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Abstract  

Cable‐driven  parallel  robots  (CDPR),  a  branch  of  parallel  kinetic  robots,  are  an  emerging  field  of 

robotics, where the movement of robots is controlled through flexible cables and a motorized pulley 

system. Cables are much lighter than the rigid links of a traditional robot, and very long cables can be 
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used without creating a huge mechanism. The particular property of the cables gives these types of 

robots several advantages over traditional robots, such as adaptable environments, flexible working 

spaces and lower manufacturing costs. Vertical farming is the practice of growing crops in vertically 

stacked layers. It often incorporates controlled‐environment agriculture, which aims to optimize plant 

growth,  and  soilless  farming  techniques  such  as  Hydroponics,  Aquaponics,  and  Aeroponics. 

Hydroponics  is  the  cultivation  of  plants  in  nutrient‐enriched  water,  skipping  soil.  Plants  grown 

hydroponically are known to have higher nutrient content, require far less space, conserve water and 

allow for 30‐50% faster all year‐round growth compared to traditional farming. Root rot, mold growth, 

and plant  leaf  issues are the most common problems in hydroponics. Conventionally, methods like 

manual  scouting,  ladders,  drones,  and  labor  are  hired  for  the  health  assessment  of  plants which 

remains expensive and time‐consuming. In some cases, ground based robots and fixed cameras are 

installed, but these solutions provide limited and short‐range vision. This project aims at contributing 

to the aforementioned cutting‐edge technology by introducing 2D cable‐driven robot for plant health 

surveillance. Precisely, cable coupled with motors and pulleys mounted on the vertical stand makes it 

a  flexible  space  robot  capable  of  maneuvering  payloads.  With  the  help  of  computer  vision  and 

machine  learning  techniques,  the  proposed  system  will  detect  non‐healthy  plants  based  on  the 

asymptotic  appearance  of  plants.  This  will  serve  as  a  cost‐efficient,  fully  automated  system with 

scheduled  monitoring  of  plants.  On  detection  of  specific  appearance‐wise  abnormalities,  it  shall 

generate an alert to the Agronomist on duty.    
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Chapter 1  

1.1 Motivation   
The gradual rise in climate change and growing population has led to a 
progressive growth in world hunger, water scarcity, extreme weather events, land 
degradation, desertification, and rising sea levels.  
According to the UN’s report “By 2050, the global population is expected to hit 
10 billion people. This means that feeding everyone, will take 56% more food 
than is produced in the world today’’  
To undermine the growing world hunger and global climate change crisis, we 
need to adopt modern engineering solutions that promise climate-friendly 
sustainable food production systems.  
  
There are many motivations for using AI models for plant health assessment in 
vertical farming. One of the main benefits is that AI models can provide more 
accurate and precise assessments of plant health, by analyzing large amounts of 
data and identifying patterns and trends that may be difficult for humans to detect. 
This can help farmers and growers to identify and prevent problems before they 
become serious, which can reduce crop losses and increase productivity. 
Additionally, AI models can help to reduce the need for harmful pesticides and 
herbicides, by providing more targeted and precise treatments for pests and 
diseases. This can help to reduce the environmental impact of agriculture and 
horticulture, and can help to promote sustainable farming practices. Finally, AI 
models can help to increase the efficiency and productivity of vertical farms, by 
automating many of the tasks involved in plant health assessment and 
management. This can reduce labor costs and increase yields, which can help to 
make vertical farming more economically viable. Overall, AI models for plant 
health assessment have the potential to revolutionize the way we grow and 
produce food, by making agriculture and horticulture more efficient, sustainable, 
and productive.  
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Fig1.1; Statistical data showing relation between population growth, deforestation and 

world hunger  

    

1.1.1Future-proofing Agriculture  

One such solution is vertical farming as shown in fig. which is a form of 
controlled environment agriculture where greens can grow hydroponically, 
aquaponically or even aeroponically. Plants have their roots suspended in 
nutrient-rich water. The filtered and purified water is packed with these nutrients, 
such as calcium, phosphorus and nitrogen, and is then given to the plants by the 
growing system. LED panels simulate sunlight, thus food is cultivated under ideal 
conditions 24 hours a day. The process is so efficient that it consumes 95 per cent 
less water and 99 per cent less land than usual agricultural practices. In addition, 
water is recycled and evaporated water is reclaimed, resulting in virtually no 
waste. The output of vertical farms can be significantly increased by using 
fertilizers specifically designed for certain plants and the appropriate lighting 
conditions in a strictly controlled indoor environment, or by adding value to the 
plants by influencing their nutritional content, flavor, and appearance. Because 
the cultivating environment is strictly controlled and not affected by climatic 
fluctuations or unfavorable weather circumstances, vertical farms offer yearround 
farming and several planting "seasons," considerably increasing a farm's overall 
annual yield and minimising crop failures.  
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Fig1.2; Example of vertical farming in controlled environment   

               

1.2 Project Overview   

Considering the exigency for an effective indoor crop monitoring system, our 
work shall focus on designing and implementing of a fully autonomous intelligent 
system to monitor plants health in a vertical farming environment. The 
mechanical part of the proposed system employs flexible cables, a motorized 
pulley system, and a camera unit fitted at the end effector, having cable of 
movement in two dimensions, it will be programmed to move across each shelve 
one by one. An AI model will be trained for the health assessment of plants which 
will acquire live data from the camera unit, and certain noise reduction and 
removal filters will be applied to the incoming data. As the model will be trained 
and tested with extensive data set of healthy and non-healthy plant images, any 
appearance-wise abnormality will be detected by the model, as a result, an alert 
will be sent to the concerned body of the farm  

An effective indoor crop monitoring system, an Machine Learning based plant 
health monitoring system will be developed comprising of a stepper motor-driven 
camera positioning system, an image acquisition system, and a host computer 
running the collection, processing, storage, and analysis functions. An alert 
system will be developed, on detection of unhealthy plants, an alert will be 
generated and sent to the concerned body of the farm.  

  

1.2.1 Vertical Farming  

The process of producing vegetables in layers that are piled vertically. The 
technique can make use of soil, hydroponic, or aeroponic growing techniques. In 
order to grow food in difficult conditions, vertical farms are used. The majority 
of the setup for the crops is done in a contained space with a specially designed 
environment for plant growth.   
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 A cutting-edge technique for growing crops in controlled settings and vertically 
stacked layers is called vertical farming. It is a space-constrained metropolitan 
area's sustainable and effective method of food production. In comparison to 
conventional farming, vertical farming requires less water and fertiliser since it 
grows crops without soil using cutting-edge technologies like hydroponics, 
aeroponics, and aquaponics. It also requires less storage and transportation, 
making it a more environmentally responsible choice. Regardless of the weather, 
vertical farming can produce a variety of crops all year long and can be tailored 
to each crop's particular requirements. It is a potential answer to the problems of 
feeding a growing world population while minimising the negative environmental 
effects of agriculture.  

