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Abstract

In wireless communication systems, automatic modulation classification (AMC) in-

volves identifying the modulation scheme being used by a radio frequency signal. Mod-

ulation techniques vary in characteristics such as amplitude, frequency, and phase. Meth-

ods for AMC traditionally rely on feature engineering and classical machine learn-

ing algorithms, which fail to capture complex patterns. This research provides two

new deep learning-based architectures for classifying different modulation techniques.

These deep learning architectures have been tested against previous neural networks and

show better performance on real-world datasets, even at low SNR.
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Nomenclature

AM Amplitude Modulation

AMC Automatic Modulation Classification

CNN Convolutional Neural Network

DL Deep Learning

FB Likelihood-based methods

FM Frequency Modulation

LB Feature-based methods

LSTM Long Short Term Memory

ML Machine Learning

PSK Phase Shift Key

PSK Phase Shift Keying

RNN Recurrent Neural Network
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Chapter 1

INTRODUCTION

Wireless technology is getting better and there are different ways to send information.

Automatic Modulation Classification (AMC) is a crucial step in detecting and decod-

ing signals, but it’s getting harder to do. It is very important in lots of every day and

army-related situations, like checking for radio problems and deciding who can use cer-

tain frequencies of communication such as explained in [1]. Identifying the modulation

scheme on a received signal is a fundamental task in wireless communication systems.

Digital data is encoded onto a carrier signal throughmodulation. In themilitary, we need

to make sure we receive friendly messages safely. We also need to quickly figure out

when someone is sending an unfriendly message, even if we didn’t know it was coming.

If there are situations like this, we need to use very smart technology that can handle

signals and figure out what kind of modifications have been made without being told

directly. There are several modulation schemes available, including amplitude mod-

ulation (AM), frequency modulation (FM), phase-shift keying (PSK), and quadrature

amplitude modulation (QAM) as discussed in [2]. To ensure reliable data transmission,

it is necessary to accurately classify modulation schemes in a variety of applications,

including wireless networking, satellite communication, and radar. In military commu-

nication, we can use the type of signal to figure out who is sending it. AMC can be used

to do many things by finding signals that are spread out, like recognizing targets, discov-

ering what’s causing interference, and deciding how to divide the available spectrum.

DL is a technology that has become very popular because it’s good at extracting and

showing information. It’s been used to create new and exciting changes in things like

making computers understand images and language. Deep learning is being used more

and more in wireless communication and signal processing for things like identifying

radio transmitters, estimating channels, and allowing multiple devices to use the same
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frequency. Deep learning has proven to be effective in AMC. Many existing AMC

systems cannot ensure that all the samples they receive have the same strength. This

makes it difficult for AMC algorithms to handle signals with varying strength levels.

Therefore, improving the algorithms to be adaptable to changing signal strengths is a

big challenge.

1.1 PROBLEM STATEMENT

Automatic Modulation Classification (AMC) with conventional methods is not accurate

at low SNRs and handles fewer modulation schemes. Recent advancements in deep

learning lead to highly sophisticated neural networks which are computationally intense

and require GPU and good performance which has expensive hardware.

1.2 OBJECTIVE

1. To achieve an AMC which can classify different types of Modulated Signals.

2. Classifier which can Perform signal Decoding and analysis

3. A fast and reliable AMCmodel for various applications mainly military purposes

1.3 BACKGROUND

Before, AMC used numbers and statistics to analyze signals. Intelligent methods for au-

tomated modulation categorization which enhances wireless signal detection and spec-

trum monitoring, were proposed by certain academics such as [3]. However, these ap-

proaches are often limited by the need for extensive feature engineering and may not be

able to capture complex patterns in the data like those used in [4, 5]. Lately, new ways

of using computers to learn have been helping a lot in the field of AMC. leveraging

the power of deep neural networks to automatically learn hierarchical representations of

the input data. This way of combining features and training the model on it has proven

not very success full in the process of modulation classification. In feature-based, it is

2
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important to keep track of every situation as a signal can change its type at any time.

The paper published in [5] developed a features method for (AMC) using Convectional

Neural Network, yielding a 92% accuracy. However, this strategy encountered dif-

ficulties due to the computational price involved while integrating characteristics and

training the model on them. AMC is a critical signal processing method used at the

physical layer of wireless communication networks. Its major purpose is to detect the

modulated format of a signal that arrives reliably in blind mode at the receiver’s end. It

is used to increase spectrum use efficiency. Recent studies in AMC methods are either

complex or not very accurate for a variety of reasons, one of which is the use of raw

or noisy datasets [6]. In this study [6] RNN and CNN were both used but the accuracy

did not above 50 percent in the presence of noisy data. Residual Networks (ResNet) [7]

and Densely Connected Networks (DenseNet) [8] were recently created to improve deep

neural network feature propagation by building shortcut channels across network layers.

When the bypass connections are added, an identity mapping is generated, allowing the

deep network to learn simple functions. In [9], it was demonstrated that a Res-Net archi-

tecture was capable of differentiating between 24 different modulation types. Dense-Net

performed well in picture recognition but was not employed in modulation recognition.

A Convolutional Long Short-Term Deep Neural Network (CLDNN) was recently in-

troduced in [10], which combines the designs of CNN and Long Short-Term Memory

into a deep neural network by leveraging the complementary of CNNs, LSTMs, and

conventional deep neural network architectures. The LSTM unit is a Recurrent Neural

Network memory unit. RNNs are neural networks with memory that can learn sequence

tasks like speech recognition and handwriting recognition. LSTM optimizes the gradi-

ent vanishing problem in RNNs by incorporating a forget gate into its memory cell,

allowing it to learn long-term dependencies. The authors in [11] incorporated LSTM

units into the neural network model and demonstrated good classification accuracy for

a variety of modulation schemes. In this report, we describe two distinct architectures

that perform better than the CNN introduced in [12].

