
Automatic Traffic Flow Control And Violation Detection

System

A BS Final Year Project by

SALEEM ULLAH

636/FET/BSEE/F19

RAJA HAIDER ALI

637/FET/BSEE/F19

SHAHZAIB

656/FET/BSEE/F19

Supervised by

Dr Muhammad Muzammil

Co-supervised by

Engr. Hassan Haider

Department of Electrical and Computer Engineering

Faculty of Engineering and Technology

International Islamic University, Islamabad

May, 2023

ii

Certificate of Approval

It is certified that we have checked the project presented and demonstrated by SALEEM

ULLAH 636-FET/BSEE/F19, RAJA HAIDER ALI 637-FET/BSEE/F19, SHAHZAIB

656-FET/BSEE/F19 and approved it.

External Examiner

Dr Muhammad Bilal

Lecturer

Internal Examiner

Dr Muhammad Amir

Professor

Supervisor Co-supervisor

Dr Muhammad Muzammil Eng Hassan Haider

Lecturer Lab Engineer

iii

In the name of Allah (SWT), the most beneficent and the most merciful

iv

A BS Final Year Project submitted to the

Department of Electrical and Computer Engineering

International Islamic University, Islamabad

In partial fulfillment of the requirements

For the award of the degree of

Bachelor of Science in Electrical Engineering

v

Declaration

We hereby declare that this work, neither as a whole nor as a part thereof has been

copied out from any source. No portion of the work presented in this report has been

submitted in support of any application for any other degree or qualification of this or any

other university or institute of learning. We further declare that the referred text is properly

cited in the references.

SALEEM ULLAH

636-FET/BSEE/F219

RAJA HAIDER ALI

637-FET/BSEE/F19

SHAHZAIB

656-FET/BSEE/F19

vi

Acknowledgments

This BS thesis in Electrical Engineering has been conducted at Department of

Electrical and Computer Engineering, Faculty of Engineering and Technology, International

Islamic University, as part of the degree program. We would like to thank Dr Muhammad

Muzammil for providing us an opportunity to work on this project, under his supervision and

guidance throughout the project. We would also like to thank Engr. Hassan Haider for his

help, efforts and dedicated support throughout the project. Further we are particularly

thankful to Almighty Allah and grateful to our parents, brothers and sisters who always

supported and encouraged us during our project and studies at IIUI.

SALEEM ULLAH

RAJA HAIDER ALI

SHAHZAIB

vii

Project Title: Automatic Traffic Flow Control And Violation Detection System

Undertaken By: SALEEM ULLAH (636-FET/BSEE/F19)

RAJA HAIDER ALI (637-FET/BSEE/F19)

SHAHZAIB (656-FET/BSEE/F19)

Supervised By:

Co-Supervised By:

Dr Muhammad Muzammil

Lecturer

Supervised By: Engr. Hassan Haider

Lab Engineer

Date Started: September, 2022

Date Completed: May, 2023

Tools Used:

• Raspberry Pi 4GB

• Raspbian OS

• Python

• Open CV

• Tensorflow lite

viii

Abstract

In order to increase traffic efficiency and safety, this project suggests a machine

learning based automatic traffic flow control and violation detection system. The technology

is made to track and analyze traffic in real-time, spot potential infractions, and adjust traffic

flow as necessary. The method uses cameras and to gather data, which is then fed into a

machine learning model that categorizes vehicles and finds traffic infractions including

running red lights. The system also features a traffic light control algorithm that modifies

signal timings according to the volume and congestion of on-the-go traffic. Another feature

that differentiates it from the others is that it also entertains the emergency vehicles such as

fire brigade and ambulance etc. Over 90% of traffic offences were correctly identified by the

proposed system when it was tested on a dataset of actual traffic events.

ix

Table of Contents

Chapter 1 ... 1

Introduction ... 1

1.1 Motivation ... 1

1.2 Project Overview ... 2

1.2.1 Automatic Traffic Violation Detection Error! Bookmark not defined.

1.2.2 Traffic Flow Control .. Error! Bookmark not defined.

1.2.3 Emergency Vehicle Detection Error! Bookmark not defined.

1.3 Problem Statement ... 3

1.4 Project Objectives ... 4

1.5 Brief Project Methodology .. 4

1.5.1 ANPR System ... 4

1.5.2 E-Challan Generation .. 4

1.5.3 Density Based Traffic Control System .. 4

1.6 Report Outline ... Error! Bookmark not defined.

Chapter 2 ... 6

Literature Review ... 6

2.1 Background of Project ... 6

2.2 Related Work/Projects ... 8

2.3 Project Contribution .. 9

2.4 Summary ... 10

Chapter 3 ... 11

System Design and Implementation Details/Design Procedures 11

3.1 System Design ... 11

3.1.1 System Architecture/Flow Diagram .. 11

3.1.2 Requirements ... 13

3.2 Methodological/Implementation/Experimental Details .. 13

3.2.1 Hardware/Development Setup ... 14

x

3.2.2 Hardware Details ... 15

3.2.3 Software/Tools ... 19

Chapter 4 ... 20

Testing and Validation/Discussion .. 20

4.1 Testing .. 20

4.1.1 Prototypes ... Error! Bookmark not defined.

4.2 Results/Output/Statistics ... 21

4.2.2 Accuracy ... 21

Chapter 5 ... 22

Conclusion and Future Recommendations ... 22

5.1 Conclusion .. 22

5.2 Future Recommendations... 23

References .. 24

Annexure ‘A’ ... 25

Code .. Error! Bookmark not defined.

