Development of Process Simulation model of Gas Processing Plant

Session: BE. Fall 2018

Project Supervisor: Dr. Salman Raza Naqvi

Submitted By

Osama Masood

M. Aalishan Tariq

Syed Shahrukh Haider

School of Chemical and Material Engineering

National University of Sciences and Technology

Certification

This is to certify that Osama Masood, 243968, M. Aalishan Tariq, 267908, and Syed Shahrukh Haider, 260444 have successfully completed the final project Development of Process Simulation model of Gas Processing Plant, at the National University of Sciences and Technology, to fulfill the partial requirement of the degree BE Chemical Engineering.

External Examiner

Engineer Muhammad Sheryar Khan

Process Engineer OGDCL

Project Supervisor

Dr. Salman Raza Naqvi

Director NSTP

Chairman

Department of SCME, NUST

Abstract

The objective of our project is the development of a natural gas processing plant able to process feed from four different wells of various known compositions. Natural gas when excavated is a mixture of gases, oils, water, and solids which need to be processed in order to obtain a refined product that can be further used. Natural gas is not only a great source of low sulfur fuel but is also the feedstock of various businesses for example Petro-chemical and fertilizers industries all use Natural gas to obtain Nitrogen, Hydrogen, Carbon monoxide and ammonia gas. Due to this dependency on Natural gas, it is essential to develop an effective and efficient processing plant that not only extracts a large proportion of gas from the well but also delivers other components as useable by-products. Our goal here is to produce a model that is able to output more than 90% of the total methane present in the feedstock along with producing LPG (C4+C5) and propane recovery (95%) as by-products in an economical manner.

Undertaking

I certify that the project **Development of Process Simulation model of Gas Processing Plant** is our own work. The work has not, in wholeor in part, been presented elsewhere for assessment. Where material has been used from othersources it has been properly acknowledged/ referred.

Osama Masood

243968

M. Aalishan Tariq

267908

Syed Shahrukh Haider

260444

Acknowledgement

We truly acknowledge the cooperation and help made by **Dr. Salman Raza Naqvi**, **Director** of **National Science and Technology Park (NSTP)**. He has been a constant source of guidance throughout the course of this project. We would also like to thank **Engineer Muhammad Sheryar Khan** from **Process Engineer**, **Oil and Gas Development company Ltd (OGDCL)** for his help and guidance throughout this project.

We are also thankful to our friends and families whose silent support led us to complete ourproject.

Table of Contents Certificationi Abstractii Undertakingiii Acknowledgement.....iv Table of Contents.....v List of Figuresx List of Acronyms......xii CHAPTER 1.....- 1 -1.2 Natural Gas History - 1 -1.3 Natural Gas Origin.....-2 -1.4 Types of Natural Gas - 3 -1.5 Properties of Natural Gas:- 4 -1.7 Why Process Natural Gas: - 5 -2.2.1 Gas Specific Gravity...... - 7 -2.2.3 Gas Density.....- 10 -2.2.4 Specific Heat.....- 10 -2.3 Natural Gas Processing Plant- 11 -

CHAPTER 3 14 -
3.1 Process Flow Diagram 14 -
3.2 Process Discription 15 -
CHAPTER 4 18 -
4.1 Well Feed Composition 18 -
4.2 Raw Feed Mixture 19 -
4.3 Medium Pressure Separator 20 -
4.4 Crude Stabilization Column 22 -
4.5 Molecular Sieve Bed 23 -
4.6 De-Propanizer 25 -
4.7 De-Butanizer 25-
4.8 Overall Material Balance 26 -
CHAPTER 5 27 -
5.1 Compressor 27 -
5.2 Expander 28 -
5.3 De-Propanizer 29 -
5.4 Air Cooler 30 -
5.5 Heat Exchanger 30 -
CHAPTER 6 31 -
6.1 Design of Inlet Separator 31 -
6.2 Design of Compressor 33 -
6.3 Design of De-Propanizer 34 -
6.4 Design of Low Pressure Separator: 40 -
6.5 Design of Heat Exchanger: 42 -
CHAPTER 7 50 -
7.1 Cost of Equipments : 50 -
7.1.1 Horizontal Vessels: 50 -
7.1.2 Vertical Vessels: 51 -
7.1.3 Turbine: 51 -
7.1.4 Compressor: 52 -
7.1.5 Distillation Columns - 52 -
7.1.6 Heat Exchanger: 53 -
7.2 Operating Cost 56 -
7.2.1 Variable Cost:

7.3 Payback Period 5	7 -
CHAPTER 8 5	8 -
8.1 Selection of Software 5	8 -
8.2 Selection of Fluid Package 5	8 -
8.3 Component List 5	9 -
8.4 Simulation on ASPEN HYSYS 6	0 -
8.4.1 Enlarged Simulation 6	1 -
8.5 Working Parameters: 6	4 -
8.5.1 Inlet Separator 6	4 -
8.5.2 High Pressure Separator 6	4 -
8.5.3 Crude Stabilization Column 6	5 -
8.5.4 Inlet 2-Phase Separator 6	7 -
8.5.5 Cooler 6	7 -
8.5.6 Compressor 6	8 -
8.5.7 De-Propanizer 6	9 -
8.5.8 De-Butanizer7	1 -
CHAPTER 9 7	4 -
9.1 Phase Separator HAZOP:	6 -
9.2 Crude Stabilization Column HAZOP 7	'8 -
9.3 Phase Separator HAZOP: 8	1 -
9.4 Distillation Column HAZOP: 8	3 -
9.5 Heat Exchanger HAZOP: 8	5 -
9.6 Potential Process Modifications: 8	7 -
Conclusion & RESULTS 8	9 -
References	8

List of Table

Table 1: Properties of Natural Gas	
Table 2: Composition of Natural gas	5
Table 3: Well Feed Composition	
Table 4: Raw Feed Mixture	
Table 5: Medium Pressure Separator	
Table 6: Crude Stabilization Column	
Table 7: Molecular sieve bed	
Table 8: De-Propanizer	
Table 9: De-Butanizer	
Table 10: Overall material balance	
Table 11: Compressor Duties	
Table 12: Distillation Column duties	
Table 13: De-Propanizer light and heavy key	
Table 14: De-propanizer Kixi Value	
Table 15: De-Propanizer Kiyi Value	
Table 16: De-Propanizer Temperature	
Table 17: Relative Volatility of C2	
Table 18: Relative Volatility of n-C4	
Table 19: Volatility for Feed	
Table 20: Volatility for Distillate	
Table 21: Densities	
Table 22: Properties of Fluid	
Table 23: Specification of Separator	
Table 24: Data for LMTD Calculation	
Table 25: Cost of Separator	
Table 26: Total Investment	
Table 27: Operating Cost	
Table 28: HAZOP key	
Table 29: Guide Words	

Table 30: 3-Phase Separator HAZOP	76
Table 31: Crude Stabilization column HAZOP	78
Table 32: 2-Phase Separator HAZOP	81
Table 33: Distillation Column HAZOP	83
Table 34: Heat Exchanger HAZOP	85

List of Figures

Figure 1: Compressibility Factor vs Pseudo Reduced Pressure
Figure 2: Natural Gas Processing Plant
Figure 3: Process Flow Diagram
Figure 4: Dew Point and Bubble Point
Figure 5: Erbar-Madox correlations
Figure 6: FT CORRECTION FACTOR FOR 1-6 HX
Figure 7: JH vs RE curve for shell side
Figure 8: Dimensions of Steel Pipes IPS
Figure 9: JH vs RE curve for tube side
Figure 10: Shell side Friction Factor
Figure 11: Tube Side Friction Factor
Figure 12: Tube side Return Pressure Loss
Figure 13: Horizontal vessel costing
Figure 14: Vertical Vessel Costing
Figure 15: Miscellaneous Equipment Cost
Figure 16: Vessel Height Costing

Development of Process Simulation model of Gas Processing Plant

Figure 17: Plate Dia Costing
Figure 18: Heat Transfer area Costing
Figure 19: PCE Cost
Figure 20: Miscellaneous Equipment Cost
Figure 21: Process Simulation
Figure 21.1: Process Simulation
Figure 21.2: Process Simulation
Figure 21.3: Process Simulation

List of Acronyms

- Cp Specific heat at constant pressure
- ✤ Cv Specific heat at constant volume
- ✤ P Pressure
- ✤ P Power
- ✤ T Temperature
- ✤ *v* Volumetric flowrate
- ✤ *n* number of moles
- ✤ R Universal gas constant
- ρ Mass density
- ✤ z Gas compressibility factor
- ✤ *M* Relative molecular mass
- ✤ *H* Enthalpy
- ✤ H Head
- ✤ Q Heat flow
- ✤ *m* mass flowrate
- Δ change in
- ✤ d diameter
- ✤ A Area
- π pi
- μ Viscosity
- ✤ *k* Thermal conductivity
- ✤ *l* Length
- ✤ U Overall heat transfer coefficient
- ✤ *h* Heat transfer coefficient
- ✤ G Mass velocity
- ✤ *u* Velocity
- ✤ g gravitational constant
- γ Specific gravity
- ✤ *u* Velocity
- ✤ *t* time
- ✤ L Flowrate of liquid

- ✤ G Flowrate of gas
- ✤ Tc Critical Temperature
- ✤ Pc Critical Pressure

1.1 Introduction

Natural gas is the most energy efficient fossil fuel; it offers important energy saving benefits when it is used instead of oil or coal. Although the primary use of natural gas is as a fuel, it is also a source of hydrocarbons for petrochemical feedstocks and a major source of elemental sulfur, an important industrial chemical. Its popularity as an energy source is expected to grow substantially in the future because natural gas can help achieve two important energy goals for the 21st century, providing the sustainable energy supplies and services needed for social and economic development and reducing adverse impacts on global climate and the environment in general. Natural gas consumption and trade have been growing steadily over the past two decades and natural gas has strengthened its position in the world energy mix. Although the demand for natural gas declined in 2009, as a result of the economic slowdown, it is expected to resume growth in both emerging and traditional markets in the coming decades. Such increase in the near future will be driven because of additional demand in current uses, primarily power generation. There is yet a little overlap between the use of natural gas and oil in all large markets. However, there are certain moves in the horizon, including the electrifying of transportation, which will push natural gas use to ever higher levels.

1.2 Natural Gas History

Although natural gas has been known since ancient times, its usage in the commercial sectors is relatively new. In about 1000, B.C., the famous Oracle at Delphi in ancient Greece, was built where natural gas seeped from the ground in a flame. Around 500 B.C., the Chinese started using bamboo pipes or "pipelines" to transport gas that seeped to the surface and to use it to boil sea water to get drinkable water. The first commercialized natural gas occurred in Britain. Around 1785, the British used natural gas produced from coal to light houses and streets. In 1816, Baltimore, Maryland used this type of manufactured natural gas to become the first city in the United States to light its streets with gas. In the United States, the properties of natural gas were discovered by Native Americans, who would ignite the gases that seeped into and around Lake Erie. French

explorers witnessed this practice around 1626. In 1821, William Hart dug the first successful natural gas well in the U.S. in Fredonia, New York. Eventually, the Fredonia Gas Light Company was formed, becoming the first American natural gas distribution company. In 1836, the City of Philadelphia created the first municipally owned natural gas distribution company. Today, U.S. public gas systems number more than 900, and the Philadelphia Gas Works is the largest and longest operating public gas system in the U.S. During most of the 19th century, natural gas was used almost exclusively as a source of light, but in 1885, Robert Bunsen's invention of what is now known as the Bunsen burner opened vast new opportunities to use natural gas. Once effective pipelines began to be built in the 20th century, the use of natural gas expanded to home heating and cooking, appliances such as water heaters and oven ranges, manufacturing and processing plants, and boilers to generate electricity.

1.3 Natural Gas Origin

There are different theories as to the origins of fossil fuels. The most widely accepted theory of the origin of natural gas states that it came from the remains of land and aquatic plants, animals, and microorganisms that was trapped within sediments as they were deposited and transformed over long periods of time into their present form. Two main mechanisms, namely biogenic and thermogenic, are responsible for the degradation of the original fossil organic material in sediments. Biogenic gas is formed at shallow depths and low temperatures due to the action of bacteria on the organic debris accumulating in the sediments. In contrast, thermogenic gas is formed at greater depths by degradation of organic matter, called kerogen, accumulated in fine-grained sediments, especially clays and shales. This degradation occurs through the combined effects of temperature and pressure. Thermogenic gas is believed to be produced through two mechanisms, namely, direct thermal cracking of sedimentary organic matter and secondary thermal cracking of oil that is formed in the first stage. The former is called the primary thermogenic gas that coexists with oil, while the latter is called secondary thermogenic gas that coexists with an insoluble solid matter, called pyro bitumen. Both mechanisms involve thermal cracking with some degree of sustained pressure, mainly through the weight of the sedimentary formation. Little information is available on the time required to generate thermogenic gas other than

2

the general belief that it is a very long time. Hydrocarbons are generated in "source rock" and often migrate to subsurface formations called "Reservoir rock." The quality of a reservoir rock is determined by its two principal properties: porosity and permeability. Porosity is the void space between the grains, and indicates the rock's capacity to contain liquid or gaseous hydrocarbons. Permeability is the measurement of the rock's ability to transmit the oil or gas.

1.4 Types of Natural Gas

The natural gases can be classified as:

- Conventional natural gas
- Un-conventional natural gas

Conventional gas is typically "free gas" trapped in multiple porous zones in naturally occurring rock formations such as carbonates, sandstones, and siltstones. Conventional natural gas generally occurs in deep reservoirs, either associated with crude oil (associated gas) or in reservoirs that contain little or no crude oil (non-associated gas). Conventional gas is typically found in medium to highly porous reservoirs with a permeability greater than 1 millidarcy. Pressure moves the gas towards the production wells. As such, it can be extracted via traditional techniques that are relatively easy and inexpensive.

The second classification of Natural gas is the un-conventional natural gas. This is the natural gas is that is held in compact formations and is not readily available to exploit rather it demands the use of expensive and modern methods.