3
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1.4 MOTIVATION

The primary undertaking of this project was to acquire knowledge and skills pertaining

to deep learning neural networks within an academic context. Deep learning has ex-

hibited a significant effectual performance in various fields of informatics, specifically

in wireless networks and applied in communication technology. A multitude of ad-

vanced modulation and coding techniques have been developed, leveraging deep neural

networks, to surmount the limitations of preceding methodologies.

1.5 MODULATION

Modulation means changing a repeating sound or signal called the carrier signal by

using another signal called the modulation signal that carries information to be sent. The

modulation signal can be different things, like a sound from a microphone, a moving

image from a video camera, or a bunch of computer data. The main frequency is faster

than the signal’s frequency. Modulation means putting information on a signal that is

sent to a different place. Radio communication sends a signal through the air to a radio

receiver more about this in [4]. A modulator is a tool that changes signals to make them

better. A demodulator is a circuit that undoes modulation. There are many types of

digital Modulation some of the commonly used modulation types are:

1. Phase-shift keying (PSK)

2. Binary PSK (BPSK), using M=2 symbols

3. Quadrature PSK (QPSK), using M=4 symbols

4. 8PSK, using M=8 symbols

5. 16PSK, using M=16 symbols

6. Differential PSK (DPSK)

7. Differential QPSK (DQPSK)

4
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8. Offset QPSK (OQPSK)

9. π/4–QPSK

1.6 MODULATION CLASSIFICATION

Prior to transmission, all radio communication signals, including those used for televi-

sion, telephony, and other applications, undergo modulation. The recognition and clas-

sification of modulations are fundamental requirements for ensuring precise demodula-

tion. The present technology exhibits different implementations across diverse domains,

including but not limited to military, intelligence, and civilian sectors. In order to tackle

pertinent concerns, substantial attention has been directed towards the advancement of

signal processing and artificial intelligence methodologies in contemporary times such

as discussed in [4]. Within the realm of signal processing, AMC is an intermediate pro-

cedure located between signal recognition and demodulation. The acquisition of signals

by a recipient who is unfamiliar with the signals is seen as a vital procedure. The im-

portance of this phenomenon may be seen in a variety of applications, most notably

spectrum administration and interference detection. There has been a substantial corpus

of scientific effort on the subject of signal processing for several decades. These studies

are divided into two categories: likelihood-based approaches (LB) and feature-based

methods (FB).

1.7 LIKELIHOOD BASED METHOD

In order to accomplish modulation classification, it is generally observed that FB algo-

rithms exhibit a straightforward implementation and a substantial degree of resilience

towards model inconsistencies such as timing errors and phase offsets. However, these

algorithms may not represent an optimal solution from a Bayesian perspective and often

necessitate an offline training phase for the classification system. In contrast to proce-

dures involving an offline phase, likelihood algorithms possess the advantageous quality

of being capable of optimizing the Bayesian framework. However, this advantage is ac-

5
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companied by the drawback of greater computational intricacy. The present algorithms

are designed to establish probability functions for signals that have been either received

or retrieved through a multitude of modulation hypotheses. The algorithms are then uti-

lized to make classification determinations, which are primarily based on selecting the

maximum value from said functions. The algorithms themselves can be categorized into

two distinct groups according to how the data and unidentified parameters are processed.

The present taxonomy encompasses two distinct algorithmic approaches, namely those

founded upon the Average Likelihood Ratio Test (ALRT) and those rooted in the Hybrid

Likelihood Ratio Test (HLRT). The former perspective entails the treatment of both the

data and the unknown parameters as random variables possessed of Probability Density

Functions (PDFs) that necessitate averaging across them. Consequently, a requisite for

their implementation is an antecedent acquaintance with the probability density func-

tions (PDFs) of the aforementioned unknowns, an undertaking that, in circumstances of

obscure communication parameters, may not be feasible or accessible. The algorithms

that are based on Hybrid LRT (HLRT), in contrast, are perceived as more pragmatic in

nature, due to the fact that these algorithms perceive the unknown parameters as uncer-

tain determinants that are subject to estimation, whereas data is treated solely as random

variables meant for integration. More about this can be read in this [13].

1.8 FEATURE BASED METHOD

The feature-based method sorts a signal by looking at its special parts. There are five

AMC features that people often use. These are features that show what is happening in

real-time, features that show changes in frequency, features that look at patterns, features

that look at shapes, and features that show where the signal crosses zero. Instantaneous

features show how loud, high-pitched, or fast a sound is by looking at its amplitude,

phase, and frequency variations. In simpler words: People often use different tools to

make signals easier to understand, such as smoothing or filtering. They might change

the signal by using things like Fourier or Wavelet domains. Scientists use different

statistical features like HOMs, HOCs, HOCCs, and cyclo-stationary to find out what

6
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shapes a group of constellation points makes to detect the signal. We will use different

features taken from our algorithm for our project.

7



Chapter 2

LITERATURE REVIEW

We have learned so far that there are several ways to detect the modulated signal at the

receiver side. The modulator is software based so the better the algorithm the better the

classification. Now let’s go one by one and take a look at some of the ways that have

been adopted before and how they perform.

2.1 MODELS

2.1.1 RECURRENT NEURAL NETWORK

RNNs are very famous among deep learning algorithms. This was a two-layer network

in which the i/q samples are broken down into two Gated Recurrent Units (GRU) and

fed to one after the other. More about this in [14]. This method has an accuracy of over

91%.

Results: The newmethod is better than the old one when there is less noise. This makes

the accuracy of recognizing things better.

2.1.2 CONVOLUTIONAL NEURAL NETWORK

A CNN-based AMC is proposed in [15], Which automatically extracts features from

a lengthy symbol rate data sequence coupled with the calculated signal-to-noise ratio

(SNR.
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Results:

This was a CNN model that works in two steps. First, it trained the model for a set

of parameters, and using that knowledge it trained a newer model. So basically the

concepts of transfer learning were used.

2.1.3 FAST DEEP LEARNING AMC

In this work, a fast approach was taken toward classification by reducing the data set.

