
FINAL YEAR PROJECT REPORT

EGOCENTRIC IMAGE CAPTIONING

By

A/C ABD US SAMMI OZAM

Pak/20095011, 95(B) EC

ADVISOR

WING COMMANDER NAYYER AAFAQ

CO-ADVISOR

ASSISTANT PROFESSOR DR IJAZ KHAN

COLLEGE OF AERONAUTICAL

ENGINEERING

PAF Academy, Asghar Khan, Risalpur

February 13, 2024

RESTRICTED

EGOCENTRIC IMAGE CAPTIONING

By

A/C ABD US SAMMI OZAM

Pak/20095011, 95(B) EC

ADVISOR

WING COMMANDER NAYYER AAFAQ

CO-ADVISOR

ASSISTANT PROFESSOR DR IJAZ KHAN

Report submitted in partial fulfillment of the requirements for the degree of Bachelors of Engineering

in Avionics, (BE Avionics)

In

COLLEGE OF AERONAUTICAL ENGINEERING

PAF Academy, Asghar Khan, Risalpur

February 13, 2024

RESTRICTED 2

RESTRICTED

Approval
It is certified that the contents and form of the project entitled “Egocentric Image Captioning” submitted

by Aviation Cadet Abd Us Sammi Ozam have been found satisfactory for the requirement of the

degree.

Advisor: Wg Cdr Dr. Nayyer Aafaq

Signature:

Date:

Co-Advisor: Asst Prof Ijaz Khan

Signature:

Date:

RESTRICTED 3

RESTRICTED

Dedication
I want to take this opportunity to express my sincere gratitude to all those who have played a significant

role in making this project possible. I would like to extend a special thanks to my loving family and my

dedicated advisor, whose unwavering support and guidance have been instrumental in my academic

success. Without their encouragement and support, I would not have been able to reach this point. To

my parents, in particular, I owe a debt of gratitude for their selfless sacrifices, endless encouragement,

and unwavering belief in me. This report is a tribute to them and all those who have contributed to my

journey, and I am honored to share this achievement with them.

RESTRICTED 4

RESTRICTED

Acknowledgement
I express my sincere gratitude to Allah Almighty, who bestowed upon me the strength and determination

to complete this project to the best of my abilities. My parents, whose unfailing love, unrelenting

support, and steadfast prayers have been the compass in my life, deserve the utmost gratitude. Without

their support, this accomplishment would not have been possible. I am immensely grateful to my

advisor, Wg Cdr Dr. Nayyer Aafaq, for his constant guidance, invaluable feedback, and unwavering

support. His encouragement and mentorship have been instrumental in shaping my research skills

and intellectual growth. I also extend my heartfelt thanks to my co-advisor, Dr. Ijaz Khan, for his

valuable input and for sharing his expertise in the field. I want to acknowledge the invaluable assistance

of Lab Engineer Zahoor, Avn Cdt Abdullah Nawaz, and Avn Cdt Aqib, who provided me with their

support and help whenever I needed it the most. I am grateful to all my teachers and colleagues who

have contributed to my academic and professional growth in various ways. Finally, I would like to

acknowledge the support of my friends and family members, who have been there for me throughout

my academic journey. Thank you all for your support, encouragement, and motivation.

RESTRICTED 5

RESTRICTED

Abstract
Egocentric image captioning is the process of automatically generating descriptive text for images

captured from a first-person perspective. This specialized task involves leveraging techniques from deep

learning, computer vision, and natural language processing to build a model capable of comprehending

the wearer’s viewpoint and articulating it in a human-like language. The primary objective of

egocentric image captioning is to offer an alternative means for human-machine interaction, especially

catering to the visually impaired. Additionally, it aims to enhance the performance of image

search engines by providing more contextually relevant and personalized results based on the user’s

perspective. In recent years, advancements in deep learning have significantly propelled egocentric

image captioning into the forefront of research. Various approaches and evaluation metrics are

actively explored to improve the accuracy and diversity of generated captions. Unlike general image

captioning, egocentric image captioning demands a nuanced understanding of the wearer’s visual

experiences and the ability to articulate coherent and contextually relevant sentences. Typically,

egocentric image captioning models employ a combination of Convolutional Neural Networks (CNNs)

to extract visual features from the wearer’s point of view. Recurrent Neural Networks (RNNs)

or transformers are then employed to generate captions that reflect the wearer’s interactions and

observations. Addressing challenges such as ensuring both accuracy and diversity in generated

captions is crucial. Researchers have introduced techniques like attention mechanisms to enhance the

quality and variety of generated egocentric captions. The evaluation of egocentric image captioning

models involves standard automatic metrics such as BLEU 1-4, METEOR, ROUGE, and CIDEr. These

metrics gauge the similarity between the generated captions and ground-truth captions provided by

human annotators. However, considering the unique perspective of egocentric data, human evaluation

remains vital to comprehensively assess the quality of generated captions. Egocentric image captioning

holds promise across various applications, including enhancing accessibility for visually impaired

individuals, improving image search and retrieval based on the wearer’s preferences, and augmenting

user experience in diverse multimedia applications. Despite considerable progress, challenges persist,

such as addressing long-term dependencies, enhancing diversity in generated captions, and developing

models proficient in creating captions in multiple languages within the egocentric context.