This category has further sub branches which include:

- Gas in tight sand/ tight shale
- Coal-bed methane
- Gas in geo-pressurized reservoirs
- Gas hydrates.

Chapter 1	L
------------------	---

1.5	Properties	of Natural	Gas
-----	------------	------------	-----

Table 1.1 Properties of Natural Gas			
Properties	Value		
Relative molar mass	17-20		
Carbon content, weight%	73.3		
Hydrogen content, weight%	23.9		
Oxygen content, weight%	0.4		
Hydrogen/carbon atomic ratio	3.0-4.0		
Relative density, 15C	0.72-0.81		
Boiling point, C	-162		
Auto ignition temperature, C	540.560		
Octane number	120-130		
Methane number	69-99		
Stoichiometric air/fuel ratio, weight	19.2		
Vapor flammability limits, volume %	5-15		
Flammability limits	0.7-2.1		
Lower heating/calorific value, MJ/kg	38-50		
Stoichiometric lower heating value, MJ/kg	2.75		
Methane concentration, volume %	80-99		
Ethane concentration, volume %	2.7-4.6		
Nitrogen concentration, volume %	0.1-15		
Carbon dioxide concentration, volume %	1-5		
Sulfur concentration, weight% ppm	<5		
Specific CO2 formation, g/MJ	38-50		

Table 1 Properties of Natural gas

1.6 Composition of Natural Gas				
Compound	Symbol	Percentage (%)		
Methane	CH4	85-98		
Ethane	С2Н6	1.5-9.0		
Propane	СЗН8	0.1-1.5		
Butane	C4H10	0.1-0.5		
Carbon Dioxide	CO2	0.05-2.0		
Nitrogen	N2	0.2-5.0		
Hydrogen Sulfide	H2S	0.01-0.05		
Rare Gases	A, He	0.1-2.0		

. . . .

Table 2 Compositin of natural gas

1.7 Why Process Natural Gas:

Natural gas when excavated is not in a refined condition, it consists of a mixture of gas, oil, water and solid residues. Some of these constituents can be processed to extract valuable products which can be commercially used while others are just contaminants which have to be removed in order to make the products clean, environmentally friendly and more efficient in delivering their total value.

These processing plants are set up in such a manner that they not only separate the undesired components from the Natural gas but are equipped with equipment's that produce useable by products for commercial use.

1.8 Steps of Natural Gas Processing

In general, a natural gas processing plant must be equipped with primary inlet separators in order to separate the crude flowing from the well into gas and condensate/water. The removal of Acid gas (H2S and CO2) is the second step in the processing plant to eliminate harmful and corrosive gases from the gas. Dehydration/moisture removal units then follow to removal water content from the mix. The addition of Mercury and Nitrogen Removal for further purification of the final dry gas. Finally, NGL recovery units like De-ethanizer, Depropanizer and De-butanizers are installed to recover LPG and NGLS from the remainder.

LITERATURE REVIEW

2.1 Types of Flow Regimes

2.1.1 Dispersed Bubble Flow

At higher liquid flow rates and for a wide range of gas flow rates, small gas bubbles are dispersed throughout the continuous liquid phase. Due to the effect of buoyancy these bubbles tend to accumulate in the upper part of the pipe.

2.1.2 Plug (Elongated Bubble) Flow

At relatively low gas flow rates, as the liquid flow rate is reduced, the smaller bubbles of dispersed bubble flow coalesce to form larger bullet shaped bubbles that move along the top of the pipe.

2.1.3 Stratified (Smooth and Wavy) Flow

At low liquid and gas flow rates gravitational effects cause total separation of the two phases. These results in the liquid flowing along the bottom of the pipe and the gas flowing along the top, where the gas liquid surface is smooth. As the gas velocity is increased in a stratified smooth flow the interfacial shear forces increase, rippling the liquid surface and producing a wavy interface.

2.1.4 Slug Flow

As the gas and liquid flow rates are increased further, the stratified liquid level grows and becomes progressively wavier until eventually the whole cross-section of the pipe is blocked by a wave. The resultant "piston" of liquid is then accelerated by the gas flow, surging along the pipe and scooping up the liquid film in front as it progresses. This "piston" is followed by a region containing an elongated gas bubble moving over a thin liquid film. Hence an intermittent regime develops in which elongated gas bubbles and liquid slugs alternately

surge along the pipe. The major difference between an elongated bubble flow and a slug flow is that in an elongated bubble flow there are no entrained gas bubbles in the liquid slugs.

2.1.5 Annular Flow

When gas flow rates increase, annular (also referred to as annular-mist) flow occurs. During annular flow, the liquid phase flows largely as an annular film on the wall with gas flowing as a central core.

Some of the liquid is entrained as droplets in this gas core. The annular liquid film is thicker at the bottom than at the top of the pipe because of the effect of gravity and, except at very low liquid rates, the liquid film is covered with large waves.

2.1.6 Churn (Transition) Flow

If a change from a continuous liquid phase to a continuous gas-phase occurs, the continuity of the liquid in the slug between successive Taylor bubbles is repeatedly destroyed by a high local gas concentration in the slug. This oscillatory flow of the liquid is typical of churn (froth) flow. It may not occur in small diameter pipes. The gas bubbles may join and liquid may be entrained in the bubbles. In this flow regime, the falling film of the liquid surrounding the gas plugs cannot be observed.

2.2 Natural Gas Properties

2.2.1 Gas Specific Gravity

Specific gravity of a natural gas is defined as the ratio of gas density to the density of air, both defined at the same pressure and temperature. These densities are usually defined at standard conditions (14.7 psia and 60F). Therefore, specific gravity of gas is defined as:

$$\gamma_{\rm g} = \frac{\rm M}{\rm M_{air}}$$

Where M is the molecular weight of gas and Mair is the molecular weight of air that is equal to 29. Once we can calculate the value of molecular weight of a mixture, we can calculate the specific gravity of the mixture. For a gas mixture, we can calculate the molecular weight as:

$$M = \sum_{i=1}^n y_i M_i$$

Where Mi is the molecular weight of component i, yi is the mole fraction of component i, and n is the total number of components.

2.2.2 Gas Compressibility Factor

The volume of a real gas is usually less than what the volume of an ideal gas would be, and hence a real gas is said to be super-compressible. The ratio of the real volume to the ideal volume, which is a measure of the amount the gas deviates from perfect behavior, is called the super compressibility factor, sometimes shortened to the compressibility factor. It is also called the gas deviation factor, and given the symbol "Z". The gas deviation factor is by definition the ratio of the volume actually occupied by a gas at a given pressure and temperature to the volume it would occupy if it behaved ideally. The real gas equation of state is then written as:

PV = ZnRT

The reduced pressure and reduced temperature are defined as:

$$P_r = \frac{P}{P_c} \quad \text{and} \quad T_r = \frac{T}{T_c}$$

Where Pr and Tr are reduced pressure and reduced temperature, respectively; and Pc and Tc are critical pressure and critical temperature of the gas, respectively. The values of critical pressure and critical temperature can be estimated from the following equations if the composition of the gas and the critical properties of the individual components are known.

$$P_c = \sum_i^n P_{Ci} y_i \quad \text{and} \quad T_c = \sum_i^n T_{ci} \; y_i$$

where Pci and Tci are the critical pressure and critical temperature of component i, respectively; and yi is the mole fraction of component i.

Figure 1 Compresibility factor vs Pseudo Reduced Pressure

2.2.3 Gas Density

The gas density is defined as mass per unit volume and so can also be derived and calculated from the real gas law:

$$\rho_g = \frac{m}{V} = \frac{PM}{ZRT}$$

Knowing that molecular weight of gas is the product of specific gravity and molecular weight of air, and the value of R is 10.73 in field units [8.314 in SI units], we can write the equation for density as:

$$\rho_g = 2.7 \ \frac{P \ \gamma_g}{ZT}$$

where rg is in lbm/ft3, P is in psia, and T is in R. Alternately,

$$\rho_g = 3.49 \ \frac{P \ \gamma_g}{ZT}$$

where rg is in kg/m3, P is in kPa, and T is in K.

2.2.4 Specific Heat, Cp

Specific heat is defined as the amount of heat required to raise the temperature of a unit mass of a substance through unity. It is an intensive property of a substance. It can be measured at constant pressure (Cp), or at constant volume (Cv), resulting in two distinct specific heat values. In terms of basic thermodynamic quantities:

$$\begin{split} C_p &= \left(\frac{\partial H}{\partial T}\right)_p \\ C_v &= \left(\frac{\partial U}{\partial T}\right)_v \end{split}$$

where H is the molal enthalpy (BTU/lbmole), U is the molal internal energy (Btu/lbmole), Cp is the molal specific heat at constant pressure (BTU/lbmole-o R), and Cv is the molal specific heat at constant volume (Btu/lbmole-o R). Both heat capacities are thermodynamically related. It can be proven that this relationship is controlled by the PeVeT behavior of the substances through the following relationship:

$$C_p - C_v = T \bigg(\frac{\partial V}{\partial T} \bigg)_p \bigg(\frac{\partial P}{\partial T} \bigg)_v$$

For ideal gases:

$$C_p - C_v = R$$

where R is the universal gas constant.

2.3 Natural Gas Processing Plant

Processing consists of separating all of the various hydrocarbons and impurities from the raw natural gas to produce what is termed "pipeline quality" dry natural gas. Pipeline companies impose restrictions on the makeup of natural gas allowed into the pipeline. Pipeline companies require the raw natural gas to be purified by removing "waste products" and associated hydrocarbons such as ethane, propane, butane, i-butane, and pentane plus (natural gasoline).

Associated hydrocarbons termed "natural gas liquids" (NGLs) can be a valuable byproduct of natural gas processing. They can be sold separately and have a variety of different uses, such as enhancing oil recovery in oil wells, providing raw materials for oil refineries and/or petrochemical plants, and as sources of energy.

Some of the needed processing can be accomplished at or near the wellhead (field processing). Complete processing of natural gas takes place at a processing plant, usually located in a natural gas producing region. Extracted natural gas is transported to processing plants through a network of gathering pipelines. A complex gathering system may consist of thousands of miles of pipeline, interconnecting the processing plant to more than 100 wells. In addition to the processing done at the wellhead and centralized processing plants, some final processing is also done at "extraction plants." These plants are located on major pipeline systems and remove small quantities of NGLs that may still exist in pipeline-quality gas.

Natural gas processing to meet pipeline-quality gas standards involves the following four main steps to remove the various impurities:

- Oil and condensate removal
- Water Removal
- Separation of NGLs
- Sulfur and carbon dioxide removal

In addition to the four processes above, heaters and scrubbers are installed, usually at or near the wellhead. Scrubbers remove sand and other large-particle impurities. Heaters ensure that the temperature of the gas does not drop below the hydrate formation temperature.

When the gas temperature drops there is a tendency for "hydrates" to form. Hydrates are solid or semi-solid compounds, resembling ice-like crystals. Should these hydrates accumulate, they can impede passage of natural gas through valves and gathering systems, plug process instrumentation, and reduce the capacity of processing vessels. To reduce the occurrence of hydrates, the following equipment may be used:

- Indirect-fired heater
- Hydrate inhibitors
- Dehydration
- Low-temprature units

PROCESS DESCRIPTION

3.1 Process Flow Diagram

Figure 3 Process Flow Diagram

3.2 Process Description

Natural Gas is one of the most essential products in use in modern times. It is a mixture of methane and ethane mostly. One such process starts when streams from four wells, namely X-1, X-2, X-3 and X-4, combine and enter a slug catcher. All four wells have different stream compositions, flow rates, and other parameters such as Temperate and Pressure. Furthermore, the streams coming directly from wells vary a lot in terms of all these parameters.

Firstly, A Slug Catcher is used to collect liquids that have settled in flow lines which can overload the gas/liquid handling capacity of the plant especially during pigging operations.

The Slug Catcher helps protect your valuable production equipment from abrupt large bursts of liquids entering your gas stream. It is typically used downstream of pipeline and pigging operations where large volumes of liquid can collect in the pipeline and are pushed through in a short time. The unit has a liquid level controller and liquid outlet control valve, as well as a crash dump connection. This connection allows you the option of adding a crash level controller and secondary liquid outlet to dispose of sudden large slugs.

The top stream from the slug catcher, comprising mostly of gases of lighter components is cooled and enters a three-phase separator at high pressure. The working principle of the three-phase separator is based on the density difference of water/oil/gas. The gas-liquid separation is achieved by centrifugal force and gravity. In simple terms, in a three-phase separator, the separation is performed in the order of gas/liquid separation and then oil/water separation.

The bottom stream from the HP separator and the slug catcher, comprising mostly of heavier liquid components, are mixed and enter a Medium Pressure Separator. The produced water is removed at each three-phase separator as well. The stream is then split into two, and enters two different separators. This allows some of the liquid to be bypassed, reducing the duty on the Crude Stabilization Column (CSC). Similarly, top streams from the separators are bypassed to reduce the duty on the CSC, by reducing the total flow rate.

15

The bottom stream of the CSC is cooled and is sent to the crude refinery for further processing, which is not relevant to Natural Gas Processing. The top stream is compressed and cooled in multiple stages, and the bypassed top streams from three previous separators enter step by step. Finally, the gas is chilled using an Ammonia Refrigeration System, and undergoes separation of still allow some of the heavy gas components to be recycled and removed.

Next, a Molecular Sieve Bed (MSB) is used to remove water from the gas to below acceptable levels. The characteristics of these molecular sieves include fast adsorption speed, frequent regeneration ability, good crushing resistance and pollution resistance. These features can improve both the efficiency and lifetime of the sieve.

The gas is then split into two, and only one stream is cooled. This reduces the duty required by the cooler, without disturbing the product quality and specifications in any way. The stream is then subjected to expansion via a Joule-Thompson valve, and a reflux drum recycles it to the fractionation train i.e. a series of distillation columns which is then used to obtain the final products.

JT valve works on the principle that when the pressure of a gas/Liquid changes, its temperature also changes.