Vertical farming is an innovative method of growing crops in vertically stacked 
layers and controlled environments. It is a sustainable and efficient way of 
producing food in urban areas, where space is limited. Vertical farming uses 
advanced technologies such as hydroponics, aeroponics, and aquaponics to grow 
crops without soil, using less water and fertilizers than traditional farming 
methods. It also reduces the need for transportation and storage, making it a more 
environmentally friendly option. Vertical farming can produce a variety of crops 
year-round, regardless of weather conditions, and can be customized to meet the 
specific needs of each crop. It is a promising solution to the challenges of feeding 
a growing global population while reducing the impact of agriculture on the 
environment  

Certainly! Vertical farming methods can be used to raise a wide range of crops. 
Popular options include herbs like basil, mint, and parsley as well as leafy greens 
like lettuce, kale, and spinach. Strawberries, tomatoes, cucumbers, peppers, and 
even flowers can also be cultivated in vertical farms. The secret is to select crops 
that can flourish in a regulated environment with constrained light and space. 
Because temperature, humidity, and light can be precisely controlled in vertical 
farming, crops can be cultivated all year long, no matter the weather. This enables 
the production of locally grown, fresh produce even in severe climates or regions 
with little arable land.  

1.2.2 Cable Driven Robot  

Cable-driven robots, also known as cable robots or wire-driven robots, are a type 
of robot that uses cables or wires to move and manipulate objects. The cables are 
attached to motors or winches that control the robot's movements. Manufacturing, 
construction, and entertainment are just a few of the industries that use 
cabledriven robots. They are especially helpful when a robot needs to handle large 
or bulky goods across significant distances. Additionally, cable-driven robots 
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have a reputation for being extremely accurate and precise, which makes them 
advantageous for jobs that call for a high level of control, like surgery or assembly 
work. In general, cable-driven robots are an adaptable and creative sort of robot 
that are revolutionising the way we think about automation and robotics.  

Cable-driven robots can also be used to manage and monitor crops because they 
can control humidity, temperature, and light levels as well as detect and get rid of 
diseases and pests. This can reduce the need for harmful pesticides or herbicides 
and assist to ensure that crops continue to grow in a healthy and productive 
manner. Overall, by increasing the production, sustainability, and efficiency of 
vertical farming, cable-driven robots have the potential to change how we grow 
and produce food.  

  

 1.2.3 Plant Health Assessment  

The robot monitors the field. The plant health is judged based on its leaf colour. 
Plant health assessment is the process of evaluating the health and condition of 
plants, in order to identify and prevent diseases, pests, or other problems that can 
affect their growth and productivity. Plant health assessment can involve a variety 
of techniques, including visual inspection, laboratory analysis, and remote 
sensing. Visual inspection involves examining plants for signs of damage, 
discoloration, or other symptoms that may indicate a problem. Laboratory 
analysis involves testing plant samples for pathogens or other contaminants that 
may be affecting their health. Remote sensing involves using satellites or other 
technologies to monitor plant health from a distance, by detecting changes in 
color, temperature, or other indicators. Plant health assessment is an important 
part of modern agriculture and horticulture, as it helps to ensure that crops are 
healthy and productive, and that farmers and growers can identify and prevent 
problems before they become serious.  

1.3 Problem Statement   
  

 The ability to feed world population very much depends on three factors: 
availability of arable land, accessible water and population pressures. According 
to FAO’s prediction nearly 670 million people (8 percent of world population) 
will be facing hunger in 2030 – even if a global economic recovery is taken into 
consideration. We can say that as population grows, arable land shrinks and world 
hunger rises exceptionally. To promise a sustainable future, sustainable 
development strategies in agriculture should be undertaken. One of the 
advancement in agriculture is vertical farming where the crops are stacked in 
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vertical layers minimizing extra use of resources such as land, water etc. and 
increases crop yield significantly. However, increasing crop yield takes into 
account various factors in crops life cycle that is preventing plant diseases, 
pruning and infections etc. Plant diseases can be detrimental if not properly 
attended to. Depending on the type of disease or virus your crops have, it is 
possible that the disease will destroy your entire crop as it moves from one crop 
to another. Root rot, mold growth, and plant leaf issues are the most common 
problems in vertical farming. Conventionally, methods like manual scouting, 
ladders, drones, and labour are hired for the health assessment of plants which 
remains expensive and time-consuming. In some cases, ground-based robots and 
fixed cameras are installed, but these solutions provide limited and short-range 
vision. However, the proposed system introduces a novel method that uses 
flexible cables and a motorized pulley system capable of maneuvering payloads 
for the monitoring of plants health in vertical farming. Cable driven robot is ought 
to be vertical farming adaptable, robust, fully autonomous and cost-efficient. By 
effectively monitoring the crops, crop yield can be increased significantly which 
increases food production overall.  

  

• Project Objectives   

• Development of an intelligent robotic machine-vision system for 
noninvasive plant/crop surveillance.  

• To  develop  a  robust  and  adaptable  system  cable  of  maneuvering 

payloads. Maneuvering of payload should be fast and stable.  

• Integration of optimized hardware components and flexible mechanical 

design shall make a flexible working space robot.  

• To achieve motion stability in the robotic camera positioning system.  

• To test various machine learning algorithms considering the goals of the 

project and selecting the most optimized one.  

• To achieve cost‐effectiveness.  

• To achieve more accuracy than the previous existing solutions.  
  •    
1.4 Brief Project Methodology   
We start with the model training. After the training of the model, this model is 

deployed in the real time working in a vertical farming environment.  

• It  starts with  the  stabilization  of  the  camera,  then  this  camera  takes  a 

certain position in front of a certain plant or crop.  
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• The camera then captures the image.  

• Preprocess the image by removing the unnecessary background.  

• Then the system predicts weather the plant image is healthy or unhealthy   

• If the plant is healthy the camera will move to the next position  

• If the plant is unhealthy, an alert is sent to the host commuter with the 

location and the image of the plant.  
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  Fig1.3; model training and testing  

    
  

Chapter 2  
  

Literature Review  
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This section aims to provide the valuation of the literature available to classify 

and  identify  plant  diseases  and  health.  Research  can  be  divided  into  two 

categories:  ML‐based  approaches  and  DL‐based  approaches.  The  previous 

proposed solutions were not stable and could not be pragmatic in the real life 

magnificently. These solutions comprises of DCNN model, Crop segmentation, 

plant blob extraction and 3D reconstruction, leaf segmentation and geometric 

surface modeling.  
  