RESTRICTED 6

RESTRICTED

Contents

List of Figures 3

List of Tables 3

1 Introduction to the Project 4

1.1 Project Title . 4

1.2 Project Description . 4

1.3 Scope of the Project . 4

2 Literature Review 5

2.1 Retrieval-based image captioning . 5

2.2 Template-based image captioning . 5

2.3 Reinforcement Learning . 6

2.4 Pre-trained Language Models . 7

3 Preliminaries 8

3.1 Encoder Decoder Architecture . 8

3.2 Word Embeddings . 9

3.3 Optimizers . 10

3.3.1 Adam . 10

3.3.2 Adadelta . 10

3.3.3 AdaGrad . 11

3.3.4 Stochastic Gradient Descent . 11

3.3.5 RMSProp . 11

3.4 Activation Functions . 12

3.4.1 RELU . 12

3.4.2 Softmax . 12

3.4.3 Tanh . 13

3.4.4 Sigmoid . 13

3.4.5 Leaky RELU . 14

3.5 Metrics . 14

3.5.1 Accuracy . 14

3.5.2 Loss . 14

RESTRICTED 1

RESTRICTED

3.5.3 Validation Accuracy . 14

3.5.4 Validation Loss . 15

3.6 Evaluation Metrics . 15

3.6.1 BLEU . 15

3.6.2 METEOR . 15

3.6.3 CIDEr . 16

3.6.4 SPICE . 16

3.6.5 ROUGE . 17

3.6.6 SPIDEr . 17

3.6.7 WMD . 17

4 Methodology 18

4.1 Project Approach . 18

4.2 Step 1: Dataset Creation . 18

4.3 Step 2: Caption Annotation . 19

4.4 Step 3: Image Pre-processing . 20

4.5 Step 4: Text Pre-processing . 21

4.6 Step 5: Choose Word Embedding . 21

4.7 Step 6: Multimodal Model . 21

4.8 Step 7: Training the Model . 23

5 Training Results 24

6 Quantitative Results 26

7 Qualitative Results 28

8 Challenges 30

9 Applications 31

10 Conclusion and Recommendations 33

10.1 Conclusion . 33

10.2 Recommendations . 33

A Program Code 36

A.1 Code for Scenario 01: Image and Text Pre-processing . 36

A.2 Code for Scenario 02: Image and Text Mapping . 39

RESTRICTED 2

RESTRICTED

A.3 Code for Scenario 03: Model Architecture . 41

A.4 Code for Scenario 04: Training The Model . 51

A.5 Code for Scenario 05: Creating a Caption Generation File . 54

A.6 Code for Scenario 06:Model Evaluation . 55

A.7 Code for Scenario 07: Graphical User Interface with Sound Implementation 57

Bibliography 62

List of Figures
1 ReLU Activation Function (17) . 12

2 softmax Activation Function (17) . 12

3 Tanh Activation Function (17) . 13

4 Softmax Activation Function (17) . 13

5 Leaky RELU Activation Function (17) . 14

6 Methodology . 18

7 Egocentric Images Dataset . 19

8 Captions Annotations . 20

9 Model Architecture . 22

10 Loss and Accuracy Curve first epoch . 24

11 Loss and Accuracy Curve second epoch . 24

12 Training Loss . 25

13 Training Loss . 25

14 Caption Generated for First Image . 28

15 Caption Generated for Second Image . 28

16 Caption Generated for Fourth Image . 29

17 Caption Generated for Fifth Image . 29

List of Tables
1 Dataset Split . 19

RESTRICTED 3

RESTRICTED

Chapter 1

1 Introduction to the Project

1.1 Project Title

The title of the project is ”Egocentric Image Captioning”.

1.2 Project Description

Egocentric image captioning is a sophisticated project focused on developing a deep-
learning model capable of generating coherent natural language descriptions for images
captured from a first-person perspective (1). The primary objective is to train a
neural network that can effectively articulate the details and context of an image
in a manner resembling human-generated sentences. Similar to automatic image
captioning, this undertaking involves intricate processes such as pre-processing the
image data, formulating and training the neural network, and assessing the model’s
efficacy through metrics like the BLEU score. The applications of egocentric image
captioning are diverse, encompassing the creation of descriptive content for visually
impaired individuals, augmenting search engine functionalities, and refining communi-
cation between humans and robots (2).

1.3 Scope of the Project

Egocentric image captioning projects encompass a wide scope with diverse applications.
A key objective is to empower computers to comprehend the visual content from a first-
person perspective and generate human-like natural language descriptions. The potential
applications of egocentric image captioning are manifold, including aiding visually
impaired individuals (3), enhancing the richness of online content with more immersive
descriptions, and creating more intuitive interfaces for human-robot interaction. Additio-
nally, this technology holds promise in sectors like e-commerce, advertising, and
education. However, the development of accurate and dependable egocentric image
captioning systems necessitates substantial advancements in the realms of computer
vision, natural language processing, and deep learning. Hence, the scope of these
projects is extensive and demands significant advancements to realize their full potential.

RESTRICTED 4

RESTRICTED

Chapter 2

2 Literature Review

2.1 Retrieval-based image captioning

Retrieval-based image captioning: Retrieval-based methods for captioning images were

popular in earlier research. Given a query image, retrieval-based methods generate

a caption for it by selecting one or more sentences from a pre-defined sentence pool.

The generated caption may consist of a previously written statement or one that was

put together using the recovered sentences (4). There are clear drawbacks to retrieval-

based image captioning techniques. These techniques transmit properly constructed

human-written sentences or phrases to create descriptions for image queries. Although

the resulting outputs are frequently grammatically sound and fluid, limiting visual

descriptions to preexisting words prevents them from adapting to unique object combina-

tions or inventive scenarios. In other circumstances, created descriptions might even be

irrelevant to the contents of the images.

2.2 Template-based image captioning

Another approach that is frequently used in early image captioning work is template

based. Image captions are created using template-based methods using a syntactically

and semantically limited process. Typically, a predetermined set of visual concepts must

be detected to use a template-based method to generate a description for an image. Then,

sentences are constructed using sentence templates, particular language grammar rules,

or combinatorial optimization algorithms that connect the detected visual concepts (4).

Syntactically proper sentences can be produced by template-based image captioning,

and these descriptions are typically more accurate representations of the contents of the

images than retrieval-based ones. The use of template-based approaches has drawbacks,

though. There are restrictions on coverage, creativity, and complexity of generated

sentences because description generation under the template-based framework is strictly

RESTRICTED 5

RESTRICTED

limited to image contents recognized by visual models, with the typically small number

of visual models available. Additionally, using rigid templates as the preceding sentence

structures will make generated descriptions seem less natural compared to captions that

humans wrote (5).