The Joule–Thomson effect describes the temperature change of a gas or liquid when it is forced through a valve, while kept insulated. (Insulation is required to avoid influence of surrounding environment effects).

First is the de-ethanizer, which removes Natural Gas from the top. The gas is subjected to compression via both reciprocating and centrifugal compressors, and is cooled. Reciprocating compressors have poor mechanical efficiency due to large sliding parts. Centrifugal compressors have better mechanical efficiency due to absence of sliding parts. Installation cost for setting up reciprocating compressors is higher. Installation cost for setting up centrifugal compressors is lower. Also Reciprocating compressors are used where high pressure is needed while centrifugal are used where high velocity is required

The bottoms of the de-ethanizer enter the de-butanizer. Butanes, propane, and some left over ethane is separated, while fractions heavier than C5 leave from the bottom to be used in the oil refinery. The top stream is split into two. One enters the de-propanizer, while the other bypasses the column to allow for production of LPG of the desired composition. Hence, the other two products i.e. propane and LPG are obtained.

MATERIAL BALANCE

4.1 Well Feed Composition

Name	WELL X-1	WELL X-2	WELL X-3	WELL X-4
CO2	1.47E-02	4.20E-03	1.45E-02	1.47E-02
Nitrogen	8.00E-03	6.60E-03	6.00E-03	8.00E-03
Methane	0.6742	0.726	0.6721	0.6723
Ethane	6.41E-02	6.58E-02	6.34E-02	6.40E-02
Propane	3.62E-02	3.48E-02	3.50E-02	3.62E-02
i-Butane	7.90E-03	7.00E-03	8.00E-03	7.90E-03
n-Butane	1.47E-02	1.27E-02	1.50E-02	1.47E-02
i-Pentane	6.50E-03	5.30E-03	6.80E-03	6.60E-03
n-Pentane	6.50E-03	5.40E-03	7.00E-03	6.70E-03
n-Hexane	9.70E-03	7.40E-03	9.80E-03	1.01E-02
n-Heptane	1.47E-02	1.19E-02	1.59E-02	1.56E-02
n-Octane	1.54E-02	1.29E-02	1.77E-02	1.65E-02
n-Nonane	1.00E-02	8.40E-03	1.20E-02	1.08E-02
n-Decane	7.80E-03	6.90E-03	9.20E-03	8.40E-03
n-C11	6.00E-03	5.20E-03	6.90E-03	6.50E-03
n-C12	4.80E-03	4.20E-03	5.60E-03	5.20E-03
n-C13	4.80E-03	4.30E-03	5.80E-03	5.20E-03
n-C14	3.90E-03	3.50E-03	4.70E-03	4.20E-03
n-C15	4.10E-03	3.50E-03	4.60E-03	4.50E-03
n-C16	3.10E-03	2.70E-03	3.60E-03	3.30E-03
n-C17	2.60E-03	2.20E-03	3.00E-03	2.80E-03
n-C18	2.40E-03	2.10E-03	2.90E-03	2.60E-03
n-C19	2.00E-03	1.80E-03	2.40E-03	2.20E-03
n-C20	1.70E-03	1.40E-03	2.00E-03	1.90E-03
n-C21	1.50E-03	1.30E-03	1.80E-03	1.60E-03
n-C22	1.30E-03	1.10E-03	1.60E-03	1.40E-03

n-C23	1.10E-03	1.00E-03	1.30E-03	1.20E-03
n-C24	1.00E-03	9.00E-04	1.20E-03	1.10E-03
n-C25	9.00E-04	8.00E-04	1.10E-03	1.00E-03
n-C26	8.00E-04	7.00E-04	9.00E-04	9.00E-04
n-C27	8.00E-04	6.00E-04	9.00E-04	8.00E-04
n-C28	7.00E-04	6.00E-04	8.00E-04	8.00E-04
n-C29	6.00E-04	5.00E-04	7.00E-04	7.00E-04
n-C30	6.00E-04	5.00E-04	6.00E-04	6.00E-04
H2O	6.49E-02	4.58E-02	5.52E-02	5.90E-02
Mass Flow Rate (kg/hr)	34781.5	43209.2	40601.0	40120.2

Table 3 Well feed composition

4.2 Raw Feed Mixture

Name	Slug Catcher
CO2	1.15E-02
Nitrogen	7.11E-03
Methane	0.688577481
Ethane	6.44E-02
Propane	3.55E-02
i-Butane	7.66E-03
n-Butane	1.42E-02
i-Pentane	6.24E-03
n-Pentane	6.34E-03
n-Hexane	9.14E-03
n-Heptane	1.44E-02
n-Octane	1.55E-02
n-Nonane	1.02E-02
n-Decane	8.02E-03
n-C11	6.10E-03
n-C12	4.91E-03

n-C13	4.99E-03
n-C14	4.05E-03
n-C15	4.14E-03
n-C16	3.15E-03
n-C17	2.63E-03
n-C18	2.48E-03
n-C19	2.09E-03
n-C20	1.73E-03
n-C21	1.54E-03
n-C22	1.34E-03
n-C23	1.14E-03
n-C24	1.04E-03
n-C25	9.43E-04
n-C26	8.19E-04
n-C27	7.65E-04
n-C28	7.19E-04
n-C29	6.19E-04
n-C30	5.70E-04
Н2О	5.55E-02
Mass Flow Rate (kg/hr)	158711.9

Table 4 Raw fed mixture

4.3 Medium Pressure Separator

Name	MPS_FEED	MPS_TOP	MPS_BOT	PW-3
CO2	0.00705741	0.01747	0.004342	0.00011682
Nitrogen	0.00120902	0.00501	0.000217	1.14E-06
Methane	0.22968906	0.790356	0.083362	3.16E-07
Ethane	0.05554153	0.102587	0.04329	1.18E-09
Propane	0.05706741	0.048932	0.059235	6.21E-12
i-Butane	0.01801269	0.007787	0.020698	4.00E-15
n-Butane	0.03754051	0.012638	0.044075	1.03E-14

<u> </u>				
i-Pentane	0.02160782	0.003443	0.02637	8.50E-18
n-Pentane	0.023403	0.002989	0.028754	8.29E-18
n-Hexane	0.04116089	0.00199	0.051426	1.27E-20
n-Heptane	0.07208077	0.001345	0.090617	1.28E-23
n-Octane	0.08195961	0.00059	0.103281	7.21E-27
n-Nonane	0.05534162	0.000159	0.069801	2.13E-30
n-Decane	0.04391232	5.11E-05	0.055405	2.62E-34
n-C11	0.03354465	0.03354465 1.54E-05 0.04233		6.72E-38
n-C12	0.02703424	02703424 5.53E-06 0.0341		7.21E-42
n-C13	0.02747221	2.05E-06	0.03467	2.28E-45
n-C14	0.0222833	5.78E-07	0.028122	2.07E-49
n-C15	0.02279706	2.96E-07	0.028771	1.21E-53
n-C16	0.0173476	9.30E-08	0.021893	4.83E-58
n-C17	0.01446229	4.09E-08	0.018252	4.45E-64
n-C18	0.01365622	1.92E-08	0.017235	1.22E-70
n-C19	0.01148459	8.81E-09	0.014494	6.43E-78
n-C20	0.00953747	1.84E-09	0.012037	8.66E-76
n-C21	0.00846457	7.51E-10	0.010683	3.64E-80
n-C22	0.00736329	3.29E-10	0.009293	6.73E-85
n-C23	0.00629294	1.04E-10	0.007942	4.15E-89
n-C24	0.0057423	4.01E-11	0.007247	1.41E-93
n-C25	0.00519166	1.70E-11	0.006552	2.09E-97
n-C26	0.00450888	5.98E-12	0.00569	1.74E-102
n-C27	0.00421114	1.90E-12	0.005315	5.10E-103
n-C28	0.00395824	1.03E-12	0.004995	4.79E-103
n-C29	0.0034076	4.74E-13	0.0043	4.13E-103
n-C30	0.00314078	5.65E-14	0.003964	3.80E-103
H2O	0.00251529	0.004627	0.001225	0.99988172
Mass Flow Rate (kg/hr)	86813.7	3515.9	83289.2	8.562325

Table 5 Medium Pressure Separator

4.4 Crude Stabilization Column

Name	CFS_BOT	CSC_TOP	CSC_BOT	CSC_RFLX
CO2	0.002213	0.004166	4.99E-38	0.0040686
Nitrogen	3.54E-05	0.000175	2.12E-39	0.0001755
Methane	0.025392	0.079678	5.43E-42	0.0792688
Ethane	0.030175	0.059796	4.07E-30	0.058538
Propane	0.059538	0.126417	1.08E-20	0.1241219
i-Butane	0.024049	0.072693	3.59E-14	0.0722436
n-Butane	0.053553	0.199181	1.98E-11	0.1990054
i-Pentane	0.034961	0.224028	0.000169	0.2260022
n-Pentane	0.03771	0.215728	0.008554	0.2178152
n-Hexane	0.059703	0.005435	0.082775	0.0056981
n-Heptane	0.101881	0.005696	0.138983	0.0059212
n-Octane	0.111789	0.003533	0.151499	0.0036564
n-Nonane	0.073482	0.001195	0.099315	0.0012349
n-Decane	0.057484	0.000461	0.077601	0.000476
n-C11	0.043646	0.000168	0.058891	0.0001728
n-C12	0.035111	6.90E-05	0.047365	7.11E-05
n-C13	0.035654	3.15E-05	0.048093	3.24E-05
n-C14	0.028915	1.09E-05	0.039	1.12E-05
n-C15	0.029581	6.28E-06	0.039898	6.46E-06
n-C16	0.022509	2.37E-06	0.03036	2.44E-06
n-C17	0.018766	1.13E-06	0.02531	1.16E-06
n-C18	0.01772	5.90E-07	0.0239	6.07E-07
n-C19	0.014902	2.95E-07	0.020099	3.03E-07
n-C20	0.012375	8.76E-08	0.016691	9.01E-08
n-C21	0.010983	4.16E-08	0.014814	4.28E-08
n-C22	0.009554	2.07E-08	0.012886	2.13E-08
n-C23	0.008165	8.06E-09	0.011013	8.30E-09
n-C24	0.007451	3.71E-09	0.01005	3.82E-09
n-C25	0.006736	1.83E-09	0.009086	1.89E-09
--------------	----------	----------	----------	-----------
n-C26	0.00585	7.79E-10	0.007891	8.02E-10
n-C27	0.005464	3.14E-10	0.00737	3.24E-10
n-C28	0.005136	1.88E-10	0.006927	1.94E-10
n-C29	0.004422	9.81E-11	0.005964	1.01E-10
n-C30	0.004075	1.81E-11	0.005497	1.87E-11
H2O	0.001019	0.001529	7.67E-37	0.0014755
Mass Flow				
Rate (kg/hr)	42461.3	216794.3	38414.7	212747.7

Table 6 Crude stabilization column

4.5 Molecular Sieve Bed

Name	IGS_TOP	MSB_OUT	WATER
CO2	0.013776	0.013783	0
Nitrogen	0.008624	0.008628	0
Methane	0.833433	0.833833	0
Ethane	0.075139	0.075175	0
Propane	0.037364	0.037382	0
i-Butane	0.00718	0.007184	0
n-Butane	0.012778	0.012784	0
i-Pentane	0.004801	0.004804	0
n-Pentane	0.00392	0.003922	0
n-Hexane	0.001416	0.001417	0
n-Heptane	0.000807	0.000807	0
n-Octane	0.00024	0.000241	0
n-Nonane	3.58E-05	3.59E-05	0
n-Decane	5.47E-06	5.47E-06	0
n-C11	6.43E-07	6.43E-07	0
n-C12	9.78E-08	9.78E-08	0
n-C13	1.08E-08	1.08E-08	0

n-C14	8.19E-10	8.19E-10	0	
n-C15	1.98E-10	1.98E-10	0	
n-C16	2.19E-11	2.19E-11	0	
n-C17	5.62E-12	5.62E-12	0	
n-C18	1.45E-12	1.45E-12	0	
n-C19	4.39E-13	4.40E-13	0	
n-C20	9.97E-15	9.97E-15	0	
n-C21	1.73E-15	1.73E-15	0	
n-C22	3.77E-16	3.77E-16	0	
n-C23	3.54E-17	3.54E-17	0	
n-C24	5.11E-18	5.11E-18	0	
n-C25	9.14E-19	9.14E-19	0	
n-C26	1.18E-19	1.18E-19	0	
n-C27	9.64E-21	9.65E-21	0	
n-C28	3.28E-21	3.28E-21	0	
n-C29	7.92E-22	7.93E-22	0	
n-C30	3.62E-24	3.62E-24	0	
H2O	0.00048	0	1	
NH3	0	0	0	
Mass Flow Rate				
(kg/hr)	74046.8	74015.1	31.773	

Table 7 Molecular Sieve bed

4.6 De-Propanizer

Comp	Feed(kmol)	xf	Recovery (%)	Distillate	xd
C2	10.70	0.0876	100	10.70	0.132
С3	71.75	0.5874	95	68.17	0.844
i-C4	14.31	0.1171	5	0.680	8.42e-3
n-C4	25.37	0.2077	5	1.27	0.016
i-C5	0.024	0.0002	0	0	0
Total	122.15	1		80.81	1

Table 8 De-Propanizer

$$B = F - D$$

122.15 - 80.81 = 41.34 kmol/hr

4.7 De-Butanizer

Name	D-ETH_TOP	D-BUT_TOP	D-BUT_BOT
CO2	0.016547	1.05E-05	1.45E-17
Nitrogen	0.008473	2.10E-12	1.24E-29
Methane	0.881103	1.59E-06	2.76E-20
Ethane	0.093877	0.087774	1.19E-10
Propane	9.33E-10	0.588016	4.73E-06
i-Butane	1.59E-17	0.117169	0.000789
n-Butane	4.75E-20	0.206875	0.01656
i-Pentane	2.10E-27	0.000147	0.419623
n-Pentane	6.06E-30	7.18E-06	0.343394
n-Hexane	1.00E-30	1.17E-11	0.124129
n-Heptane	1.00E-30	6.10E-17	0.07073

n-Octane	1.00E-30	2.08E-22	0.021083
n-Nonane	1.00E-30	5.48E-28	0.003143
n-Decane	1.00E-30	9.95E-31	0.000479
n-C11	1.00E-30	1.00E-30	5.64E-05
Mass Flow Rate			
(kg/hr)	38901.0	10528.7	3214.8

Table 9 De-Butanizer

4.8 Overall Material Balance

Stream	In(kg/hr)	Out(kg/hr)
Mix Feed	349900	
Sale Gas		132890
Propane		7835
LPG		15356
Crude		181982
Water		11837
Total	349900	349900

Table 10 Overall Material Balance

ENERGY BALANCE

5.1 Compressor

Power of compressor formula.

