B. Castro, D. Kogan, and A. Geva, "ECG feature extraction using optimal mother

wavelet," in 21st IEEE Convention of the Electrical and Electronic Engineers

in Israel. Proceedings (Cat. No. 00EX377), 2000, pp. 346-350.

[15]T. Mar, S. Zaunseder, J. P. Martínez, M. Llamedo, and R. Poll, "Optimization of

ECG classification by means of feature selection," IEEE transactions on

Biomedical Engineering, vol. 58, pp. 2168-2177, 2011.

[16]E. B. Mazomenos, D. Biswas, A. Acharyya, T. Chen, K. Maharatna, J.

Rosengarten, et al., "A low-complexity ECG feature extraction algorithm for

mobile healthcare applications," IEEE journal of biomedical and health

informatics, vol. 17, pp. 459-469, 2013.

[17]S. Mahmoodabadi, A. Ahmadian, M. Abolhasani, M. Eslami, and J. Bidgoli,

"ECG feature extraction based on multiresolution wavelet transform," in 2005

IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006,

pp. 3902-3905.

133

[18]Q. Zhao and L. Zhang, "ECG feature extraction and classification using wavelet

transform and support vector machines," in 2005 International Conference on

Neural Networks and Brain, 2005, pp. 1089-1092.

[19]A. M. Patel, P. K. Gakare, and A. Cheeran, "Real time ECG feature extraction

and arrhythmia detection on a mobile platform," Int. J. Comput. Appl, vol. 44,

pp. 40-45, 2012.

[20]Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, "A review on deep

learning methods for ECG arrhythmia classification," Expert Systems with

Applications: X, vol. 7, p. 100033, 2020.

[21]L. Mhamdi, O. Dammak, F. Cottin, and I. B. Dhaou, "Artificial Intelligence for

Cardiac Diseases Diagnosis and Prediction Using ECG Images on Embedded

Systems," Biomedicines, vol. 10, p. 2013, 2022.

[22]V. Narayana, A. K. Vobbilisetty, S. Mantripragada, V. Merugu, and K. Prakash,

"ECG Based Biometric Authentication System using Deep Learning

Methods," in 2022 3rd International Conference for Emerging Technology

(INCET), 2022, pp. 1-4.

[23]S. Kiranyaz, T. Ince, and M. Gabbouj, "Real-time patient-specific ECG

classification by 1-D convolutional neural networks," IEEE Transactions on

Biomedical Engineering, vol. 63, pp. 664-675, 2015.

[24]R. N. Asif, S. Abbas, M. A. Khan, K. Sultan, M. Mahmud, and A. Mosavi,

"Development and Validation of Embedded Device for Electrocardiogram

Arrhythmia Empowered with Transfer Learning," Computational Intelligence

and Neuroscience, vol. 2022, 2022.

[25]A.-u. Rahman, R. N. Asif, K. Sultan, S. A. Alsaif, S. Abbas, M. A. Khan, et al.,

"ECG Classification for Detecting ECG Arrhythmia Empowered with Deep

Learning Approaches," Computational Intelligence and Neuroscience, vol.

2022, p. 6852845, 2022/07/31 2022.

134

[26]L. R. Kumar and Y. P. Sai, "A new transfer learning approach to detect cardiac

arrhythmia from ECG signals," Signal, Image and Video Processing, vol. 16,

pp. 1945-1953, 2022.

[27]S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati, "Classification of ECG signals

using machine learning techniques: A survey," in 2015 International

Conference on Advances in Computer Engineering and Applications, 2015,

pp. 714-721.

[28]E. Benmalek, J. Elmhamdi, and A. Jilbab, "ECG scalogram classification with

CNN micro-architectures," Research on Biomedical Engineering, pp. 1-11,

2022.

[29]A. Datta, B. Kolwadkar, A. Rauta, S. Handal, and V. Ingale, "ECG heartbeat

classification using Wavelet transform and different Neural network

Architectures," in 2021 6th International Conference for Convergence in

Technology (I2CT), 2021, pp. 1-7.

[30]P. G. Gaddam and R. Sreehari, "Automatic classification of cardiac arrhythmias

based on ECG signals using transferred deep learning convolution neural

network," in Journal of Physics: Conference Series, 2021, p. 012058.

[31]S. Aphale, A. Jha, and E. John, "High Accuracy Arrhythmia Classification using

Transfer Learning with Fine-Tuning," in 2022 IEEE 13th Annual Ubiquitous

Computing, Electronics & Mobile Communication Conference (UEMCON),

2022, pp. 0480-0487.

[32]S. Bhaskarpandit, A. Gade, S. Dash, D. K. Dash, R. K. Tripathy, and R. B.

Pachori, "Detection of Myocardial Infarction From 12-Lead ECG Trace

Images Using Eigendomain Deep Representation Learning," IEEE

Transactions on Instrumentation and Measurement, vol. 72, pp. 1-12, 2023.

[33]T.-R. Wei, S. Lu, and Y. Yan, "Automated Atrial Fibrillation Detection with

ECG," Bioengineering, vol. 9, p. 523, 2022.

135

[34]C.-f. Zhao, W.-y. Yao, M.-j. Yi, C. Wan, and Y.-l. Tian, "Arrhythmia

Classification Algorithm Based on a Two-Dimensional Image and Modified

EfficientNet," Computational Intelligence and Neuroscience, vol. 2022, 2022.