The Original data set was created from GNU radio and then broken down into smaller

subparts. Then a Convolution Neural Network (CNN), Convolution Long Short-term

Deep Neural Network (CLDNN), a Long Short-TermMemory neural network (LSTM),

and a deep Residual Network (ResNet) were implemented in [16].

Results:

This approach gave an accuracy value of around 90%. This model aims at making the

best classification as fast as possible by using minimum data set for training the model.

In real life, we don’t have a limited data set but a lot of information is being transferred

so no compromises should be made on training the model with minimum data and in-

creasing accuracy that way.

2.1.4 FEATURE FUSION TECHNIQUE

This Model [5] presents a scheme of using combinations of different features for clas-

sification. Their model achieved a 92% accuracy which is a very good number but only

at -4 and above.

9
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Results:

This way of combining features together and training the model on it has proven very

success full in the process of modulation classification. In feature-based, it is important

to keep track of every situation as a signal can change its type at any time.

2.1.5 MULTI-STREAM NEURAL NETWORK

In [17] this type of neural network, the authors have created a neural network that works

by extracting features one by one andmoving from one layer to the next with the features

of the previous layer method. This method increases the features using a streammethod.

To achieve the same effect as a big convolution kernel, the stream network superimposes

a tiny kernel with fewer parameters. The network layer number is lowered, and the issue

of overfitting is successfully avoided.

Results:

In this type of study when using not just one layer for feature extraction but using multi-

layer has enhanced the performance to a great extent. This algorithm was complicated

and the complexity level is very high. Due to the higher levels of complexity increasing

the accuracy score is a tough and time-consuming task.

2.1.6 DEEP CASCADING NETWORK ARCHITECTURE

This method introduced two ways to enhance the modulation classification technique.

It uses two detectors one for SNR and the other for modulation recognition.

10
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Results:

Using this method an accuracy of 91.0% was achieved. This system is incomplete and

can be completed to achieve a higher accuracy score.

2.1.7 RESNET-50 AND INCEPTION RESNET V2

This network is [18] used images of 8 modulated schemes to create a network that

worked on classifying using images. It was a network that worked on the probability of

the best guess to classify the modulation scheme.

Results:

The process of figuring out the type of modulation used was done in three steps. Two

models were taught using pictures that were created of different colors. This network

does not perform well in my opinion because it was only classifying between 8 schemes

instead of 11 and even after that it was unable to identify between two common types

of modulation which are 16QAM and 64QAM.

11
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Year Author Title Contribution Modulation

Schemes

2017 D. Hong, Z.

Zhang, and

X. Xu

Automatic modulation

classification using re-

current neural network

Use of RNN which

proved to be very com-

putationally expensive

and accuracy didn’t go

beyond 91%

11

2018 F. Meng,

P. Chen, L.

Wu, and X.

Wang

Automatic modulation

classification: A deep

learning-enabled ap-

proach

Uses transfer learning

with CNN way too

many parameters

4

2019 S. Ramjee,

S. Ju, D.

Yang, X.

Liu, A. E.

Gamal, and

Y. C. Eldar

Fast deep learning for

automatic modulation

classification

Used multi-model but

only reach an accuracy

of 90% at only few SNR

10

2020 Kumar, M.

Sheoran,

G. Jajoo,

and S. K.

Yadav

Automatic modulation

classification based on

constellation density

using deep learning

used images of modu-

lated signals for detec-

tion

8

2023 Proposed Deep Learning Based

Automatic Modulation

Classification

Uses light convnet and

stacked deep neural

network with fewer

parameters and better

accuracy than previous

models

12

Table 2.1: Literature Review Table
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Table 2.1 shows our findings in a table. All these methods were discuses in chronolog-

ical order. Some of them were likelihood-based and some others were feature based.

In order for our project, we have decided to take multi approaches from feature extrac-

tion models from the time domain as well as frequency domain using the help of deep

learning neural networks and in the end, we will see what kind of model gives us good

accuracy as well as reliability.
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Chapter 3

METHODOLOGY AND SYSTEM DESIGN

This chapter will discuss themethodology and howwe designed our deep learning-based

classifier from the basic design to the architecture level.

3.1 DATASET CREATION

Most of the available open-source dataset does not reflect real-world scenario. The

scenario includes a multi-path environment and inter-symbol interference. To address

this limitation we generate our own dataset in practical settings. We collected data by

receiving a high carrier signal from our receiver, converting it to a baseband signal,

then passing that baseband signal to an ADC for digital conversion. After digitizing

the signal, we generated chain digital in-phase quadrature (IQs) through the recording

application.

Figure 3.1: Block-Diagram for Data Collection

The procedure used for IQ sample creation and data collection can be seen in figure 3.1.

We collected data by receiving a high carrier signal from our receiver, converting it to

a baseband signal, then passing that baseband signal to an ADC for digital conversion.

After digitizing the signal, we generated chain digital in-phase quadrature (IQs) through

the recording application.
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Figure 3.2: PXIe chassis and Receiver

Figure 3.2 shows PXle-1075 chassis along with PXle-5667 (receiver) which was used

for data collection. For the dataAcquisition, we have used PXIVector Signal Transceiver.

The PXI 5841 VST is a cool gadget that does two things: it can change its settings like a

computer program, and it sends and receives strong signals like a fancy radio machine.

The VST tests cell phone and wireless standards, and the small PXI Express can grow to

fit more inputs and outputs. We used two chassis 1075 with vector signal transceivers

for modulation signal generation and one for a receiver with 5667 receivers shown in

figure 3.2. IQ rate was set to 50 kilo-samples per second. The channel bandwidth was

set to 25kHz. A 25kHz signal sample was recorded and then down-sampled from a re-

ceiver to be sent to the mixer for IQ generation. In this AMC, a signal model has been

used to generate training data for the neural network and to verify the accuracy of the

classification. The signal model described how the signal has been modulated and the

parameters that characterized it. The dataset used for training and evaluation is made

up of 12 different modulation schemes (QAM-16, QAM-32, QAM-64, QAM-128, QAM-

256, FSK-2, FSK-4, FSK-8, FSK-16, FSK-32, BPSK, QPSK) that are different variants

of 5 Classes of QAM, 5 Classes of FSK and 2 Classes of PSK. For training samples of

60% and validation set of 40% the training samples for each class are 1338 per class

whereas for validation 892 samples per class.