Cp = Cv + R $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$ $\frac{Cp}{Cv} = \gamma$ $P = 2.31 \left(\frac{\gamma}{\gamma-1}\right) \left(\frac{T2-T1}{M}\right) Qm$

- P1 = Pressure inlet compressor
- P2= Pressure outlet compressor
- $\gamma = Isentropic Coefficient$
- Cp = Specific heat at constant pressure
- Cv = Heat capacity at fixed volume

γ	1.12	1.00
P2 (bar)	39.62	
P1 (bar)	6.18	Z 0.95
Temp in (k)	362.05	
Cv (J/kgK)	105.5	0.9000000000000000000000000000000000000
Cp (J/kgK)	113.4	Р,

	P in (psig)	P out (psig)	Energy (btu/hr)
Compressor 2	330	1030	1.099e+006
Compressor 3	450	500	2.026e+055
Compressor 4	438	500	9.551e+005
Compressor 5	500	1105	2.187e+006
Compressor 6	500	1105	2.187e+006
Compressor 7	500	1105	2.188e+006

Table 11 Compressor Duties

5.2 Expander/Turbine

P Discharge: 32.04 bar

P Suction: 71.13 bar

T in: 239.26

γ= 2.79

T out: 205.34

Cp: 25.28 J/kgK

$$P = 2.31 \left(\frac{k}{k-1}\right) \left(\frac{Tdis - Tsuc}{M}\right) Qm$$

 $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$

Energy: 9.254e+005 Kj/hr

Power: 308KW

Expander

5.3 De-Propanizer

"Feed temperature, Tf = 53.64 °C

Heat Capacity of Feed, Cpf = 0.42 kcal/kg-°C

Heat Capacity of Distillate, Cpd = 0.44 kcal/kg-°C

Column top temperature, Tt = -33.27 °C

Column bottom temperature, Tb = 15.04 °C

Latent heat of top product, HD = 94 kcal/kg

Latent heat of bottom product, Hw = 88 kcal/kg

Reflux ratio, R = 1 : 2

Vapor rates from column will be, V = D + 2 * D = 3 * 669.34 = 2008.02 kg/h

Heat load on reboiler will be,

Qb = F * Cpf * (Tb - Tf) + V * HD

Reboiler duty Qb = 1000*0.42*(104 - 50) + 2008.02*94

Calculated reboiler duty Qb = 1.247e+006 kJ/h

So, heat load on condenser will be (assuming distillate is at 5 degC subcooled)

Condenser duty Qc = V * Cpd * (Tt - 5) + V * HD

Putting the numbers, Qc = 2.301e+006 kJ/h

			Crude
	De-Ethanizer	De-Butanizer	Stabilization
			Column
Qb (kJ/h)	7.222e+006	7.220e+006	1.049e+008
Qc (kJ/h)	1.107e+007	8.259e+006	NIL

Table 12 Distillation Column Duties

5.4 Air Cooler

Unrefined gas:

Mass flowrate: 6.859e+004 kg/hr

Cp= 34.11 J/kgK

∆t = 49.5 °F

Ein = Eout

Air Cooler

Air Stream:

Mass flowrate: 439200 kg/hr

Cp= 1 J/kgK

 $\Delta t = 23.9 \ ^{o}F$

5.5 Heat Exchanger

Equation used: $Q = mCp\Delta T$

For Heat Exchanger 1:

Mass flowrate: 2.188e+005

Cp = 27.31 j/kgK

 $\Delta t = 218.7 \ ^{o}F$

$Q = mCp\Delta T$

- = 2.188e+005 * 27.31 * 218.7
- = 1.288e+009 kJ/h

DESIGN AND CALCULATIONS

6.1 Design of Inlet Separator

Operating Condition:

- P = 7306 kPa
- Vapor mass flow = 6.86x104 kg/hr
- Liquid mass flow = 9.01x104 kg/hr
- ρl = 864.7 kg/m3
- ρv = 59.87 kg/m3

•
$$u_t = \sqrt[0.07]{\frac{(\rho_1 - \rho_v)}{\rho_v}}$$

→
$$u_t = \sqrt[0.07]{\frac{(864.7 - 59.87)}{59.87}} = 0.257 \text{ m/s}$$

• V_{ap} Volumetric flow rate = $\frac{68590}{3600 \times 59.87} = 0.323 \text{ m}^3/_{S}$

$$\rightarrow L_v/D_v = 5$$

Operating pressure, bar Length: diameter,
$$L_v/D_v$$

0-20 3
20-35 4
>35 5

• Cross sectional area of vapor flow

$$\rightarrow \frac{\pi D^2}{4} \times 0.5 = 0.393 D^2$$

• Vapor velocity, $u_v = \frac{Volumetric Flow rate}{Cross-sectional Area}$

$$\frac{0.323}{0.393D^2} = \frac{0.82}{D^2}$$

- h_v = 0.5D_v
- Vapor resistance time $\rightarrow \frac{h_v}{u_t} \rightarrow \frac{0.5D_v}{0.257}$
- Actual vapor resistance time $\rightarrow \frac{L_v}{u_v} = \frac{5D^3}{0.83} = 6.02D^3$
- For satisfactory separation, residence time = actual
- \rightarrow D= 1.89m, taken as D = 2m
- Liquid volumetric flow rate = $\frac{Mass flow rate of liquid}{3600 \times \rho}$

$$=\frac{9.01\times10^4}{3600\times864.7}=0.029\,m^3/_{S}$$

• Liquid cross sectional area =
$$\frac{\pi \times 2^2 \times 0.5}{4} = 1.57 \ m^2$$

- Length = 5 x 2 = 10 m
- Hold-up Volume = CS Area x Length

$$\rightarrow$$
 10 x 1.57 \rightarrow 15.7 m³

• Hold up time = $\frac{\text{Liquid Volume}}{\text{Flow Rate}}$

$$=\frac{1.57}{0.029}=784s=$$
13 mins

6.2 Design of Compressor

Operating Conditions:

P Discharge: 39.62 bar

P suction: 6.18 bar

T inlet: 362.05K

 $\gamma = 1.12$

Cv= 105.5 J/kgK

Cp= 113.4 J/kgK

$$Cp = Cv + R$$

$$\frac{Cp}{Cv} = \gamma$$

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$$

$$P = 2.31 \left(\frac{\gamma}{\gamma - 1}\right) \left(\frac{T2 - T1}{M}\right) Qm$$

T out: 441.79K (335 F)

Power: 6616 kW

Compressor

6.3 Design of De-Propanizer

Basis:

 C_4 = Light Key. I- C_4 = Heavy Key.

No more than 3mol/h LK in Bottoms.

No more than 3mol/h HK in Distillate.

Compound	Feed(mel/h)	X _f	Тор	Bot		N
Compound	reed(mol/n)		(mol/h)	(mol/h)	Λα	ΛD
C ₂	10.7	0.088	10.7	0.0	0.13	
C ₃	71.7	0.587	68.7	3.0	0.83	0.07
i-C ₄	14.3	0.117	3.0	11.3	0.04	0.28
n-C ₄	25.3	0.208	0.0	25.3		0.65
		Σ=1.000	Σ=82.14	Σ=39.6	Σ=1.0	Σ=1.0

Table 13 De-Propanizer light and heavy key

- Pressure = 36 psia
- Bubble Point = 15 C

Compound	Ki	K _i x _i
C ₂		
C ₃	2.7	0.19
i-C4	1.1	0.31
n-C4	0.8	0.52
		Σ=1.02

Table 14 De-Propanizer Kixi value

• Dew Point = -33 C

Compound	Ki	yi/Ki
C ₂	3.5	0.04
C ₃	1.2	0.71
i-C4	0.16	0.25
n-C ₄		
		Σ=0.99

Figure 4 Dew point and bubble point

• We now calculate average relative volatilities:

Compound	Top(-33°C)	Bot(15°C)	Avg. α
C ₂	8.6	21.8	15.1
C ₃	2.4	7.5	5.0
i-C ₄	1.0	1.0	1.0
n-C4	0.7	0.6	0.65

$$\alpha_i = \frac{K_i}{K_{\rm HK}}$$

Table 16 De-Propanizer temperature

• Limiting non-key flows (Rectifying Section):

C ₂	αι	di	$l_i = \frac{d_i}{(\alpha_i - 1)}$	<u>v</u> i=li+di
	15.1	10.7	0.75	11.45

Table 17 Relative Volatility for C2

• Limiting non-key flows (Rectifying Section):

n-C ₄	α	b _i	$v_i = \frac{\alpha_i b_i}{(\alpha_{lk} - \alpha_i)}$	<u>li′</u> =vi′+b _i
	0.65	25.3	3.78	29.08

Table 18 Relative Volatility for n-C4

- Heat to vaporize feed = 1.815 x 10⁶ kJ/hr
- Molar flow rate = 122mol/hr

$$\sum \frac{\alpha_i x_{i,f}}{\alpha_i - \theta} = 1 - q$$

• Heat to vaporize 1 mol feed:

$$\rightarrow \frac{1.815*10^6}{1\mathrm{hr}} * \frac{1\mathrm{hr}}{122 \mathrm{ mol}} \rightarrow 1.49 \mathrm{ x} 10^4 \mathrm{ kJ/mol}$$

$$q = \frac{\text{heat to vaporise 1 mol of feed}}{\text{molar latent heat of feed}} = \frac{1.49 \text{ x 104}}{1.48 \text{ x 104}} \approx 1.0$$

• For a value of θ = 1.68

$$\sum \frac{\alpha_i x_{i,f}}{\alpha_i - \theta} = 0$$

Compound	αι	x _i ,f	$\frac{\alpha_i x_{i,f}}{\alpha_i - \theta}$
C ₂	15.1	0.088	0.144
C ₃	5.0	0.587	0.153
i-C ₄	1.0	0.117	-0.172
n-C ₄	0.65	0.208	-0.127
		Σ=1.00	Σ≈0.00

Table 19 volatility for feed

Compound	αι	xi,d	$\frac{\alpha_i x_{i,d}}{\alpha_i - \theta}$
C ₂	15.1	0.13	0.219
C ₃	5.0	0.83	1.875
i-C ₄	1.0	0.04	-0.089
n-C ₄	0.65		
		Σ=1.00	Σ=1.995≈2.00

Table 20 volatility for distillate

• Rm + 1 = 2

→ Rm = 1

$$\sum \frac{\alpha_i x_{i,d}}{\alpha_i - \theta} = R_m + 1$$

• Use equation,

$$N_{m} = \frac{\log(\frac{x_{lk}}{x_{hk}})d(\frac{x_{hk}}{x_{lk}})_{b}}{\log_{-lk}} = 13$$

$$\frac{R_{m}}{1 + R_{m}} = 0.5$$
• Say R = 2.0, $\frac{R}{R+1} = 0.67$

$$R \qquad 2 \qquad 3$$

$$N \qquad 18.05 \qquad 17.17$$

- N_m/N = 0.73
- N = 18.05 = <u>19 plates</u>

Figure 5 Erbar-Madox correlations

Efficiency:

- $\mu_{\alpha}\alpha_{\alpha} = 0.196$
- E = 51 32.5log(0.196)
- E = 74%
- Actual No. of Plates = $19/0.74 = 25.67 \rightarrow \underline{26 \text{ plates}}$

Feed Point Location:

- Use the empirical equation given by Kirkbride.
- N_r + N_s = 25.

