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Abstract

Histopathology, an essential field in medical research, involves the examination
of cells and tissues to understand various diseases and conditions. To aid in
this study, tissue samples are traditionally stained to enhance color and con-
trast, enabling detailed analysis. However, staining procedures are costly, time-
consuming, and prone to introducing inconsistencies. To address these challenges,
we present an innovative cloud-based application that leverages deep learning
techniques to analyze skin tissues and provide valuable insights to dermopathol-
ogists. Our solution revolves around the concept of virtual staining, achieved
through the utilization of generative networks. By employing advanced algo-
rithms, we replicate the staining process digitally, eliminating the need for physical
staining and the associated drawbacks. This approach not only significantly re-
duces costs but also accelerates the analysis process, allowing for quicker diagno-
sis and treatment decisions. Moreover, our application incorporates cutting-edge
techniques such as semantic segmentation with uncertainty maps to accurately
classify skin layers and cells into 12 distinct dermatological classes. This sophis-
ticated methodology enables precise identification and differentiation of various
tissue components, aiding in the diagnosis of complex skin conditions and dis-
eases. The development of this project has been a collaborative effort with Nidi
Skin, a renowned institution in the field of dermatology based in the United States.
By combining their expertise with our technical advancements, we have created
a robust and efficient tool that has the potential to revolutionize histopathological
analysis in dermatology. In conclusion, our cloud-based application, powered by
deep learning algorithms, provides a cost-effective, time-saving, and consistent
alternative to traditional staining techniques. With virtual staining and advanced
segmentation capabilities, it offers dermopathologists detailed insights into skin
tissues, empowering them to make accurate diagnoses and informed treatment
decisions.
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Chapter 1

INTRODUCTION

Skin cancer is a prevalent disease that affects millions of people worldwide. Ac-

cording to the American Academy of Dermatology, skin cancer is the most com-

mon cancer in the United States, with one in five Americans developing it in their

lifetime. Dermatologists use their specialized experience to diagnose skin cancer

based on the results of pathological tests from skin biopsy and sonography imag-

ing of the skin tissue. Biopsy on whole slide skin images is a traditional method

used for skin cancer detection. It is a painful and invasive method that requires

laboratory testing, which is not very efficient and time-consuming to detect skin

lesions.

Early detection, appropriate treatment, and prevention of recurrence are major

challenges for researchers today. Determining precise skin disease on brightfield

images using manual technique requires considerable time, complex screening

and could be erroneous, whereas automated methods face many other challenges

like presence of hair, inconspicuous lesion margins, low contrast on dermoscopic

images, and variability in skin lesion color, texture, and shape. Advanced com-

putation and optimized code can be used to extract some meaningful information

from brightfield images that may not be readily perceived by humans. The tissue
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undergoes investigation after the process of staining, where different anomalies

are investigated. This investigation is again influenced by the type of processing

it has received, leaving a lot of ambiguities even after huge laborious work. It has

been highlighted that due to these challenges, pathologists disagree on up to 60

percent of cases. Research in related computations and segmentation algorithms

to help in quick and uniformed outcome for easy diagnosis of different anomalies

present in the tissue is need of the hour.

This thesis report aims to investigate the use of staining and segmentation tech-

niques on WSIs of skin biopsies for the automated diagnosis of skin cancer. The

study will explore the effectiveness of different staining techniques, especially

Hematoxylin and Eosin (HE) staining, in enhancing image contrast. The report

will also evaluate the performance of various segmentation algorithms, and deep

learning-based approaches, in accurately identifying cancerous regions in WSIs.

1.1 Scope

Data has emerged as a valuable resource in various domains, including health-

care. The volume of data being generated has surpassed the capacity of current

systems to handle it effectively. In the field of healthcare, there is a vast amount

of data available, as Worldwide digital healthcare was estimated to be equal to

500 petabytes and was expected to reach 25 exabytes in 2020. Hughes has also

predicted that the global growth of healthcare data will be between 1.2 and 2.4

exabytes a year. This wealth of medical information can be leveraged for vari-

ous purposes, such as patient follow-up and advice. However, to fully harness

the potential of this information, advanced data analysis techniques such as ma-

chine learning, deep learning and statistics are necessary. Machine learning, a

branch of artificial intelligence, focuses on enabling computers to learn from data

without explicit programming. Deep learning, a subfield of machine learning, em-
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ploys complex algorithms inspired by human neurons, enabling the processing

of unstructured data, including images, signals, and text.Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs) were the pioneering

architectures used to process images and text, respectively. This research aims

to leverage the power of deep learning techniques to improve the facilities for

diagnosing skin cancer through automated, accurate, and reliable segmentation

and staining of skin cancer lesions. The proposed methods have the potential to

improve the accuracy and efficiency of skin cancer diagnosis aiding healthcare

professionals such as histopathologists and dermatologists in making informed

decisions and ultimately improving patient outcomes.

1.2 Motivation

Skin cancer, including melanoma and non-melanoma skin cancer (NMSC), is a

significant public health problem globally, with increasing incidence rates each

year. Melanoma is the deadliest form of skin cancer, with a high mortality rate,

and early detection is the most promising means of decreasing morbidity and

mortality. Non-melanoma skin cancer (NMSC) has 12 classes, including basal

cell carcinoma (BCC) and squamous cell carcinoma (SCC), represents the most

common type of malignancy in the white population. The high treatment cost of

skin cancer causes an economic burden of disease in the country and negatively

impacts public health issues. BCC and SCC represent the most frequently ob-

served malignancy among Caucasians, with BCC accounting for approximately

75-80% of these malignancies in individuals with fair skin. In the United States,

approximately 5.4 million cases of non-melanoma skin cancers were treated in

2012, with skin cancer accounting for more than 40% of all malignancies. The in-

cidence of non-melanoma skin cancers has been rising over the past three decades.

There are different subtypes of melanoma, including cutaneous melanoma, uveal
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melanoma, and mucosal melanoma. In a study conducted in North Sumatera,

squamous cell carcinoma was found to be the most common form of skin can-

cer. The authors of another study reported that BCC is a slow-progressing, non-

melanocytic cancer arising from basal cells, while CSCC arises from keratinocytes.

Skin cancer is prevalent in Pakistan, particularly in the southwestern region. A

retrospective study conducted on skin cancer cases in the Centre for Nuclear

Medicine and Radiotherapy (CENAR) in Quetta found that skin cancer was the

second most prevalent category of cancer in the area, with a prevalence of 12.5% of

total cancer patients. The study also found that skin cancer was more prevalent in

males than females, with squamous cell carcinoma(SCC) being the most prevalent

category of skin cancer. Another study conducted in Saudi Arabia found that skin

cancer was uncommon but not rare, with basal cell carcinoma and squamous cell

carcinoma being the most common types of nonmelanoma skin cancer (NMSC).

The study also found that the head and neck was the most common location for

skin cancer, and skin cancers in individuals younger than 50 years of age require

more careful evaluation of possible risk factors.

Early diagnosis of melanoma lesions is crucial for successful treatment, as it can

spread to other parts of the body if not caught and treated early. Whole slide

images (WSIs) are prepared for skin cancer diagnosis by scanning glass slides

containing tissue samples at high resolution to create a digital image of the entire

slide. This involves staining tissue samples with dyes to enhance the visibility

of specific cellular structures and identify abnormalities. This process is time-

consuming and labor-intensive, as it involves manually staining the slides and

scanning them. Skin cancer specialists are required for the current diagnostic

process, which can be expensive and not easily available in developing countries.

However, deep learning models are being developed to replace this tedious pro-

cess. These models use artificial intelligence to analyze the digital images and
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identify cancerous cells with high accuracy. The use of WSI and deep learning

models has the potential to improve the efficiency and accuracy of skin cancer

diagnosis. This has led to the development of automated diagnosis systems us-

ing artificial intelligence (AI)-based methods, such as machine learning (ML) and

deep learning (DL). DL has been integrated into skin cancer diagnosis in recent

years, with dermoscopic images being at the center of this revolution. Deep

learning models have been explored for skin Whole Slide Skin Images staining,

segmentation and classification, including for the detection of melanoma skin

cancer. Many ML and DL methods show high performance as classifiers of skin

lesions, which bodes well for the inclusion of these techniques in clinical practice.