3.1.1 QAM MODULATION

In the Quadrature Amplitude Modulation schemes, the signal can be represented using

a constellation diagram in the complex plane [19]. The location of each point in the dia-

gram represents a particular symbol, and the distance between the points represents the
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difference in amplitude and/or phase between the symbols. To model QAM signals, the

constellation diagram can be represented mathematically using the following equation:

s(t) = I(t) cos(2πfct)−Q(t) sin(2πfct) (3.1)

where s(t) is the modulated signal at time t, I(t) and Q(t) are the in-phase and quadra-

ture components of the signal, respectively, fc is the carrier frequency, and cos(2πfct)

and sin(2πfct) represent the carrier signals in the in-phase and quadrature channels,

respectively.

3.1.2 FSK MODULATION

For FSK (Frequency Shift Keying) modulation schemes, the signal can be represented

using a time-domain model that describes the signal as a sum of sinusoids with different

frequencies, amplitudes, and phases [19]. The signal can be expressed mathematically

as:

s(t) =
N∑

n=1

an cos(2πfct+ φn) + bn sin(2πfct+ φn) (3.2)

where N is the number of symbols in the FSK modulation scheme, an and bn are the

amplitude of the cosine and sine components of the nth symbol, respectively, fc is the

carrier frequency, and φn represents the phase offset of the nth symbol.

3.1.3 PSK MODULATION

PSK (Phase Shift Keying) modulation is a digital modulation scheme that represents

digital data by varying the phase of a carrier signal. In PSK, the carrier signal is mod-

ulated by discrete phase shifts to encode binary symbols. The basic equation for PSK

modulation can be given as:
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s(t) = A · cos(2πfct+ θ) (3.3)

where s(t) is the modulated signal at time t, A is the amplitude of the carrier signal, fc

is the carrier frequency, and θ represents the phase shift, which depends on the binary

symbol being transmitted. In binary PSK (BPSK), the phase shift is selected from two

possible values, typically 0 and π radians. These phase shifts correspond to the binary

symbols 0 and 1, respectively. Therefore, the phase shift can be expressed as:

θ =

0, if the input symbol is 0

π, if the input symbol is 1

(3.4)

The resulting BPSK signal can be represented as:

s(t) = A · cos(2πfct+ kπ) (3.5)

where k represents the binary symbol being transmitted at time t.

3.2 PREPROCESSING METHODS

We generated a CSV dataset with 12 modulation schemes. Then, for preprocessing, we

use the Savitzky Golay filter and Wavelet Transform to remove noise from our dataset.

Following are the details of the pre-processing technique.

3.2.1 WAVELET TRANSFORM

The method has been extensively utilized and improved in many disciplines, and it has

a unique time and frequency analytical property. The wavelet transform improves on

the traditional Fourier transformation. It may investigate the time and frequency char-
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acteristics of the signal [20]. The wavelet function system is a set of functions used to

describe a signal that is created by extending and translating the underlying function.

More about this is [21]. The WT of the signal x(t) can be described as:

W (a, b) =
1√
a

∫
x(t)ρ

t− b

a
dt (3.6)

where W(a, b) denotes the WT coefficient, x(t) the wavelet function, a and b the stretch

and translation factors, and δ(t) the conjugate of x(t). More about this in [21]. While

the dimension of the window remains constant, the stretch and translation are superior

to the Fourier transform. The inverse wavelet transform may be used to reconstruct the

signal x(t) as follows:

x(t) =
1

Cρ

∫ ∫
1

a2
W (a, b)ρ

t− b

a
dadb (3.7)

Following threshold quantification, the signal without noise is rebuilt using the inverse

wavelet transform. Given the fact that threshold choice has a direct influence on de-

noising performance, selecting a proper threshold is crucial [21]. The signal samples

from our dataset were challenging to utilize for training and validation prior to adopting

any form of denoising algorithm, as seen below:

Figure 3.3: Signal Samples before denoising

Figure 3.3 shows signal samples before denoising which are very much noisy and cannot
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be used for training and testing of our model. After using the wavelet transform for

denoising our signal samples the filtered samples can be seen as:

Figure 3.4: Signal Samples after denoising

Figure 3.4 shows signal samples after filtering which are less noisy and can be used for

training and testing of our model.

3.2.2 SAVITZKY GOLAY FILTER

This filter is a type that may be used for a series of digital information points to smooth

the information, thereby increasing accuracy without altering the signal trend. Con-

volution is performed by employing the linear least squares approach to fit successive

subsets of neighboring data points with a low-degree polynomial. In instances where

data points are uniformly spaced, it is possible to determine an analytical solution to the

least-squares equations through the utilization of a singular set of ”convolution coeffi-

cients”. These coefficients can be utilized across all data subsets to obtain smoothed

estimations of signal, or the derivatives of said signal, at the midpoint of each subset,

more about this in [22]. We need to use filters on the data before we train the model

so that it can be more accurate. This filter is typically used to make signals smoother

and get rid of unwanted noise. This is a special computer tool that smooths out data

by making a curve from nearby points and then using that curve to figure out a more

accurate value for the center point. The filter is defined by the following equation:

yj =
m∑

i=−m

cixj+i (3.8)
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where yj is the output value for the j-th data point, xj+i are the input values in the

2m + 1 window around the j-th data point, and ci are the filter coefficients. The filter

coefficients are determined by minimizing the least-squares error between the smoothed

values and the original data points [22]. Where Ns = 1
s
N . Multi-scaling is a pre-

processing stage that transforms a raw noise signal into various coarse-grained signals

of different resolutions.