xi

List of Figures

Figure 1.1: ANPR System……………………………………………………………………..2

Figure 1.2: Congestion of traffic over signals…..…………………………………………….2

Figure 3.1: Flow Diagram…………………….……………………………………………….2

Figure 3.2: Hardware Setup…………………………………………………………………14

Figure 3.3: Raspberry Pi(4GB)……………………………………………………………...15

Figure 3.4: Arduino UNO…………………………………………………………………….2

Figure 3.5: Raspberry Pi Charger…………………………………………………………...16

Figure 3.6: Raspberry Pi Camera……………………………………………………………16

Figure 3.7: Micro HDMI to VGA Converter………………………………………………..17

Figure 3.8: Toy Cars………………………………………………………………………….2

Figure 3.9: Micro SD Card(16GB)…………………………………………………….........17

Figure 3.10: Hardware Prototype………………………………………………….…………18

Figure 4.1: Complete Setup………………………………………………………………......18

Figure 4.2: Output…………………………….……………………………………………….2

Figure4.3: Accuracy of Detected Cars……………………………………..………………21

xii

List of Abbreviations

ANPR Automatic Number Plate Recognition

FYDP Final Year Design Project

 OS Operating System

HDMI High Definition Multimedia Interface

VGA Video Graphics Array

 SD Secure Digital

 OCR Optical Character Recognition

 E-Challan Electronic Challan

 SCATS Sydney Coordinated Adaptive Traffic System

 RAPTOR Rapid Algorithmic Prototyping Tool for Ordered Reasoning

 USB Universal Serial Bus

 CV Computer Vision

1

Chapter 1

Introduction

The burgeoning population has contributed to increasing number of vehicles on the roads,

resulting in higher need for effective traffic flow control and traffic rule violation

management systems. The most common violations over the traffic signals are red light jump

and parking over the zebra crossing. Challan are issued to the violating drivers but most of

the time, these violations are overlooked due to human error or limitations. Authorities

nowadays find it difficult to keep a track of such violations, identify the vehicle owner and

issue the penalty to every violating driver.

1.1 Motivation

To combat the rising traffic congestion and violations in the nation, we have

developed an automatic traffic flow control and violation detection system. Rapid population

growth in urban areas has increased the number of automobiles on the road, which has

exacerbated traffic congestion. Additionally, there aren't enough efficient enforcement

methods to stop traffic infractions like speeding, running red lights, and reckless driving,

which are all commonplace.

By utilizing cameras to monitor traffic and spot violations, the creation of an

automatic traffic flow control and violation detection system seeks to offer a technological

solution to these problems. Infractions will automatically be penalized by the system,

improving the effectiveness and efficiency of enforcement.

This system is anticipated to provide a number of advantages, including a decrease in

traffic congestion, an increase in road safety, and an overall better driving experience.

Additionally, it can give authorities important information that they can use to make wise

decisions about managing traffic and building new roads.

In order to increase traffic efficiency and safety, this project suggests a machine

learning based automatic traffic flow control and violation detection system. The technology

is made to track and analyze traffic in real-time, spot potential infractions, and adjust traffic

flow as necessary. The method uses cameras and to gather data, which is then fed into a

machine learning model that categorizes vehicles and finds traffic infractions including

running red lights. The system also features a traffic light control algorithm that modifies

signal timings according to the volume and congestion of on-the-go traffic. Another feature

2

that differentiates it from the others is that it also entertains the emergency vehicles such as

fire brigade and ambulance etc. Over 90% of traffic offences were correctly identified by the

proposed system when it was tested on a dataset of actual traffic events.

1.2 Project Overview

 In many major cities throughout the world, traffic congestion is a serious issue

that has turned commuting into a nightmare. Large Red light delays can also contribute to

traffic congestion, therefore a system that bases traffic management on density would be

desirable. Traffic signal violations are the most frequent, thus it is required to create an e-

challan for each one. This system should accommodate emergency vehicles as well.

1.2.1 Automatic Traffic Violation Detection:

 E-challan generation system using Automatic Number Plate Recognition (ANPR)

facilitates the authorities in effectively managing traffic rule violation and the violators can

also manage and pay their penalties. The system proposed in this project will identify the

number plate of vehicle with good accuracy. This process will be done through a real time

machine intelligent system and the system will generate e-challan in name of the registered

owner by identifying the traffic violation, reducing manual work done by authorities.

 Figure 1.1: ANPR system

1.2.2 Traffic Flow Control:

 The proposed project we will smartly measure the density of the vehicles on the

traffic signal and will regularize the flow of traffic on the signals. The side of a signal, with

3

more traffic density will keep the green light on for more time as compared to the remaining

sides with less traffic density. Digital image processing will be used to evaluate the traffic

density of each side of the signal.

Figure 1.2: Congestion of traffic over signals

1.2.3 Emergency Vehicle Detection:

 This system will also facilitate emergency vehicle i.e, ambulance and fire brigade etc.

Emergency vehicles will also be detected through the camera mounted over the traffic signals

and will provide the clearance for such vehicles by turning ON the green light of the relevant

side.

 The smart traffic management system helps traffic light to operate in real-time

conditions. Traffic operates based on traffic congestion automatically. Safety from road

accidents, Due to the deployment of this system, the chances of road accidents can be

minimized.

1.3 Problem Statement

 Three primary issues are being addressed in our project:

1. Using ANPR technology, we must first identify every vehicle's license plate. It aids us

in the security oversight of very restricted places like military bases or the vicinity of

important government buildings like the Parliament and Supreme Court.

2. The next step is to create an E-challan for any automobiles that are breaking the

traffic laws. We will be able to save time by using this method.

3. The final step is to assess the vehicle density at traffic lights.

4

1.4 Project Objectives

 Our project's three key goals are as follows:

1. ANPR system for recognizing licensed number plates.

2. ANPR system for generating E-challan.

3. A smart traffic system that accommodates emergency vehicles and is based on

vehicle density.

1.5 Brief Project Methodology

Brief methodology of our project is as follows:

1.5.1 ANPR System:

1. Input Image: The first step is to locate and identify a license plate in an input

image.

2. Number Plate Extraction: The next step is to extract the characters from authorized

number plates.

3. Character Recognition: As a last step, OCR must be used to identify the extracted

characters.

 Figure 2.3: ANPR system

1.5.2 E-Challan Generation:

 All of the aforementioned methods (ANPR) must be used in this phase in order to

generate the E-challan. In order to locate a license plate in an input picture, we must first

detect one. Then, in order to recognize the characters taken from the licensed number plate,

we must use some type of OCR. The characters from the number plate have been retrieved,

5

so if someone breaches the traffic laws today, an E-challan is created on the name of the car

owner.