  

2.1 Background of Project   
  

A machine‐learning tactic for identifying plant diseases must prioritize accuracy 

and  speed.  Developing  techniques  such  as  automated  disease  detection  and 

categorization using image processing is necessary. Farmers will find that this is 

an appreciated strategy that will enable them to be informed in time to greatly 

reduce the risk of the disease spreading over a huge area and to prevent dying 

of plants due to insufficient nutrients. The land farming occupies a wide area of 

the  agriculture  land  but  still  due  to  this  over  growing  population  that  is  not 

enough. A vertical farming comprises of a vertical farm in which plants are grown 

vertically staked over each other and it occupies 30% of the area as compare to 

land farming and gives more crop production.  

It is not possible for a human ideally to look after the crops that are grown above 

hundreds of feet, so for the plants health assessment the most suitable solution 

is an AI robot that is placed vertically and it moves to each plant or crop for its 

health recognition.   

There is a camera placed that is connected to pulleys, these pulleys are directly 

connects to the stepper motors. These motors moves the camera vertically by 

the Machine Learning techniques. 2.1.1  Role of AI and Robotics  

With the integration of AI and robotics into the vertical farming industry, farms 

are  becoming  increasingly  tech‐powered,  leading  to  increased  precision, 

sustainability,  and  overall  high‐quality  food  production.  With  the  aid  of 

AIpowered robots, from monitoring and management to predictive analytics in 

indoor farming can be done very effectively, at highly reduced costs. Heretofore, 

a  significant  variation  of  intelligent  bots  and  high‐tech  machinery  is  being 



10  

deployed  at  vertical  farms  today  that  includes  drones,  autonomous  sprayer 

systems, harvesting systems, and disease remediation robots. In order to move 

plants  equally  through  their  growth  cycles,  timed  conveyor  belts  are  also 

employed.  Some  vertical  farming  systems  use  static  beds  to  adapt  the 

environment to a plant's life cycle, while others are designed to transport plants 

between stations as they grow.  

  

  

Fig2.1; ground based robot in VF  

2.1.2  Challenges in vertical farming  

The indoor farming industry undoubtedly has benefits, but it is not without its 
challenges such as high initial start-up cost, controlling environmental factors 
such as humidity, temperature, maintaining air circulation throughout and food 
safety etc. .Effective monitoring of crops during their life cycle counts for timely 
pest, mold, or disease detection and remediation when identified and treated at 
the right time leads to increased yield which in return boosts production and 
business profitability. For such a purpose, Drones serve as a great crop scouting 
tool and are widely used but since they are not environment adaptable, have 
limited flight time, and require licensing and expertise for flying, thus, remain 
unfavorable for indoor farming. Ground robots are also used at some farms but 
their coverage is limited and require additional electric ladders to reach the top 
shelves of the vertical stands, henceforth, do not serve as a very effective solution.  
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2.2 Related Work/Projects  

 Mellit et al. 2021 developed an Internet of Things (IoT)-based smart greenhouse 
in Algeria (a nation in North Africa) to detect infections in tomato plants [1]. By 
correctly classifying numerous tomato diseases, the experiment's results showed 
the usefulness of the proposed system. In order to remotely monitor tomato plants 
in real time, a prototype has been constructed. For diseases that would boost 
tomato yield, the proposed approach has an accuracy rate of 88%.    
  
Franchetti et al. 2019 proposed an automatic method for extracting phenotype 
features of plants, based on CV, 3D modeling and deep learning from the 
extracted features, height, weight and leaf area were predicted and validated with 
ground truths obtained manually [2]. The results show that the plant height, leaf 
area and weight obtained using inexpensive RGBD cameras matched closely with 
the detailed measurements. The ability to obtain detailed information on the plant 
weight and therefore yield, without employing destructive techniques, facilitates 
the process of automation of the growth of vegetables in indoor VFAL conditions 
and consequently can substantially diminish the costs of production.  

  
Story & Kacira, 2015 proposed a machine vision-guided plant sensing and 
monitoring system was constructed to continuously monitor color, 
morphological, textural, and spectral (crop indices and temperature) features from 
a crop canopy [3]. The machine vision system extracted these identified plant 
features which can be used to determine the overall plant growth and health status, 
but is capable of analyzing a much larger range of parameters for other plant 
phenotyping applications (i.e., perimeter, centroid, diameter etc.). Combining the 
systems capability with a decision support system can assist in dealing with 
identifying complexity of the crop stress symptoms and an increased control of 
the overall plant growth environment, which can potentially improve resource use 
efficiency in controlled environment crop production systems.  

  
Hwang et al. 2022 developed an image-based crop growth monitoring system for 
vertical farming in this study [4]. As a result of the effective crop arrangement on 
vertical farms, the images obtained from the vertical farms contain too many 
regions of interest which attract the focus of the crop segmentation model. SCMix 
was suggested in order to guarantee that the crop segmentation model in our 
system performs well even when confronted with this confusing input. All results 
depict the performances of models trained with fixed data for cross comparison. 
However, with its real-world monitoring phase, our system will significantly 
benefit from extra unlabeled data that may be available for the retraining of the 
model.  
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Zane Zaik et al. 2020 proposed the use of trajectory planning and tracking with 
2½D Visual Serving for the control of Cable-Driven Parallel Robots [5].  
Perturbations and errors in the robot model. Furthermore, a Control Stability 
Workspace (CSW) was defined and computed for a CDPR prototype ACROBOT, 
based servoing control. The effect of perturbations on CSW size was the 
improvement of robustness due to the use of trajectory planning and tracking was 
clearly shown in experimental the trajectory produced by the former is clearly 
affected by. A further improvement would be developing a control law instead of 
increasing robustness to these errors.  

  
Similarly, an autonomous assistant robot arms for monitoring temperature, 
humidity, pressure and light of soil in strawberry farm. This assistant robot uses 
sensor technology and the data collected from the sensors is gathered and updated 
on a LCD display.  
  

  
  
Fig2.2; Autonomous assistant robot for monitoring temperature, humidity, 
pressure in strawberry farm  
  
Although the mentioned robot is a good tool for controlling environmental factors 
in controlled environment agriculture, it has a few drawbacks as it necessitates 
extra human assistance and monitoring with it which demands more employee 
hiring and eventually higher resource usage. The proposed system takes into 
account the limitations of current crop surveillance practices. A fully autonomous 
system suitable for the vertical agricultural environment will be prepared for 
programmed crop monitoring in accordance with the requirements. It will be a 
low-cost, flexible working space intelligent robot that will analyze the overall 
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health of the crops/plants, and detect healthy and unhealthy plants along with an 
alert system.  