1.3 Objectives

The purpose of this research study is to develop a cloud-based application for

staining and segmentation of whole slide skin images using deep learning algo-

rithms. The objective is to provide an efficient and cost-effective tool for identify-

ing cancerous regions in skin slide images, aiding in early detection and treatment

planning. This includes:

Digitally Stain and Segment Skin Whole Slide Images

Design and develop a deep learning-based framework to enhance the visibility

of cellular structures and accurately delineate different tissue components within

skin whole slide images.

Identify Cancerous Regions

Utilize the digitally stained and segmented images to automatically identify and

highlight potential cancerous regions, assisting pathologists in early detection and

treatment planning.
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Manage Data in a Cloud-based Application

Create a comprehensive cloud-based application for uploading, storing, and or-

ganizing skin slide images, annotated regions, and associated metadata. This

facilitates collaboration and provides a centralized platform for efficient data

management in the digital pathology workflow.

1.4 Problem Statement

The early diagnosis of melanoma and non melanoma is vital for effective treat-

ment, as the disease can rapidly spread to other parts of the body if not detected

and treated promptly. The current diagnostic process for skin cancer relies on

whole slide images (WSIs), which are created by scanning glass slides containing

tissue samples at high resolution to generate a digital representation of the entire

slide. However, this process presents several challenges.

Firstly, the preparation of WSIs involves manually staining the tissue samples with

dyes to enhance the visibility of cellular structures and identify abnormalities.

This staining process is time-consuming, labor-intensive, and requires skilled

technicians. The dependency on manual staining introduces the potential for

human error and inconsistency in the quality of staining, which can impact the

accuracy of diagnosis.

Secondly, the scanning of stained slides to create WSIs is also a time-consuming

task. This process requires specialized equipment and expertise, making it costly

and often inaccessible in resource-limited settings, particularly in developing

countries. The lack of accessibility to scanning facilities and skilled skin can-

cer specialists hinders early detection and diagnosis, potentially compromising

patient outcomes.

Moreover, the current diagnostic process heavily relies on the expertise of skin
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cancer specialists, who are in high demand and may not be easily accessible

in certain regions. This dependency on specialized professionals further limits

the availability and affordability of accurate and timely skin cancer diagnosis,

particularly in underserved areas.

Therefore, there is a pressing need for a solution that addresses these challenges

and provides a more efficient and accessible approach to staining, scanning, and

diagnosing skin cancer using whole slide images. A cloud-based application that

incorporates deep learning algorithms for automated staining and segmentation,

coupled with efficient data management and analysis tools, can potentially revo-

lutionize the field of digital pathology and enable early and accurate diagnosis of

skin cancer in a cost-effective manner.

1.5 Contributions

To achieve the above-mentioned objectives of this research study, the following

contributions are made.

1. A novel modified Generative Adversarial Network (GAN) architecture specif-

ically designed for digital staining of whole slide skin images by digitally

replicating the staining process, enabling enhanced visibility of cellular

structures.

2. Developed a reliable deep learning model for accurate segmentation and

classification of skin tissue regions within whole slide images.

3. To address the challenges of time-consuming processing and limited accessi-

bility, a cloud-based web application is developed as part of this thesis. The

application leverages the power of cloud computing to accelerate the pro-

cessing of whole slide skin images, enabling faster staining, segmentation,

and analysis.
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1.6 Structure of Thesis

The structure of thesis is as follows: Chapter 2 presents a brief overview about

the different skin diseases and also gives an idea about the individual skin layers.

Chapter 3 in this thesis highlights the existing work in this domain and recognizes

the gaps in the said references. It also lists down the contributions that our work

has made to the said problem. Chapter 4 lists down the different datasets we

used, along with explaining any pre processing that was done.

8



Chapter 2

Skin Anatomy and Diagnostic

Methods:

Skin disorders, particularly skin cancers like Melanoma, and non-melanoma vari-

ations such as Basal Cell Carcinoma (BCC), Intraepidermal Carcinoma (IEC),

Squamous Cell Carcinoma (SCC), and inflammatory conditions, pose significant

health challenges globally. These ailments are often linked to various factors such

as environmental influences, occupational risks, and personal behaviors related to

skin maintenance. Regrettably, skin conditions, especially skin cancers, have his-

torically received comparatively less attention and research funding compared to

diseases like cardiovascular disorders, cancer, strokes, diabetes, and Alzheimer’s

disease. (Add reference) Therefore, it is crucial to acquire a comprehensive un-

derstanding of the occurrence, impact, and mortality rates associated with skin

disorders, both on a global scale and within specific regions. Such knowledge

will facilitate informed strategies for prevention, early detection, treatment, and

focused research endeavors in the realm of dermatology. This section offers an

overview of the structure and composition of the skin, shedding light on its in-

tricate anatomy. Moreover, it explores diverse categories of skin disorders, with
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particular emphasis on skin cancers like Melanoma, and non-melanoma vari-

ations such as BCC, IEC, SCC, and inflammatory conditions. The discussion

encompasses the causes, effects, and implications of these ailments on overall

well-being. Furthermore, it briefly touches upon various diagnostic methods and

imaging techniques utilized in dermatology, as well as approaches for document-

ing and communicating findings within the field.

2.1 Skin Anatomy

The skin, the largest organ of the human body, is composed of various layers and

structures that work together to provide protection, sensation, and regulation of

body temperature. In this section, we will discuss different skin layers and the

diseases associated with them.

Figure 2.1: Diagram showing individual skin layers.
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2.1.1 Epidermis

The epidermis is the outermost layer of the skin, providing a protective barrier

against external factors. It comprises several sublayers, including the stratum

corneum, stratum granulosum, stratum spinosum, and basal layer. Its primary

function is to shield the underlying tissues and organs from potential harm.

Figure 2.2: Epidermis, the outermost layer.

2.1.2 Glands

Within the skin, there are glands responsible for maintaining skin health. These

include sebaceous glands, which produce sebum for skin and hair lubrication, and

sweat glands, aiding in body temperature regulation through sweat secretion.

2.1.3 Reticular Dermis

Situated beneath the epidermis, the reticular dermis is composed of dense con-

nective tissue. It provides structural support, strength, and houses blood vessels,

nerves, and lymphatic vessels.

2.1.4 Hair Follicles

Hair follicles are distributed throughout the skin and are responsible for hair

production. Each follicle consists of a hair shaft and a root extending into the
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Figure 2.3: Glands.

dermis, connecting to sebaceous glands.

2.1.5 Papillary Dermis

The papillary dermis, located in the uppermost layer beneath the epidermis,

contains papillae that form ridges on the skin’s surface. These ridges contribute

to fingerprint patterns and enhance tactile sensitivity.

2.1.6 Hypodermis

The hypodermis, or subcutaneous tissue, resides beneath the dermis. Composed

of adipocytes (fat cells), it provides insulation, cushioning, and energy storage.

The hypodermis also contains blood vessels and nerves.

2.2 Staining Techniques in Skin Biopsies and Whole

Slide Images

Biomedical imaging has become a common practice in the field of dermatology, of-

fering non-invasive methods for diagnosing skin cancer and aiding in histopatho-
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logical evaluations. These imaging techniques assist doctors, dermatologists, and

pathologists in accurately identifying skin diseases at early stages, enabling timely

interventions and improving patient outcomes. The section explains skin biopsies

and the process of staining and conversion to whole slide images.

2.2.1 Skin Biopsy

Skin biopsy is a medical procedure in which a small sample of skin tissue is col-

lected for diagnostic evaluation. It is often performed when there is a suspicious

skin lesion, rash, or abnormality that requires further examination. The need for

a skin biopsy arises from the importance of obtaining a precise diagnosis in der-

matological conditions. Through a skin biopsy, dermatologists and pathologists

can assess the microscopic features of the skin tissue, such as cellular morphology,

architecture, and the presence of any abnormalities. This information is crucial

for determining the nature of skin diseases, distinguishing between benign and

malignant lesions, and guiding appropriate treatment decisions. By providing a

direct examination of the affected area at a cellular level, skin biopsies play a vital

role in accurate diagnosis, prognosis, and management of various skin conditions,

including skin cancers, inflammatory disorders, autoimmune diseases, and infec-

tions. The samples obtained from biopsies are unstained and the use of various

stains in skin biopsies enables a comprehensive evaluation of tissue samples and

aids in the accurate diagnosis and classification of skin diseases.