2.3 Reinforcement Learning

Reinforcement learning is a technique used in image captioning to train models to

generate captions through a trial-and-error approach. It involves using an agent to learn

how to maximize a reward signal based on the quality of the generated captions (6). In

reinforcement learning-based image captioning, the agent interacts with an environment

by generating captions and receiving feedback in the form of a reward signal. The agent

learns to optimize the captioning process by trying different actions and observing the

resulting reward signal. The reward signal can be based on metrics such as caption

quality, diversity, and relevance. One approach to reinforcement learning-based image

captioning is to use a framework called Policy Gradient. The Policy Gradient framework

involves training an agent to learn a policy function that maps the input image to a

distribution over possible captions. The agent then samples from this distribution to

generate captions, and the quality of the generated captions is evaluated using a reward

function. The agent learns to optimize the policy function by adjusting the weights of the

network to maximize the expected reward. Another approach to reinforcement learning-

based image captioning is to use a framework called Q-Learning (7). In this approach,

the agent learns a Q-function that maps the input image and caption to a Q-value, which

represents the expected reward of generating that caption for that image. The agent then

selects the caption with the highest Q-value, and the quality of the generated captions

is evaluated using a reward function. The agent learns to optimize the Q-function by

adjusting the weights of the network to maximize the expected reward. Reinforcement

learning-based image captioning has shown promising results in generating diverse and

contextually relevant captions. However, it requires a large amount of training data

and can be computationally expensive (7). Additionally, the quality of the generated

RESTRICTED 6

RESTRICTED

captions depends heavily on the reward function used, which can be difficult to define

and optimize.

2.4 Pre-trained Language Models

Pre-trained language models have been successfully used in a variety of natural language

processing tasks, including image captioning. In this technique, a pre-trained language

model is fine-tuned on a specific image captioning dataset (8). The idea is to leverage

the pre-existing knowledge in the language model and adapt it to the specific task of

image captioning. One popular pre-trained language model used in image captioning is

the Bidirectional Encoder Representations from Transformers (BERT) (8). BERT is a

transformer based architecture that uses a self-attention mechanism to learn contextual

relations between words in a sentence. The pre-training is done on a large text corpus,

and the resulting model can be fine-tuned for various downstream tasks, including image

captioning. To use BERT for image captioning, the image features are first extracted

using a pre-trained CNN. These features are then combined with the pre-trained BERT

model to generate a textual description of the image. The CNN features are used as the

initial input to the BERT model, and the model is fine-tuned on the image captioning

dataset to generate a caption that describes the image. Another popular pre-trained

language model used in image captioning is the Generative Pre-trained Transformer 2

(GPT-2) (8). GPT-2 is a transformer-based architecture that uses a similar self-attention

mechanism as BERT but is trained in a generative manner. GPT-2 can be fine-tuned

for various downstream tasks, including image captioning. In summary, pre-trained

language models have been successfully used in image captioning by leveraging the

pre-existing knowledge of the model and fine-tuning it on a specific image captioning

dataset. This approach has shown promising results in generating more accurate and

coherent image descriptions.

RESTRICTED 7

RESTRICTED

Chapter 3

3 Preliminaries

3.1 Encoder Decoder Architecture

Image captioning frameworks commonly use the Encoder-Decoder architecture (9),

where the encoder part involves CNNs like ResNet-152, VGG-16, InceptionResNet,

GoogleNet, etc., to extract features from input images. These features are then fed

into the language model of the decoder to generate a sequence of words. The decoder

typically includes recurrent networks like LSTM and GRU. The data is encoded into

the desired format, such as transforming words from a spoken language into a one-

dimensional vector known as the feature vector (10). Recurrent neural networks are

stacked to create the encoder (11), which can comprehend the context and temporal

relationships of sequences. The output of the encoder, the feature vector, represents

the entire meaning of the input sequence in a one-dimensional vector. The length

of the vector depends on the number of cells in the RNN. The decoder transforms

the one-dimensional vector into the output sequence, which is the English phrase

(11). It is constructed with RNN layers and a dense layer to predict the English term

(10). One of the key features of this model is its ability to handle different input

and output sequence lengths, enabling its use in applications such as question-and-

answer sessions or video captioning. However, this straightforward encoder-decoder

approach has a significant limitation of condensing all data into a one-dimensional

vector (5), which can be challenging for lengthy input sequences. Recent advancements

in image captioning research have focused on improving the encoder-decoder model by

incorporating attention mechanisms, pre-trained language models (8), and reinforcement

learning. These techniques have shown promising results in generating more accurate

and natural language descriptions for images.

RESTRICTED 8

RESTRICTED

3.2 Word Embeddings

In image captioning, word embeddings play a crucial role in representing the semantics

of words in a continuous vector space. Word embeddings capture the meaning of words

by encoding them as dense and low-dimensional vectors, which are easier to handle

and process than one-hot encoded vectors (12). The word embeddings are trained using

large amounts of text data, such as news articles or books, and the knowledge captured

from this training is then transferred to the image captioning task (13). During image

captioning, the deep learning model maps the visual features of an image to a sequence

of word embeddings, which are then decoded to generate a caption. The use of word

embeddings allows the model to better capture the semantic relationships between words

and generate more accurate and coherent captions. Furthermore, word embeddings can

also help deal with the issue of out-of-vocabulary words, where the model has not seen

a particular word before. By mapping the word to a vector in the embedding space, the

model can still generate meaningful captions even for previously unseen words (12).

Overall, word embeddings play a critical role in image captioning and have greatly

improved the performance of deep learning models in generating accurate and natural

language descriptions of images. Word embeddings are distributed representations of

words in a high-dimensional space that captures the semantic meaning of words. There

are several popular types of word embeddings, including fastText, GloVe, Word2Vec,

and BERT (13).

• FastText: FastText (13) is a method developed by Facebook that uses characterlevel

n-grams to represent words, enabling it to handle rare words and misspellings better

than other methods.

• GloVe: GloVe (13) is a method that combines word co-occurrence statistics with a

global matrix factorization technique to obtain embeddings that capture both local

and global context.

• Word2Vec: Word2Vec (13) is a popular method that uses a neural network architecture

to learn embedding based on the surrounding context of each word.

RESTRICTED 9

RESTRICTED

• BERT: BERT (12) which stands for Bidirectional Encoder Representations from

Tran-

sformers, is a transformer-based model that learns contextualized embedding by

considering the entire sentence or document.

Each of these types of word embedding has its strengths and weaknesses, and the
choice of which one to use will depend on the specific needs of the task at hand.