  

         

Fig2.3; on site crop monitoring                               fig2.4; ground base robot  

  

 Qian, S., Bin, Z.2018 introduced the history of CDPR development and presents 
various examples of successful recent CDPR applications. In order to give readers 
a thorough and concise understanding of the design and analysis of CDPRs, the 
development of CDPRs is described with a focus on design, performance 
analysis, and control theory. The advantages of CDPRs over traditional rigid-link 
parallel robots are discussed in the paper, including a higher load-weight ratio, 
the potential for fast speed and acceleration, and a larger working area. The 
unilateral actuation nature of cables, however, presents difficulties in the design 
and implementation of CDPRs. The study areas for CDPRs, including as design, 
modelling, performance optimisation, control, and planning, are highlighted in 
the report.  

Mattioni, E., & Mattioni, V. 2022 outline the most recent developments in 
servowinch design for cable-driven robots. From an application standpoint, they 
present a fresh design concept and critically evaluate it in comparison to current 
and suggested architectures. The study shows that while being historically the 
first developed, the rototranslating-drum concept does not have many advantages. 
The translating-motor concept is found to be the best option for applications that 
are low-cost, not very dynamical, and do not have stringent installation 
orientation requirements. On the other hand, the authors recommend the Spline 
Winch as the best choice for situations requiring high dynamics and vertical 
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winch axis installations. A spooling helper solution is additionally introduced to 
optimise the amount of cable kept in relation to the winch footprint. However, 
caution is advised in highly dynamical operations when a load cell is embedded 
in the helper for measuring cable tension.  

  

2.3 Project Contribution  

Our AI model overcomes all the previous existing solutions as it is more stable in 

recognizing the plant health and diseases. This solution can be applied in real in 

a vertical farming environment with a great success. This solution includes the 

designing  of  an  autonomous  computer  vision  guided  system  comprising  of  a 

stepper motor‐driven  camera positioning  system,  an  alert  system and  a  host 

computer  running  the collections. This model has a programmable scheduled 

monitoring of plants.  

The main task was the controlling of the motors and their movement and the 

stability of the camera positioning.    

In  the previous solutions  like manual  scouting  the  large number of  labor was 

required to heir. They went up on the ladder for the crop assessment but it was 

not safe as there was always danger of falling from such a large height. Other 

than this was the fix cameras which was also not stable as it could only see the 

plants  that comes to  its vision. The other option proposed was ground based 

robots, but the issue was these robots could only attend the plants in the bottom 

and the plants in the upper shelves were left unattended.  

  

Timely detection of plant diseases is a great challenge. If a disease is identified 

early it boosts the crop productivity. If a single plant gets a disease it spreads in 

the entire crop in no time and can destroy the entire production in no time. This 

problem has been solved with machine learning techniques using an automated 

method for detecting plant diseases in a vertical farming environment which is 

beneficial because it reduces monitoring time.  

An  artificial  intelligence  cable‐driven  robot  for  plant  health  assessment  in  a 

vertical  farming  environment  is  a  robotic  system  designed  to  autonomously 

monitor and assess the health of plants in a vertical farming environment. The 

robot is equipped with a range of sensors, including cameras and environmental 

sensors that allow it to collect data on the plants' growth and health. The robot 
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is also equipped with a cable‐driven mechanism that allows it to move vertically 

through the vertical farming environment, providing it with access to all areas of 

the plants.  

  

Chapter 3  
  

System Design and Implementation Details/Design 
Procedures  

  

To set up an AI model the machine learning techniques, hardware modules, 
software setup and a 3D prototype is required. When the model is all set up it is 
then trained until it meets the required accuracy. Once the model is properly stable 
it is deployed in to a vertical farming environment.  

3.1 System Design   

The system is designed integerating cable driven robot technology with computer 
vision and machine learning techniques. Plant diseases can be categorized using 
machine learning based on a range of factors. Before effectively extracting 
features, preprocessing is necessary, such as image improvement, colour 
alteration, and segmentation. Deep learning is required for smart farming, which 
makes use of modern agricultural technology, technology, and algorithms. Deep 
learning is frequently used to find solutions to issues with picture categorization, 
feature extraction, transformation, and pattern analysis. System is planned in such 
a way that it must be cost effectiveness so that it can be casted-off easily in the 
vertical farming environment. The designing of the model is prepared by making 
sure that it helps in the recognition of disease timely and alert about the health of 
the plant so that urgent action can be taken for the health of the plants. The design 
is completely autonomous there is no indulge of a human except the check on the 
computer to receive the alert. The camera is connected to the accessible computer 
through the camera and it send the alert as it detects any health problem in the 
plant. The monitoring of the crops/plants is programmable.  
  
3.1.1 System Architecture/Flow Diagram   

A cable driven robot is designed. The stepper motors are designed to move the 
pulleys so these pulleys can move the camera that is attached to the end of these 
pulleys. A power supply of 12V is connected to the structure. Arduino is 
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connected to the CNC shield that run the motor drivers so that the drivers can 
move the motors.  

  

  

  

Fig3.1; block diagram  

  

3.1.2 Requirements/Requirements Analysis   

One of the most important thing in a model is to accomplish the purpose for which 
it is prepared, the purpose of machine learning based plant health assessment 
robot is to monitor each plant and its health and on uncovering of any type of 
health issue it should send an attentive to the available host.  

Hence in this AI model the most important thing is the stable movement of the 
motors that are controlled by the machine learning algorithms. Other one is the 
existing of the proper data set. The timely detection of ant fault in plants health. 
Timely alert to the computer system for quick analysis. Excellence in these areas 
make this model diverse and efficacious that the prior existing models.  

  

3.2 Methodological/Implementation/Experimental Details   
  

The microcontroller is programmed for the motors movement, as the entire 
assessment depends on the moving of motors that moves the pulleys and the 
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camera moves with the pulleys as it is connected to the end of the pulleys. The 
camera moves in the vertical 2d direction from one plant to the other.  

It is trained for the detection of health. The model is trained by providing the data 
set. This data set includes the healthy and the non-healthy plants images. These 
images are preprocessed by the system. After several training when the model 
reach the required accuracy then this model is implemented to the vertical farm.  

  

  

  

Fig3.2  

  

3.2.1 Software/Development Setup  
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3.2.2 Hardware Details  

  

  3.2.3  Bipolar Stepper motors; Nema 17  

NEMA 17 stepper motors are known for their exact control, which is significant 

in applications, for example, advanced mechanics where precision is vital. These 

engines  have  a  stage  point  of  1.8  degrees,  which  takes  into  consideration 

extremely fine developments and control. This additionally implies that they can 

move in tiny augmentations, making them ideal for situating undertakings.  