2.2.2 Staining

Various staining techniques are employed in skin biopsies to enhance the visu-

alization and analysis of tissue samples. Staining plays a crucial role in high-

lighting specific cellular components and structures, aiding dermatologists and

pathologists in identifying and characterizing different types of skin lesions and

abnormalities. Some common stains used in skin biopsies include Hematoxylin
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and Eosin (H&E), which provides general information about tissue architecture

and cellular morphology. Additionally, immunohistochemical stains are utilized

to detect specific proteins or markers, helping in the classification and subtyping

of skin cancers. Examples of immunohistochemical stains used in skin biopsies

include S100, Melan-A, and Mart-1 for melanoma, and AE1/AE3 and p40 for squa-

mous cell carcinoma. Special stains such as Periodic Acid-Schiff (PAS) and Gram

stain may be employed to identify specific microorganisms or evaluate specific

features in skin samples. Though H&E is the most popular stain around the world

and the most common.

H&E Staining

Hematoxylin and Eosin (H&E) is the most commonly used stain in histopathol-

ogy. Hematoxylin stains nuclei blue-purple, providing information about cellular

architecture and organization. Eosin stains cytoplasm and extracellular compo-

nents pink, allowing for the evaluation of cellular morphology and tissue struc-

ture. H&E staining provides essential insights into tissue composition and helps

in the initial assessment of various skin diseases.

Figure 2.4: Diagram showing H&E Staining.

Immunohistochemical Stains

Immunohistochemical stains involve the use of specific antibodies to detect pro-

teins or markers in skin tissue samples. They aid in the classification and subtyp-
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ing of skin cancers. Examples of immunohistochemical stains include:

• S100: A marker used to identify melanocytes, aiding in the diagnosis of

melanoma.

• Melan-A and Mart-1: Stains that help in confirming the presence of melanoma

cells.

• AE1/AE3: Antibodies used to detect cytokeratins, which are found in squa-

mous cell carcinoma.

• p40: A marker used to differentiate squamous cell carcinoma from other

types of carcinoma.

Figure 2.5: Diagram showing Immunohistochemical Stain.

Special Stains

Special stains are employed for specific purposes in skin biopsies. Some examples

include:

• Periodic Acid-Schiff (PAS): This stain is used to identify glycogen, basement

membranes, and certain fungal organisms in skin samples.

• Gram Stain: Gram staining is utilized to identify and classify bacteria based
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on their cell wall composition. It can help identify bacterial infections or

evaluate specific features in skin samples.

Figure 2.6: Diagram showing Gram Stain.

2.3 Skin Diseases

Skin diseases such as those mentioned below necessitate prompt medical atten-

tion and appropriate management, such as surgical interventions, chemotherapy,

radiation therapy, immunotherapy, or targeted therapies. Early detection through

regular skin screenings is crucial for improving outcomes and reducing the risk

of complications associated with these conditions.

2.3.1 Inflammation

Inflammation is a vital response of the skin to injury or infection. It involves

a complex cascade of immune cells and chemical mediators, protecting against

pathogens and facilitating the healing process. The severity and duration of

inflammatory responses vary depending on the underlying cause.

2.3.2 Basal Cell Carcinoma (BCC)

BCC is the most common form of skin cancer, originating from basal cells in the

epidermis. It typically manifests as a small, pearly bump or a waxy, translucent
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Figure 2.7: Diagram showing Inflammation.

lesion. Although slow-growing and rarely metastasizing, BCC can cause local

tissue destruction if left untreated.

Figure 2.8: Diagram showing Basal Cell Carcinoma (BCC).

2.3.3 Intraepidermal Carcinoma

Also referred to as Bowen’s disease or squamous cell carcinoma in situ, this

condition affects the upper layers of the epidermis. It appears as red, scaly

patches that may be itchy or tender. If untreated, it has the potential to progress

to invasive squamous cell carcinoma.

2.3.4 Squamous Cell Carcinoma (SCC)

SCC arises from squamous cells in the epidermis and can develop in various

body areas, including the skin. It typically presents as a firm, red nodule or a flat,
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scaly lesion. Compared to basal cell carcinoma, SCC has a higher propensity for

metastasis.

Figure 2.9: Diagram showing Squamous Cell Carcinoma (SCC).

2.3.5 Melanoma

Melanoma originates in the melanocytes, the pigment-producing cells of the skin.

It often appears as an irregularly shaped mole or a dark lesion with uneven

borders. Melanoma has a high potential for rapid metastasis and is considered

the most dangerous type of skin cancer.

Figure 2.10: Diagram showing Melanoma Skin cancer.
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Chapter 3

Literature Review

3.0.1 Existing Work

Early detection of skin cancer can increase five year survival rate of patients from

18 - 98 percent. Automated computerized solutions of skin disease consists seg-

mentation, feature extraction, and its classification. Deep fully convolutional net-

works have achieved significant success in the task of semantic segmentation [4].

Segmentation has its own importance as feature extraction and classification rely

on this part [5]. Adi Wibowo et al. [6] presented a light weight encoder-decoder

for segmentation by treating variability with the augmentation. The method

shows efficiency in terms of computation. Accuracy in image segmentation is

very critical to diagnosis, hence putting more pressure on the performance of the

model, and it is always challenging as images have heterogeneous texture, color

and shape with fuzzy boundaries. UNet is a deep learning architecture proposed

for semantic segmentation tasks, which aims to accurately classify each pixel in

an image to a certain category. It was introduced by Ronneberger et al. in 2015 [2].

The UNet architecture consists of an encoder and a decoder part. The encoder

part extracts high-level features from the input image, while the decoder part

upsamples these features to the original image size, and then concatenates them
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with the corresponding features from the encoder to obtain the final segmentation

map. The architecture has shown impressive performance in various biomedical

image segmentation tasks and has been widely adopted and extended for other

image segmentation applications.

EfficientNet is another deep learning architecture that was proposed in 2019 by Tan

and Le in their paper [1]. The EfficientNet architecture achieves state-of-the-art

performance on various image classification tasks with much fewer parameters

and FLOPS compared to previous state-of-the-art models, by adopting a novel

compound scaling method that efficiently scales up the depth, width, and res-

olution of the network. The authors also introduced a new scaling parameter

called "compound coefficient" that uniformly scales all dimensions of the net-

work based on a single scaling parameter. The EfficientNet architecture has been

widely adopted in various computer vision tasks and has set a new standard for

model efficiency. Utilizing these, Gouse Mohiddin et al. [7] has offered a theory

of preprocessing of images for color consistency, hair removal, noise filtering and

edge enhancement. Pre-processed image is then fed to convolutional network

to get better results. Fatemah Bagheri et al. [5] has also proposed a two stage

method to get the segmentation and masking separately to address different fac-

tors of dermoscopic images. This combination strategy has achieved the Jaccard

Coefficient index of 80 percent for overall lesion segmentation. To address the

boundry accuracy in leison segmentation, Lituan Wang et al. [8] has proposed

Deep edge convolutional neural networks based on an encoder-decoder structure

to focus more on the skin lesion boundary information. An edge information

guided module is designed to introduce more information about the boundary.

A new loss function including full loss, center loss and edge loss is proposed to

pay more attention to boundary optimization.

Different researchers have worked for the purpose of skin segmentation with
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different ideas. Some of them have used complete image whereas others have

argued that to get more precision with utmost use of smart methodology, it is better

to find the respective region of interests on the image and apply Deep Learning

models on that specific region rather than using it for complete image. Hao Zheng

et al. [4] has provided representative captions as an alternative for better image

captioning. The proposed method relies on an unsupervised network that extracts

features by directly targeting critical instances in the image followed by a fully

connected trained supervised network to segment the image. The segmentation

method selects the representative human annotations with reduced inter- and

intra-cluster redundancy. Nooshin Moradi et al. [9] has put forward a multi class

image segmentation instead of binary segmentation based on combining data

from different feature spaces to build more informative structure.Two dictionaries

are jointly learned using the K-SVD algorithm and then final segmentation is

accomplished by a graph-cut method to distinguish background and foreground

based on topological information of lesions and the learned dictionaries.