3.3 Optimizers

An optimizer is a critical component of training neural networks, as it influences how
the network learns and updates its parameters, such as weights and biases (14). The
primary goal of an optimizer is to minimize the loss function by iteratively updating
the network’s parameters based on the gradients computed from the back propagation
algorithm. There are several types of optimizers available, each with its own unique
approach to minimizing the loss function (15). For instance, some optimizers use
adaptive learning rates to adjust the step size of the updates, while others employ
momentum to accelerate convergence. Choosing the right optimizer for a specific task is
crucial as it can impact the training speed, convergence, and generalization performance
of the model. Some popular optimizers used in image captioning include:

3.3.1 Adam

Adam (Adaptive Moment Estimation) optimizer combines the advantages of AdaGrad
and RMSProp (14). It uses adaptive learning rates to update the model parameters,
which helps to achieve faster convergence and better generalization (15). Adam is a
popular optimizer used in image captioning because of its efficiency and robustness. It
offers benefits that include:

• Easy to implement

• Low computer resource requirement

• Low Memory requirement

3.3.2 Adadelta

Adadelta optimizer uses a moving average of the squared gradients to adapt the learning

RESTRICTED 10

RESTRICTED

rate for each parameter (14). Adadelta is particularly useful in scenarios where SGD has
difficulty converging. The main advantage of AdaDelta is that we do not need to set a
default learning rate but the drawback is that it requires more computational power (15).

3.3.3 AdaGrad

Adaptive Gradient Descent (AdaGrad) is an optimizer that adapts the learning rate for
each parameter based on the historical gradient information (14). It performs well on
sparse datasets but can struggle with non-convex optimization problems. The drawback
is that if the neural network is deep the learning rate becomes very small number which
will cause dead neuron problem (15). It offers benefits that include:

• With iterations, the learning rate changes adaptively

• It is well capable of training smaller data as well

3.3.4 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the most basic optimizer that updates the model
parameters in the direction of the negative gradient of the loss function (14). It works
well for small datasets but can struggle with larger datasets due to its slow convergence
(15). It offers benefits that include:

• Frequent updates of model parameter

• Requires less Memory

• Allows the use of large data sets as it has to update only one example at a time

3.3.5 RMSProp

Root Mean Square Propagation (RMSProp) is an optimizer that uses the moving average
of the squared gradients to adapt the learning rate for each parameter (14). It helps to
prevent the learning rate from becoming too large or too small and can be effective in
optimizing deep neural networks. Here the learning rate gets adjusted automatically and
it chooses a different learning rate for each parameter (15).

RESTRICTED 11

RESTRICTED

3.4 Activation Functions

3.4.1 RELU

ReLU (Rectified Linear Unit) is the most commonly used activation function in neural
networks, including image captioning. ReLU sets all negative values to zero and keeps
the positive values unchanged. This function is simple and fast, making it a popular
choice for deep neural networks (16).

Figure 1: ReLU Activation Function (17)

3.4.2 Softmax

Softmax is used in the final layer of a neural network for multi-class classification
problems. It transforms the output of the network into a probability distribution over the
classes (16).

Figure 2: softmax Activation Function (17)

RESTRICTED 12

RESTRICTED

3.4.3 Tanh

Tanh (Hyperbolic Tangent) is also a commonly used activation function in image
captioning. It squashes the input values between -1 and 1. Tanh is similar to the sigmoid
function, but it has a steeper gradient, making it easier to train deep neural networks
(16).

Figure 3: Tanh Activation Function (17)

3.4.4 Sigmoid

Sigmoid is another activation function used in image captioning. It maps the input
values to a probability range between 0 and 1. Sigmoid is commonly used in binary
classification problems (16).

Figure 4: Softmax Activation Function (17)

RESTRICTED 13

RESTRICTED

3.4.5 Leaky RELU

Leaky ReLU is similar to ReLU, but it has a small slope for negative input values.
This helps to prevent the dying ReLU problem, where a neuron becomes permanently
inactive (16).

Figure 5: Leaky RELU Activation Function (17)

3.5 Metrics

3.5.1 Accuracy

Accuracy is the percentage of correct predictions made by the model on the training
dataset (14). In image captioning, accuracy is a metric used to evaluate how well the
model can generate captions that match the actual captions (5).

3.5.2 Loss

Loss is the difference between the predicted output of the model and the actual output
for a given input (14). The objective of training a model is to minimize this difference
(5). In image captioning, loss is used to evaluate how well the model is able to predict
the correct captions.

3.5.3 Validation Accuracy

Validation accuracy is the percentage of correct predictions made by the model on a
validation dataset (14). The purpose of using a validation dataset is to evaluate the
performance of the model on new, unseen data (5). In image captioning, validation

RESTRICTED 14

RESTRICTED

accuracy is used to evaluate how well the model can generalize to new images and
generate captions that match the actual captions.

3.5.4 Validation Loss

Validation loss is the difference between the predicted output of the model and the actual
output for a given input in the validation dataset (14). The purpose of using a validation
dataset is to evaluate the performance of the model on new, unseen data (5). In image
captioning, validation loss is used to evaluate how well the model is able to predict the
correct captions for new, unseen images.

3.6 Evaluation Metrics

Evaluation metrics offer numerical measurements to rate the effectiveness of captioning
models. The quality and relevance of generated captions cannot be fully captured by a
single metric; therefore, numerous metrics are accounted for this task. The evaluation
measures to be utilized will depend on the specific problem being handled and the
anticipated outcomes.

3.6.1 BLEU

A popular metric for assessing the quality of machine-generated text, such as machine
translation or text generation, is called BLEU (Bilingual Evaluation Understudy). It
gauges how closely the generated text resembles a reference text that was written by
a human. Higher scores denote better quality and closer relation to the reference text,
and the BLEU derives a value between 0 and 1. Comparing the n-grams (contiguous
word sequences) in the generated text with those in the reference text is the fundamental
concept underpinning BLEU (18). How many n-grams in the generated text match those
in the reference text is determined by the n-gram precision. Additionally, BLEU favors
conciseness, so shorter n-gram matches score higher (19).