 Nema 17 stepper motors require less power contrasted with DC engines, and 

that implies the robot can work on low power, making it energy productive.  

 One more benefit of NEMA 17 stepper motors is that they can give high force, 

which  is  significant  for  applications  that  require  a  great  deal  of  force  and 

strength. This is especially significant in vertical cultivating conditions where the 

robot needs to go all over and convey gear to evaluate the soundness of plants.  

 Moreover, NEMA 17 stepper motors are broadly utilized  in the business, and 

that  implies  that  they  are  promptly  accessible  and  savvy  contrasted  with 

different kinds of engines.  

 By and large, utilizing NEMA 17 stepper motors in a link driven robot for plant 

wellbeing evaluation in vertical cultivating conditions gives exact control, high 
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force,  and  cost‐viability,  settling  on  them  a  famous  decision  for  the 

overwhelming majority mechanical technology applications.  

                                                       

                                                  Fig3.4; stepper motor  

  

Motor Driver; A4988 Drivers  

The A4988 is a complete micro stepping motor driver with built-in translator for 
easy operation. It is designed to operate bipolar stepper motors in full-, half-, 
quarter-, eighth-, and sixteenth-step modes, with an output drive capacity of up to 
35 V and ±2 A. The A4988 is not intended for controlling DC motors. A stepper 
motor is driven by a DC voltage applied through a driver.  

 A4988  motor drivers give high-goal motor control, which prompts smooth and 
exact development of the robot. This is great for plant wellbeing evaluation where 
exactness is central. Utilizing A4988 motor drivers with Nema 17 stepper engines 
offer high accuracy, low power utilization, improved on wiring, bipolar stepper 
motors, and cost-viability, making them a reasonable choice for link driven robots 
for plant wellbeing evaluation in the upward cultivating climate.  

                                         

                               Fig3.5; motor driver  
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 Microcontroller; Arduino UNO  

Arduino is a famous decision for mechanical technology and robotization projects 
in light of its usability, flexibility, and moderateness. An open-source stage gives 
an extensive variety of microcontrollers and improvement sheets that are not 
difficult to program utilizing the Arduino programming language.  
   
This stage is exceptionally viable with an immense range of sensors and electronic 
parts which settles on it an optimal decision for planning a link driven robot for 
plant wellbeing evaluation. With the various libraries and code scraps accessible, 
it is not difficult to carry out complex calculations, for example, PC vision or AI, 
on an Arduino-based microcontroller.  
   
Besides, Arduino is very much upheld by the local area, with an abundance of 
instructional exercises, gatherings, and models accessible on the web. This makes 
it simple for engineers to investigate issues and speed up their improvement cycle.  
   
All in all, Arduino is a flexible and savvy choice for mechanical applications. It 
offers a large number of highlights, similarity, and local area support, making it 
ideal for planning a link driven robot for plant wellbeing evaluation in vertical 
cultivating.  

                                         
  
                           Fig3.6; microcontroller  
  
  
CNC shield V3  
  
CNC safeguard is a typical extra board utilized with Arduino that empowers the 
simple control of stepper motors. It permits the client to associate various stepper 
motors, end stops, and different peripherals to a similar control board, working 
on the wiring system. The CNC safeguard likewise considers more exact 
movement control which is significant in the improvement of a link driven robot 
for plant wellbeing evaluation in vertical cultivating.  

   
Here are a few benefits of utilizing a CNC considering our project:  
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1. Different stepper engine control: The CNC safeguard have some 
control over up to four stepper engines at the same time, which is 
significant while working a link driven robot. This empowers various 
engines to work in synchronization and guarantees framework soundness.  
   
2. Simple wiring: With the utilization of CNC safeguard, different 
engines and sensors can be effectively associated with a solitary board, 
working on the wiring system, and decreasing the quantity of links utilized 
in the framework.  
   
3. Exact movement control: CNC safeguard gives a more exact and 
exact movement control that is fundamental in the improvement of a link 
driven robot for plant wellbeing evaluation in vertical cultivating. It gives 
smoother and more reliable motor operation, which diminishes movement 
mistakes and guarantees the exact development of the robot.  
   
4. Intensified usefulness: CNC safeguard has various extra elements 
that empower more intricate movement control that can be utilized to 
further develop the plant wellbeing appraisal precision. It can peruse limit 
switches, control shaft speed, and even produce signs of high recurrence, 
that can work with the improvement of the robot's functionalities.  
   
Generally, the CNC safeguard gives a reasonable stage to controlling and 
coordinating the developments of a link driven robot, which is fundamental 
for fostering a dependable and exact plant wellbeing evaluation framework  

for vertical cultivating.                            
           Fig3.7; cnc board  
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3.2.4 Software/Tools Google colab  

A cloud-based development environment that allows users to write and run 
Python code in a web browser, using Google's powerful hardware and software 
infrastructure. Google Colab provides many features that are useful for data 
scientists and machine learning practitioners, including access to powerful GPUs, 
pre-installed libraries for machine learning and data analysis, and the ability to 
share and collaborate on code with others. Google Colab is free to use, and 
requires only a Google account to get started. Overall, Google Colab is a powerful 
and convenient tool for anyone who wants to develop and run Python code in the 
cloud.  

  

Proteous  

Proteus is a software tool used for simulating, designing, and testing electronic 
circuits. It is widely used by engineers, students, and hobbyists for designing and 
testing electronic circuits before building them in real life. Proteus provides a 
virtual environment where users can design and test circuits using a wide range 
of electronic components, including microcontrollers, sensors, motors, and 
displays. Proteus also includes a powerful simulation engine that allows users to 
test their designs under various conditions, such as different voltages, 
temperatures, and loads. Proteus is easy to use, and provides a wide range of 
features for designing and testing electronic circuits, including schematic capture, 
PCB layout, and 3D visualization. Overall, Proteus is a powerful tool for anyone 
who wants to design and test electronic circuits, whether for professional or 
personal use.  

AutoCAD  

AutoCAD is a computer-aided design (CAD) software tool used for creating 2D 
and 3D designs, models, and drawings. It is widely used by architects, engineers, 
designers, and other professionals for designing buildings, products, and other 
objects. AutoCAD provides a wide range of features and tools for creating and 
editing designs, including drawing tools, editing tools, and dimensioning tools. 
AutoCAD also supports a wide range of file formats, making it easy to share 
designs with others. Additionally, AutoCAD can be customized using 
programming languages such as Auto LISP and Visual Basic for Applications 
(VBA), allowing users to create their own tools and automate repetitive tasks. 
Overall, AutoCAD is a powerful and versatile tool for anyone who needs to create 
and edit 2D and 3D designs.  
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3.3 Algorithms/Simulation Details/Codes  

   

3.3.1   Simulation on proteus  

 Circuit simulation is crucial for verifying and improving circuit designs. we used 

proteous 8 professional, a proprietary software tool suite used primarily for 

electronic design automation. In our project, we used an Arduino Uno, stepper 

motors, a CNC shield, and A4988 drivers. However, since the CNC shield module 

wasn't included in the Proteus library, we decided to design it ourselves.  