Scaling is a preliminary processing stage that converts a raw noise signal into a num-

ber of coarse-grained signals with varying resolutions [22]. By averaging consecutive

samples based on the scale value specified, the multi-scaling through coarse-graining

technique reduces noise, smooths down the contour, and forms fine patterns. The scale

value must be appropriately set since a greater scale value may result in the removal of

crucial information required for capturing the pattern via feature/parameter extraction.

The baseband signal for n = 1, 2, . . . , Ns.

The baseband signal defined by (3.9):

xs = [xs(1), xs(2), . . . , xs(Ns)]. (3.9)

Before using any kind of denoising technique the signal samples from our dataset were

difficult to use for training and validation which can be seen as :

Figure 3.5: Signal Samples before filtering

Figure 3.5 shows signal samples before filtering which are very much noisy and cannot

be used for training and testing of our model. After using the Savitzky-Golay filter for
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denoising our signal samples the filtered samples can be seen as:

Figure 3.6: Signal Samples after filtering

Figure 3.6 shows signal samples after filtering which are less noisy and can be used for

training and testing of our model.

3.3 PROPOSED DEEP LEARNING MODELS

For the algorithms, we decided to take two approaches. We have two architectures.

Architecture 1 consists of a 1D CNN model and architecture two is a hybrid functional

model consisting of combined three algorithms which are 1D CNN, LSTM, and autoen-

coders. The flowchart shows our data collection process, followed by pre-processing

using the Savitzky-Golay filter, and classification using a deep stacked neural network

of CNN, LSTM, and Autoencoder and model 2 of light 1D-ConvNet.
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Figure 3.7: Models Flow chart

Figure 3.7 shows the following flow for our model which includes data collection, pre-

processing, data concatenation, and then finally function hybrid model combination for

classification and predictions.

3.3.1 LIGHT CONVNET

ACNN is a type of algorithm that is used to understand pictures in deep learning. When

we talk about neural networks, we usually talk about doing math with grids of numbers.

But with ConvNet, that’s not how it works. It uses a method called Convolution. Con-

volution is a way of combining two shapes to create a new shape. It’s like putting one

shape on top of another and seeing how they change. Convolutional neural networks

are created by multiple layers of fake brain cells. Artificial neurons are like little calcu-
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lators that take in information and give out a value, which is similar to how real neurons

in our brains work. When you feed an image into a CNN, each layer generates several

activation functions, which are then passed on to the next layer, more about this in [23].

Usually, the first layer finds simple things like lines going straight or across. This infor-

mation is sent to another layer that finds things like corners or edges that are made up

of different shapes. As we go further into the network, we can understand more com-

plicated things like objects and people’s faces. The last part of the computer program

looks at the picture and decides how probable it is that the picture belongs to a certain

group. It uses scores between 0 and 1 to show this.

Sequential 1D CNN is a simple model for time-series analysis that is based on the con-

volutional neural network architecture. It is a feed-forward network that takes input as

a sequence of data and outputs the classification or prediction of the next step in the se-

quence, more about this in [24]. The architecture consists of multiple layers of Conv1D,

MaxPooling1D, and Dropout layers. We used over own collected dataset for sequential

1D CNN, then denoised it using discrete wavelet transform and used that denoise data

as an input for a convolutional neural network. Our model required less computation

time to train than previously proposed modulation classification models. The Conv1D

layer applies a 1D convolution operation on the input sequence with a fixed-size kernel,

which slides along the sequence to extract the features. The output of the Conv1D layer

is a feature map that represents the learned features,more about this in [25]. The Max-

Pooling1D layer downsamples the feature map to reduce the spatial size of the output

and control over-fitting. The Dropout layer randomly drops out some of the neurons to

prevent over-fitting. The architecture of our Sequential light convnet is as follows:
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Figure 3.8: Model Summary of Proposed Light ConvNet

Figure 3.8 shows the implemented Architecture for our convolutional neural network

labeled with layer names and shape of inputs for layer and lastly shows the 12 predicted

modulation schemes for the output layer.

3.3.2 STACKED DEEP NEURAL NETWORK

The Stacked Deep Neural Network of CNN, LSTM, and Autoencoder is a deep learn-

ing model that combines the strengths of CNN, LSTM, and Autoencoder models. The

model is designed for time-series analysis and is capable of classifying both the time and

frequency features of the data. The dataset we used for the functional hybrid API model

was a concatenated form of denoised time series data and denoised frequency domain

samples so that our proposed model can classify modulated signals even in their fre-

quency domain. The same concatenated data samples were used as input samples over
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CNN, LSTM, and autoencoder, the results of which were then flattened and merged to

pass from the output dense layer. The architecture for our proposed hybrid functional

model is given as follows from its model plot:
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Figure 3.9: Model architecture of Stacked Deep Neural Network

25



METHODOLOGY AND SYSTEM DESIGN

The architecture used for the implementation of a hybrid functional model from its

model plot is shown in Figure 3.9 in which the resulting features from CNN, LSTM,

and auto-encoder were flattened and then concatenated before passing through the out-

put dense layer for the final predictions. The architecture for our proposed hybrid func-

tional model is given as follows from its model summary:

Figure 3.10: Model Summary of Proposed Stacked Deep Neural Network
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The architecture used for the implementation of a hybrid functional model from its sum-

mary is shown in Figure 3.10 in which the resulting features from CNN, LSTM, and

auto-encoder were flattened and then concatenated before passing through the output

dense layer for the final predictions.

27



Chapter 4

RESULTS AND DISCUSSIONS

This chapter presents a thorough analysis and interpretation of the acquired data in or-

der to meet the research objectives and answer the research questions. This section

will describe the results of experiments, surveys, observations, or other methods used

throughout the study process. Furthermore, we will conduct a thorough discussion and

analysis of these data, comparing them to current literature and ideas in order to detect

patterns, trends, connections, and any notable findings. This chapter will contribute to a

deeper knowledge of the study topic and give significant insights that can inspire future

research endeavors and practical applications in the area by evaluating the results and

engaging in critical dialogue.