•
$$\frac{Nr}{Ns} =$$

$$\log\left[\frac{N_r}{N_s}\right] = 0.206 \log\left[\left(\frac{B}{D}\right) \left(\frac{x_{f,\text{HK}}}{x_{f,\text{LK}}}\right) \left(\frac{x_{b,\text{LK}}}{x_{d,\text{HK}}}\right)^2\right]$$

Column Diameter:

• Based on the Souders and Brown equation,

$$\mu_v = (-0.171 l_t^2 + 0.27 l_t - 0.047) (\frac{(\rho_l - \rho_v)}{\rho_v})^{1/2}$$

• It = plate spacing = 1.0m

6.4 Design of Low Pressure Seperator:

Settling velocity:

$$u_t = 0.07 * \sqrt{\frac{\rho_l - \rho_v}{\rho_v}}$$

Liquid Density	$ ho_L$	1007.356
Vapor Density	$ ho_V$	1.225213
Settling Velocity	u_t (m/s)	2.005946

Table 21 Densities

Vessel Size:

$$D_V = \sqrt{\frac{4 * V}{\pi * \rho_v * u_t}}$$

Mass Flow Rate of Gas	V (kg/hr.)	572367.1
Mass Flow Rate of Gas	V (kg/sec.)	158.9909
Vapor Density	$ ho_{ m V}$ (kg/ m^3)	1.225213
Diameter of Vessel	D_{v} (m)	9.077907

Table 22 Properties of fluids

Liquid Holdup:

$$V_{holdup} = Q_{liq} x t$$

$$h_{liq} = rac{V_{holdup} * 4}{\pi * D_v \, sq.}$$

From the book of Richardson Coulson For a minimum holdup time of 600 seconds $Q_{liq} = 0.005413 \ m^3/s$ $V_{holdup} = 3.24779863$

V _{holdup}	$Q_{liq} {\sf x} {\sf t}$	3.24779863
h_{liq}		0.05020511
h_{vap}	$D_v + 0.4$	9.477907
h _{inlet}	<i>D_v</i> * 0.5	4.538954
h _{total}	$h_{liq} + h_{vap} + h_{inlet}$	14.0670659
$\frac{h_{total}}{D_{v}}$		1.54959349

Table 23 Specifications of separator

6.5 Design of Heat Exchanger:

$$\dot{Q}_{shell} = \dot{m} * \left(c_p * \Delta T + x * h_v \right)$$

Where,

x = quality of vapor

$$\dot{Q}_{shell} = 60.972 * [2.133 * (182.8 - 137) + 0.17 * 2101] = 27.75 MW$$

Similarly, heat load in tube side is:

$$\dot{Q}_{tube} = 11.05 * [1.941 * (131.5 - 122.9) + 1 * 2495] = 27.75 MW$$

LMTD

HOT FLUID		COLD FLUID	Difference
182.8	High T	131.5	51.3
137	Low T	122.9	14.1
45.8		8.6	37.2

TABLE 24- DATA FOR LMTD CALCULATIONS

$$LMTD = \frac{51.3 - 14.1}{\ln\left(\frac{51.3}{14.1}\right)} = 28.8 C$$

To find true LMTD, we first find R & S factors. Assume 1-6 passes:

$$R = \frac{45.8}{8.6} = 5.33$$
$$S = \frac{8.6}{182.8 - 122.9} = 0.144$$

FIGURE 6- FT CORRECTION FACTOR FOR 1-6 HX

From above graph,

$$F_T = 0.99$$

$$\therefore \Delta t_{lm} = 0.99 * 28.8 = 28.51 C$$

Shell Side Heat Transfer Coefficient

1. Calculate equivalent diameter:

$$D_e = 4 * \frac{axial flow area}{wetted perimeter}$$

From table

$$D_e = 0.99$$

2. Calculate Reynold's No.:

$$Re = \frac{D_e * W * P_t}{ID * C * B * \mu} = \frac{0.99 * 60.972 * 1.25}{25 * 0.25 * 5 * 4.76 * 10^{-5}} = 3.54 * 10^5$$

3. Determine Chiltern-Colburn Factor (j_H):

FIGURE 7- JH VS RE CURVE FOR SHELL SIDE

From above graph, for Re = $3.54*10^5$,

$$j_{H} = 420$$

4. Calculate h_o:

$$h_o = \frac{j_H}{D_e} * k^{\frac{2}{3}} * (c_p * \mu)^{\frac{1}{3}}$$
$$h_o = \frac{420}{0.99 \text{ in}} * 0.013^{\frac{2}{3}} * (2133 * 4.76 * 10^{-5})^{\frac{1}{3}} = 720 \frac{W}{m^2.K}$$

843

Chapter 6

|--|

Tube	Wall	TD in	Flow area	Surface per lin ft, ft ²		Weight	
OD, in.	Dird	ness, in.	12, ш.	in. ³	Outside	Inside	lb steel
36	12 14 16 18 20	0.109 0.083 0.065 0.049 0.035	0.282 0.334 0.370 0.402 0.430	0.0625 0.0876 0.1076 0.127 0.145	0.1309	0.0748 0.0874 0.0969 0.1052 0.1125	0.493 0.403 0.329 0.258 0.190
34	10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.134\\ 0.120\\ 0.109\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.058\\ 0.049 \end{array}$	$\begin{array}{c} 0.482\\ 0.510\\ 0.532\\ 0.560\\ 0.584\\ 0.606\\ 0.620\\ 0.634\\ 0.652\\ \end{array}$	$\begin{array}{c} 0.182\\ 0.204\\ 0.223\\ 0.247\\ 0.268\\ 0.289\\ 0.302\\ 0.314\\ 0.334\\ \end{array}$	0.1963	$\begin{array}{c} 0.1263\\ 0.1335\\ 0.1393\\ 0.1466\\ 0.1529\\ 0.1587\\ 0.1623\\ 0.1660\\ 0.1707 \end{array}$	$\begin{array}{c} 0.965\\ 0.884\\ 0.817\\ 0.727\\ 0.647\\ 0.571\\ 0.520\\ 0.469\\ 0.401 \end{array}$
1	8 9 10 11	0.165 0.148 0.134 0.120	0.670 0.704 0.732 0.760	.0.355 0.389 0.421 0.455	0.2618	0.1754 0.1843 0.1916 0.1990	1.61 1.47 1.36 1.23
	1	0.095	0.810	0.515		0.2121	1.00
	15 16 17 18	0.072 0.065 0.058 0.049	0.856 0.870 0.884 0.902	0.576 0.594 0.613 0.639		0.2241 0.2277 0.2314 0.2361	0.781 0.710 0.639 0.545
11/4	8 9 10 11 12 13 14	0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072	0.920 0.954 0.982 1.01 1.03 1.06 1.08	0.665 0.714 0.757 0.800 0.836 0.884 0.923 0.923	0.3271	0.2409 0.2498 0.2572 0.2644 0.2701 0.2775 0.2839 0.2839 0.2808	2.09 1.91 1.75 1.58 1.45 1.28 1.13 0.991

APPENDIX OF CALCULATION DATA

FIGURE 8- DIMENSION OF STEEL PIPES IPS

1. Calculate flow area of one pipe, therefore, from above figure:

$$a'_t = 0.2618 \ in^2 = 0.0186 \ m^2$$
$$a_t = \frac{n * a'_t}{passes} = \frac{252 * 0.0186}{2} = 0.0193 \ m^2$$

2. Calculate Re:

$$Re = \frac{D * W_t}{\mu * a_t} = \frac{0.81 \text{ in } * 11.05}{4.13 * 10^{-6} * 0.0193} = 3.04 * 10^{-5}$$

3. Determine Chiltern-Colburn Factor (j_H) :

FIGURE 9- JH VS RE CURVE FOR TUBE SIDE

From above graph, for Re = $3.04*10^5$,

 $j_{H} = 600$

1. Calculate h_i:

$$h_{i} = \frac{j_{H}}{D} * k^{\frac{2}{3}} * (c_{p} * \mu)^{\frac{1}{3}}$$
$$h_{i} = \frac{600}{0.81 \text{ in}} * 0.76^{\frac{2}{3}} * (1941 * 4.13 * 10^{-6})^{\frac{1}{3}} = 650 \frac{W}{m^{2} \cdot K}$$

1. Calculate h_{io}:

$$h_{io} = 650 * \frac{0.81}{1} = 595 \frac{W}{m^2.K}$$

Overall Heat Transfer Coefficient

1. Overall Clean HT Coefficient:

$$U_C = \frac{595 * 720}{595 + 720} = 325.78 \frac{W}{m^2.K}$$

2. Overall Dirty HT Coefficient:

$$a'' = 0.622 \frac{ft^2}{ft} = 0.289 \frac{m^2}{m}$$
$$A = 252 * 0.622 * 20 ft * 2 passes = 444 m^2$$

$$U_D = \frac{Q}{A * \Delta t_{lm}} = \frac{27.75MW}{444 * 28.51} = 303.41 \frac{W}{m^2.K}$$

1. Dirt Factor:

$$R_d = \frac{325.78 - 303.41}{325.78 * 303.41} = 0.00023 \, m^2 \cdot \frac{K}{W} \, (< 0.002, Acceptable)$$

FIGURE 10- SHELL SIDE FRICTION FACTORS

For Re = $3.54*10^{5}$,

$$f = 0.0014 \frac{ft^2}{in^2} = 0.2016 \frac{m^2}{m^2}$$
$$N + 1 = \frac{L}{B} = \frac{20ft}{5/12ft} = 29.7 \approx 30$$
$$\Delta P_s = \frac{0.2016 * 25 * 30 * 767688^2}{5.22 * 10^{10} * 0.0254 * 0.99} = 8.86. \, psi$$

FIGURE 11- TUBE SIDE FRICTION FACTORS

For Re = $3.04*10^5$,

$$f = 0.00016 \frac{ft^2}{in^2} = 0.01872 \frac{m^2}{m^2}$$
$$\Delta P_t = \frac{0.01872 * 20 ft * 2 * 21.47^2}{5.22 * 10^{10} * 0.154 * 0.9805} = 6.7 \, psi$$

FIGURE 12- TUBE SIDE RETURN PRESSURE LOSS

For mass velocity = $8.5*10^5$,

$$\frac{v^2}{2g} = 0.09psi$$
$$\Delta P_r = \frac{4*6}{0.9805} * 0.09 = 2.20 \ psi$$
$$\therefore \Delta P = 2.20 \ psi + 6.7 = 8.9 \ psi \ (< 10psi, Acceptable)$$

COST ESTIMATION AND ECONOMIC ANALYSIS

7.1 Cost of Equipment: -

nid 200 100.0 7.1.1 Horizontal Vessels: Equipment cost, \$1000 For Inlet Separator: 10.0 **(3)** Diameter = 2 m Length = 10 m 1.0 10.0 100.0 Vessel length, m (b) US dollars Pressure = 70 bar Diameter, m (1-0.5 (3-2.0 (2-1.0 (4-3.0 1.0 1.0 1.1 1.2 1.4 1.6 × 2.0 × 3.4 × 1.5 SS 10 = \$20,000 x 1.0 x 2.5 22 2.1 1.8 50-60

= \$50,000

Figure 13 Horizontal Vessel costing

Equipment	Length	Pressure (bar)	Diameter	Cost	
	(m)		(m)	(\$)	
H-P separator	15.0	73	2.0	75,000	
M-P separator	7.5	24	1.5	25,200	
L-P separator	4.0	10	1.0	6,000	
C-F separator	4.0	9	0.6	5,000	
Over Head	8.0	24	1.0	28,000	
All Material Factors are taken to be that of carbon Steel.					

Table 25 Cost of separators

7.1.2 Vertical Vessel:

Diameter = 1 m

Height = 3 m

Pressure = 70 bar

= \$16,000 x 1.0 x 2.5

= \$ 40,000

For 3 vessels,

= \$40,000 x 3

= \$120,000

7.1.3 Turbine:

Power = 57kW

$$Ce = CS^n$$

= \$3,000 x 570.5

= \$48,094

Figure 14 Vertical Vessel Costing

Equipment	Size	Size	Con	Index		
2.0	unit, S	range	C,£	C,S	n	
Agitators	100000000000000000000000000000000000000	94 243 0. MCP	0.00054	(2010-01-01)	0.075	
Turbine	power, kW	2-12	1800	3000	0.5	
Bouers Packaged		(c)				
up to 10 bar 10 to 60 bar	kg/h steam	$(5-50) \times 10^3$	70 60	120 100	0.8	
Centrifuges Horizontal basket ical basket	dia., m	0.5-1.0	35,000 35,000	58,000 58,000	1.3 1.0	
i pressors trifugal	driver power, kW	20-500	1160	1920	0.8	
procating			1600	2700	0.8	
veyors	length, m	2-40				
0.5 m wide 1.0 m wide			1200 1800	1900 2900	0.75	
Crushers Cone Pulverisers	t/h kg/h	20-200	2300 2000	3800 3400	0.85	
Dryers Rotary Pan	area, m ²	5-30 2-10	21,000 4700	35,000 7700	0.45	

Figure 15 Miscellaneous equipment cost

7.1.4 Compressor:

Power = 6616kW

							Fable 0.2. Furchas	Size	Size	St factors for	use in equal	Ion 0.7. C
Table to A	ed added 100 redator flat	Course Constantion in the	in factory for	000.111.600.00	144(15,10,10)	not solar outer arrest	Equipment Size unit, S		range	C,£ C,\$		n
deritation Northernor You build have been street have bee	dillore, pos signitione, pose size, pos dillore, cos	100000 1.5=500 = 100 ⁰ 0.00=1.00 000=0.00	1005 20 12 (05) 12 (05)	130 130 1300 1300 1300 1300 1300	81 81 14 14	an or beinge	Agitators Propeller Turbine	driver power, kW	5-75	1200 1800	1900 3000	0.5 0.5
A construction of the second s	Ellipse annual card annual card annual card annual card annual card	1-10 1-10 1-10 1-10	1289 1388 1488 1488 1488 1488 1488	1381 1331 "N921 (2152) (2152) (2152)	12.13 12.13 12.13 12.13 12.13 12.13 12.13	daran Gartan garta	Boilers Packaged up to 10 bar 10 to 60 bar	kg/h steam	$(5-50) \times 10^3$	70 60	120 100	0.8 0.8
= \$192	20 x 66	5160.8	3	17,1001	16.43	and a second	Centrifuges Horizontal basket Vertical basket	dia., m	0.5-1.0	35,000 35,000	58,000 58,000	1.3 1.0
						[Centrifugal	driver power, kW	20-500	1160	1920	0.8
= \$2,19	90,00	0					Reciprocating Conveyors Belt 0.5 m wide 1.0 m wide	length, m	2-40	1600 1200 1800	2700 1900 2900	0.8 0.75 0.75
For 7 c	ompr	essor	s.				Crushers Cone Pulverisers	t/h kg/h	20-200	2300 2000	3800 3400	0.85 0.35
- ¢2 10		0 v 7	-,				Dryers Rotary Pan	area, m ²	5-30 2-10	21,000 4700	35,000 7700	0.45 0.35

= \$2,190,000 x 7

= \$15,330,000

7.1.5 Distillation Column:

Height = 26m

Diameter = 2m

Vessel cost = \$100,000

Sieve Trays = \$700 x 26

= \$18,200

Total Cost:

= \$100,000 + \$18,200

= \$118,200

For 6 columns,

= \$118,200 x 6

= \$472,800

Figure 15 Miscellaneous equipment cost

Figure 16 Vessel height costing

Figure 17 plate dia costing

Figure 18 heat transfer area costing

Total Purchase Cost = \$ 27,620,894

		Process type	
Item	Fluids	Fluids- solids	Solids
1. Major equipment, total purchase			
cost	PCE	PCE	PCE
f_1 Equipment erection	0.4	0.45	0.50
f_2 Piping	0.70	0.45	0.20
f_3 Instrumentation	0.20	0.15	0.10
f_4 Electrical	0.10	0.10	0.10
f 5 Buildings, process	0.15	0.10	0.05
* f ₆ Utilities	0.50	0.45	0.25
* f7 Storages	0.15	0.20	0.25
f_8 Site development	0.05	0.05	0.05
*f9 Ancillary buildings	0.15	0.20	0.30
2. Total physical plant cost (PPC) $PPC = PCE (1 + f_1 + \dots + f_9)$	10		
$=$ PCE \times	3.40	3.15	2.80
f_{10} Design and Engineering	0.30	0.25	0.20
f_{11} Contractor's fee	0.05	0.05	0.05
f_{12} Contingency	0.10	0.10	0.10
Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{12})$ = PPC ×	1.45	1.40	1.35

*Omitted for minor extensions or additions to existing sites.