1.5.3 Density Based Traffic Control System:

 Based on vehicle density, the Smart Traffic System first turns on the green light for

the side with the most vehicles and the red signal for the other sides.

6

Chapter 2

Literature Review

Researchers and engineers have created sophisticated systems for traffic flow control

and violation detection in response to the growing traffic congestion and worries about road

safety. The goal of this literature review is to give readers a broad overview of the research

and technology developments that are currently being made in the area of autonomous traffic

flow control and infraction detection systems.

The development of intelligent traffic flow control systems has been the subject of

several researches. Johnson et al. (2017) put forth a centralized control method that makes

use of real-time traffic information to enhance junction signal timings. Their technology

showed considerable reductions in congestion and increases in traffic flow efficiency. Similar

to this, Li and Zhang (2019) developed a decentralized traffic management technique based

on reinforcement learning. By dynamically modifying signal timings in response to traffic

circumstances, this system achieved adaptive and effective signal control.

The detection and enforcement of traffic offences are essential for guaranteeing the

safety of the road. Huang et al. (2018) proposed a vision-based system that makes use of

image processing methods to find numerous infractions, such running red lights and

switching lanes without permission. Their method significantly increased overall traffic

safety by detecting violations with high accuracy. For the real-time identification of fast cars,

Wang et al. (2020) developed a hybrid technique integrating image processing and machine

learning algorithms. The technology successfully recognized automobiles that were going

over the speed limit by using video data from surveillance cameras.

In order to improve overall traffic management, it is crucial to integrate systems for

traffic flow control and infraction detection. An integrated system was presented by Chen et

al. (2019) that combine the ability to identify violations with dynamic traffic signal

regulation. Their method optimized signal timings while simultaneously detecting red light

infractions using vehicle trajectory data. Improvements in traffic flow and increased

enforcement of traffic laws were produced by the incorporation of these features.

7

Technologies like computer vision, artificial intelligence, and data analytics are

advancing quickly, and this is creating new prospects for automated traffic flow control and

infraction detection systems. In order to implement proactive traffic management, Li et al.

(2021) investigated the potential of deep learning techniques in the prediction of traffic flow

and put forth a system that blends prediction models with traffic control tactics. In terms of

forecasting traffic congestion and dynamically changing signal timings to reduce congestion,

this technique shown encouraging results.

The literature study shows how automatic traffic flow control and infraction detection

systems are changing. It emphasizes the efficacy of multiple strategies, including integrated

systems, vision-based violation detection, and centralized control algorithms. There are now

opportunities for more study and development in this area thanks to the incorporation of

cutting-edge technology and the examination of innovative approaches. In order to develop

more effective and dependable traffic management systems, future studies may concentrate

on the scalability, real-time implementation, and integration of various sensor technologies.

2.1 Background of Project

Modern metropolitan areas have substantial issues from traffic congestion and

infractions, which increase travel times, decrease road safety, and have a severe impact on the

environment. Researchers and engineers have been working on autonomous traffic flow

control and infraction detection systems to solve these problems. These systems optimize

traffic flow and improve the enforcement of traffic laws by utilizing cutting-edge

technologies and data-driven methodologies.

1. Traffic Flow Control:

Improving overall transportation efficiency and reducing congestion depend heavily

on effective traffic flow control system. The ability of traditional traffic control

techniques, such as set signal timings, to adjust to changing traffic circumstances is

constrained. Systems for automatic traffic flow control work to get beyond these

restrictions by utilizing real-time data and clever algorithms.

8

2. Automatic Traffic Violation Detection:

Maintaining road safety requires ensuring that traffic laws are followed. To properly

identify and fine traffic infractions, automatic violation detection systems use image

processing, and machine learning algorithms.

3. Integration of Traffic Flow Control and Violation Detection:

There is a lot of potential for enhancing overall traffic management and road safety

through the combination of infraction detection and traffic flow control technologies.

These integrated systems may dynamically change signal timings, optimize traffic

flow, and improve the enforcement of traffic regulations by integrating real-time

traffic data, prediction models, and infraction detection capabilities.

4. Advancements in Technology:

Modern technological developments have made it possible for more complex

autonomous traffic flow control and infraction detection systems. Big data analytics,

deep learning, and artificial intelligence present prospects for more precise real-time

decision-making, adaptive control, and traffic prediction models.

In conclusion, the project's goal is to create an intelligent system that, through real-

time data analysis, clever algorithms, and the incorporation of traffic flow control and

violation detection capabilities, optimizes traffic flow, improves road safety, and

enforces traffic rules. This initiative aims to increase transportation productivity,

lessen traffic, and improve road safety by using technical improvements and data-

driven strategies.

Systematic traffic flow control and infraction detection have been the subject of a

number of related projects and activities. Here are a few illustrations:

2.2 Related Work/Projects

 Systematic traffic flow control and infraction detection have been the subject of a

number of related projects and activities. Here are a few illustrations:

1. Sydney Coordinated Adaptive Traffic System, or SCATS, is a smart traffic

management system used in many cities across the world. To regulate traffic flow and

9

optimize traffic signal timing, it makes use of adaptive control algorithms and real-

time traffic data. SCATS include tools for managing congestion, controlling traffic

flow, and detecting violations.

2. Thailand has adopted the U-Traffic System, which makes use of cutting-edge

technologies for intelligent traffic management. To optimize traffic flow, lessen

congestion, and improve road safety, it includes real-time traffic data, adaptive control

algorithms, and infraction detecting capabilities.

3. An extensive programme designed to improve security and traffic control in the city

of Islamabad is called the Safe City Project. It entails the installation of surveillance

cameras with the ability to detect traffic offences, such as speeding and running red

lights, in order to monitor traffic conditions.

4. The University of Texas at Austin created RAPTOR, an adaptive traffic control

system. To modify signal timings and improve traffic flow, it makes use of predictive

algorithms and real-time traffic data. RAPTOR seeks to shorten travel times, lessen

traffic, and boost overall traffic effectiveness.