Medical data are scarce and collecting them is a difficult and time consuming

process, while their annotation has to be performed by multiple specialists to en-

sure its validity [10]. Different deep learning models have shown varying degrees

of achievement to date which has shown acceptability of the clinicians. Blind

evaluation of these results by board-certified pathologists has also demonstrated

similarities with gold standard [11]. The grouping of radiology through the ap-

plication of information technology has led to its digitization. The images are

digitally created, stored, rapidly transmitted over long distances, and consulted

by medical professionals. New advancements in information technology has

brought the possibility of 3D/ 4D in MRI [12] and further adding to the process

of rapid diagnosis. Today, images are clearer, more detailed than ever and an-

notated [10], which allows healthcare teams to ultimately take a better approach

towards patient care.
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The literature indicates that different algorithms which have been used for the

image segmentation purposes and have provided good results. It has also been

observed that combination of different algorithms either for pre-processing or

post-processing, shows more promising result some extra computation. This

factor has remained motivational factor and many segmentation processes are

now being implemented with grouping of different algorithms targeting different

features in the image for better results. Y Zhang et al. [13] has used an improved

inception module in the encoder to efficiently extract and synthesize information

from different receptive fields, followed by a new mesh synthesis strategy to

gradually refine shallow features and further smooth the semantic gap for brain

tumor segmentation. Similarly for breast cancer detection, KB Soulami et al. [14]

has used U-Net followed by loss function to improve the accuracy of the model.

For segmentation of retinal vessel, H Wu et al. [15] has first proposed a scale-aware

feature synthesis module, which aims to dynamically adjust receptive fields to

efficiently extract multi-scale features. An adaptive feature matching module is

then designed to guide the efficient combination of adjacent hierarchical features

to capture more semantic information.

3.0.2 Gaps

The existing work suffers from several limitations, including inadequate accuracy,

difficulties in extracting relevant features, and ineffective performance of different

backbones on U-Net. Additionally, lower performance on some cancerous classes

needed to be addressed especially with respect to segmentation. Another issue

was the interpretation of overlap in patches of Whole Slide Images (WSIs) and the

limited information of neighboring patches, which led to the problem of ragged

patches.

Digital staining on the other hand undergoes certain limitations including varia-
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tions in staining, tissue thickness and laboratory preprocessing which can affect

the accuracy of automated segmentation methods. Another challenge is the anal-

ysis of staining condition in digital histopathological whole slide images which

is essential for developing which is aiding in diagnostic systems but is challeng-

ing due to high data volume. Moreover, there might be issues with incomplete

segmentation of the epidermal area in digitized H&E stained WSIs. Finally, there

may be nuances in anatomy, inter and intra-variations in staining and cellular

infiltration and skin appendages that can affect the accuracy of automated image

analysis algorithms.

3.0.3 Contributions

Our work aims to address above mentioned limitations and improve upon them.

Our Efficient-Net model builds upon the works of Simon et al. [16] by training

the model to disburse the image with respect to different layers available in that

specific image and assign each layer to a class. Overall, by experimenting we are

able to:

• Provide a more efficient and powerful encoder architecture using Efficient-

Net B3.

• Address limitations by training the model to disburse the image into layers

and assign each layer to a class, leading to smoother predictions.

• Achieve better results with improved accuracy and reliability as shown by

uncertainty maps.

• Analyze the performance of different backbones on a UNet for semantic

segmentation tasks.

• For staining a DCL GAN Model for generating images
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Chapter 4

MATERIALS AND METHODS

In this investigation, we present a comprehensive framework for examining

histopathological skin whole slide images (WSIs) by employing Generative Net-

works to simulate staining and Convolutional Neural Networks for segmentation.

Our primary objective is to identify various skin manifestations and generate de-

tailed pathology reports using advanced deep learning models. This chapter

provides an overview of our proposed system and an in-depth discussion on the

datasets employed in this study.

A crucial element of our research involves utilizing both unstained and stained

WSIs. We collect unstained WSIs and leverage Generative Networks to mimic the

staining process, resulting in corresponding stained WSIs. Additionally, for each

stained WSI, we generate a mask labeled by medical professionals, which serves

as a reliable reference for segmentation.

The selection of representative datasets plays a vital role in our investigation. We

ensure that the datasets encompass a wide range of skin pathologies, covering

various manifestations and conditions. Careful consideration is given to the suit-

ability of the datasets for our specific requirements. We delve into the distinctive

attributes, origins, and peculiarities associated with each dataset, alongside a de-
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tailed explanation of the proposed model, in subsequent sections. These datasets

form a robust foundation for training and evaluating our deep learning models

for the analysis of histopathological skin WSIs.

4.1 Datasets

Public datasets, as well as private datasets from our research collaborators are

used in this study. The following sections provides a comprehensive overview of

all benchmark datasets used in this study, along with the necessary pre-processing

steps:

4.1.1 Queensland Histopathology Dataset

The primary dataset utilized for segmentation was the Histopathology Non-

Melanoma Skin Cancer Segmentation dataset, provided by Queensland Univer-

sity [16]. The dataset consisted of 290 high-resolution images of skin cancer

specimens, which were down sampled at various factors, including 1x, 2x, 5x,

and 10x. The dataset includes three cancer classes: Basal Cell Carcinoma (BCC),

Squamous Cell Carcinoma (SCC), and Intra-Epidermal Carcinoma (IEC), with a

total of 290 images. The specimens were obtained from patients aged between

34 and 96 years, with a median age of 70 years. The gender distribution in the

dataset was 2/3 female and 1/3 male. The ground-truth segmentation was created

by color-coding the images into 12 classification categories, as shown in figure 1,

including Glands (GLD), Inflammation (INF), Hair Follicles (FOL), Hypodermis

(HYP), Reticular Dermis (RET), Papillary Dermis (PAP), Epidermis (EPI), Ker-

atin (KER), Background (BKG), BCC, SCC, and IEC. To determine the optimal

down-sampling factor, the dataset was subjected to a series of experiments, which

showed that the 5x and 10x down-sampling factors had minimal impact on the

segmentation performance. Therefore, the 10x down-sampling factor was used
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in this study to ensure that the segmentation results were representative of the

underlying data and that the performance of the method was not affected by exter-

nal factors. Thus the Histopathology Non-Melanoma Skin Cancer Segmentation

dataset, combined with the selection of an appropriate down-sampling factor,

provided a reliable and rigorous foundation for the investigation of the proposed

segmentation method in this research.

Figure 4.1: Image with different magnifications and the color coding to segment
different parts of the skin. This helps visualize how down sampling plays a role in
our study. a) Image sample with its mask, at 10x downsampled. b) Image sample
with mask 5x downsampled. c) Image sample with mask 2x downsampled. d)
Image sample with mask 1x downsampled. e) The color palette visualized for the
mask, with the individual mask RGB values.

Figure 7.1 highlights the distribution of whole slide images and the corresponding

layer masks. Each layer is represented by a unique RGB color code. It also shows

how the different scales of magnification compare with each other.

4.1.2 NIDI Skin Dataset

The Skin Histopathological Dataset, provided by Non Invansive Diagnostic in

Skin (NIDI Skin) consists of 93 samples of histopathological images, specifically

Whole Slide Images (WSIs) of human skin tissue.
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Staining Dataset

The dataset includes both H&E (Hematoxylin and Eosin) stained and unstained

images. The raw dataset initially provided contained 27 pairs of TIFF (.tif) files,

with each file containing multiple samples. Prior to analysis and research pur-

poses, the dataset underwent preprocessing, which involved extracting each in-

dividual sample from the pairs of files. This resulted in a final dataset comprising

93 distinct samples. The stained images represent H&E staining, a common tech-

nique used in dermatology and pathology to visualize cellular structures and

tissue morphology. The unstained images provide a baseline reference for com-

parison and analysis. The images in the dataset are stored in the TIFF format,

ensuring high-quality and lossless preservation of the histopathological details

necessary for accurate analysis. This Skin Histopathological Dataset can be valu-

able for various applications in dermatological research, pathology analysis, and

developing computer vision algorithms for skin image analysis.

Segmentation Dataset

Additionally, out of the 93 samples in the Skin Histopathological Dataset, 40

samples have been annotated with labeled masks provided by doctors. The labels

on these masks correspond to specific classes established by the Queensland

University. The inclusion of these labeled masks enhances the dataset’s value,

as it allows for supervised machine learning and computer vision tasks, such

as segmentation and classification, to be performed on the dataset. The labeled

masks provide ground truth information about the regions of interest and different

classes within the histopathological images, facilitating more precise analysis and

accurate algorithm training.
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Figure 4.2: Dataset provided by the NIDI skin. The dataset provided had both
unstained and stained samples, which after processing were fed to a generative
network.