Figure 19 PCE cost

CEPCI in 2022 = 271

Equipment	Size	Size	Constant		Index	Comment
13	unit, S	range	C,£	C,\$	n	1254210000000000000000000000000000000000
Agitators						
Turbine	power, kW	5-75	1200 1800	1900	0.5	
Boilers Packaged	a (60)					oil or gas fired
up to 10 bar 10 to 60 bar	kg/h steam	$(5-50) \times 10^3$	70 60	120 100	0.8 0.8	
Centrifuges Horizontal basket Vertical basket	dia., m	0.5-1.0	35,000 35,000	58,000 58,000	1.3 1.0	carbon steel $\times 1.7$ for ss
Compressors	dalaraa	20 500	1160	1020	0.8	alasteis
Centrifugai	power, kW	20-300	1100	1920	0.8	max. press.
Reciprocating			1600	2700	0.8	50 bar
Conveyors Belt	length, m	2-40				
0.5 m wide			1200	1900	0.75	
1.0 m wide			1800	2900	0.75	
Crushers	+ (1 -	20, 200	2200	2000	0.95	
Cone	t/n kg/h	20-200	2300	3400	0.85	
Dryers	Kgm		2000	5400	0.00	
Rotary	area, m ²	5-30	21,000	35,000	0.45	direct
Pan		2-10	4700	7700	0.35	gas fired
Evaporators	1349					
Vertical tube	area, m ²	10-100	12,000	20,000	0.53	carbon steel
Falling film			6500	10,000	0.52	
Filters		5 50	5400	0000	0.6	
Vacuum drum	area, m-	1-10	21,000	34,000	0.6	carbon steel
Furnaces Process		· · · ·	21,000	5 4000	U.U.	
Cylindrical	heat abs. kW	$10^3 - 10^4$	330	540	0.77	carbon steel
Box		$10^3 - 10^5$	340	560	0.77	×2.0 ss
Reactors						
Jacketed, agitated	capacity, m ³	3-30	9300 18,500	15,000 31,000	0.40 0.45	carbon steel glass lined
Tanks						
Process	capacity, m3					
vertical		1-50	1450	2400	0.6	atmos. press.
Storage		10-100	1750	2900	0.6	carbon steel
floating roof		50-8000	2500	4350	0.55	$\times 2$ for
cone roof		50-8000	1400	2300	0.55	stainless

Figure 20 Miscellaneous equipment

(Total Physical Plant Cost) PPC = PCE *3.4	\$93,911,039
(Fixed Capital) FC = PPC*1.45	\$136,171,007
Working Capital (15% of FC)	\$6,808,550
Total Investment Required (Fixed Capital + Working	\$142,979,557
Capital)	
Operating Time of Plant	365

Table 26 Total Investment

7.2 Operating Cost

Cost Type	Calculation	Cost in dollars
Maintenance	5 % of Fixed Capital	6,808,550
Operating Labour	Estimate	300,000
Laboratory Costs	20 % of Operating Labour	60,000
Supervision	20 % of Operating Labour	60,000
Plant Overheads	50 % of Operating Labour	150,000
Capital Charges	10 % of Fixed Capital	13,617,100
Local Taxes	2 % of Fixed Capital	2,723,420
Total	Sum of all costs	23,659,070

Table 27 Operating Cost

7.2.1 Variable Cost

Operating Time: 365 days

= 8160 hours

Raw material = 1.587x10⁵ x 0.139 x 24 x 365 = **\$193239468/year**

Electricity cost = 0.15\$/MJ

Total electricity consumed = 667kW = 667,000J/s -> 667,000 x 86400 x 365 = 2103467 MJ/y

Total cost = 2103467 x 0.15 = \$315520

Index in 2004 = 188.9

Index in 2021 = 271

Cost in 2021 = 315520 x 271/188.9 = \$452651

TOTAL OPERATING COST = \$193239468 + \$452651 +23659070 = \$217,351,189/y

7.3 Payback Period LPG sale = 6088276/y Propane sale = 545288/y Ch4 sale = 22237216/y Crude sale = 10125974/y PAYOUT PERIOD = total investment/total sales = \$142979557/38345249 = 3.73 years

SIMULATION

8.1 Selection of Software

We had the choice of performing our simulation on either ASPEN HYSYS or ASPEN PLUS, which are both advanced Software for chemical plant modelling. Both have a diverse bank of fluid packages and equipment selection. The main difference between the two is that ASPEN HYSYS has more fluid packages favoring the Petroleum and Petrochemical Assays while ASPEN PLUS has more fluid packages favoring the Polymer, Chemical and Electrolytic Assays. Since our Project is heavily petroleum related, we have chosen ASPEN HYSYS as our simulation software.

8.2 Selection of Fluid Package

We have selected Peng-Robinson as the fluid package because we were dealing with pressures higher than 10 bar and all components are non-electrolytic (except water).

D K10	121	Enthalpy	Property Package EOS
Braun K IU BW/RS		Density	Costald
Chao Seader		Modify Tc, Pc for H2, He	Modify Tc, Pc for H2, He
Chien Null		Indexed Viscosity	HYSYS Viscosity
Clean Fuels Pkg	-	Peng-Robinson Options	HYSYS
CPA		EOS Solution Methods	Cubic EOS Analytical Method
esso Tabular Extended NRTI		Phase Identification	Default
GCEOS		Surface Tension Method	HYSYS Method
General NRTL		Thermal Conductivity	API 12A3.2-1 Method
Glycol Package		1	
Grayson Streed			
IAPWS-IF97			
Kabadi-Danner			
Lee-Kesler-Plocker			
MBWR			
NBS Steam			
NRTL			
Peng-Robinson			
PR-Twu			
PRSV		L	
Sour PR			
Cour CDV	*		
8.3 Component List

Component	Туре		
CO2	Pure Component		
Nitrogen	Pure Component	n-C15	Pure Component
Methane	Pure Component	n-C16	Pure Component
Ethane	Pure Component	n-C17	Pure Component
Propane	Pure Component	n-C18	Pure Component
i-Butane	Pure Component	n-C19	Pure Component
n-Butane	Pure Component	n-C20	Pure Component
i-Pentane	Pure Component	n-C21	Pure Component
n-Pentane	Pure Component	n-C22	Pure Component
n-Hexane	Pure Component	n-C23	Pure Component
n-Heptane	Pure Component	n-C24	Pure Component
n-Octane	Pure Component	n-C25	Pure Component
n-Nonane	Pure Component	n-C26	Pure Component
n-Decane	Pure Component	n-C27	Pure Component
n-C11	Pure Component	n-C28	Pure Component
n-C12	Pure Component	n-C29	Pure Component
n-C13	Pure Component	n-C30	Pure Component
n-C14	Pure Component	H2O	Pure Component

8.4 Simulation on Aspen HYSYS

Figure 21 Process Simulation

8.4.1 Enlarged Simulation

Figure 21.1 Process Simulation

Figure 21.2 Process Simulation

Development of Process Simulation model of Gas Processing Plant

Figure 21.3 Process Simulation

8.5 Working Parameters

8.5.1 Inlet Separator

Worksheet	Name	RAW FEED	SC_BOT	SC_TOP	PW-1	
Conditions	Vapour	0.7696	0.0000	1.0000	0.0000	
Properties	Temperature [F]	149.5	149.5	149.5	149.5	
Composition	Pressure [psig]	1045	1045	1045	1045	
PF Specs	Molar Flow (Ibmole/hr)	9830	1757	7566	507.7	
	Mass Flow [lb/hr]	3.499e+005	1.895e+005	1.512e+005	9148	
	Std Ideal Liq Vol Flow [USGPM]	1451	552.1	880.3	18.31	
	Molar Enthalpy [Btu/Ibmole]	-5.136e+004	-9.905e+004	-3.557e+004	-1.217e+005	
	Molar Entropy [Btu/lbmole-F]	40.78	64.63	36.95	15.16	
	Heat Flow [Btu/hr]	-5.049e+008	-1.740e+008	-2.691e+008	-6.176e+007	

8.5.2 High Pressure Separator

Worksheet	Name	SC_TOP-COOL	HPS_BOT	HPS_TOP	PW-2
Conditions	Vapour	0.9931	0.0000	1.0000	0.0000
Properties	Temperature [F]	100.0	100.0	100.0	100.0
Composition	Pressure [psig]	1040	1040	1040	1040
PF Specs	Molar Flow [lbmole/hr]	7566	28.03	7513	24.26
	Mass Flow [lb/hr]	1.512e+005	1859	1.489e+005	437.2
	Std Ideal Liq Vol Flow [USGPM]	880.3	6.169	873.2	0.8751
	Molar Enthalpy [Btu/Ibmole]	-3.627e+004	-7.077e+004	-3.586e+004	-1.226e+005
	Molar Entropy [Btu/Ibmole-F]	35.76	31.33	35.85	13.59
	Heat Flow [Btu/hr]	-2.744e+008	-1.984e+006	-2.694e+008	-2.974e+006
Std Ideal Liq Vol Flow [USGPM] Molar Enthalpy [Btu/lbmole] Molar Entropy [Btu/lbmole-F] Heat Flow [Btu/hr]	Heat Flow [Btu/hr]	-2.744e+008	-1.984e+006	-2.694e+008	-2.974e+00

8.5.3 Crude Stabilization Column

CFS_BOT @COL1 0.0000 106.9	CSC_RFLX-2 @COL1 0.0000 120.9	CSC_TOP @COL1	CSC_BOT @COL1 0.0000	
0.0000	0.0000	1.0000	0.0000	
106.9	120.9	102.0		
		192.9	442.6	
110.0	330.0	75.00	76.00	
687.9	8048	8225	510.0	
9.363e+004	4.590e+005	4.780e+005	8470e+004	
259.4	1627	1660	226.2	
-1.222e+005	-6.361e+004	-5.355e+004	-1.099e+005	
67.12	23.58	40.56	127.8	
-8.405e+007	-5,119e+008	-4.405e+008	-5.604e+007	
	687.9 9363e+004 259.4 -1.222e+005 67.12 -8.405e+007	1100 3300 667.9 8048 9363e+004 4.590e+005 259.4 1627 -1222e+005 -6.361e+004 67.12 23.58 -8.405e+007 -5.119e+008	1100 3300 7300 667.9 8048 8225 9.363e+004 4.590e+005 4.780e+005 259.4 1627 1660 -1.222e+005 -6.361e+004 -5.355e+004 67.12 23.58 40.56 -8.405e+007 -5.119e+008 -4.405e+008	1100 3300 7300 7600 667.9 8048 8225 510.0 9363e+004 4.690e+005 4.780e+005 8470e+004 259.4 1627 1660 2262 -1.222e+005 -6.361e+004 -5.355e+004 -1.099e+005 67.12 23.58 40.56 127.8 -8.405e+007 -5.119e+008 -4.405e+008 -5.604e+007

anger Parameter	Side Ops Internals	Rating Worksheet	Performa	ince Flows	heet Reactions	Dynamics			
Design	Specs Summary								
onnections		Specified Value	Active	Current	Fixed/Range	Prim/Alt	Lower	Upper	
onitor	Btms Prod Rate	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	
ecs Summany	Boilup Ratio	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	
bcooling	Temperature	125.0			Fixed	Primary	<empty></empty>	<empty></empty>	
tes	Temperature - 2	350.0	P	•	Fixed	Primary	<empty></empty>	<empty></empty>	
1000	CSC_TOP Rate	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	

Vesign Parame	eters Side Ops Internals Ra	ing Worksheet Performance	e Flowsheet	Reactions Dynamics		
Worksheet		CFS_BO	T	CSC_RFLX-2	CSC_TOP	
Conditions	CO2		0.0022	0.	.0041 0.004	
Properties	Nitrogen		0.0000	0.	.0002 0.000	
ompositions	Methane		0.0254	0.	.0793 0.079	
F Specs	Ethane		0.0302	0.	.0585 0.059	
	Propane		0.0595	0.	.1241 0.126	
	i-Butane		0.0240	0.	.0722 0.072	
	n-Butane		0.0536	0.	1990 0.199	
	i-Pentane		0.0350	0.	2260 0.224	
	n-Pentane		0.0377	0.	2178 0.215	
	n-Hexane		0.0597	0.	.0057 0.005	
	n-Heptane		0.1019	0.	.0059 0.005	
1	n-Octane		0.1118	0.	.0037 0.003	
	n-Nonane		0.0735	0.	.0012 0.001	
	n-Decane		0.0575	0.	.0005 0.000	
	n-C11		0.0436	0.	.0002 0.000	
	n-C12		0.0351	0.	.0001 0.000	
	n-C13		0.0357	0.	.0000 0.000	
	n-C14		0.0289	0.	.0000 0.000	
	n-C15		0.0296	0.	0,000	
	n-C16		0.0225	0.0000		
	n-C17		0.0188	0.	0.000 0000	
	n-C18		0.0177	0,	.0000 0.000	
	n-C19		0.0149	0.	.0000 0.000	
	n-C20		0.0124	0.	0.000	
	n-C21		0.0110	0.	0.000	
	n-C22		0.0096	0.	.0000 0.000	
	n-C23		0.0082	0.	.0000 0.000	
	n-C24		0.0075	0.	0.000 0.000	
	n-C25		0.0067	0.	0.000 0000	
	n-C26		0.0059	0.	0000 0000	
	n-C27		0.0055	0.	0.000 0.000	
	n-C28		0.0051	0.	0.000 0.000	
	n-C29		0.0044	0.	0000 0000	
	n-C30		0.0041	0.	0000 0000	
	H20		0.0010	0.	0015 0.001	
				M		
	N.		-			