4.1 ARCHITECTURE 1: LIGHT CONVNET

4.1.1 USING WAVELET TRANSFORM

In Figure 4.1 we can see the system’s accuracy increased after just a few epochs, and

on testing data, the accuracy was good from the start.
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Figure 4.1: 1D CNN model accuracy using wavelet transform

In Figure 4.2 below we can see the model loss is decreasing over time which is precisely

what we want.

Figure 4.2: Loss Graph of 1D CNN model using wavelet transform

Figure 4.3 below shows the loss vs accuracy of how loss is decreasing and vice versa

our model accuracy is increasing.
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Figure 4.3: Model Loss and accuracy vs epoch using wavelet transform

Figure 4.4 shows the confusion matrix for 12 modulation schemes at 5db SNR.
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Figure 4.4: 12 Modulations Schemes at 5db SNR

Figure 4.5 shows the confusion matrix for 5 modulation schemes at 5db SNR.
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Figure 4.5: 5 modulation Schemes at 5db SNR
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4.1.2 ACCURACY VS SNR

Figure 4.12 shows the SNR vs Accuracy plot on the basis of which we can say our model

performs very well and model accuracy stays constant even at various SNRs.

Figure 4.6: Architecture 1 SNR vs Accuracy Plot
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4.1.3 USING SAVITZKY GOLAY FILTER

In Figure 4.7 we can see the system’s accuracy increased after just a few epochs, and

on testing data, the accuracy was good from the start.

Figure 4.7: 1D CNN model accuracy using Golay filter
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In Figure 4.8 below we can see the model loss is decreasing over time which is precisely

what we want.

Figure 4.8: Loss Graph of 1D CNN model using filter
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The graph in Figure 4.9 below shows the loss is decreasing relative to accuracy.

Figure 4.9: Model Loss and accuracy vs epoch using Golay filter
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Figure 4.10: 12 Modulation Schemes at 5dB SNR

As shown in Figure 4.10, the total labels for BPSK were 113 and this model has done

correct predictions for 110 labels and only 3 predictions went wrong. Similarly, for

FSK-16 there was a total of 125 labels and this model has given 121 correct predictions

and only 4 wrong predictions. For FSK-2 this model has given 96 correct predictions

out of a total of 99 labels. This architecture has an accuracy of 98%.
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Figure 4.11: 5 Modulation Schemes at 5dB SNR

Figure 4.10 and Figure 4.11 show the confusion matrices for two different datasets con-

taining 5 and 12 modulation schemes, respectively. This confusion matrix is proof of

our successful model performance that is giving about 98% accuracy.
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4.1.4 ACCURACY VS SNR

Figure 4.12 shows the SNR vs Accuracy plot on the basis of which we can say our model

performs very well and model accuracy stays constant even at various SNRs.

Figure 4.12: Architecture 1 SNR vs Accuracy Plot
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4.2 ARCHITECTURE2: STACKEDDEEPNEURALNETWORK

Following our proposed model, we achieved a hybrid functional API model of CNN,

LSTM, and Auto-Encoders, with the following accuracy and loss for predictions shown

in figure 4.13 and 4.14.

Figure 4.13: Functional Model Accuracy Graph

Figure 4.14: Functional Model Loss Graph
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The confusion matrix is shown in figure 4.15. As shown in 4.15, the total labels for

BPSK were 219 and this model has done correct predictions for 214 labels and only 5

predictions went wrong. Similarly, for FSK-16 there was a total of 216 labels and this

model has given 206 correct predictions and only 8 wrong predictions. For FSK-2 this

model has given 229 correct predictions out of a total of 235 labels. This architecture

has an accuracy of 98%.

Figure 4.15: Confusion Matrix for Functional API model with 98% Accuracy
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4.2.1 ACCURACY VS SNR

To show some more results we have some graphs to show the working of our model.

Figure 4.16 shows the SNR vs Accuracy plot on the basis of which we can that our

model performs very well even at various SNRs.The model accuracy stays constant

even at various SNRs.

Figure 4.16: Architecture 2 SNR vs Accuracy Plot

Finally, we created 2 successful classifiers that have been discussed above. Both the

models are giving up to 98% accuracy. Model 2 is preferable due to its hybrid nature

and less complex time.

4.3 COMPARISONWITH PREVIOUS MODELS

4.3.1 LIGHT CONVNET ANALYSIS

Figure 4.17 shows the proposed model comparison with previous models. We tested all

the models on the same data and got the accuracy as shown in the graph. The proposed
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Light ConvNet achieved significantly higher accuracy in comparison to the previously

testedmodels, as shown in the graph. The accuracy values of our model, indicated by the

purple color, are consistently higher than the values of the other models, represented by

orange, green, red, and blue lines. For instance, at SNR level 20 dB, our model achieved

an accuracy of 0.98, which is much higher than the accuracy values of all other models.

Therefore, our proposed architecture can be considered a significant improvement over

the previous models in terms of accuracy.

Figure 4.17: Architecture 1 Comparison with previous Models
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Figure 4.18: Architecture 1 Complexity Analysis

Figure 4.18 shows the total number of trainable parameters used by each model. We can

judge by this graph that the proposed light convnet has very less parameters as compared

to other models we have tested. The ResNet 152 has the greatest number of trainable

parameters (over 60 million), whereas the light convnet has the fewest (about 3 million).

In terms of the number of trainable parameters, our suggested light convnet is the best

model, using a smaller number of parameters compared to the other four.