4.1.3 Data Processing

For ensuring a uniform standard as to how both the datasets were linked, heavy

pre processing of the dataset was done. We had to ensure two aspects to stay

constant: position and color features. The positional consistency was maintained

through applying the Scale Invariant Feature Transform (SIFT). While the stain

consistency was ensure through the approach defined by Macenko.et.al [17].
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Figure 4.3: Segmentation dataset provided by the NIDI skin. For easier fine tuning
of the model, the image was downsampled 5x to ensure each pixel corresponded
to the same width as done by Simon et al add ref

SIFT

SIFT helps in aligning images by detecting and describing local features in the

images that are invariant to scale, rotation, and other transformations. The process

involves the following steps:

1. Compute SIFT descriptors for the input images.

2. Compare the descriptors to determine the geometric transformation needed

to align the images.

3. Apply the transformation to align the images

29



Index Name Abbreviation RGB Values Color Fill
0 Background BKG 0, 0, 0
1 Keratin KER 224, 224, 224
2 Epidermis EPI 112, 48, 160
3 Papillary Dermis PAP 0, 156, 255
4 Reticular Dermis RET 0, 0, 128
5 Hypodermis HYP 0, 255, 0
6 Glands GLD 127, 96, 255
7 Hair Follicle FOL 96, 96, 96
8 Inflammation INF 255, 156, 0
9 Basal Cell Carcinoma BCC 127, 255, 255

10 Squamous Cell Carcinoma SCC 255, 0, 255
11 Intra Epidermal Carcinoma IEC 150, 150, 0

Table 4.1: The color key used by the NIDI dataset to differentiate between 2 or
more layers

Feature-based alignment, such as SIFT, searches for an image transformation that

matches keypoint locations between the images. This approach is more robust

than direct alignment, which relies on pixel-based similarity in the overlap region

SIFT’s ability to detect features at different scales and angles makes it a reliable

method for image alignment. The application of SIFT was done on ImageJ, as it

provided the best results and visual changes could be made to the keypoints if

any changes were observed in alignment.

Figure 4.4: Scale Invaraint Feature transform being applied to the images.This
would then be aligned with its unstained counterpart.
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Figure 4.5: Scale Invaraint Feature transform being applied to the images.Fig 1
shows Z projection showing overlap before SIFT and figure 2 shows the same
projection after SIFT.

Stain Normalization

The Macenko stain normalization algorithm [17] is a method used to normalize

the color distribution in histopathology images. It estimates the stain vectors of

the Whole Slide Images (WSIs) by using a singular value decomposition (SVD)

approach applied to the non-background pixels of the input image. Macenko’s

method assumes that each image contains a pixel that represents a single stain

vector and applies SVD to find the singular values. This technique helps to

overcome inconsistencies in the staining process, allowing for more accurate and

reliable quantitative analysis of histopathology slides. For this apporach the target

image used was that provided by queensland.

Patches

Whole slide images are often processed in overlapping patches of size 256x256

due to their large dimensions. This approach is primarily chosen to enhance com-

putational efficiency when dealing with these high-resolution images, typically

obtained from histopathology slides. Dividing the images into smaller patches

allows for easier handling and analysis of the data, as working with smaller units
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Figure 4.6: Normalized image result along with its target stain based on the
approach defined by Macenko.et.al

is more manageable. Moreover, the overlapping strategy ensures that no vital

information is lost at the patch boundaries, enabling a comprehensive examina-

tion of the entire slide. Another advantage of processing whole slide images in

overlapping patches is the increase in available training data. Since each patch

represents a distinct region of the slide, this technique expands the dataset, pro-

viding a diverse range of image samples for training machine learning models.

Consequently, this expanded training data improves the model’s capacity to gen-

eralize and make accurate predictions on new whole slide images.

4.2 Proposed Model

Our proposed model involves using a generative model for the staining part in

whole slide images.First an unstained image would be passed to a GAN model

and this would then be passed to a segmentation model of UNET with an efficient

net b3 backbone.
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Figure 4.7: The block diagram for the proposed framework chest composed of
Staining, segmentation and application modules.

The proposed model is therefore divided into two modules as shown in figure

4.7. The first module performs the staining parts by taking patches of 256x256

and this is then fed into the segmentation model already trained.
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Chapter 5

PROPOSED FRAMEWORK FOR

STAINING USING DUAL

CONTRASTIVE LEARNING GAN’S

5.1 Overview

The Dual Contrastive Learning for Unsupervised Image-to-Image Translation

(DCLGAN) model is a sophisticated approach that enhances the process of image

conversion in unsupervised image-to-image translation tasks. DCLGAN expands

upon the principles of CycleGAN and Contrastive Learning for Unpaired image-

to-image Translation (CUT) to address their shortcomings. CycleGAN, which

relies on cycle consistency to maintain image quality, encounters difficulties with

significant geometric transformations between input and target domains. Con-

versely, CUT utilizes contrastive learning to develop feature embeddings that

bring related features closer.

DCLGAN refines the CUT method by integrating the concept of two-sided map-

pings from CycleGAN. In the scenario of converting unstained skin histopathol-
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ogy samples into stained ones, DCLGAN applies contrastive learning to maximize

the mutual information shared between input and generated image patches. By

mastering cross-domain similarity and embedding mappings, DCLGAN achieves

exceptional outcomes in image-to-image translation. This effectively tackles

the challenge of converting unstained histopathology samples into their stained

equivalents.

DCLGAN is denoted asA ⊂ RH×W×C and B ⊂ RH×W×3. Here, H, W, and C repre-

sent the height, width, and number of channels, respectively. The model leverages

datasets A and B, which consist of sets of images a and b belonging to domains

A and B, respectively. These datasets are denoted asA = a ∈ A and B = b ∈ B.

5.2 Architecture

The DCLGAN architecture consists of two generators, GA→B and GB→A, and two

discriminators, DA and DB.

5.2.1 Generators

The generator GA→B takes an image a ∈ A from domainA as input and generates

a corresponding image b′ ∈ B in domain B. Similarly, the generator GB→A takes

an image b ∈ B from domain B as input and generates a corresponding image

a′ ∈ A in domainA.

The generator GA→B can be represented by the function GA→B : A → B, which

learns the mapping from domainA to domain B. Similarly, the generator GB→A

can be represented by the function GB→A : B → A, which learns the mapping

from domain B to domainA.
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5.2.2 Discriminators

The discriminator DA is responsible for distinguishing between real images from

domainA and images generated by GB→A. It takes an image a ∈ A as input and

outputs a scalar value indicating the probability that the image is real.

Similarly, the discriminator DB is responsible for distinguishing between real

images from domainB and images generated by GA→B. It takes an image b ∈ B as

input and outputs a scalar value indicating the probability that the image is real.

The discriminator DA can be represented by the function DA : A → [0, 1], which

learns to classify images from domainA as real or fake. Similarly, the discrimina-

tor DB can be represented by the function DB : B → [0, 1], which learns to classify

images from domain B as real or fake.

5.2.3 Loss Functions

The generators and discriminators are trained using adversarial loss and Patch

Noise Contrastive Estimation loss.

The adversarial loss for GA→B is defined as:

Ladv(GA→B,DB,A,B) = Eb∼B[log(DB(b))] + Ea∼A[log(1 −DB(GA→B(a)))] (5.1)

Similarly, the adversarial loss for GB→A is defined as:

Ladv(GB→A,DA,B,A) = Ea∼A[log(DA(a))] + Eb∼B[log(1 −DA(GB→A(b)))] (5.2)

The Patch Noise Contrastive Estimation loss is defined as:

LPatchNCE(G1,HA,HB,A) = Ea ∼ A
L∑

l=1

Sl∑
s=1

ℓ(zs
l̂
, zs

l , z
(S\s)
l ) (5.3)
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Figure 5.1: DCL GAN Architecture along with Patch contrastive Learning and
loss explained.

The total generator loss is given by:

Lgen(GA→B,GB→A,DA,DB,A,B) = Ladv(GA→B,DB,A,B) +Ladv

(GB→A,DA,B,A) + λLNCE(GA→B,GB→A,A,B)
(5.4)

where λ is a hyperparameter controlling the weight of the NCE Loss.

The discriminators are trained using the adversarial loss defined as:

Ladv(DA,DB,GA→B,GB→A,A,B) = Ea∼A[log(DA(a))]

+ Eb∼B[log(1 −DA(GB→A(b)))] + Eb∼B[log(DB(b))] + Ea∼A[log(1 −DB(GA→B(a)))]
(5.5)

The final objective function for training DCLGAN is to minimize the generator

loss Lgen and the discriminator loss Ladv simultaneously.
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5.3 Results

Overall the results were evaluated using both quantitative and qualitative mea-

sures. The results were constantly reviewed by the team of doctors at NIDI

Skin and were approved or disapproved based on the findings. The quantitative

analysis was done with different metrics as explained below.