8.5.4 Inlet 2-Phase Separator

Worksheet	Name	GC OUT	IGS BOT	IGS TOP	
Conditions	Vapour	0.9875	0.0000	1.0000	
roperties	Temperature [F]	70.00	70.00	70.00	
omposition	Pressure [psig]	1025	1025	1025	
F Specs Molar Flow [lbmole/hr] Mass Flow [lb/hr] Std Ideal Liq Vol Flow [USGPM] Molar Enthalpy [Btu/lbmole] Molar Entropy [Btu/lbmole-F]	Molar Flow [lbmole/hr]	8199	102.1	8097	
	Mass Flow [lb/hr]	1.681e+005	4855	1.632e+005	
	Std Ideal Liq Vol Flow [USGPM]	966.4	17.62	948,8	
	Molar Enthalpy [Btu/Ibmole]	-3.680e+004	-6.523e+004	-3.644e+004	
	Molar Entropy [Btu/Ibmole-F]	35.00	25.60	35.12	
	Heat Flow [Btu/hr]	-3.017e+008	-6.662e+006	-2.950e+008	
Mass Flow [Ib/hr] Std Ideal Liq Vol Flow [USGPM] Molar Enthalpy [Btu/Ibmole] Molar Entropy [Btu/Ibmole-F] Heat Flow [Btu/hr]					

8.5.5 Cooler

iet, owe charter				= I
esign Rating	Worksheet Perform	ance Dynamics		
Design	Delta P			
onnections	1	5.000 psi		
Iser Variables	Delta T		Duty	
lotes	-	-47.57 F	5.705e+006 Btu/hr	
		\sim		
	2	$\rightarrow ()$		

	Worksheet Performance Dynamics				
Worksheet	Name	GC IN	GC OUT	Q4	
onditions	Vapour	1.0000	0.9875	<empty></empty>	
roperties	Temperature [F]	117.5	70.00	<empty></empty>	
omposition	Pressure [psig]	1030	1025	<empty></empty>	
F Specs	Molar Flow [lbmole/hr]	8199	8199	<empty></empty>	
10	Mass Flow [lb/hr]	1.681e+005	1.681e+005	<empty></empty>	
	Std Ideal Lig Vol Flow [USGPM]	956.4	966.4	<empty></empty>	
Molar Heat F	Molar Enthalpy [Btu/Ibmole]	-3.610e+004	-3.680e+004	<empty></empty>	
	Molar Entropy [Btu/Ibmole-F]	36.25	35.00	<empty></empty>	
	Heat Flow [Btu/hr]	-2.960e+008	-3.017e+008	5.705e+006	

8.5.6 Compressor

	Worksheet	Performance	Dynamics				
Worksheet	Name		Notice	CSC_OVHD_TOP	SC_OVHD_TOP1	W2	
Conditions	Vapour			1.0000	1.0000	<empty></empty>	
Properties	Temperature	e (F)		120.9	256.6	<empty></empty>	
Composition	Pressure [ps	ig]		330.0	1030	<empty></empty>	
F Specs	Molar Flow	[lbmole/hr]		686.2	686.2	<empty></empty>	
	Mass Flow [lb/hr]		1.915e+004	1.915e+004	<empty></empty>	
	LiqVol Flow	[USGPM]		93.22	93.22	<empty></empty>	
	LiqVol Flow [USGPM] Molar Enthalpy [Btu/lbmole] Molar Entropy [Btu/lbmole-F] Heat Flow [Btu/hr]]	-4.035e+004	-3.875e+004	<empty></empty>	
	Molar Entropy [Btu/bmole-F] Heat Flow [Btu/hr]	F]	38.97	39.53	<empty></empty>		
		-2,769e+007	-2,659e+007	1.099e+006			

8.5.7 De-Propanizer

Design Parame	eters	Side Ops	Internals	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics	
Worksheet	Na	me				D-PROP_IN @COL4	D-PROF	COL4	D-PROP_BOT @COL4	
Properties	Vap	our				0.0000	C	0000	0.0000	
Dompositions DF Specs	Ten	nperature [ł	1		-	128.6	6	-27.86	59.08	
	Pre	ssure [psig]				235.0		20.00	21.00	
M M St	Ma	lar Flow [lb	mole/hr]			269.0		182.4	86.54	
	Ma	ss Flow [lb/	hr]			1.275e+004		7835	4920	
	Std	Ideal Liq Vi	ol Flow [US	SPM]		49.07		31.86	17.21	
	Ma	lar Enthalpy	/ [Btu/lbmp	le]		-5.322e+004	-5.364	±+004	-6.387e+004	
	Mo	lar Entropy	[Btu/Ibmol	e-F]		25.33		18.35	15.59	
	He	at Flow (Btu	/hr]			-1.432e+007	-9.786	e+006	-5.527e+006	
					10)[

aramete	rs Side Ops Internals	Rating Worksheet	Performan	nce Flow	sheet Reactions	Dynamics			
Design	- Specs Summary								
Connections		Specified Value	Active	Current	Fixed/Range	Prim/Alt	Lower	Upper	
donitor	Reflux Ratio	0.5000	V	V	Fixed	Primary	<empty></empty>	<empty></empty>	
pecs	Distillate Rate	<empty></empty>	Г		Fixed	Primary	<empty></empty>	<empty></empty>	
ubcooling	Reflux Rate	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	
otes	Btms Prod Rate	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	
	Comp Recovery	0.9500	V	V	Fixed	Primary	<empty></empty>	<empty></empty>	
	Comp Fraction	<cmpty></cmpty>			Fixed	Primary	<empty></empty>	<empty></empty>	

Design Parame	eters Side Ops Internals Rating Wo	orksheet Performance Flowsheet R	eactions Dynamics				
Worksheet		D-PROP_IN	D-PROP_TOP	D-PROP_BOT			
Conditions	CO2	0.0000	0.0000	0.0000			
Properties	Nitrogen	0.0000	0.0000 0.0000				
Compositions	Methane	0.0000	0.0000	0.0000			
PF Specs	Ethane	0.0877	0.1293	0.0000			
	Propane	0.5880	0.8236	0.0913			
	i-Butane	0,1172	0.0387 0.2826				
	n-Butane	0.2069	0.0084	0.6256	E		
	i-Pentane	0.0001	0.0000	0.0005			
	n-Pentane	0.0000	0.0000	0.0000			
	n-Hexane	0.0000	0.0000	0.0000			
	n-Heptane	0.0000	0.0000	0.0000			
	n-Octane	0.0000	0.0000	0.0000			
	n-Nonane	0.0000	0.0000	0.0000	-		
	n-Decane	0.0000	0.0000	0.0000			
	n-C11	0.0000	0.0000	0.0000			
	n-C12	0.0000	0.0000	0.0000			
	n-C13	0.0000	0.0000	0.0000			
	n-C14	0.0000	0.0000	0.0000			
	n-C15	0.0000	0.0000	0.0000			
	n-C16	0.0000	0.0000	0.0000			
	n-C17	0.0000	0.0000	0.0000			

8.5.8 De-Butanizer

Jesign Paranis	eters ande ops internals Rading vicinitation	Periormance	nowsheet Reaction	s Dynamics	
Worksheet	Name	D-ETH_BOT @COL3	D-BUT_TOP @COL3	D-BUT_BOT @COL3	
Properties	Vapour	0.0000	0.0000	0.0000	
Compositions PF Specs	Temperature [F]	212.0	128.6	320.3	
	Pressure [psig]	440.0	235.0	236.0	
	Molar Flow [lbmole/hr]	581.2	489.1	92.17	
	Mass Flow [lb/hr]	3.026e+004	2,319e→004	7071	
	Std Ideal Liq Vol Flow [USGPM]	111.3	89.22	22.12	
	Molar Enthalpy [Btu/lbmole]	-5.373e+004	-5.322e+004	-6.709e+004	
	Molar Entropy [Btu/lbmole-F]	30,46	25.33	35.12	
	Heat Flow [Btu/hr]	-3.123e+007	-2.603e+007	-6.184e+006	

esign Paramet	ers	Side Ops	Internals	Rating	Worksheet	Perform	ance	Flowshee	t Reactions	Dynamics		
Design	S	ipecs Sumn	nary —									
Connections				Spe	ified Value	Active	Curre	ent Fix	ed/Range	Prim/Alt	Lower	Upper
Nonitor		Reflux Ra	atio		1.500	ম	7		Fixed	Primary	<empty></empty>	<empty></empty>
pecs		Reflux Rate Btms Prod Rate			<empty></empty>	Г			Fixed	Primary	<empty></empty>	<empty></empty>
ubcaolina					<empty></empty>				Fixed	Primary	<empty></empty>	<empty></empty>
lotes		Distillate	Rate		<empty></empty>				Fixed	Primary	<empty></empty>	<empty></empty>
		Comp Re	ecovery		0.9900	R	V		Fixed	Primary	<empty></empty>	<empty></empty>
		Tempera	ture		350.0				Fixed	Primary	<empty></empty>	<empty></empty>

Design Parame	eters Side Ops Internals Rating Wo	rksheet Performance Flowsheet	Reactions Dynamics		
Worksheet		D-ETH_BOT	D-BUT_TOP	D-BUT_BOT	-
Conditions	COZ	0.0000	0.0000	0.0000	
Properties	Nitrogen	0.0000	0.0000	0.0000	
Compositions	Methane	0.0000	0.0000	0.0000	
PF Specs	Ethane	0.0738	0.0877	0.0000	
	Propane	0.4947	0.5880	0.0000	
	i-Butane	0.0988	0.1172	0.0008	
	n-Butane	0.1768	0.2069	0.0166	
	i-Pentane	0.0667	0.0001	0,4200	
	n-Pentane	0.0545	0.0000	0.3436	
	n-Hexane	0.0197	0.0000	0.1240	
	n-Heptane	0.0112	0.0000	0.0705	
	n-Octane	0.0033	0.0000	0.0209	
	n-Nonarie	0.0005	0.0000	0.0031	ł
	n-Decane	0.0001	0.0000	0.0005	
	n-C11	0.0000	0.0000	0.0001	
	n-C12	0.0000	0.0000	0.0000	
	n-C13	0.0000	0.0000	0.0000	
	n-C14	0.0000	0.0000	0.0000	
	n-C15	0.0000	0.0000	0.0000	
	n-C16	0.0000	0.0000	0.0000	
	n-C17	0.0000	0.0000	0.0000	1

HAZOP ANALYSIS

Hazard and Operability study (HAZOP) is a procedure that systematically and critically examines the operability of a process. Its application to an operating plant gives indication of potential hazards that arise because of deviation from intended design. At the flow-sheet stage, it can be used for preliminary examination of the design and for a detailed study at a later stage.

An Operability study examines the design line by line, and vessel by vessel and uses guidewords to produce thought about the way deviances from planned design can lead to hazardous situations.

Keywords

The following are some of the keywords that are used to carry out HAZOP studies.

No	Keyword	Explanation								
1	Intentions	It defines how a specific part of the process was planned								
		to operate.								
2	Deviations	These are the aberrations from the designer's intention								
		and are detected using guide words.								
3	Causes	These are the reasons that triggered deviations. A								
		deviation is treated as meaningful only if it has a realistic								
		cause.								
4	Consequences	Following results from occurrence of meaningful								
		deviances.								
5	Hazards	Consequences that can bring about damage or injury.								
6	Guide words	These are the words that qualities or quantifies the								
		intention to guide and bring about the thought process so								
		that deviation can be discovered.								

Table 28 HAZOP keywords

Guide Words

Following are some of the guide words that are used most often in HAZOP analysis.

No	Keyword	Explanation
1	No	Negation of the design intent
2	Less	Quantitative decrease
3	More	Quantitative increase
4	Part of	As well as
5	As well as	Logical opposite of the intent
6	Reverse	Reverse
7	Other than	Complete substitution

Table 29 guide words

Guide words application covers both general (react, transfer) and specific (pressure, temperature) parameters. When dealing with a design intention involving a complex set of interrelated plant parameters (e.g., temperatures, reaction rates, composition, or pressure), it may be better to apply the whole sequence of guide words to each parameter individually than to apply each guide word across all the parameters as a group.

Procedure

HAZOP study is usually conducted by a team of experienced professionals, who have complementary skills and comprehensive understanding of the technique and led by an experienced leader.

The team carries out comprehensive study of the process vessel by vessel, and line by line, and then use guide words to detect any hazards. Extent of information depends upon the information required for study.

Description of process and process flowsheets can be used for the preliminary study of Plant. For a detailed, final, study of the design, the flowsheets, piping, and instrument diagram, equipment specifications and layout drawings would be needed.