 By designing the CNC shield and clearly depicting its linkages and interactions, 

we were able to ensure optimal component integration. We also designed the 

A4988 drivers and their internal circuitry in Proteus to completely evaluate the 

functionality of our device. We were able to detect and address any potential 

issues using this extensive simulation technique before moving on with the actual 

implementation, which saved time and resources while ensuring a good result. 

Before final assembly, all the components and the Arduino code are tested by 

generating the .hex file of Arduino sketch program. The simulations are as 

followed:  
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Fig3.8; Circuit simulation  

  

Fig.3.9. A4988 drivers simulation  

3.3.2 Prototype Simulation  

A prototype of the envisioned structure was designed on a mechanical simulation 

software for visualization and to check its feasibility considering its required 

dimensions before practical implementation.  
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Fig3.9; Prototype designing  

3.3.3 Proposed machine learning model  

In our project, we deployed a Convolutional Neural Network (CNN) model to 

identify healthy lettuce leaves in a vertical farming environment. The flatten 

layer, dense layer, dropout layer, and output layer with softmax activation are 

added to the CNN design after a number of convolutional and pooling layers. This 

model can successfully extract features and patterns from images, making it 

useful for health diagnostics in vertical farming. It can accurately discern between 

healthy and harmful conditions by observing the minute variations and traits of 

lettuce leaves. After being trained on a dataset specifically selected for lettuce 

health evaluation, the programme performs significantly better. We can precisely 

track the health state of lettuce leaves using our CNN model in real-time, enabling 

quick process optimisation and intervention in vertical farming.   
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Fig.3.10. Classification of plant disease by CNN  

Dataset Preparation:  

In the dataset collection phase, We gathered a variety of images showing both 

healthy and unhealthy lettuce plants. The dataset contained samples of red and 

green lettuce, representing variations in leaf colour and texture. We photographed 

the plants in various stages of development, from tiny seedlings to fully grown 

plants. The dataset was split into two directories, one containing pictures of 

healthy lettuce and the other including pictures of unhealthy lettuce.  
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Algorithem  

import tensorflow as tf import 

matplotlib.pyplot as plt from 

tensorflow.keras import layers  

_VERSION = '2.6.1' 

import numpy as np 

import cv2 import 

os  

  

from google.colab import drive drive.mount('/content/drive')  

  

# Define the path to your dataset  

DATASET_PATH = '/content/drive/MyDrive/lettuce datset'  

  

# Define the image size for the input  

IMG_SIZE = (224, 224)  

  

# Define the number of classes  

NUM_CLASSES = 2  

  
# Define the batch size for training  

BATCH_SIZE = 32  
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# Define the number of epochs for training  

EPOCHS = 20  

  

# Define the learning rate for training  

LEARNING_RATE = 0.0001  

  

# Define the list of classes  

CLASSES = ['healthy', 'unhealthy']  

  

# Define the function to load the dataset def 

load_dataset():  

    data = []     labels = 

[]     for cls in 

CLASSES:  

        path = os.path.join(DATASET_PATH, cls)  

        for img in os.listdir(path):  

            img_path = os.path.join(path, img)             

img_array = cv2.imread(img_path)             img_resized = 

cv2.resize(img_array, IMG_SIZE)             

data.append(img_resized)             
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labels.append(CLASSES.index(cls))     return 

np.array(data), np.array(labels)  

  

# Load the dataset data, 

labels = load_dataset()  

  

print(data.shape)  

  

print(labels)  

  

# Define the model architecture model 

= tf.keras.models.Sequential([  

    tf.keras.layers.Conv2D(16, (3,3), activation='relu', 

input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3)),     

tf.keras.layers.MaxPooling2D((2,2)),     

tf.keras.layers.Conv2D(32, (3,3), activation='relu'),     

tf.keras.layers.MaxPooling2D((2,2)),     

tf.keras.layers.Conv2D(16, (3,3), activation='relu'),     

tf.keras.layers.MaxPooling2D((2,2)),     

tf.keras.layers.Flatten(),     tf.keras.layers.Dense(128, 

activation='relu'),     tf.keras.layers.Dropout(0.5),     
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tf.keras.layers.Dense(NUM_CLASSES, 

activation='softmax')  

])  

  

# Compile the model  

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING 

_RATE),  

              loss='sparse_categorical_crossentropy',               

metrics=['accuracy'])  

  

# Train the model  

history=model.fit(data, labels, batch_size=BATCH_SIZE, epochs=EPOCHS, 

validation_split=0.2)  

  

acc = history.history['accuracy'] val_acc 

= history.history['val_accuracy']  

  

loss = history.history['loss'] val_loss 

= history.history['val_loss'] 

epochs_range = range(EPOCHS)  

  

plt.figure(figsize=(8, 8))  
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plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, 

label='Training Accuracy') plt.plot(epochs_range, val_acc, 

label='Validation Accuracy') plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy')  

  

plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, 

label='Training Loss') plt.plot(epochs_range, val_loss, 

label='Validation Loss') plt.legend(loc='upper right') 

plt.title('Training and Validation Loss') plt.show()  

  

from keras.utils.vis_utils import plot_model  

plot_model(model, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True)  

  

model.save('/content/drive/MyDrive/lettuce datset/my_model.h5')  

  

categories = ["healthy", "unhealthy"]  

  

# Set the input size of the images  

input_size = 224  

  

# Load the model  
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model = tf.keras.models.load_model("/content/drive/MyDrive/lettuce 

datset/my_model.h5")  

  

predicted_labels = [] confidences 

= []  

  

# Loop through each image in the test dataset for 

category in categories:  

    folder_path = os.path.join(DATASET_PATH, category)     

for img_path in os.listdir(folder_path):  

        img = cv2.imread(os.path.join(folder_path, img_path))         

img = cv2.resize(img, (input_size, input_size))         img_orig = 

img.copy()  # Make a copy of the original image         img = img / 

255.0  # Normalize the image         img = np.expand_dims(img, 

axis=0)  # Add a batch dimension  

  

        # Make the prediction         prediction 

= model.predict(img)[0]         category_idx 

= np.argmax(prediction)         

category_name = categories[category_idx]         

confidence = prediction[category_idx]  
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        # Add the predicted label and confidence to the lists         

predicted_labels.append(category_name)         confidences.append(confidence)  