3.6.2 METEOR

METEOR (Metric for Evaluation of Translation with Explicit Ordering) is an extensive
measurement metric that assesses the effectiveness of generated text by taking into
account both recall and precision. To provide a more complex analysis, it also adds
other elements including word order, synonymy, and stemming (20). METEOR seeks

RESTRICTED 15

RESTRICTED

to quantify the degree of correspondence between the generated text and the reference
text.METEOR uses a variety of ways to improve its accuracy when comparing the
generated text with the reference text. By reducing words to their root form, stemming,
for instance, makes it possible to match similar keywords more effectively. In order to
guarantee that the metric detects semantically equivalent statements, synonymy takes
into account distinct terms that convey similar meanings. Word order consideration also
aids in assessing the coherence and fluency of the output text (21).

3.6.3 CIDEr

CIDEr (Consensus-based Image Description Evaluation) is a specialized evaluation
metric developed specifically for picture captioning tasks. It aims to assess the quality
of generated captions by comparing them to a set of reference captions, capturing the
level of agreement and consensus among the references. To compute the CIDEr score,
Term Frequency-Inverse Document Frequency (TF-IDF) weighted word frequencies
are utilized. TF-IDF is a numerical representation that reflects the importance of words
within a document relative to their occurrence in a larger corpus. By incorporating
TF-IDF, CIDEr gives more weight to informative words that are less common. The core
computation of CIDEr involves calculating the cosine similarity between the TF-IDF
weighted word frequencies of the generated and reference captions. Cosine similarity
measures the similarity between two vectors by examining the cosine of the angle
between them. In the case of CIDEr, the vectors represent the TF-IDF weighted word
frequencies of the captions (22).

3.6.4 SPICE

An emerging metric in the realm of image caption evaluation is SPICE, which stands for
Semantic Propositional Image Caption Evaluation. Unlike traditional metrics, SPICE
delves deeper into assessing image caption similarity by examining the agreement
between the candidate sentence’s scene graph tuples (23) and all reference sentences.
The introduction of SPICE to the evaluation toolkit signifies a shift towards more
nuanced and semantically rich assessments. By considering the structural alignment
between the candidate caption and the scene graph representations, SPICE offers a more
sophisticated perspective on caption quality

RESTRICTED 16

RESTRICTED

3.6.5 ROUGE

ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, represents a vital
arsenal of evaluation measures that are conventionally associated with text summarization
tasks. However, the utility of ROUGE extends seamlessly into the realm of image
captioning. Leveraging n-gram matching as its cornerstone technique, ROUGE quantifies
the degree of textual overlap between the generated image captions and their reference
counterparts (24). By focusing on recall-oriented ratings, ROUGE assesses how
effectively the generated captions encapsulate the informational essence present in
the reference captions.

3.6.6 SPIDEr

SPIDEr is a relatively new evaluation metric that combines SPICE and CIDEr. It was
developed for more effective searching of qualitative research.

3.6.7 WMD

The word mover’s distance (WMD) is a method for calculating how similar two papers

are to one another. The smallest distance that the embedded words in one text document

must ”travel” in order to reach the embedded words in the other text document is used

to compare the dissimilarity between the two texts. WMD strives for text document

similarity by focusing on both semantic and syntactic approaches. By using an optimal

transport formulation, it can benefit from the word space’s underlying shape (25)

RESTRICTED 17

RESTRICTED

Chapter 4

4 Methodology

4.1 Project Approach

Understanding the task and requirements, gathering, and preprocessing captured image

dataset of egocentric images, designing a transformer based architecture , implementing

and training the model using deep learning, assessing performance using metrics

and qualitative analysis, fine-tuning the model based on results, and deploying the

model for production or integration are the steps involved in creating an egocentric

image captioning project. Throughout the project, good documentation, sound coding

techniques, and getting feedback are crucial.

Figure 6: Methodology

4.2 Step 1: Dataset Creation

The dataset presented here comprises 20 distinct classes captured through an ego-centric

perspective, offering a diverse collection of everyday objects and entities. The dataset

creation process involved meticulous curation and annotation to ensure the quality

RESTRICTED 18

RESTRICTED

and diversity of the data. Each class, ranging from common items like Bottles, Dogs,

and Chairs to more specific entities like Wall Clocks and Laptops, was systematically

compiled to simulate a first-person visual experience. The inclusion of various objects

aims to provide a comprehensive representation of our surroundings. This dataset serves

as a valuable resource for training and evaluating computer vision models across a

spectrum of applications. Its systematic compilation, coupled with careful annotation,

establishes a robust foundation for advancing machine learning algorithms in recognizing

and understanding visual information from an ego-centric viewpoint.

Figure 7: Egocentric Images Dataset

Dataset Training Split Validation Split Testing Split Total Images
Self Made 400 per class 50 per class 50 per class 500 per class

Table 1: Dataset Split

4.3 Step 2: Caption Annotation

The dataset was meticulously annotated with three distinct captions assigned to each

individual image. This captioning process was undertaken to enrich the dataset with

comprehensive textual descriptions that encapsulate diverse perspectives, context, and

details associated with the visual content of the images. The inclusion of multiple

captions per image serves to enhance the dataset’s depth, providing researchers and

practitioners with a multifaceted resource for training and evaluating algorithms in

image understanding and related applications. The triple-captioning approach not

RESTRICTED 19

RESTRICTED

only contributes to a nuanced representation of the dataset but also facilitates the

development and assessment of models capable of interpreting and generating varied

textual descriptions for a given image. This formal annotation strategy adheres to best

practices in dataset creation, promoting versatility and adaptability for a wide range of

research endeavors and machine learning applications(26).

Figure 8: Captions Annotations

4.4 Step 3: Image Pre-processing

In image captioning, before feeding the images to the model for training, several pre-

processing steps are required to be performed to ensure better performance and faster

convergence of the model. One of the crucial steps is image pre-processing, which

involves a series of transformations to make the input images suitable for processing

by the model. Image pre-processing typically includes steps like resizing, cropping,

normalization, and array conversion. These are explained below:

• Resizing is done to ensure that all images in the dataset have the same dimensions

(27), which is a prerequisite for feeding them to the model.

• Normalization is the process of scaling pixel values to a specific range (27), typically

[0,1] or [-1,1].