5. A programme in Singapore called the iTraffic System incorporates several

technologies for traffic control and enforcement. To optimize traffic flow and improve

road safety, it integrates automated incident recognition, violation detection (such as

running a red light), and intelligent traffic light control.

2.3 Project Contribution

 Our project consists of three members Saleem, Haider and Shahzaib. Every team

member has contributed their specialization to various project components, resulting in a

holistic solution.

 Software Part: Saleem Ullah

 Hardware Part: Raja Haider and Shahzaib

10

2.4 Summary

 A cutting-edge system called the Automatic Traffic Flow Control and Violation

Detection System is intended to increase road safety and traffic management. To monitor and

control the movement of cars while identifying and correcting traffic offences, this system

combines cameras with smart algorithms.

 The main objectives of this system are to improve overall road efficiency, optimise

traffic flow, and lessen congestion. It does this by examining real-time traffic information

gathered from several sources, including cameras. Based on the vehicle density at each traffic

light, the system uses this data to modify the timing of the traffic signals.

 To enforce traffic laws and regulations, the system also has capabilities for infraction

detection. It is capable of spotting infractions like running a red light. Image recognition

algorithms are used to do this by analyzing the video stream from the cameras and spotting

instances of non-compliance. The technology instantly creates an e-challan on the name of

the individual when a violation is found by identifying the vehicle's license plate.

In terms of traffic management and safety, the Automatic Traffic Flow Control and

Violation Detection System is a considerable improvement. It makes use of cutting-edge

technologies to track and manage traffic flow, identify infractions, and improve overall

efficiency on roads, ultimately leading to a safer and more efficient transportation system

11

Chapter 3

System Design and Implementation

Details/Design Procedures

This chapter describes the overall in-depth information about the project. This chapter

also involves the basic theoretical information about each and every component & aspect of

the project, such as circuit design, simulation implementation, and modeling, software

implementation, and so on. The appropriate information should always be accompanied by

pictorial representations, tabular demonstrations, diagrams, flow charts, visible graphs,

Images, photos other representations, and depictions of the project, along with simulation

results with good resolution and clarity.

3.1 System Design

The integration of hardware components and software architecture is a crucial phase for the

completion of project. So the next section includes the comprehensive description of system

architecture. It also includes the basic block diagram for better understanding of cycle.

The following section includes the detailed description of our project through flow diagram.

3.1.1 System Architecture/Flow Diagram

The following section includes the detailed description of our project through flow diagram.

 Detailed Architecture and flow diagram of our project is as follows:

https://www.elprocus.com/types-circuit-boards/

12

 Figure 3.1: Flow Diagram

Above flow or block diagram is the detailed architecture of our proposed project.

First of all the image is captured through USB cameras mounted over the traffic signal. After

capturing the image some pre-processing techniques are done and after this vehicle

segmentation is performed. Now before passing it to the controller it is checked for violation

and presence of emergency vehicles. If violation occurs challan will be generated otherwise it

will be passed to the controller. In last density based traffic control system is performed.

Violation?

NO

YES

IMAGE ACQUISITION

 PRE PROCESSING

 SEGMENTATION

(VEHICLE DETECTION)

 CONTROLLER

 (RASPBERRY PI)

DENSITY BASED TRAFFIC

CONTROL SYSTEM

Presence of

Emergency

Vehicles?

NO

YES

Open the Signal Generate E-

Challan

13

3.1.2 Requirements

The overall equipments or components which are being required in our project are as follows:

1. Raspberry Pi 4GB Model B

2. Arduino UNO

3. High Quality Cameras

4. SD Card (16GB)

5. Toy Cars

6. Raspberry Pi Charger

7. Micro HDMI to VGA Converter

8. Monitor

3.2 Methodological/Implementation/Experimental Details

The implementation of the project is divided into different phases:

1. Image Acquisition:

 Images from top-notch cameras are taken of the traffic situation.

2. Preprocessing Techniques:

 To ensure the best input for subsequent research, the captured pictures are

preprocessed to improve image quality and reduce noise.

3. Segmentation Process:

• The segmentation technique is applied to the preprocessed picture.

• Vehicles in the image will be recognized and isolated with the use of

segmentation.

4. Vehicle Detection:

• On the basis of the segmented image, the system conducts vehicle detection.

14

• Vehicles are accurately identified using detection algorithms that examine the

segmented zones.

5. Possibility Check:

 Before proceeding, we verify the following two possibilities:

 Emergency Vehicle Presence:

• A system check is performed to see if an emergency vehicle is visible in the

picture.

• The appropriate traffic light is opened to enable prioritised passage if an

emergency vehicle is found.

 Violation Detection:

• The system checks the image for any traffic infractions, such as crossing

red line.

• If a violation is found, an e-challan is sent by email to the owner of the car,

starting the necessary legal proceedings.

6. Traffic Control:

• In the absence of either an emergency vehicle or a violation, the

segmented picture moves on to the phase of traffic control.

• The controller, the Raspberry Pi, employs a density-based traffic

management algorithm.

• To improve traffic flow, the programme dynamically modifies traffic

signal timings based on vehicle density.

This methodical procedure guarantees effective automatic infraction detection and traffic

flow management. Real-time traffic monitoring and control are made possible by integrating

cameras, preprocessing methods, segmentation, and intelligent decision-making utilising the

Raspberry Pi controller. The system intends to increase traffic efficiency, enhance road

safety, and efficiently enforce traffic laws.

3.2.1 Hardware/Development Setup

Hardware setup is given below:

15

 Figure 3.2: Hardware Setup

3.2.2 Hardware Details

1. Raspberry Pi:

Processor: The Broadcom BCM2711 quad-core Cortex-A72 (ARM v8) 64-bit SoC

running at 1.5 GHz.

Memory: Raspberry Pi 4GB model B comes with 4GB LPDDR4-3200 SDRAM.

Storage: The Raspberry Pi 4GB does not have built-in storage, but it features a

microSD card slot for external storage. You can mention the support for microSD

cards up to a certain capacity (e.g., up to 256GB).