5.3.1 Evaluation Metrics

In order to evaluate the performance of Generative Adversarial Networks (GANs),

it is important to utilize appropriate evaluation metrics. Two commonly employed

metrics for GAN result evaluation are Kernel Inception Distance (KID) [18] and

Fréchet Inception Distance (FID) [19].

Kernel Inception Distance is a metric that quantifies the dissimilarity between the

generated samples and the real data distribution based on their feature represen-

tations obtained from an Inception model. KID assesses the quality of generated

samples by measuring the similarity of their feature embeddings to those of real

samples. A lower KID value implies higher quality generated samples.

To compute KID, let F represent the Inception model used for feature extraction.

Given a set of generated samples G and a set of real samples R, the KID is

calculated as follows:

KID(G,R) =
1
n2

g

ng∑
i=1

ng∑
j=1

k( f (gi), f (g j)) −
2

ngnr

ng∑
i=1

nr∑
j=1

k( f (gi), f (r j))

+
1
n2

r

nr∑
i=1

nr∑
j=1

k( f (ri), f (r j))

(5.6)

Here, gi and r j represent the i-th generated sample and j-th real sample, respec-

tively. f (·) denotes the feature embedding obtained from the Inception model F,
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and k(·, ·) represents a kernel function (e.g., Gaussian kernel). ng and nr denote the

number of generated and real samples, respectively.

Fréchet Inception Distance is another popular metric for evaluating GAN results.

It measures the similarity between the generated samples and the real data dis-

tribution by comparing their multivariate Gaussian distributions in the feature

space of an Inception model.

To calculate FID, let M represent the Inception model used for feature extraction.

Given a set of generated samplesG and a set of real samplesR, the FID is computed

as follows:

FID(G,R) = ∥µg − µr∥
2
2 + Tr(Σg + Σr − 2(ΣgΣr)1/2) (5.7)

Here, µg and µr represent the mean vectors, and Σg and Σr represent the co-

variance matrices of the feature embeddings for the generated and real samples,

respectively.

Both KID and FID scores provide quantitative measures of the quality of generated

samples. A lower KID or FID score indicates higher quality and greater similarity

to the real data distribution. It is important to note that both metrics rely on pre-

trained Inception models, and the choice of the Inception model can influence the

results. Additionally, comparing the scores obtained by different GAN models

trained on the same dataset helps evaluate their relative performance.

Metric Unstained & H&E Stained Unstained & Virtually Stained
KID 0.25 0.31
FID 322.3 345

Table 5.1: Evaluation Metrics: KID and FID
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5.3.2 Visual Results

Upon visual inspection, the transformed stained images exhibit convincing color

variations, highlighting the presence of different cellular structures and tissue

components. The staining patterns and intensity are realistically replicated, al-

lowing for better visual interpretation of the histopathology samples. Notably, the

GAN model effectively incorporates the staining-specific geometrical transforma-

tions, such as the differential absorption of stains by different tissue components,

resulting in accurate representations of stained images.

Figure 5.2: Results shown from the DCL GAN model. In the diagram below a)
Shows the images stained with normal H&E Stains in a laboratory. b) Shows
Unstained WSI patches that were fed to the network. c) Shows corresponding
generated images from the DCL GAN model.
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Chapter 6

PROPOSED FRAMEWORK FOR

SEGMENTATION

6.1 Models

6.1.1 Overview

In recent years, the field of dermatopathology has benefited greatly from the

integration of deep learning techniques for the segmentation of whole slide skin

images. Among the notable architectures used for this purpose are U-Net and

EfficientNet-B3. In this study, we have leveraged the capabilities of both U-Net

and EfficientNet-B3 to achieve accurate and efficient segmentation of whole slide

skin images.

The U-Net architecture, proposed by Ronneberger et al. in 2015, has gained signifi-

cant recognition in the biomedical imaging domain, including dermatopathology.

Its unique encoder-decoder structure and skip connections enable the network

to effectively capture both high-level and low-level features, facilitating precise

localization and boundary delineation. By utilizing U-Net, we aim to leverage its
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proven ability to achieve accurate segmentation results in the context of whole

slide skin images.

a

Figure 6.1: Basic UNet Architecture.

a://www.researchgate.net/figure/The-baseline-architecture-A-standard-Unet-architecture-coined-Unet-consisting-of_
fig2_344443099

In addition to U-Net, we have also incorporated EfficientNet-B3, which belongs

to the EfficientNet family of architectures proposed by Tan and Le in 2019.

EfficientNet-B3 is specifically designed to strike a balance between model com-

plexity and computational efficiency. It achieves this through a compound scaling

method that optimizes the network’s depth, width, and resolution simultaneously.

By efficiently utilizing computational resources, EfficientNet-B3 has demonstrated

state-of-the-art performance across various computer vision tasks.

By integrating U-Net and EfficientNet-B3, we aim to capitalize on their respec-

tive strengths to enhance the segmentation of whole slide skin images. U-Net’s

encoder-decoder structure and skip connections enable accurate localization of

tissue components, while EfficientNet-B3’s efficient architecture ensures compu-

tational efficiency and high performance.
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U-NET

U-Net architecture includes context detection followed by correct localization.

Usually it is difficult to have a large amount of training data in the field of

biomedical, so a good deal about this algorithm is that it can be trained end to end

with fewer images and outcomes with relatively the star performance. UNet has

a proven track record of multi-layer image segmentation by giving a specific class

to each pixel in the image. The input data is downsampled (encoded) to extract

smaller features from the image and also to represent it for better segmentation,

followed by upsampling (decoding) with concatenation of the skip connections

from the downsampled layer to restore the original image. Pairing this helps the

model get more details from the image while it was being encoded. To put it in

simple way, the downsampling process extracts the "what" from the image, and

upsampling connects it to the "where" in that image [2].

In the first half of the architecture that consists of pre trained classification en-

coder network, we gave our input images of size 256x256 with 3 channels. It goes

through couple of 3x3 convolutional layers that comprise of 64 filters, then max-

pooling operation of 2x2 is performed to down samples the spatial dimensions of

image to 128x128 with 128 filters. The steps were repeated to gradually increase

the depth and reduce the image size from 128x128 with 128 filters to 16x16 with

1024 filters progressively.

Decoder network has 1024 filters with 16x16 dimension of lower resolution onto

the pixel space. The up sampling is done by 2x2 transpose convolution by con-

catenation from corresponding blocks of encoder network, and to keep the spatial

resolution intact ReLu function is performed. Here our 16x16 image with 1024

filter is up sampled to 32x32 with 512 filter along with the concatenation from its

corresponding 512 features map from encoder. The depth is gradually decreased

and image size is increased until we reach our final layer. In the end 1x1 con-

43



volution is used to map our desired 3 channeled 256x256 image to 12 classes for

Segmentation.

EfficientNet-B3

ConvNet provides better result if scaled up in width, depth or image resolution,

but after achieving a certain level, the result show very minute improvement.

Scaling some or all components has also been tested, but requires a lot of man-

ual fine-tuning [20] and consistently produces substandard accuracy and efficacy.

Extending network depth is the most common means used by many ConvNets

where the intuition is that the deeper ConvNet can capture richer and more com-

plex functionality and generalize well to new tasks [21]. At the same time, deeper

networks are more difficult to form due to the vanishing gradient problem. Net-

work width scaling is often used for small models as larger networks tend to

be able to capture features in more detail and are easier to train [22]. However,

ultra-wide but shallow networks tend to have difficulty capturing higher-level pe-

culiarities. With higher resolution input images, ConvNets is capable of capturing

better segments [23], but accuracy decreases for very high resolutions. Efficient

Net is a variety of ConvNet but with balanced scaling with respect to width, depth

and Image resolution. It is observed that the different scale sizes are not inde-

pendent. Intuitively, for higher resolution images we should increase the depth,

so that larger receptive fields can help capture the identical features including

more pixels in the large image. Accordingly, we should also increase the width

when the resolution is higher, to capture finer samples with more pixels in the

high resolution image. These perception suggest that we need to coordinate and

balance different scale sizes rather than conventional uni-directional scaling [1].