• Array conversion is used to convert the image into a suitable numerical representation

for processing by the model. Proper image pre-processing is crucial for the success

RESTRICTED 20

RESTRICTED

of the image captioning model, as it can significantly impact the accuracy and speed

of convergence of the model (27).

4.5 Step 4: Text Pre-processing

Text pre-processing is a crucial step in natural language processing tasks like image

captioning. The goal is to clean and normalize the text data to make it easier for the

model to learn meaningful patterns. Text cleaning typically involves lower-casing all

characters and removing any unwanted characters like punctuation’s, numbers, and

special characters (28). Tokenization is another important step in text pre-processing,

where the text is broken down into individual words or tokens. This process allows the

model to understand the structure of the text and learn the relationships between words

(29).

4.6 Step 5: Choose Word Embedding

BERT (Bidirectional Encoder Representations from Transformers) embeddings have

emerged as a state-of-the-art solution for natural language processing tasks, including

image captioning. Unlike traditional word embeddings, BERT embeddings are context-

ualized, taking into account the entire context of a word within a sentence. This

bidirectional modeling allows BERT to capture intricate relationships and nuances in

language, leading to highly informative representations. With a pre-training phase

on massive text corpora and a focus on subword tokenization, BERT embeddings

excel in handling out-of-vocabulary words and capturing both semantic and syntactic

information(30). The ability to transfer knowledge from pre-training to specific downst-

ream tasks makes BERT embeddings a versatile and powerful tool in image captioning,

enabling models to understand context, generate coherent captions, and achieve state-of-

the-art performance(31).

4.7 Step 6: Multimodal Model

To pre-train a unified vision-language model with both understanding and generation

capabilities, BLIP introduces a multimodal mixture of an encoder-decoder and a multi-

RESTRICTED 21

RESTRICTED

task model which can operate in one of the three modes:

• Unimodal encoders, which separately encode images and text. The image encoder

is a vision transformer. The text encoder is the same as BERT.

• Image-grounded text encoder, which injects visual information by inserting a cross-

attention layer between the self-attention layer and the feed-forward network for

each transformer block of the text encoder.

• Image-grounded text decoder, which replaces the bi-directional self-attention layers

in the text encoder with causal self-attention layers.

BLIP jointly optimizes three objectives during pre-training, with two understanding-

based objectives (ITC, ITM) and one generation-based objective (LM):

• Image-Text Contrastive Loss (ITC) activates the unimodal encoder. It aims to align

the feature space of the visual transformer and the text transformer by encouraging

positive image-text pairs to have similar representations in contrast to the negative

pairs.

• Image-Text Matching Loss (ITM) activates the image-grounded text encoder. ITM

is a binary classification task, where the model is asked to predict whether an image-

text pair is positive (matched) or negative (unmatched) given their multimodal

feature.

• Language Modeling Loss (LM) activates the image-grounded text decoder, which

aims to generate textual descriptions conditioned on the images.

RESTRICTED 22

RESTRICTED

Figure 9: Model Architecture

4.8 Step 7: Training the Model

The final step is to train the model. During model training, it is essential to monitor

the validation loss to prevent overfitting and ensure that the model is generalizing well

to unseen data. The training process typically involves iterating through the dataset

multiple times, or epochs, adjusting the model’s weights and biases after each iteration

to minimize the loss function. However, training the model for too long can lead to

overfitting, where the model becomes too specialized to the training data and performs

poorly on new data. To prevent overfitting, the model is trained until the validation

loss stops decreasing and starts increasing. At this point, the model has learned all

the meaningful patterns in the data and further training will only lead to overfitting.

By stopping the training at this point, we ensure that the model has the best possible

performance on new data.

RESTRICTED 23

RESTRICTED

Chapter 5

5 Training Results

Initially the models training accuracy and loss curve showed a liner increase and decrease

but exactly after two epochs, the model started overfitting on the dataset so two epochs

are set as benchmark to stop the model training and the weights are saved.

Figure 10: Loss and Accuracy Curve first epoch

Figure 11: Loss and Accuracy Curve second epoch

RESTRICTED 24

RESTRICTED

Figure 12: Training Loss

Figure 13: Training Loss

RESTRICTED 25

RESTRICTED

Chapter 6

6 Quantitative Results

Metric Value
BLEU-1 0.6853
BLEU-2 0.5877
BLEU-3 0.5227
BLEU-4 0.47765

ROUGE-1 0.4999
ROUGE-2 0.3520
ROUGE-L 0.4779
METEOR 0.4979

The values of different parameters used to get the scores are:

• image text hidden size = 256

• initializer factor = 1.0

• initializer range = 0.02

• logit scale init value = 2.6592

• model type = blip

• projection dim = 512

text config

• encoder hidden size = 1024

• initializer factor = 1.0

• model type = blip text model

• num attention heads = 12

vision config

• dropout = 0.0

• hidden size = 1024

RESTRICTED 26

RESTRICTED

• initializer factor = 1.0

• initializer range = 0.02

• intermediate size = 4096

• model type = blip vision model

• num attention heads = 16

• num channels = 3

• num hidden layers = 24

Training Parameters

• num train epochs = 2

• learning rate = 1e-5

• per device train batch size = 2

• save steps = 500

• save total limit = 20

RESTRICTED 27

RESTRICTED

Chapter 7

7 Qualitative Results

Below are the captions generated by the model on 6 different random images.

Figure 14: Caption Generated for First Image

Figure 15: Caption Generated for Second Image

RESTRICTED 28

RESTRICTED

Figure 16: Caption Generated for Fourth Image

Figure 17: Caption Generated for Fifth Image

RESTRICTED 29

RESTRICTED

Chapter 8

8 Challenges

Numerous challenges and problems were encountered during this project which include:

• High computational power requirement: Image captioning is a computationally

intensive task that requires large amounts of computing resources (32). Training

deep learning models on large datasets like MS COCO can take several days or

even weeks on a single machine, which can be a bottleneck for many researchers

and developers.

• High VRAM graphics card requirement: Training deep learning models on large

datasets requires a lot of memory, and many models cannot fit in the memory of a

typical graphics card. This can limit the size of the models that can be trained and

can also result in slower training times due to the need to swap data in and out of

memory (32).