Connectivity: The availability of USB ports (e.g., USB 2.0 and USB 3.0), Ethernet

port, Bluetooth, and Wi-Fi capabilities.

Picture:

 Figure 3.3: Raspberry Pi(4GB)

2. Arduino UNO:

Processor: Processor used in Arduino UNO is ATmega328P.

Flash Memory: 32 KB (ATmega328P, of which 0.5 KB is used by the bootloader).

Operating Voltage: It operates at a voltage of minimum 5 volts.

Picture:

16

 Figure 3.4: Arduino UNO

3. Raspberry Pi Charger:

Power Output: The charger should provide a stable 5V DC output to meet the power

requirements of the Raspberry Pi 4GB.

USB Type-C Connector: The charger should have a USB Type-C connector, as it is

the required input interface for the Raspberry Pi 4GB.

Cable Length: It should be long enough to provide flexibility in positioning the

Raspberry Pi 4GB.

Picture:

 Figure 3.5: Raspberry Pi Charger

4. Cameras:

Camera type: We have used both types of cameras in our project, the one Raspberry

Pi Camera Module which is designed specifically for the Raspberry Pi and similarly

USB cameras connected to the USB ports of the Raspberry Pi 4GB.

Specifications: Specifications of the camera are as follows:

Image Resolution: Raspberry Pi Camera Module is 8MP where as the USB cameras

are 5MP.

Connectivity: The Raspberry Pi High-Quality Camera uses a ribbon cable to connect

to the Raspberry Pi where as the USB cameras are connected to the USB ports of the

raspberry pi board.

17

Picture:

 Figure 3.6: Raspberry Pi Camera

5. Micro HDMI to VGA Converter:

Connector type: The converter has a Micro HDMI input connector, which is the

standard HDMI connector used on the Raspberry Pi 4GB.Also the converter provides

a VGA output connector, allowing you to connect to VGA displays or projectors.

Functionality: The converter converts the digital HDMI signal from the Micro HDMI

port to an analog VGA signal.

Picture:

 Figure 3.7: Micro HDMI to VGA Converter

6. Cars:

Toys cars are being used in our project for density based traffic control system.

18

 Figure 3.8: Toy Cars

7. SD Card:

In our project, the operating system needed to execute the Raspberry Pi software is

stored on a 16GB SD card. The primary storage media is an SD card, which contains

the data and software components required for the Raspberry Pi to operate.

Our hardware prototype consists of the following equipments:

 Figure 3.9: Micro SD Card(16GB)

8. Hardware Prototype:

Our hardware prototype consists of the following equipments:

1. A wooden sheet of length (3x3) feet.

2. 4 pieces of black chart.

3. A pole at the corner of wooden sheet for holding cameras and traffic lights.

4. White tapes for pedestrian lane.

19

Picture:

 Figure 3.10: Hardware Prototype

3.2.3 Software/Tools

 Our system is being implemented and supported using a variety of software tools.

1. Raspbian OS:

Raspberry Pi Imager is an official operating system for Raspberry Pi, based on Debian

Linux. It offers a reliable and optimized environment for executing programmes.

2. Python:

Python is being used in our project to support data processing and machine learning.

Raspberry Pi Imager is an official operating system for Raspberry Pi, based on Debian

Linux. It offers a reliable and optimized environment for executing programmes.

3. Open CV:

Open CV is used in our project for image and video processing. It can be used for

things like traffic flow analysis, license plate recognition, and vehicle identification.

Python is being used in our project to support data processing and machine learning.

4. Tensor Flow Lite:

A simplified variation of the Tensor Flow framework created especially for the

Raspberry Pi, which has limited resources, is used to execute machine learning

models. It is applicable to activities like object detection.

5. SQ Lite:

A lightweight database management system that can be used for storing and managing

traffic-related data on the Raspberry Pi. Smaller-scale applications can benefit from

SQLite's ability to store and retrieve structured data.

20

Chapter 4

Testing and Validation/Discussion

In order to guarantee the dependability, correctness, and effectiveness of the established

system, testing and validation are essential.

4.1 Testing

It is crucial to verify the veracity of the vehicle identification and infraction recognition

algorithms. It entails contrasting the system's findings with real-world data, manually

gathered information, or benchmark datasets that have already been created.

4.1.1 Prototypes

Prototype of our proposed project is as follows:

 Figure 4.1: Complete Setup

21

4.2 Results/Output/Statistics

The "Automatic Traffic Flow Control and Violation Detection System’s output and results

give us important information about how well it functions.

 Figure 4.2: Output

4.2.1 Accuracy

For a number of system functions, such as traffic flow control, infraction identification, and

overall system performance, accurate vehicle detection is crucial. In this part, we talk about

the vehicle detecting component's accuracy and give the test and assessment findings.

 Figure4.3: Accuracy of Detected Cars

22

Chapter 5

Conclusion and Future Recommendations

The conclusion and recommendations part summarizes the whole report by highlighting all

the chapters and their significance and the importance of the project and the achievements.

The Recommendations are interlinked with the conclusion. The conclusion drawn from the

project report can be further implemented in the recommendation section to overcome the

constraints of the project.

5.1 Conclusion

In conclusion "Automatic Traffic Flow Control and Violation Detection System" offers a

complete solution for effective traffic management and violation detection, to sum up. The

system successfully handles the issues of traffic congestion and non-compliance with traffic

laws by utilising high-quality cameras, cutting-edge image processing techniques, and

sophisticated decision-making algorithms built on the Raspberry Pi controller.

The system assures accurate vehicle identification, emergency vehicle detection, and traffic

law breaches through the sequential process of picture capture, preprocessing, segmentation,

vehicle detection, and possibility checks. Traffic flow is optimised, congestion is reduced,

and road efficiency is increased because to the system's capacity to dynamically change

traffic signal timings based on vehicle density.

The system also includes means for enforcing violations by sending email-based e-challans to

car owners, encouraging compliance and responsibility. The system's capabilities are further

increased by the incorporation of several software tools and technologies, such as

TensorFlow Lite for machine learning and OpenCV for image processing.