  

        # Append the predicted label and confidence onto the image         

text = f"{category_name} ({confidence:.2f})"  

        cv2.putText(img_orig, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 

1.0, (0, 0, 255), 2)  

  

        # Save the image with the predicted label and confidence  

        output_path = os.path.join(DATASET_PATH, category_name +  

"_predicted")         os.makedirs(output_path, 

exist_ok=True)         output_path = 

os.path.join(output_path, img_path)         

cv2.imwrite(output_path, img_orig)  

  

        # Print the results         

print("Image:", img_path)         

print("Category:", category_name)         

print("Confidence:", confidence)  
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# Convert the predicted labels and confidences to numpy arrays 

predicted_labels = np.array(predicted_labels) confidences = 

np.array(confidences)  

  

# Create a dictionary with the predicted labels and confidences  

predictions = {"predicted_labels": predicted_labels, "confidences": confidences}  

  

# Save the dictionary to a file using numpy's savez function 

np.savez("predictions.npz", **predictions)  

  

model.summary()  

  

from tensorflow.keras.models import Sequential, save_model, load_model  

  

  

from IPython.display import HTML, Audio, display 

from google.colab.output import eval_js  from 

base64 import b64decode  import numpy as np   

import io  from PIL import 

Image  import tensorflow as tf 

import cv2 import 

matplotlib.pyplot as plt  
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model = tf.keras.models.load_model('/content/drive/MyDrive/lettuce 

datset/my_model.h5')  

  

VIDEO_HTML = """   

<video autoplay   width=%d height=%d style='cursor: 

pointer;'></video>   

<script>   

   

var video = document.querySelector('video')   

   

navigator.mediaDevices.getUserMedia({ video: true })   

  .then(stream=> video.srcObject = stream)   

     

var data = new Promise(resolve=>{    video.onclick = 

()=>{      var canvas = 

document.createElement('canvas')      var [w,h] = 

[video.offsetWidth, video.offsetHeight]      

canvas.width = w      canvas.height = h      

canvas.getContext('2d')            .drawImage(video, 0, 

0, w, h)      

video.srcObject.getVideoTracks()[0].stop()      
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video.replaceWith(canvas)      

resolve(canvas.toDataURL('image/jpeg', %f))   

  }   

})   

</script>   

"""   

  

def preprocess_image(image):  

    image = Image.fromarray(image).convert('L').resize((224, 224))  

    

    rgb_image = Image.new("RGB", image.size)     

rgb_image.paste(image)     image = 

np.array(rgb_image) / 255.0     image = 

np.reshape(image, (1, 224, 224, 3))     return 

image  

  

def predict_image(image):  

    img = preprocess_image(image)  

      

    pred = model.predict(img)     

class_idx = np.argmax(pred)  
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    if class_idx == 0:  

        class_label = "healthy"     

else:  

        class_label = "unhealthy"  

      

    # Appending the class label  

    image = cv2.putText(image, class_label, (10, 30), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)  

      

    return image  

  

def take_photo(filename='photo.jpg', quality=0.8, size=(800,600)):      

display(HTML(VIDEO_HTML % (size[0],size[1],quality)))      

data = eval_js("data")      binary = b64decode(data.split(',')[1])      f 

= io.BytesIO(binary)      return np.asarray(Image.open(f))   

  

img = take_photo() processed_img = 

preprocess_image(img) result_img = 

predict_image(np.copy(img))  

  

# Predict the class using the model pred 

= model.predict(processed_img) 
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class_idx = np.argmax(pred) 

class_label = chr(class_idx + 65) 

plt.figure(figsize=(10,10))  

plt.imshow(result_img)  

plt.title(f'Predicted class: {class_label}')  

plt.axis('off')  

  

Explanation:  

• We begin by importing the necessary libraries, including OpenCV, 

TensorFlow, Keras, numpy, and Keras.  

• The parameters we set next include the dataset directory, image size, batch 

size, number of classes, number of epochs, learning rate, and class names.  



39  

• We created a function called "load_dataset()" with the intention of loading 

and preparing the photographs from the dataset. The images are resized, 

converted to numpy arrays, and given the proper names.  

• The dataset is loaded with the "load_dataset()" method.  

• The model architecture is established using Keras' Sequential API. The 

first layers in the structure are the convolutional and pooling layers, which 

are followed by the flatten, dense, dropout, and output layers with softmax 

activation.  

• The sparse categorical cross-entropy loss, and the Adam optimizer 

accuracy metric are used to build the model.  

• Using the fit() method, the model is trained using the input data, labels, 

batch size, number of epochs, and validation split.  

• As variables for accuracy, validation accuracy, loss, and loss during 

validation, we keep track of the training history.  

• Using Matplotlib, we plot training and validation accuracy and loss to 

show the training process.  

• We create a h5 file to store the learned model.  

• The model that was previously stored is then loaded for testing.  

• We prepare test photos from the healthy and unhealthy categories, load 

test images from those categories, and then use those test images with the 

loaded model to produce forecasts. The desired label and confidence are 

received.  

• For an interactive webcam demonstration of image classification, further 

code is written. It takes a picture using the camera, edits it, and then feeds 

it to the model for forecasting. Using OpenCV and Matplotlib, the 

predicted class is shown on the image.  

Accuracy:   

Initially,the model accuracy was around 80 to 85%, upon fine tuning of the model.  

The model accuracy has improved significantly.  



40  

  

  

3.3.4  Arduino code for stepper motors  

const int stepX = 2; 

const int dirX = 5; 

const int stepY = 4; 

const int dirY = 7; 

const int enPin = 8; int 

dt = 5000;  

  

// Define the interval in milliseconds for the motors to move (once a week)  

const unsigned long movementInterval = 7 * 24 * 60 * 60 * 1000;  // 7 days in 

milliseconds  

  

// Define variables to track the last movement time unsigned 

long lastMovementTime = 0;  
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void setup() {  

  // Pin configuration and initialization   

pinMode(stepX, OUTPUT);   

pinMode(dirX, OUTPUT);   

pinMode(stepY, OUTPUT);   

pinMode(dirY, OUTPUT);   pinMode(enPin, 

OUTPUT);   digitalWrite(enPin, LOW);   

digitalWrite(dirX, HIGH);   

digitalWrite(dirY, LOW);  

}  

  

void loop() {   // Get the current time   

unsigned long currentTime = millis();  

  

  // Check if it's time for the motors to move   if (currentTime - 

lastMovementTime >= movementInterval) {  

    // Move the motors     

moveMotors();  

  
    // Update the last movement time     

lastMovementTime = currentTime;  
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  }  