[35]R. M. Obaidi, R. A. Sattar, M. Abd, I. A. Almani, T. Alghazali, S. G. Talib, et al.,

"ECG Arrhythmia Classification based on Convolutional Autoencoders and

Transfer Learning," Majlesi Journal of Electrical Engineering, vol. 16, pp. 41-

46, 2022.

[36]S. Shin, M. Kang, G. Zhang, J. Jung, and Y. T. Kim, "Lightweight Ensemble

Network for Detecting Heart Disease Using ECG Signals," Applied Sciences,

vol. 12, p. 3291, 2022.

[37]K. T. Chui, B. B. Gupta, M. Zhao, A. Malibari, V. Arya, W. Alhalabi, et al.,

"Enhancing Electrocardiogram Classification with Multiple Datasets and

Distant Transfer Learning," Bioengineering, vol. 9, p. 683, 2022.

[38]M. Cao, T. Zhao, Y. Li, W. Zhang, P. Benharash, and R. Ramezani, "ECG

heartbeat classification using deep transfer learning with convolutional neural

network and STFT technique," arXiv preprint arXiv:2206.14200, 2022.

[39]K. Weimann and T. O. Conrad, "Transfer learning for ECG classification,"

Scientific reports, vol. 11, pp. 1-12, 2021.

[40]M. Gu, Y. Zhang, Y. Wen, G. Ai, H. Zhang, P. Wang, et al., "A lightweight

convolutional neural network hardware implementation for wearable heart rate

anomaly detection," Computers in Biology and Medicine, p. 106623, 2023.

[41]X. Cheng, D. Liu, J. Lu, L. Wei, A. Hu, J. Lei, et al., "Efficient hardware design

of a deep U-net model for pixel-level ECG classification in healthcare device,"

Microelectronics Journal, vol. 126, p. 105492, 2022.

[42]M. Janveja, R. Parmar, M. Tantuway, and G. Trivedi, "A DNN-based low power

ECG co-processor architecture to classify cardiac arrhythmia for wearable

devices," IEEE Transactions on Circuits and Systems II: Express Briefs, vol.

69, pp. 2281-2285, 2022.

136

[43]W. Caesarendra, T. A. Hishamuddin, D. T. C. Lai, A. Husaini, L. Nurhasanah, A.

Glowacz, et al., "An embedded system using convolutional neural network

model for online and real-time ECG signal classification and prediction,"

Diagnostics, vol. 12, p. 795, 2022.

[44]R. Mao, S. Li, Z. Zhang, Z. Xia, J. Xiao, Z. Zhu, et al., "An Ultra-Energy-

Efficient and High Accuracy ECG Classification Processor With SNN

Inference Assisted by On-Chip ANN Learning," IEEE Transactions on

Biomedical Circuits and Systems, vol. 16, pp. 832-841, 2022.

[45]S. Ran, X. Yang, M. Liu, Y. Zhang, C. Cheng, H. Zhu, et al., "Homecare-oriented

ECG diagnosis with large-scale deep neural network for continuous

monitoring on embedded devices," IEEE Transactions on Instrumentation and

Measurement, vol. 71, pp. 1-13, 2022.

[46]Y.-L. Xie, X.-R. Lin, and C.-W. Lin, "SEmbedNet: Hardware-Friendly CNN for

Ectopic Beat Classification on STM32-Based Edge Device," in 2022 IEEE

International Conference on Recent Advances in Systems Science and

Engineering (RASSE), 2022, pp. 1-6.

[47]L. Pettersson, "Convolutional neural networks on FPGA and GPU on the edge: A

comparison," ed, 2020.

[48]M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional

neural networks," in International conference on machine learning, 2019, pp.

6105-6114.

[49]V. Agarwal. (2020). Complete Architectural Details of all EfficientNet Models.

Available: https://towardsdatascience.com/complete-architectural-details-of-

all-efficientnet-models-5fd5b736142

[50]Y. Guo, Y. Li, L. Wang, and T. Rosing, "Depthwise convolution is all you need

for learning multiple visual domains," in Proceedings of the AAAI Conference

on Artificial Intelligence, 2019, pp. 8368-8375.

[51]W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, "Research Article A

Novel Image Classification Approach via Dense-MobileNet Models," 2020.

137

[52]F. Sultonov, J.-H. Park, S. Yun, D.-W. Lim, and J.-M. Kang, "Mixer U-Net: An

improved automatic road extraction from UAV imagery," Applied Sciences,

vol. 12, p. 1953, 2022.

[53]A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, et al., "Searching

for mobilenetv3," in Proceedings of the IEEE/CVF international conference

on computer vision, 2019, pp. 1314-1324.

[54]G. B. Moody and R. G. Mark, "MIT-BIH Arrhythmia Database," ed:

physionet.org, 1992.

[55]R.-D. Bousseljot, D. Kreiseler, and A. Schnabel, "The PTB Diagnostic ECG

Database," ed: physionet.org, 2004.

[56]. UCI Machine Learning Repository: Arrhythmia Data Set. Available:

https://archive.ics.uci.edu/ml/datasets/arrhythmia

[57]. ecg_image_data. Available: https://www.kaggle.com/datasets/erhmrai/ecg-

image-data

[58]S. Liu, J. Shao, T. Kong, and R. Malekian, "ECG Arrhythmia Classification using

High Order Spectrum and 2D Graph Fourier Transform," Applied Sciences,

vol. 10, p. 4741, 07/09 2020.

http://www.kaggle.com/datasets/erhmrai/ecg-image-data
http://www.kaggle.com/datasets/erhmrai/ecg-image-data