4.3.2 STACKED DEEP NEURAL NETWORK ANALYSIS

Figure 4.19 shows the proposed model comparison with previous models. We tested all

the models on the same data and got the accuracies as shown in the graph. Our proposed

architecture 2 achieved significantly higher accuracy in comparison to the previously

testedmodels, as shown in the graph. The accuracy values of our model, indicated by the

purple color, are consistently higher than the values of the other models, represented by

orange, green, red, and blue lines. For instance, at SNR level 20 dB, our model achieved

an accuracy of 0.98, which is much higher than the accuracy values of all other models.

Therefore, our proposed architecture can be considered a significant improvement over

the previous models in terms of accuracy.
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Figure 4.19: Architecture 2 Comparison with previous Models

The total number of trainable parameters utilized by each model is shown in Figure 4.20.

The graph reveals that DenseNet6 and CLDNN have the lowest parameters among the

five models, and our proposed stacking DNN is third, however, the penalty of low pa-

rameters in this model is accuracy. Both Desnenet6 and CLDNN do not achieve accu-

racy beyond 87 percent, their performance is also very low. However our model, while

having more parameters in terms of computational complexity, produces considerably

greater results.
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Figure 4.20: Architecture 2 Complexity Analysis

4.4 USER INTERFACE

After the completion of the architectures, a graphical user interface or GUI was created

to showcase the working of our model. For this purpose, we used the pyqt5 library in

Python. PyQt5 is a Python framework for the Qt toolkit, a well-known cross-platform

application framework. PyQt5 allows Python programmers to leverage Qt’s sophisti-

cated frameworks [26] to construct graphical user interfaces (GUIs) for desktop appli-

cations. PyQt5 allows Python programmers to create graphical user interfaces (GUIs)

for desktop applications using Qt’s powerful libraries. PyQt5 enables developers to

construct applications with a contemporary and aesthetically attractive interface that in-

cludes elements such as buttons, menus, text fields, and more. PyQt5 also gives you ac-

cess to many sophisticated Qt capabilities, such as multimedia, network programming,

and 2D/3D graphics [27]. Because of its simplicity of use and robust features, PyQt5 is

a common option among Python developers. Its documentation is robust, with various

examples and tutorials to help newcomers get started using [28]. PyQt5 is open-source

and distributed under the GNU GPL v3 license, giving it a versatile and cost-effective

option for programmers of all skill levels. It also has a strong and active developer com-

munity that contributes to its continuing development and provides support for [29].
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Overall, PyQt5 is a flexible and powerful tool for constructing Python desktop apps,

and its popularity with programmers is growing [30].

4.4.1 MAIN MENU

Let’s take a look at how the app looks like once it is loaded.

Figure 4.21: Project GUI Using PyQt5

Figure 4.21 shows the main menu of our classifier once it is started. It has three buttons

• Browse

• Save Predictions

• Reset
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4.4.2 BUTTONS

Figure 4.22: Button included in GUI

Figure 4.22 shows the buttons of our classifier.

• Browse: The browse button opens a menu that is used to load the test data from

the disk which is present in a CSV file.

• Save Predictions: The save button is used the save the predicted result for further

use if required.

• Reset: The reset button is used to reset the classification and start over again if

there are multiple files.

4.4.3 RESULT DISPLAY

After the file has been loaded into the GUI the GUI takes a few seconds and after that

gets the following result on the GUI.
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Figure 4.23: Classification Result on Display

Figure 4.23 shows what happens after the classification has been completed. We have

two boxes one shows the predicted classes and the probabilities and the other shows the

result of the first sample. Right nowwe have only shown the time and frequency domain

plots of the first sample. We also have scrollable bars because the predictions were very

large and we tried to make it look like an original Software defined radio software. In

our test file we had 39 samples and after classifying all the samples it have given the

predicted class and the probability values of all the other classes.
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Figure 4.24: Predicted labels

Figure 4.24 shows the prediction of the test file. Right now we only used QAM 16

sample which is why all the labels are listed as QAM 16.

This was all about the results and the classifier. We have created a classifier that is

computationally less expensive than all the previous models and also is more accurate

with the greatest accuracy value reaching 98%. To make things easier we also created

a GUI for anyone to use and make it simple for them to test their data using CSV files.
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Chapter 5

IMPACT ON ENVIRONMENT AND

SUSTAINABILITY

5.1 INTRODUCTION

In this section, we will discuss the impact of AMC on the environment and its sustain-

ability.

5.2 APPLICATIONS OF AMC

AMC is becoming popular quickly nowadays and is used in many different ways in

today’s world. Each new model tries to become more accurate and efficient than the

previous one, like an improvement. This is used for both regular and military talking.

5.3 AMC FOR CIVIL APPLICATIONS

AMC (AutomaticModulation Classification) is a critical technology in modern commu-

nication systems, particularly in civil applications. It is frequently used in signal iden-

tification, disturbance detection, and security of communication. AMC applications in

civil communications are constantly evolving, and various research investigations are

being conducted in this field.

The paper [31] did research on the development of AMC systems in wired communi-

cation networks employing high-order modulations. For high-order modulations, the

authors offer a maximum probability (ML) classifier, a distributional test classification

algorithm, and higher-order emulation features. The study finds that the ML classifier

has higher performance in wired communication systems with both high-order modula-

tions and restricted signal length.
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In this [32] authors analyze the use of deep learning in AMC for wireless communi-

cation systems in another study. The researchers suggest a deep learning-based AMC

technique that employs convolutional neural networks (CNN) and long short-termmem-

ory (LSTM) networks. According to the findings, the suggested technique outperforms

standard AMC methods in terms of accuracy and resilience.

Wang in [33] also examines the use of AMC in cognitive radio networks (CRN). The

authors present a WPT and SVM-based AMC technique. The study indicates that the

suggested technique outperforms others in CRN contexts in terms of accuracy, compu-

tational complexity, and resilience.

Finally, AMC is an important approach in civil communication systems, and its appli-

cations are constantly evolving. The preceding experiments highlight the relevance of

AMC in many communication systems, including wired and wireless communication

systems, as well as cognitive radio networks. These studies also give useful information

for the design and development of AMC systems for various applications.