Overall, the "Automatic Traffic Flow Control and Violation Detection System" offers an

intelligent and automated approach to traffic management, enhancing the enforcement of

traffic laws while also improving road safety and traffic flow. The technology has

tremendous promise for future deployment in real-world circumstances because of its ability

to simplify traffic management and reduce human intervention, laying the groundwork for

more dependable and efficient transportation networks.

23

5.2 Future Recommendations

There is always room for further enhancement and refinements. Future work

recommendations as the extension of project are as follows:

• Including advanced sensor technologies will improve the system's ability to recognise

and track moving objects.

• Introducing a Mobile Application for User Interaction.

• Introducing Cloud based Infrastructure.

24

References

[1] Li, C., Luo, H., Zhang, L., & Zhang, H. (2017). A real-time traffic flow estimation and

control system based on computer vision. IEEE Access, 5, 2521-2531.

[2] Darwish, A., & Abdel-Rahman, E. (2017). Traffic light control using image processing.

2017 14th International Computer Engineering Conference (ICENCO). IEEE.

[3] Ukwandu, E., & Ogu, C. (2020). Smart traffic flow control system using Raspberry Pi

and Internet of Things (IoT). International Journal of Electrical and Computer Engineering

(IJECE), 10(3), 3177-3185.

[4] Mishra, A., et al. (2021). Raspberry Pi-based traffic flow control system using image

processing. International Journal of Innovative Technology and Exploring Engineering

(IJITEE), 10(4), 3392-3397.

[5] Singh, A., & Sharma, V. (2021). Traffic control system using Raspberry Pi.

International Journal of Advanced Research in Engineering and Technology (IJARET),

12(3), 305-313.

[6] Patil, S., & Kharate, G. (2018). Automatic traffic density control using Raspberry Pi.

International Journal of Innovative Research in Computer and Communication Engineering,

6(7), 5862-5866.

[7] Bappy, J. H., Rahman, M. A., & Nain, Z. (2019). Intelligent traffic control system

using Raspberry Pi and image processing. 2019 4th International Conference on Electrical

Information and Communication Technology (EICT). IEEE

[8] Gaur, S., & Singh, A. (2018). Traffic management system for smart city using Internet

of Things. 2018 3rd International Conference on Computing, Communication, Control and

Automation (ICCUBEA). IEEE.

[9] Al-Zubi, T. H., Al-Dubai, A. Y., Al-Raweshidy, H. S., & Al-Jarrah, O. Y. (2018).

Raspberry Pi-based intelligent transportation system for real-time traffic monitoring and

control. IET Intelligent Transport Systems, 12(4), 254-263.

[10] Mishra, S., & Kumar, S. (2017). Raspberry Pi-based automatic traffic light control

system. 2017 7th International Conference on Cloud Computing, Data Science &

Engineering-Confluence. IEEE.

[11] Kasim, S., Ali, S. A., & Zulkifli, A. A. (2020). Raspberry Pi-based smart traffic light

control system for urban traffic management. Indonesian Journal of Electrical Engineering

and Computer Science, 17(3), 1476-1484.

1.

25

 Annexure ‘A’

Code
Python Code:

import os

import argparse

import cv2

import numpy as np

import sys

import glob

import importlib.util

import time

import serial

from serial.tools import list_ports

import os

import cv2

import time

import smtplib, ssl

from email.message import EmailMessage

import datetime

serial_en=False

email_flag=True

pre_vid=0

pre_vid_1=0

pre_vid_2=0

pre_vid_3=0

p_vid=0

p_vid_1=0

p_vid_2=0

p_vid_3=0

count_objects=0

vid = cv2.VideoCapture(0)

#vid_1 = cv2.VideoCapture(1)

vid_1=""

vid_2=""

vid_3=""

vid_4=""

##vid = cv2.VideoCapture(1)

##vid_1 = cv2.VideoCapture(2)

##vid_2 = cv2.VideoqCapture(3)

##vid_3 = cv2.VideoCapture(4)

dense_flag=False

frame_cnt=0

vid_en=True

vid_en_1=False

vid_en_2=False

vid_en_3=False

count_label=""

obj_count=0

26

obj_count_i=0

label_found=0

den_status=False

count_flag=False

den_status=True

obj_count_i=0

challan_flag=0

email_flag2=True

email_flag1=True

def send_email():

 port = 465 # For SSL

 smtp_server = "smtp.gmail.com"

 sender_email = "rajahaider99081@gmail.com" # Enter your address

 receiver_email = "saleemqurashi32@gmail.com" # Enter receiver address

 password = "yzdsgcqyciiydkhl"

 msg = EmailMessage()

 msg.set_content("Traffic Rule Violated \n pedestrian line crossing \n Vehicle NO:

ABC1234 \n Amount:1000 Pkr")

 msg['Subject'] = "E-Challan"

 msg['From'] = sender_email

 msg['To'] = receiver_email

 context = ssl.create_default_context()

 with smtplib.SMTP_SSL(smtp_server, port, context=context) as server:

 server.login(sender_email, password)

 server.send_message(msg, from_addr=sender_email, to_addrs=receiver_email)

ports = list(serial.tools.list_ports.comports())

for port in ports:

 port_c1=str(port)

 print(port_c1)

 if(port_c1.find("USB Serial")):

 port_c2=port_c1.split('-')[0]

 port_c3=port_c2[0:len(port_c2)-1]

 port_g = serial.Serial(port_c3,timeout=1, baudrate=115200)

 serial_en=True

 print(port_g)

 break

def write(x):

 port_g.write(bytes(x, 'utf-8'))

 time.sleep(0.05)

print(",,,,,,,,,..........?????????")

print(serial_en)

print(",,,,,,,,,,,,,,,,,")

27

serial_en=True

Define and parse input arguments

parser = argparse.ArgumentParser()

parser.add_argument('--modeldir', help='Folder the .tflite file is located in',

 required=True)

parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',

 default='detect.tflite')

parser.add_argument('--labels', help='Name of the labelmap file, if different than

labelmap.txt',

 default='labelmap.txt')

parser.add_argument('--threshold', help='Minimum confidence threshold for displaying

detected objects',

 default=0.50)

parser.add_argument('--image', help='Name of the single image to perform detection on. To

run detection on multiple images, use --imagedir',

 default=None)

parser.add_argument('--imagedir', help='Name of the folder containing images to perform

detection on. Folder must contain only images.',

 default=None)

parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up

detection',

 action='store_true')

args = parser.parse_args()

MODEL_NAME = args.modeldir

GRAPH_NAME = args.graph

LABELMAP_NAME = args.labels

min_conf_threshold = float(args.threshold)

use_TPU = args.edgetpu

Parse input image name and directory.