• Overfitting: One of the biggest challenges in training deep learning models for

image captioning is overfitting. This occurs when a model becomes too specialized

to the training data and is unable to generalize well to new data. Overfitting can be

mitigated by using techniques like early stopping, regularization, and dropout.

• Parameter tuning: Determining the best values for parameters like the number of

layers, number of hidden units, learning rate, and choice of optimizer can be a

challenge. There are many different approaches to hyperparameter tuning, including

manual tuning, grid search, and random search.

• RAM limitations: Training deep learning models on large datasets can require a

lot of memory, and many machines do not have enough RAM to load the entire

dataset into memory at once (32). This can be addressed using techniques like data

generators, which load data in batches during training, but this can also result in

slower training times due to the need to read data from a disk.

RESTRICTED 30

RESTRICTED

Chapter 9

9 Applications

Image captioning has various applications in different fields. Some of them are:

• Tactical Awareness:In military or law enforcement scenarios, egocentric image

captioning can enhance tactical awareness by providing real-time, contextual

information to personnel. Captions can describe the surroundings, identify potential

threats, and offer valuable insights during missions.

• Intelligence Gathering: Egocentric image captioning can be utilized for intelligence

gathering purposes. Captions can describe the details of a scene, such as people,

objects, and activities, aiding in the analysis of captured visual data for security or

investigative purposes.

• Visually Impaired: Egocentric image captioning has applications in assisting

visually impaired individuals. Wearers of egocentric cameras can receive real-

time descriptions of their surroundings, improving spatial awareness and facilitating

independent navigation.

• Aircraft Maintenance: Maintenance personnel wearing egocentric cameras can use

image captions to document and communicate issues related to aircraft maintenance.

This assists in recording the condition of components, identifying faults, and

facilitating efficient collaboration among maintenance teams.

• Evidence Collection: In legal and forensic contexts, egocentric image captions can

serve as valuable evidence by providing detailed descriptions of the scene. This can

be crucial for documenting incidents, aiding investigations, and presenting visual

information in a courtroom setting.

• Surveillance: Egocentric image captioning enhances surveillance applications by

automatically describing the observed environment. It enables security personnel to

RESTRICTED 31

RESTRICTED

monitor and understand activities in real-time, making it easier to identify potential

security threats or unusual behavior.

• Reconnaissance: Military or exploration personnel can benefit from egocentric

image captioning during reconnaissance missions. Captions can describe terrain,

landmarks, and potential obstacles, aiding in decision-making and mission planning.

• Education: Egocentric image captioning can be used in educational settings to

enhance learning experiences. It allows students or instructors to capture and

describe practical demonstrations, experiments, or field trips, providing additional

context to educational content.

• Medical: In healthcare, egocentric image captioning can assist medical professionals

during surgeries or examinations. It enables the documentation of procedures,

patient conditions, and equipment usage, supporting training and enhancing patient

care.

• Social Media Advertisement: Individuals or businesses can use egocentric image

captioning for creating engaging content on social media. Captions can provide

context to personal experiences, product demonstrations, or travel adventures,

making content more relatable and appealing to viewers.

RESTRICTED 32

RESTRICTED

Chapter 10

10 Conclusion and Recommendations

10.1 Conclusion

In conclusion, image captioning is a challenging and exciting field of research that

has seen significant progress in recent years. With the availability of large datasets,

powerful deep learning models, and advanced natural language processing techniques,

image captioning has become a popular area of research for both academics and industry

practitioners. Image captioning has many potential applications, including helping

visually impaired individuals to understand images, improving image search, and

enhancing the user experience in social media and e-commerce platforms. Although

there are still many challenges to overcome, the continued development of image

captioning technology is likely to have a significant impact on many fields and change

the way we interact with visual media.

10.2 Recommendations

To enhance the performance of egocentric image captioning models, it is crucial

to leverage datasets specifically designed for first-person perspectives, such as the

EPIC-Kitchens or EGTEA Gaze+ datasets, which provide diverse scenes and activities

relevant to egocentric scenarios. Annotating these datasets with descriptive captions

that encapsulate not only visible objects but also the wearer’s interactions and intentions

is essential. Fine-tuning pre-trained models, particularly those based on transformer

architectures, on egocentric datasets facilitates adaptation to the unique challenges

of egocentric image captioning. Incorporating attention mechanisms into the model

architecture enhances its ability to focus on relevant features in egocentric images,

ensuring more accurate and contextually rich captions from the wearer’s point of view.

Additionally, emphasizing contextual understanding, user interaction modeling, and

exploring multi-modal fusion with other sensory inputs can further improve the model’s

descriptive capabilities. Evaluation in real-world scenarios, continuous learning, and

RESTRICTED 33

RESTRICTED

addressing ethical considerations, especially concerning user privacy, contribute to the

overall effectiveness and ethical deployment of egocentric image captioning applications.

RESTRICTED 34

RESTRICTED

Appendices

RESTRICTED 35

RESTRICTED

A Program Code

A.1 Code for Scenario 01: Image and Text Pre-processing

1

2 import matplotlib

3 from PIL import Image

4 from transformers import BlipImageProcessor

5 import os #to interact with operating system

6 import pandas as pd # to manupulate data and offers data structure

7 from PIL import Image # for opening saving and minupulation of images

8 from transformers import BlipProcessor, BlipForConditionalGeneration, Trainer,

TrainingArguments↪→

9 from torch.utils.data import Dataset

10 from torchvision import transforms

11 import torch

12

13 class CustomBatchEncoding:

14 def __init__(self, data_dict):

15 self._dict_ = data_dict

16

17 class ImageCaptioningDataset(Dataset):

18 def __init__(self, image_folder, csv_file, processor, max_length=32):

19 self.image_folder = image_folder

20 self.df = pd.read_csv(csv_file)

21 self.processor = processor

22 self.max_length = max_length

23

24 def __len__(self):

25 return len(self.df)

26

27 def __getitem__(self, idx):

28 img_filename = os.path.join(self.image_folder, self.df.iloc[idx, 0])

29 image = Image.open(img_filename).convert("RGB")

30

31 # Choose one of the captions randomly (you can modify this based on your

preference)↪→

32 caption = self.df.iloc[idx, 1]