5.4 AMC FORMILITARY APPLICATIONS

Automatic Modulation Classification (AMC) is critical in military applications where

signals must be categorized in real-time to aid decision-making. In the last few years,

researchers have done important studies about using AMC in the military. According

to [34], one research presented a hybrid method to AMC that incorporated two machine

learning algorithms, Random Forest and Convolutional Neural Network (CNN), to cate-

gorize signals with improved accuracy and lower computing complexity. Another work

employed a deep learning-based system to categorize signals in a low SNR environment,

obtaining over 95 % accuracy [35].

Furthermore, significant research has concentrated on the durability of AMC algorithms

in military settings. In a wartime environment, there is a considerable likelihood that a

signal would be jammed, affecting the performance of an AMC algorithm. To solve this

issue, [23] suggested an approach based on a deep neural network that can categorize
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signals even in the presence of a jamming signal. Another research offered a multi-

resolution time-frequency representation-based strategy to combating signal fading and

interference in a military setting [36].

AMC is also being used in drone communication systems, which are becoming more

relevant in military applications. An AMC algorithm was employed to categorize drone

signals in one research, with a high accuracy rate of over 95 % [35].

Finally, AMC is critical in military applications, and various research has offered unique

techniques for addressing signal categorization problems in such settings. These stud-

ies show that AMC has the ability to enhance the way decisions are made in military

operations.

5.5 SUSTAINABILITY OF DLB AMC

Automatic modulation categorization (AMC) is critical in wireless communication sys-

tems such as military use, cognitive radio, and the Internet of Things (IoT). Traditional

AMC approaches, on the other hand, rely primarily on hand-engineered characteris-

tics and lack flexibility in the constantly shifting wireless communication environment,

resulting in limited sustainability. Deep neural networks, which have recently been de-

veloped, have been frequently used for AMC problems and have obtained considerable

performance increases when compared to older approaches. However, deep learning

applications encounter sustainability issues such as high computational demands, con-

sumption of energy, andmodel size. Researchers have also investigated the use of accel-

eration hardware and compression methods to minimize the deep learning-based AMC

system’s computational complexity and storage utilization. Kim [37] suggested a hard-

ware acceleration for deep learning-based AMC that delivers great performance while

consuming less power. In conclusion, deep learning-based AMC’s durability is crucial

for its practical implementations. To address the sustainability concerns, researchers

have proposed a variety of ways, including optimizing the deep learning framework’s

architecture and instruction strategy, utilizing transfer learning as well as domain adap-
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tion techniques, and investigating hardware-based acceleration and compression strate-

gies. These methodologies offer useful insights into the long-term evolution of deep

learning-based AMC systems.

5.6 SUSTAINABLE DEVELOPMENT GOALS

The UNGeneral Assembly established the Sustainable Development Goals, also known

as the SDGs, in 2015 as a worldwide call to action to eradicate poverty, safeguard the

planet, and guarantee that all people experience peace and prosperity by 2030. The

SDGs address a wide variety of concerns, including poverty, hunger, and health, as well

as the promotion of gender equality, education, and long-term development.

Our study ”Automatic Modulation Classification Using Deep Neural Network” has the

potential to contribute to a number of SDGs. Several of the SDGs to which this initiative

may contribute are:

Figure 5.1: SDG 9 Figure 5.2: SDG 11
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1. Industry, Innovation, and Infrastructure (SDG 9) – By enhancing the reliability

and effectiveness of wireless communication networks through improved modu-

lation categorization, this project may contribute to the advancement of techno-

logical advancement in communications and technology for the communication

sector.

2. Sustainable Cities and Communities (SDG 11) - By allowing more efficient and

dependable wireless connectivity, this initiative may assist to enhance city and

community infrastructure.

Overall, this initiative has the potential to contribute to a number of SDGs, notably those

concerning innovation, infrastructure, and sustainable development.
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Chapter 6

CONCLUSION

To conclude we presented a deep learning-based approach for automatic modulation

classification using our own collected dataset, starting by denoising the dataset using

Savitzky Golay Filter which helped us remove unwanted noise and improve the quality

of our signal. We propose two deep learning architectures, which proved to be effective

at low SNR levels. This method has the potential to be applied in other signal-processing

tasks where both time and frequency features are important. Experimental results reveal

that by approach 1, classification accuracy reaches 97% and with approach 2 98% at

5dB and 20dB SNR levels.

6.1 FUTUREWORKS

Currently, our system uses a limited dataset to train and test the model. Future work

includes a plan to incorporate more data from different sources to improve the model’s

accuracy and robustness. We have used a sequential neural network consisting of CNNs,

LSTMs, and Autoencoders. However, there are several other architectures that we can

explore, such as Recurrent Neural Networks (RNNs), Transformer Networks, and At-

tention Mechanisms. These architectures may have different strengths and weaknesses,

and we need to evaluate their performance on our dataset. Deep learning models have

several hyperparameters that need to be tuned to achieve optimal performance. In the

future, we plan to explore different hyperparameter settings and perform a comprehen-

sive grid search to find the best hyperparameter configuration. Data pre-processing is

crucial for deep learning models. In the future, we plan to explore different data pre-

processing techniques such as normalization, data augmentation, and feature extraction

to improve the model’s accuracy. Transfer learning is a technique that allows us to use

pre-trained models for a new task with minimal training data. In the future, we plan to

investigate the potential of transfer learning for AMC and explore the use of pre-trained
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models for feature extraction. Deep learning models are often considered black boxes,

which makes it challenging to understand how the model makes decisions. In the future,

we plan to investigate different techniques for enhancing interpretability, such as GAN,

and transfer learning to make a better model. We would also like to implement our work

on hardware devices such as RTL-SDR in the future if available. Automatic modulation

classification using deep learning is an exciting area of research that has the potential

to revolutionize wireless communication systems. By exploring the areas mentioned

above, we hope to develop an accurate, robust, and interpretable AMC system that can

be used in various applications.
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