Our Efficient Net model consisted of 12M parameters and consisted of 9 layers

each in the encoder and decoder. The base layer had a total of 1536 features which

then grew into the class wise mask segmentation. Model is trained to disburse
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the image with respect to different layers available in that specific image and

assign each layer to a class. The result of comparison made to test the accurate

classification with Simon et al. [24] and the results of comparison of segmentation

with different models are explained in table 2 and 3 respectively

Figure 6.2: An overview of the entire working of the segmentation pipeline. (a)
Shows the data input pipeline for training the model architecture, the input WSI is
split into overlapping patches of 256x256 and the same is done to the correspond-
ing masks. This encompasses the input pipeline of the WSI and the corresponding
masks to the architecture.(b) The overlapping patches are taken and, in the form of
batches, is fed into the model architecture. The model architecture is an Efficient
Net-B3 [1] encoder with a simple U-Net decoder [2]. The decoder transforms the
256x256x3 input to a 256x256x12, one hot encoded, output where each layer’s
probability is shown. (c) This stage shows the testing pipeline, whereby a new
image is tested on the network. This uses the approach shown by [3] where the
input image is patched, rotated and augmented in 4 different directions and then
fed to the inference model. This ensures smooth predictions and the network to
achieve maximum confidence by taking into account all neighbours.

6.1.2 Models Training

The fine-tuning of the U-Net backbone models in the Queensland dataset was

performed using TensorFlow and trained on a GeForce RTX 2070 8GB GPU. It

will be noted that during training, the model parameters were adjusted using the
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Adam optimization algorithm with a batch size of 4 and maximum 50 epochs,

based on the gradients of loss function. The parameters resulting in the minimum

validation loss during training were used for testing the model. Early stopping

and learning rate reduction callbacks were used to improve model performance.

The Efficient net b3 model showed a training loss of 0.3 and a training accuracy

of 94, while a validation loss of 0.38 and a validation accuracy of 92. The loss

used in the training was the categorical cross-entropy loss, this was done as in the

loss the sum over all classes ensures that the loss is computed for all classes and

the negative sign in front of the sum ensures that the loss is minimized during

training. The loss is defined as:

LCE = −
M∑

c=1

yo,c log(po,c) (6.1)

During the testing phase, the input images underwent a smoothing process to

improve the accuracy of the predictions. The smoothing process included a

combination of rotations, mirroring, and windowing techniques. The Dihedral

Group D_4 was applied to augment the images by generating eight different

versions of each image at different angles, which were then combined to produce

a more robust prediction. Additionally, a simple second-order spline window

function was used for interpolation to blend the predictions together, with a

default overlap of 50% between merged windows. This approach helped to

ensure that the predictions were merged smoothly and effectively, leading to

better overall performance of the model.

6.1.3 Models Training

The fine-tuning of the U-Net backbone models in the Queensland dataset was

performed using TensorFlow and trained on a GeForce RTX 2070 8GB GPU. It

will be noted that during training, the model parameters were adjusted using the
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Adam optimization algorithm with a batch size of 4 and maximum 50 epochs,

based on the gradients of loss function. The parameters resulting in the minimum

validation loss during training were used for testing the model. Early stopping

and learning rate reduction callbacks were used to improve model performance.

The Efficient net b3 model showed a training loss of 0.3 and a training accuracy

of 94, while a validation loss of 0.38 and a validation accuracy of 92. The loss

used in the training was the categorical cross-entropy loss, this was done as in the

loss the sum over all classes ensures that the loss is computed for all classes and

the negative sign in front of the sum ensures that the loss is minimized during

training. The loss is defined as:

LCE = −
M∑

c=1

yo,c log(po,c) (6.2)

During the testing phase, the input images underwent a smoothing process to

improve the accuracy of the predictions. The smoothing process included a

combination of rotations, mirroring, and windowing techniques. The Dihedral

Group D_4 was applied to augment the images by generating eight different

versions of each image at different angles, which were then combined to produce

a more robust prediction. Additionally, a simple second-order spline window

function was used for interpolation to blend the predictions together, with a

default overlap of 50% between merged windows. This approach helped to

ensure that the predictions were merged smoothly and effectively, leading to

better overall performance of the model.

6.2 Experiments & Results

The proposed model has been tested using skin biopsy images which in turn were

segmented by histopathologists.
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6.2.1 Evaluation Metrics

After determining the set of ground-truth (GT) images, the final segmented whole

slide images were compared to them. The testing results in terms of class-wise

recall are shown in Table 1. To define these metrics, the individual pixels in both

sets of GT and model outputs were categorized into four classes: True-Positive

(TP), True-Negative (TN), False-Positive (FP), and False-Negative (FN) as follows:

• TP: pixels segmented as the said class by the model that match the manual

annotations.

• TN: pixels that are not segmented as the said class in the model, which match

the manual annotations.

• FP: pixels segmented as the said class by the model, which are not present

as the said class in the manual annotations.

• FN: pixels that are not segmented as the said class by the model, while they

are segmented as the said class in the manual annotations.

The class-wise accuracy is defined as the recall:

Recall =
TP

TP + FN
(6.3)

Another useful metric is the Dice F-1 Score which shows intersection of a said

class in the terms of the total area:

F1 − Score =
TP

TP + 1
2 (FP + FN)

(6.4)

Overall the per-pixel accuracy score is calculated, which is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.5)
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Figure 6.3: Visualizing the Accuracy: Generated Masks of Skin Cancer Types
from the Queensland Dataset compared to Ground Truth: a) Generated Mask
with Predominant BCC Cancer Visually Represented. b) Generated Mask with
Predominant IEC Cancer Displayed. c) Generated Mask Illustrating Predominant
SCC Cancer.

6.2.2 Ablation study

To evaluate the proposed segmentation model, we have conducted detailed abla-

tion studies. As shown in figure 6.3, our studies explored how different backbones

on a U-Net performed. The predictions from these models were later also aggre-

gated to form an ensemble, which included the original vanilla U-Net architecture

as well. All of our experiments are on the Queensland dataset and we reported

both qualitative and quantitative results. The hyperparameters used in the exper-

iments are shown in Table 1.

Parameter Value

Batch Size 4
Buffer Size 40

Epochs 50
Learning Rate 0.0001
Dimensions 256 x 256

Table 6.1: Hyperparameters used in the ablation study. The learning rate was
dynamic and changed if a plateau in training was observed, at the same time the
epochs also had an early stopping callback.
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Quantitative Results

Table 2 shows the results of the studies in the form of a performance evaluation

of the proposed models, both when visualized independently and in the form

of an ensemble. The results show how the proposed model outperforms the

existing approach by a significant margin in cancerous classes, where an average

increase of 6% is observed. Based on the results, it is also important to mention

that an ensemble of models did not improve the results significantly, and an

individual model with an efficient net b3 backbone would achieve the same results

as those of an ensembled model approach. The results clearly highlight that

proposed modified ENB3 backbone network show improved results specifically

for cancerous regions i.e. BCC, SCC and IEC. Our model performed most poorly

on the FOL class with a recall of 0.67. This was primarily due to its unbalance

in the dataset while also depending on the depth of the biopsy in the case of

shave biopsies for example, some hair follicles may be included in the specimen

obtained. However, since shave biopsies only remove a superficial layer of skin,

the hair follicles may not be fully intact and may not provide a complete view of

the hair follicle structure.

Layer UNet ENB3 backbone Ensemble Simon.et.al [24]

BKG 0.99 0.99 0.99 0.95
BCC 0.91 0.90 0.91 0.86
SCC 0.70 0.86 0.83 0.85
IEC 0.82 0.82 0.83 0.70
EPI 0.70 0.78 0.78 0.83

GLD 0.81 0.89 0.89 0.87
INF 0.64 0.70 0.70 0.57
RET 0.91 0.91 0.91 0.70
FOL 0.65 0.66 0.67 0.61
PAP 0.68 0.73 0.72 0.80
HYP 0.85 0.89 0.89 0.96
KER 0.79 0.85 0.83 0.84

Table 6.2: Class wise recall . The bold shows best results where as second best are
shown with underline format.
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Qualitative Analysis

The visual results of the experiment support the findings in the quantitative

analysis. We also see how an efficient net b3 backbone greatly improves the

results of the experiment. The model predicts the BCC class much better than

others, this is again evident from the skewness in the dataset. The model however

does sometimes confuse between IEC and SCC as both the classes had very little

differences and many times coexisted in the same images. Segmentation of the

cancers is also evident from the results shown in Figure 6.4 where the model

shows how it performed on the cancer as classified by the pathologist.