}  

  

void moveMotors() {  

  // Rotate the X-axis motor   

for (int x = 0; x < 300; x++) {     

digitalWrite(stepX, HIGH);     

delayMicroseconds(dt);     

digitalWrite(stepX, LOW);     

delayMicroseconds(dt);  

  }  

  

  delay(dt); // One second delay  

  

  // Rotate the Y-axis motor   

for (int x = 0; x < 300; x++) {     

digitalWrite(stepY, HIGH);     

delayMicroseconds(dt);     

digitalWrite(stepY, LOW);     

delayMicroseconds(dt);  

  }  
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  delay(dt);  

}  

Explanation:  

Using the A4988 driver modules, we have created Arduino code to control the 

motion of stepper motors. This code's objective is to synchronise a motorised 

camera's movement with the motors in a visual scenario. In a prototype of vertical 

farming, the camera is made to align with trays. To do this, we must first specify 

the pin assignments for each motor's step and direction signals as well as the 

enable pin that turns off the motors. The interval between steps is represented by 

the "dt" variable.  

During setup, the appropriate pins are assigned as outputs, and the enable pin is 

set to LOW to activate the motors. In addition, we switched the Y-axis motor's 

direction to LOW and the X-axis motor's direction to HIGH.  

 In the main loop, the amount of time since the last movement is continuously 

monitored. Once the specified movement interval—in our case, one per week— 

has passed, we call the moveMotors() function.  

The moveMotors() method manages the motors' rotation. The X-axis motor is 

rotated 300 times by setting the step pin to HIGH, using the dt variable to add a 

delay, setting the step pin to LOW, and then adding yet another delay.  Repeating 

this procedure results in the desired number of steps being finished. The Y-axis 

motor is rotated for 300 steps after a one-second delay using the same logic as the 

X-axis motor.  

By putting this code into use, we ensure that the motors move in accordance with 

the motorised camera's movements in a specified pattern. In the prototype for 

vertical farming, the camera is utilised to position itself in respect to the trays. For 

further analysis and decision-making in our project, the camera's collected data 

will be added to a machine learning model.  
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Chapter 4  
  

Testing and Validation/Discussion  
  

4.1 Testing   
   

Motors Testing  

First the motors are tested with its code to see if they are moving properly then 
after the pulleys and the camera is attached the model is trained and tested by 
implementing the data set including the several amount of images that includes 
the images of the healthy and non-healthy plants.  

After several testing times of testing finally the movement of the motors became 
stable and the model started to predict the plant's health truly.  

 
Fig4.1; Testing of working of motors  
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4.1.1 Prototype  

After the testing of motors they are mounted on the prototype structure to test the 
stability and the movment.in place of camera a small weight is placed to check. 
The motors moved the weight object from initial to the end one by one in the 
vertical position.The plants were also set up in the trays to see if they could hold 
the weight properly.  

  
  

Fig4.2  

4.1.2 Test Cases   

First the motors are tested and stimulated as they are the most important and the 
initial part of the model. After stimulation motors the main focus is the stability 
of the motors and its vertical movement.  
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The next aim is the detection of the plants and crops diseases and their health 
assessment. This is done through the machine learning algorithms. The system 
should monitor each plant and incase of any unusual detection the system send 
the quick alert to the connected computer.  

The various test cases are as followed:  
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4.2 Results/Output/Statistics  
  

Ml model   

After the complete training of the model with the data set and the code for the 
running of the model. The model successfully predicts healthy and unhealthy 
lettuce plants with the health category and confidence appended on the predicted 
images.  

  

Hardware and Mechanical  

The model is working properly.it accesses each plant and it detects the unhealthy 
plants reading the data set accurately. The Arduino is working fine fir the 
movement of motors and the algorithm for the plants detection provided to the 
model makes the robot differentiate between the unhealthy and healthy pant 
easily.  
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Chapter 5  
  

Conclusion and Future Recommendations  

5.1 Conclusion   

In conclusion, the objectives set forth for this Final Year Project (FYP) have been 

successfully achieved.   

  

The main objective was to create an intelligent robotic camera positioning system 

or precisely integrating 2d cable-driven robot in vertical farming enviroment for 

monitoring health of plants using computer vision and machine learning 

techniques. In addition to developing our own machine learning model for plant 

health detection, we also reviewed and compared a number of other models to 

determine which was most effective.   

  

One of the significant challenges encountered during the project was stabilizing 

the motorized pulley system and accurately positioning the camera. Multiple 

revisions and a significant amount of work were needed for this. Another 

difficulty was outfitting the machine learning model with computer vision 

capabilities and properly integrating them. The project's success depended 

heavily on the selection of the proper computer vision tool and its effective 

interfacing.   

  

The novelty and success of this project are found in the development of a fully 

autonomous robotic crop health monitoring system that is especially suited for 

vertical farming. The system demonstrates cost-effectiveness, robustness, and 

adaptability. It offers a flexible workspace for effective crop monitoring and 
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management. We have increased accuracy levels beyond what was possible with 

existing solutions by utilizing computer vision and machine learning.   

  

Overall, we have successfully executed the goals we set at the beginning of the 

project. The developed robotic system offers a practical and innovative solution 

for monitoring plant health in vertical farming. The combination of machine 

learning and computer vision has paved the way for better plant monitoring, 

planning and management. The results achieved in this project will have a 

significant impact on the agricultural industry and open the door for further 

progress in the field of autonomous farming systems.  

5.2 Future Recommendations   

Based on the achievements and challenges faced during the project, the following 

future recommendations can be made:   

    

5.2.1 Improved robustness:   

  

The developed robotic system has achieved a certain degree of robustness, but 

further improvements are possible to increase its durability and stability. This 

includes improving the mechanical design, optimizing the electric pulley system, 

and implementing measures to minimize vibration and disturbances.   

  

    

  

5.2.2 Advanced sensor integration:   

  

Consider integrating additional sensors to extend the capabilities of your crop 

health monitoring system. For example, integrating environmental sensors such 
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as temperature, humidity and soil moisture sensors can provide valuable data for 

comprehensive crop health analysis.   

  

    

  

5.2.3 Continuous model improvement:   

  

A machine learning model for detecting plant health has been developed, but the 

process of improving the model is still ongoing. This includes gathering more 

diverse and richer training data, exploring advanced machine learning 

algorithms, and fine-tuning models for improved accuracy and performance.   

  

   

  

Collaboration with Agricultural Experts: To further refine the system and ensure 

its effectiveness in real-world farming scenarios, collaborate with agricultural 

experts and farmers. Their insights and feedback can provide valuable input for 

system improvements, as well as validate the system's performance in different 

agricultural contexts.  
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