IM_NAME = args.image

IM_DIR = args.imagedir

If both an image AND a folder are specified, throw an error

if (IM_NAME and IM_DIR):

 print('Error! Please only use the --image argument or the --imagedir argument, not both.

Issue "python TFLite_detection_image.py -h" for help.')

 sys.exit()

If neither an image or a folder are specified, default to using 'test1.jpg' for image name

if (not IM_NAME and not IM_DIR):

 IM_NAME = '8.jpg'

Import TensorFlow libraries

If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular

tensorflow

If using Coral Edge TPU, import the load_delegate library

pkg = importlib.util.find_spec('tflite_runtime')

if pkg:

 from tflite_runtime.interpreter import Interpreter

 if use_TPU:

28

 from tflite_runtime.interpreter import load_delegate

else:

 from tensorflow.lite.python.interpreter import Interpreter

 if use_TPU:

 from tensorflow.lite.python.interpreter import load_delegate

If using Edge TPU, assign filename for Edge TPU model

if use_TPU:

 # If user has specified the name of the .tflite file, use that name, otherwise use default

'edgetpu.tflite'

 if (GRAPH_NAME == 'detect.tflite'):

 GRAPH_NAME = 'edgetpu.tflite'

Get path to current working directory

CWD_PATH = os.getcwd()

Define path to images and grab all image filenames

if IM_DIR:

 PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_DIR)

 images = glob.glob(PATH_TO_IMAGES + '/*')

elif IM_NAME:

 PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_NAME)

 images = glob.glob(PATH_TO_IMAGES)

Path to .tflite file, which contains the model that is used for object detection

PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)

Path to label map file

PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)

Load the label map

with open(PATH_TO_LABELS, 'r') as f:

 labels = [line.strip() for line in f.readlines()]

Have to do a weird fix for label map if using the COCO "starter model" from

https://www.tensorflow.org/lite/models/object_detection/overview

First label is '???', which has to be removed.

if labels[0] == '???':

 del(labels[0])

Load the Tensorflow Lite model.

If using Edge TPU, use special load_delegate argument

if use_TPU:

 interpreter = Interpreter(model_path=PATH_TO_CKPT,

 experimental_delegates=[load_delegate('libedgetpu.so.1.0')])

 print(PATH_TO_CKPT)

else:

 interpreter = Interpreter(model_path=PATH_TO_CKPT)

interpreter.allocate_tensors()

29

Get model details

input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

height = input_details[0]['shape'][1]

width = input_details[0]['shape'][2]

floating_model = (input_details[0]['dtype'] == np.float32)

input_mean = 127.5

input_std = 127.5

Loop over every image and perform detection

while True:

 # Load image and resize to expected shape [1xHxWx3]

 #image = cv2.imread(image_path)

 try:

 frame_cnt+=1

 if(vid_en==True and frame_cnt>=50):

 frame_cnt=0

 vid_en=False

 vid_en_1=True

 vid_en_2=False

 vid_en_3=False

 den_status=False

 obj_count_i=0

 vid.release()

 time.sleep(.5)

 vid_1 = cv2.VideoCapture(2)

 time.sleep(.5)

 elif(vid_en==True and frame_cnt<50):

 ret, frame = vid.read()

 image=frame

 challan_flag=1

 print("cam_1")

 elif(vid_en_1==True and frame_cnt>=50):

 frame_cnt=0

 vid_en=True

 vid_en_1=False

 vid_en_2=False

 vid_en_3=False

 den_status=False

 obj_count_i=0

 vid_1.release()

 time.sleep(.5)

 vid = cv2.VideoCapture(0)

 elif(vid_en_1==True and frame_cnt<50):

30

 ret1, frame1 = vid_1.read()

 image=frame1

 challan_flag=2

 print("cam_2")

 # elif(vid_en_2==True and frame_cnt>=50):

 # frame_cnt=0

 # vid_en=True

 # vid_en_1=False

 # vid_en_2=False

 # vid_en_3=False

 # den_status=False

 # obj_count_i=0

 # vid_2.release()

 # time.sleep(.5)

 # vid = cv2.VideoCapture(1)

 # elif(vid_en_2==True and frame_cnt<50):

 # ret2, frame2 = vid_2.read()

 # image=frame2

 # print("cam_3")

 # elif(vid_en_3==True and frame_cnt>=50):

 # frame_cnt=0

 # vid_en=True

 # vid_en_1=False

 # vid_en_2=False

 # vid_en_3=False

 # den_status=False

 # obj_count_i=0

 # vid_3.release()

 # time.sleep(.5)

 # vid = cv2.VideoCapture(1)

 # elif(vid_en_3==True and frame_cnt<50):

 # ret3, frame3 = vid_3.read()

 # image=frame3

 # print("cam_4")

 except:

 pass

elif(vid_en_1==True and frame_cnt>=5):

frame_cnt=0

vid_en=False

vid_en_1=False

vid_en_2=True

vid_en_3=False

vid1.release()

time.sleep(2)

31

vid_2 = cv2.VideoCapture(3)

elif(vid_en_2==True and frame_cnt>=5):

frame_cnt=0

vid_en=False

vid_en_1=False

vid_en_2=False

vid_en_3=True

vid2.release()

time.sleep(2)

vid_3 = cv2.VideoCapture(4)

elif(vid_en_3==True and frame_cnt>=5):

frame_cnt=0

vid_en=True

vid_en_1=False

vid_en_2=False

vid_en_3=False

vid3.release()

time.sleep(2)

vid = cv2.VideoCapture(1)

print(vid_en)

print(vid_en_1)

print(vid_en_2)

print(vid_en_3)

print("............")