Figure 6.4: Isolating BCC, SCC, and IEC Masks in Different Models. a) Compares
the Basal cell carcinoma labeling provided by a doctor, versus that of the trained
model. b) Compares the Intra-epidermal cell carcinoma labeling provided by a
doctor, versus that of the trained model. The IEC was difficult to detect as there
was a lot of overlapping in it and the Epidermal class. c) Compares the Squamous
cell carcinoma labeling provided by a doctor, versus that of the trained model.

For qualitative analysis in deep learning, as visualized in Figure 6.5, uncertainty

maps are commonly used to visualize the output of a model and identify regions

where the model needs improvement or additional data. It provides valuable in-

formation about how confident the models is about its predictions. For generating

the maps, we have used the predictions from the softmax function that transforms
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the output of the last convolutional layer into a probability distribution over the

different 12 classes. The resulting probability map can be visualized as a heat

map where the intensity of each pixel represents the confidence of the models

prediction for that pixel. The formula for the softmax function is:

softmax(x) =
ex

sum(ex)
(6.6)

where the x is the input to the softmax function, which is the output of the last

convolutional layer of the model. The softmax function normalizes the output

of the last convolutional layer into a probability distribution over the classes.

After receiving the probability distribution we subtract it from 1 and with each

pixel’s maximum probability it is selected and then transformed based on the

nipy-spectral color map to show uncertainty in each class.

P(x) = 1 −max(softmax(x)) (6.7)

The heat maps shown again show that the model segments out the cancerous

area with high precision and confidence, while however the layers where borders

occur do show less confidence due to merging of the overlapping patches.

Comparison with literature

The proposed approach for segmentation of WSI skin images using deep learning

was compared to the approach presented in Simon et al. [24] as shown in Table

6.2 and Table 6.3. The results showed that the proposed approach performed

better in many cases, with an overall increase in accuracy and an improvement

in average class accuracy. These results demonstrate the effectiveness of the

proposed approach and its superiority over the existing approach in the literature.

There is 5% and 10% increase in comparison to [24] for mean class accuracy and

52



Figure 6.5: The model predictions with their respective uncertainty heatmaps.The
Uncertainty heatmaps provided a highly interpret-able way of diagnosis, whereby
a model’s confidence indicates the probability for a physician to accurately judge
the models work and where they need to pitch in for improved diagnoses. a) Gen-
erated Masks and uncertainty heatmaps with Predominant BCC Cancer Visually
Represented. b) Generated Mask and uncertainty heatmaps with Predominant
IEC Cancer Displayed. c) Generated Mask and uncertainty heatmaps Illustrating
Predominant SCC Cancer.

overall accuracy respectively. The improvement in accuracy can be attributed to

the use of an efficient net b3 backbone, which manages to extract and learn features

more than the existent approach, and addressing class imbalance through data

augmentation. These findings contribute to the ongoing research in the field and

provide valuable insights for future studies.

Sr# Model F-1 Score Accuracy Mean Class Accuracy

1 Simon et al. [24] - 0.85 0.79
2 U-Net 0.92 0.91 0.78
3 Efficient Net B3 0.93 0.95 0.83
4 Ensemble 0.94 0.95 0.84

Table 6.3: Comparison of models using different performance parameters
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Chapter 7

DermaVision- A visual application

for performing staining and

segmentation on Whole Slide Images

7.1 Framework

The application is built using different tools for both front end and backend. For

front end React.Js is used. And for deploying on backend Flask in Python is used.

Figure 7.1: Web Frameworks used
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7.2 Application

7.2.1 Starting page

At the landing page the user is asked to upload an unstained image. They are then

provided with 2 options: if its an unstained image first stain it, if its an unstained

image go for staining. If its already stained, go for analysis using segmentation.

Figure 7.2: Web Frameworks used

7.2.2 Staining

If after opting for the staining and uploading the image, the image goes back to

our server and gets processed through the GAN model converting unstained to

stained images. First however, as explained above, patches are made from the

input image for processing.
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Figure 7.3: (a) Staining intro. (b) Staining File upload

7.2.3 Segmentation

If the user chooses to go for segmentation or decides to choose this option post

staining, the input image patches go to the segmentation model. These are then

later stitched back together in the smooth prediction approach [3]. From this the

56



heatmaps are also generated which are then shown to the user.

Figure 7.4: Segmentation process in the application.

7.2.4 Results

The final view of the application showcasing the unstained image along with its

stained counterparts. The masks are also shown with its color key. The final

image shows a heatmap that is showing uncertainity in predictions.
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Figure 7.5: Final Result of the Application
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In conclusion, our thesis report has explored the development of a cloud-based

application for the segmentation and digital staining of whole slide images using

deep learning models, specifically EfficientNet B3 for segmentation and DCL

GANs for staining in the context of skin cancer. Through our research and analysis,

we have demonstrated the potential of these models in improving the accuracy

and efficiency of skin cancer diagnosis.

The use of deep learning models, such as EfficientNet B3, for automated seg-

mentation of skin cancer regions in whole slide images can aid dermatologists

and healthcare professionals in identifying and analyzing suspicious areas more

effectively. By automating the segmentation process, the application can assist in

speeding up the diagnostic workflow and reduce human error.

Furthermore, digital staining using DCL GANs provides an innovative approach

to enhance the visualization of skin cancer patterns in histopathological images.

By generating stained images that mimic traditional staining techniques, the ap-

plication can facilitate a better understanding of the tissue structures and aid in
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accurate diagnosis. This digital staining technique also offers the advantage of

preserving the original slides while allowing for multiple virtual stains to be ap-

plied, enabling comprehensive analysis without the need for additional physical

staining.

The cloud-based nature of the application provides several advantages, including

scalability, accessibility, and cost-effectiveness. This enables healthcare institu-

tions of varying sizes and resources to benefit from advanced image analysis

techniques, improving access to accurate diagnosis and reducing the burden on

healthcare professionals.

However, there are challenges that need to be addressed to ensure the successful

implementation of cloud-based applications for skin cancer diagnosis. Issues

related to data privacy, security, and ethical considerations must be carefully

managed to protect patient information and maintain compliance with regulatory

standards. Additionally, the integration of the application into existing clinical

workflows and the establishment of robust validation protocols are crucial to

ensure its practicality and reliability in real-world settings.

Our research has demonstrated the potential of a cloud-based application for the

segmentation and digital staining of whole slide images in the context of skin

cancer diagnosis. The combination of EfficientNet B3 for segmentation and DCL

GANs for staining holds promise in improving the accuracy, efficiency, and ac-

cessibility of skin cancer analysis. Further collaboration between researchers,

dermatologists, and healthcare professionals is essential to refine and validate

these cloud-based approaches, paving the way for improved diagnostic capabili-

ties and patient care in the field of skin cancer.
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8.2 Future Work

Future work for this thesis holds several opportunities to further enhance the

cloud-based application for segmentation and digital staining of whole slide im-

ages using deep learning models, particularly in the context of skin cancer. Some

potential areas for future research and development include:

Refinement of segmentation model: While EfficientNet B3 has shown promising

results in skin cancer segmentation, further improvements can be made to enhance

its accuracy and robustness. Exploring alternative deep learning architectures

and incorporating advanced techniques like attention mechanisms or multi-scale

analysis, can potentially improve the segmentation performance.

Stain transfer techniques: The application can benefit from integrating advanced

stain transfer techniques to improve the digital staining process. Stain transfer

involves adapting stains from one histopathological image to another, enabling

the visualization of multiple staining types on a single slide. Exploring state-of-

the-art stain transfer algorithms, such as CycleGAN or StarGAN, can enhance the

versatility and flexibility of the digital staining capabilities of the application.

Clinical validation and integration: Conducting extensive clinical validation

studies involving dermatologists and pathologists is essential to assess the real-

world performance and reliability of the cloud-based application. Collaborating

with medical professionals to collect feedback, evaluate the accuracy of the model

against ground truth annotations, and conducting comparative studies with ex-

isting diagnostic methods will validate its effectiveness and establish its clinical

utility.

Deployment and scalability: Implementing the cloud-based application in real-

world clinical settings requires careful consideration of deployment strategies and

scalability. Optimizing the application to handle large-scale datasets, ensuring
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efficient utilization of cloud resources, and addressing potential latency issues are

crucial steps towards enabling seamless integration into clinical workflows.

By addressing these areas of future work, the cloud-based application for segmen-

tation and digital staining of whole slide images using deep learning models can

continue to evolve, improving diagnostic accuracy, efficiency, and accessibility in

the field of skin cancer diagnosis and treatment.
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