Sequence of HAZOP study

Flowing are the steps used to conduct HAZOP study:

- 1. Selection of the vessel
- 2. Explanation of intention of vessel and its line
- 3. Selection of a line
- 4. Application of guide word
- 5. Development of meaningful cause
- 6. Examination of possible causes
- 7. Examination of possible consequences1
- 8. Detection of hazards
- 9. Making of suitable records

Study	ers	Guide Word	Po	ssible	Po	ssible	Ac	tion Required
Node	Paramet		Ca	uses	0	nsequences		
		No	1.	Line	1.	No	1.	Install no
				blockage		separation		flow alarms.
				for			2.	Check flow
				rupture				meters
ne								regularly
let li	Ň	High	1.	Valve	1.	Separator	1.	Install
ul ba	Flo			fully		will overflow		alarms to
Fee				opened		due to		prevent
						accumulation		flooding of
								separator
							2.	Regularly
								monitor the

9.1 Three Phase Separator (HP, MP, LP, Inlet Separator)

						inlet flow
						rates
	High	1. Air cooler	1.	Undesired	2.	Install
:ure		not cooling		separation		temperature
Temperat		properly		achieved		alarm
	High	Outline	1.	Improper	1.	Install high
	-	blockage of		separation		pressure
		the three	2.	Vessel may		alarm
		phase		leak or	2.	Install PSVs'
		separator		explode		
sure	Low	Leakage in	1.	Improper	1.	Install low
Press		the lines		separation		pressure
_			2.	Low Pressure		indicators
				towards	2.	Regular
				downstream		maintenance
				equipment's		to check
						leakage

Table 30 3-phase separator HAZOP

9.2 Crude Stabilization column

Study		Guide word	Possible Cause	Consequence	Action
Node	Parameter				
		More	1. Level alarm	1. No	1. High level
			failure	production to	alarm with
			2. Oil line to	storage	greater
			storage	2. Column	sensitivity.
			blocked	flooding	
Inlet	le	LESS	1. Level alarm	1. Gas to storage	1. Low level
eed	Lev		failure	release	alarm be
ш.			2. Low oil	2. No feed to	installed
			input	heat	with greater
				exchanger	sensitivity.
				3. Poor crude	
				stabilization.	

 1	1						
	MORE	1.	Bypass	1.	Poor crude	1.	Pressure
			open		stabilization		alarm
		2.	Increased	2.	Damage to		installed
			temperatu		compressors	2.	PSV
			re		·		installed
				3.	Pressure		
					increase	3.	Explosive
				4.	Pipeline		alarm
					fracture		
				5	Gasleakage		
				5.	Oas leakage		
				6.	Fire and		
					explosion		
					hazard		
3	LESS	1.	Low oil	1.	Column disks	1.	Install flow
Flo			flow from		not working		alarm for
			CF		properly		crude input
			separator	2	Poor		flow
				2.	stabilization	2	Install
					Stabilization	Ζ.	prossuro
							alarm
							didi ili.
	REVERSE	1.	Pipeline	1.	Pipeline	1.	Explosive
			fracture		fracture		alarm.
				2	0.1 .11	2	
				2.	Oil spill	2.	
				3.	Fire and		installed
					explosion		
1	1						
					hazard.		

	NO	1.	No oil flow	1.	No	1.	Install flow
			from CF		production		alarm at
			separator				feed point.
		2.	Pipeline to			2.	Install flow
			storage				alarm at exit
			blocked				point.
	MORE	1.	Column	1.	No crude	1.	Pressure
			tray disks		stabilization		alarm
			clogged	2.	Pipeline		installed
		2.	Output		fracture	2.	PSV checked
			line	3.	Oil spill		and
			clogged	4.	Fire and		installed
sure					explosion	3.	Explosive
Pres					hazard		alarm
	LESS	1.	Pipeline	1.	Pipeline	1.	Low
			fracture		fracture		pressure
				2.	Oil spill		alarm
				3.	Fire and		installed
					explosion	2.	Explosive
					hazard		alarm
	MORE	1.	Air cooler	1.	More crude	1.	Temperatur
re			not		vapor in gas		e sensitive
eratu			working		stream		alarm be
edma			properly	2.	Increased		installed
Te					pressure		

	LESS	1.	Air cooler	1.	Poor crude	1.	Temperatur
			flow valve		stabilization		e sensitive
			failure				sensor
							should be
							installed.
	NO	1.	Fractured	1.	Oil spill	1.	Install flow
			vessel	2.	Fire hazard		sensor and
		2.	Vessel	3.	Explosion		level sensor
J			open to		hazard		in vessel
Imei			atmospher			2.	Allow only
ntair			e				qualified
S							personal to
							do
							maintenanc
							e work

9.3 2-phase separator

Study	L	Guide Word	Possible	Possible	Action Required
Node	ramete		Causes	Consequences	
	Ран				
		No	1. Inlet valve	1. No separation	1. Regular
			closed		maintenanc
Inlet	3		2. Leakage in		e of linings
eed	Flo		the lining		2. Ensure valve
L.					is
					operational

	High	1.	Valve fully	Sep	oarator will	1.	Install
			opened	ove	erflow due to		alarms to
				асс	cumulation		prevent
							flooding of
							separator
						2.	Regularly
							monitor the
							inlet flow
							rates
	Low	1.	Valve	De	sired output	1.	Install
			opening is	un	attained		flowmeters
			below				to
			required				accurately
		2.	Leakage in				measure
			the linings				flow rates
	High	1.	Blockage in	1.	Improper	1.	Install high
			pipe		separation		pressure
		2.	High	2.	Separator		alarms
			temperatu		may leak or	2.	Install PSV'S
			re leading		explode		
			to high				
sure			pressure				
Press	Low	Lea	akage in the	1.	Improper	1.	Install low
		line	es		separation		pressure
				2.	Low pressure		indicators
					towards	2.	Regular
					downstream		maintenanc
					equipment		e to check
							leakages.
 1							

Table 32 2-Phase Separator HAZOP

9.4 Distillation Column (De-Ethanizer, De-Butanizer, De-Propanizer)

Study	L	Guide	Possible	Possible	Action Required
Node	Paramete	Word	Causes	Consequence	
Feed Inlet	Flow	No	 Pipe blockages Control valve shut Valves fail Tube leakages and blocking Pipe 	 Column dry out Possible dangerous concentration No operation No operation 	 Install low level alarm Check maintenanc e procedure and schedule Make bypass Emergency plant shut down Install low
			 blockages 2. Control valve shut 3. Valves fail 4. Tube leakages and blocking 	out 2. Changes in product quality	 level alarm 2. Check maintenanc e procedure and schedule 3. Make bypass 4. Emergency plant shut down

1		_						_
	More	1.	Control	1.	Flooding in	1.	Install high	
			valve is		the column		level alarm	
			fully	2.	Changes in	2.	Install	
			opened		product		control	
		2.	Increase		quality	3.	Check	
			flow	3.	Temperature		maintenanc	
			capacity		decrease		e procedure	
		3.	Control	4.	Rise in		and	
			valve		bottom		schedule	
			failure					
	High	1.	Output	2.	Over pressure	4.	Install high	-
			blockages		in column		level alarm	
				3.	Condensed	5.	Check	
					liquid flow		maintenanc	
					back to		e procedure	
					distillation		and	
							schedule	
le/								
Lev	Low	1.	Pipe	1.	Level	1.	Install low	
			partial		decrease in		level alarm	
			clogged		the level	2.	Check	
			and	2.	The valve		maintenanc	
			leakage		closed		e procedure	
				3.	Back flow of		and	
					material		schedule	
						3.	Install valve	

	High	1.	Heater	1.	Increased	1.	Install high
			control		vapor content		temperatur
			failure	2.	Increased		e alarm
à		2.	Heaters		pressure	2.	Check
ratur			operating	3.	More crude		maintenanc
mpe			at more		vapor in top		e procedure
Tei			than		product		and
			required				schedule
			energy				
	Low	1	Heater no	1	Poor	1	Install low
	2010	1.	working at	1.	distillation	1.	temperatur
			ontimized		senaration		e alarm
			value		Separation		
			Value	2.	Tops product	2.	Check
					condensed		maintenanc
					into bottom		e procedure
					product		and
							schedule

Table 33 Distillation Column HAZOP

9.5 Heat Exchanger

Study Node	Parameter	Guide Word	Causes	Consequences	Action
ne		No	1) Cooling	1) Desired	Run
et Li	2		water valve	temperate is not	Maintenance
	Floy		blocked	achieved on shell	procedures to
Feed			completely	side fluid	remove any

		2) Valve closed		blockages.
	Less	1) Blockage of	1) Desired	Indication by
		pipe	temperate is not	higher
			achieved on shell	temperature
			side fluid	alarm.
				Install backup
				inlet for cold
				water
	More	1) Cooling	Decrease in	Indication by low
		water valve	process fluid	temperature
		failure	temperature	alarm.
			beyond required	
	Less	1) Reduced	1)Higher outlet	1)Check cold
		flowrate of	temperature on	water valve for
		process fluid	shell side.	any problems
		2) More cold-	2) Tubes and	2) Check purge
		water flowrate	baffles can be	stream, line for
		than required	corroded from	any blockages
0			outside by hot	
ature			fluid	
mpe	More	1)Fouling in	1)Higher outlet	1)Maintenance
Те		exchanger	temperature on	of Heat
		2) Insufficient	shell side.	exchanger to
		cold-water	2) Tubes and	remove any
		flowrate	baffles can be	fouling
			corroded from	2)Check cold
			both sides	water supply
				valve and line for

					blockages
	a	More	1) Failure of	Tubes can burst	Indication by
	ssur		process fluid		higher pressure
	Pre		valve		alarm.
		As well as	1)Tube	1) Shell and tube	1)Perform
			Leakage	side fluids get	maintenance of
	tion		2)Corrosion	mixed.	tubes
	posit			2) Corroded tube	2)Replace tubes
	Com			material	in case of
	•			contaminates	corrosion
				shell side fluid.	

Table 34 Heat Exchanger HAZOP

9.6 Potential process modifications

The potential process modifications resulting from this study are the following:

- Install Flow meter with high/ flow alarm on all the stream
- Check and update coil of heat exchanger
- Install High Pressure Alarm and PSV
- Install Filter in Pipes to ensure there is no plugging
- Install a high temperature shutdown system (this system would automatically shut down the process in the event of a high equipment temperature)
- Install a high pressure shut down system
- Use welded pipes instead of flanged pipes

As stated above, the objective of this project was to deliver a simulation model of a gas processing plant with the following criteria's:

- 1. Methane recovery 90%
- 2. Propane recovery 96% and
- 3. Butane recovery 99%

We have developed a model that is able to sustain the high pressure of the wells without damaging the components and simultaneously installed the equipment in such an order that there is no over-pressure on the components. The addition of multiple bypasses is done to reduce the duty of the equipments thereby reducing the overall cost of the plant. Similarly multiple recycle lines are introduced to enhance the recovery of the different components present in our feed.

Some of the design specifications we have chosen was to introduce 3 separators with reducing pressures instead of a single separator. This was done to firstly, ensure significant hold up time was present to attain adequate separation and secondly, to reduce the load on the separators. Another design alteration that we carried out was the absence of sour gas treating unit/ H2S removal unit and the mercury guard bed/removal unit. This is because since these components are absent from the reservoir and would only result in adding to the overall plant cost and the operating cost without significant usage.

We have also used the molecular sieves bed dehydration unit instead of more preferred glycol dehydration unit largely because the molecular sieves bed ensures better separation efficiencies and also ease regeneration method. Further down the line, the installation of debutanizer is done for recovering LPG from the remainder to enhance gains in profits.

The plant consists heavily of 4 repeated equipments:

- 1. 3-phase separators.
- 2. Distillation columns.
- 3. 2-phase separators.
- 4. Compressors.

The developed model was able to deliver the desired results and was not overly costly for installation and maintenance. No chemical reactions were carried out in the process and the entire plant is operation only on physical separation of the crude to deliver Natural gas, LPG, propane (if needed hence depropanizer is installed) and crude from the crude stabilization column.

Results

- Methane recovers 91% of the total reservoir feed.
- The LPG formed 45% propane and 49% butane (iso-butane and n-butane) which is commercially viable.
- The payout period of the plant comes out to be 3.73 years which is acceptable considering the vast plant cost and running cost.

- [1] Khan, Mohd Atiqueuzzaman; Maruf, ASM, Optimizing Effective Absorption during Wet Natural Gas Dehydration by Tri Ethylene Glycol IOSR Journal of Applied Chemistry (IOSRJAC) ISSN : 2278-5736 Volume 2, Issue 2 (SepOct. 2012), PP 01-06
- [2]. Kidnay, A. J.; Parrish, W. R. Fundamentals of Natural Gas Processing; Taylor and Francis: Boca Raton, 2006
- [3]. Elliot, D.; Qualls, W. R.; Huang S.; (Roger) Chen J. J. Benefit of Integrating NGL Extraction and LNG Liquefaction Technology. AIChE Spring National Meeting, 5th topical conference on Natural Gas Utilization (TI) Session 16cGas; Conoco Phillips Co.: Houston, TX, 2005.
- [4]. Sheffield, J. A. Offshore LNG Production, How to Make it Happen. Business Brief ing: LNG Review; Touch Oil and Gas: London, 2005.
- [5]. Sohbi.B., Meakaff.M., Emtir.M., and Elgarni M, "The using of mixing amines in an industrial gas sweetening plant", Academy of Science, Engineering and Technology, vol 31, pp 1-22007.
- [6]. H. K. Abdel-Aal , Mohamed Aggour and M. A. Fahim , "Petroleum and Gas Field Processing", King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia and Kuwait University Safat, Kuwait, pp. 264, 266, 306, 2003.
- [7]. Natural Gas Dehydration Unit With TEG, Available at http://www.tegdehydration.prosim.net/
- [8]. M. Balat, "World natural gas (NG) reserves, NG production and consumption trends and future appearance", Energy sources, vol. 27, pp. 921-929, 2005.
- [9]. S. Mokhatab & W. A. Poe, "Handbook of natural gas transmission and processing. Gulf Professional Publishing", 2012.
- [10]. M. Balat & N. Ozdemir, "Turkey's oil and natural gas pipelines system", Energy sources, vol. 27, pp. 963-972, 2005
- [11] A. Demirbas, "Fuel properties of hydrogen, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for transportation", Energy Sources, vol. 24, pp. 601-610, 2002.
- [12]. Sinnott, R.K.C.J.M.R.J.F., *Coulson & Richardson's chemical engineering. Vol. 6, Vol. 6.* 2005, Oxford: Elsevier Butterworth-Heinemann.

- [13]. Kern, D.Q., Process Heat Transfer. 2011: McGraw-Hill.
- [14]. [Gulf Professional Publishing] Saeid Mokhatab, William A. Poe, John Y. Mak -Handbook of Natural Gas Transmission and Processing Principles and Practices (2019, Gulf Professional Publishing).