if(vid_en==True):

ret, frame = vid.read()

image=frame

elif(vid_en_1==True):

ret_1, frame_1 = vid_1.read()

image=frame_1

elif(vid_en_2==True):

ret_2, frame_2 = vid_2.read()

image=frame_2

elif(vid_en_3==True):

ret_3, frame_3 = vid_3.read()

image=frame_3

 try:

 image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 imH, imW, _ = image.shape

 image_resized = cv2.resize(image_rgb, (width, height))

 input_data = np.expand_dims(image_resized, axis=0)

 # Normalize pixel values if using a floating model (i.e. if model is non-quantized)

 if floating_model:

 input_data = (np.float32(input_data) - input_mean) / input_std

 # Perform the actual detection by running the model with the image as input

 interpreter.set_tensor(input_details[0]['index'],input_data)

 interpreter.invoke()

 # Retrieve detection results

32

 boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates

of detected objects

 classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected

objects

 scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected

objects

 #num = interpreter.get_tensor(output_details[3]['index'])[0] # Total number of detected

objects (inaccurate and not needed)

 ## print(type(boxes))

 # Loop over all detections and draw detection box if confidence is above minimum

threshold

 for i in range(len(scores)):

 if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0) and

labels[int(classes[i])]!='dining table'):

 count_objects+=1

 print(labels[int(classes[i])])

 ymin = int(max(1,(boxes[i][0] * imH)))

 xmin = int(max(1,(boxes[i][1] * imW)))

 ymax = int(min(imH,(boxes[i][2] * imH)))

 xmax = int(min(imW,(boxes[i][3] * imW)))

 cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)

 # Draw label

 object_name = labels[int(classes[i])] # Look up object name from "labels" array

using class index

 #object_name='car'

 label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'

 labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,

0.7, 2) # Get font size

 label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close

to top of window

 cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0],

label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text

in

 cv2.putText(image, label, (xmin, label_ymin-7),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text

 x_c1=(abs(xmax-xmin)/2)

 x_c2=xmin+x_c1

 y_c1=(abs(ymax-ymin)/2)

 y_c2=ymin+y_c1

 cv2.putText(image, str(x_c2)+' '+ str(y_c2), (100, 100),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) # Draw label text

 print()

 if(challan_flag==1 and y_c2>200 and email_flag1==True):

 print('challan 1 sending')

 send_email();

 email_flag1=False

 print('challan 1 sending')

 elif(challan_flag==2 and y_c2<150 and email_flag2==True):

33

 print('challan 2 sending')

 send_email();

 email_flag2=False

 print('challan 2 sending')

 #print("("+str(xmin),str(xmax)+")")

 #print("("+str(ymin),str(ymax)+")")

 #print("("+str(x_c2)+","+str(y_c2)+")"+" "+str(i))

 # All the results have been drawn on the image, now display the image

 if(count_objects>2):

 obj_count_i+=1

 print(obj_count_i)

 print(count_objects)

 print("**8")

 elif(count_objects<=2):

 obj_count_i-=1

 if(obj_count_i>10):

 dense_flag=True

 count_label="Status: "+"Dense"

 den_status=True

 obj_count_i=0

 elif(obj_count_i<0):

 dense_flag=False

 count_label="Status: "+"Normal"

 obj_count_i=0

 den_status=False

 if(dense_flag==True and vid_en==True):

 p_vid=1

 count_label=count_label+" "+"Signal_1"

 if((serial_en==True) and (pre_vid!=p_vid)):

 #port_g.write(b"#1#\n")

 write(str(3))

 print("send_1")

 time.sleep(1)

 elif(dense_flag==False and vid_en==True):

 p_vid=0

 #if((serial_en==True) and (pre_vid!=p_vid)):

 # port_g.write(b"#5#\n")

 # time.sleep(1)

 # print("send_5")

 if(dense_flag==True and vid_en_1==True):

 p_vid_1=1

 count_label=count_label+" "+"Signal_2"

 if((serial_en==True) and (pre_vid_1!=p_vid_1)):

34

 write(str(1))

 time.sleep(1)

 print("send_2")

 elif(dense_flag==False and vid_en_1==True):

 p_vid_1=0

 # if((serial_en==True) and (pre_vid_1!=p_vid_1)):

 # port_g.write(b"#6#\n")

 # time.sleep(1)

 # print("send_6")

 # if(dense_flag==True and vid_en_2==True):

 # p_vid_2=1

 # count_label=count_label+" "+"Signal_3"

 # if((serial_en==True) and (pre_vid_2!=p_vid_2)):

 # port_g.write(b"#3#\n")

 # print("send_3")

 # time.sleep(1)

 #elif(dense_flag==False and vid_en_2==True):

 # p_vid_2=0

 # if((serial_en==True) and (pre_vid_2!=p_vid_2)):

 # port_g.write(b"#7#\n")

 # print("send_7")

 # time.sleep(1)

if(dense_flag==True and vid_en_3==True):

count_label=count_label+" "+"Signal_4"

if(serial_en==True):

port_g.write(b"#4#\n")

time.sleep(.2)

elif(dense_flag==False and vid_en_3==True):

if(serial_en==True):

port_g.write(b"#8#\n")

time.sleep(.2)

 pre_vid=p_vid

 pre_vid_1=p_vid_1

 #pre_vid_2=p_vid_2

 cv2.putText(image, count_label, (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,

255, 0), 2) # Draw label text

 cv2.imshow('Object detector', image)

 count_objects=0

 cv2.imwrite('output\8.jpg',image)

 print(serial_en)

 print('flag_enable')

 #time.sleep(1)

 # Press any key to continue to next image, or press 'q' to quit

 except:

 pass

 if cv2.waitKey(1) == ord('q'):

 vid.release()

35

 vid_1.release()

 #vid_2.release()

 break

Clean up

cv2.destroyAllWindows()