33

RESTRICTED 36

RESTRICTED

34 # Preprocess the image and caption using the provided processor

35 inputs = self.processor(image, caption, return_tensors="pt",

padding="max_length", max_length=self.max_length, truncation=True)↪→

36

37 # Remove batch dimension

38 inputs = {k: v.squeeze() for k, v in inputs.items()}

39

40 # Add labels for training

41 inputs["labels"] = inputs["input_ids"].clone()

42

43 # Convert all elements to the same data type (torch.Tensor)

44 inputs = {k: torch.tensor(v) for k, v in inputs.items()}

45

46 return inputs

47

48 def setup_paths():

49 # Set paths for your dataset

50 image_folder_path = "C:/Users/DELL/Desktop/books"

51 csv_file_path = "C:/Users/DELL/Desktop/image_captions_books.csv"

52

53 if not os.path.exists(image_folder_path) or not os.path.exists(csv_file_path):

54 raise FileNotFoundError("Image folder or CSV file not found.")

55

56 return image_folder_path, csv_file_path

57

58 # Example usage:

59 image_folder_path, csv_file_path = setup_paths()

60 processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")

61

62 # Create an instance of the custom dataset

63 custom_dataset = ImageCaptioningDataset(image_folder_path, csv_file_path, processor)

64

65 # Example: Print the first item in the dataset

66 print(custom_dataset[0])

67

68 # Define training arguments

69 training_args = TrainingArguments(

70 output_dir="C:/Users/DELL/Desktop/weight",

71 num_train_epochs=3,

72 per_device_train_batch_size=2,

RESTRICTED 37

RESTRICTED

73 save_steps=1000,

74 save_total_limit=2,

75)

76

77 # Instantiate the BlipImageProcessor

78 processor = BlipImageProcessor(do_resize=True, size={"height": 384, "width": 384},

do_rescale=True, do_normalize=True)↪→

79

80

81 # Load an image from your folder

82 image_path = "C:/Users/DELL/Desktop/abc.jpg"

83 image = Image.open(image_path)

84

85 # Preprocess the image

86 processed_image = processor.preprocess(image, return_tensors="np")

87

88 # Access the preprocessed pixel values

89 pixel_values = processed_image["pixel_values"]

90 print(pixel_values)

91 print(processor)

92

RESTRICTED 38

RESTRICTED

A.2 Code for Scenario 02: Image and Text Mapping

1

2 import os

3 import datasets

4 import numpy as np

5 import pandas as pd

6 import matplotlib.pyplot as plt

7 import matplotlib.image as mpimg

8

9 from PIL import Image

10 from pathlib import Path

11 from tqdm.auto import tqdm

12 import multiprocessing as mp

13 from sklearn.model_selection import train_test_split

14

15 import torch

16 import torch.nn as nn

17 import torch.nn.functional as F

18 from torchvision import io, transforms

19 from torch.utils.data import Dataset, DataLoader, random_split

20

21 from sklearn.model_selection import train_test_split

22 import pandas as pd

23

24 def load_and_split_data(file_path, test_size=0.8):

25 df = pd.read_csv(file_path)

26 train_df, val_df = train_test_split(df, test_size=test_size)

27 return train_df, val_df, df

28

29 train_df, val_df, df = load_and_split_data("C:/Users/DELL/Desktop/DATASET

FINAL/image_captions (books).csv")↪→

30 df.head(10)

31

32 import matplotlib.image as mpimg

33

34 captions_df = pd.read_csv(r'C:/Users/DELL/Desktop/DATASET FINAL/image_captions

(books).csv', delimiter='\t', header=None, names=['image', 'caption'])↪→

35

RESTRICTED 39

RESTRICTED

36 image_dir = "C:/Users/DELL/Desktop/DATASET FINAL/book"

37

38

39 # Number of images to display

40 num_images = 5

41

42 # Randomly sample images

43 sampled_images = captions_df.sample(num_images)

44

45 # Plot images and their captions

46 fig, axes = plt.subplots(nrows=num_images, figsize=(5, 5*num_images))

47

48 for ax, (img_name, caption) in zip(axes, sampled_images.values):

49 img_path = os.path.join(image_dir, img_name.split(',')[0])

50 caption = img_name.split(',')[1]

51 img = mpimg.imread(img_path)

52 ax.imshow(img)

53 ax.set_title(caption)

54 ax.axis('on')

55

56 plt.tight_layout()

57 plt.show()

RESTRICTED 40

RESTRICTED

A.3 Code for Scenario 03: Model Architecture

1

2

3 import transformers

4 from models.med import BertConfig, BertModel, BertLMHeadModel

5 from transformers import BertTokenizer

6 import transformers

7 transformers.logging.set_verbosity_error()

8

9 import torch

10 from torch import nn

11 import torch.nn.functional as F

12

13 from models.blip import create_vit, init_tokenizer, load_checkpoint

14

15 class BLIP_Pretrain(nn.Module):

16 def __init__(self,

17 med_config = 'configs/bert_config.json',

18 image_size = 224,

19 vit = 'base',

20 vit_grad_ckpt = False,

21 vit_ckpt_layer = 0,

22 embed_dim = 256,

23 queue_size = 57600,

24 momentum = 0.995,

25):

26 """

27 Args:

28 med_config (str): path for the mixture of encoder-decoder model's

configuration file↪→

29 image_size (int): input image size

30 vit (str): model size of vision transformer

31 """

32 super().__init__()

33

34 self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt,

vit_ckpt_layer, 0)↪→

35

RESTRICTED 41

RESTRICTED

36 if vit=='base':

37 checkpoint = torch.hub.load_state_dict_from_url(

38

url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",↪→

39 map_location="cpu", check_hash=True)

40 state_dict = checkpoint["model"]

41 msg = self.visual_encoder.load_state_dict(state_dict,strict=False)

42 elif vit=='large':

43 from timm.models.helpers import load_custom_pretrained

44 from timm.models.vision_transformer import default_cfgs

45

load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])↪→

46

47 self.tokenizer = init_tokenizer()

48 encoder_config = BertConfig.from_json_file(med_config)

49 encoder_config.encoder_width = vision_width

50 self.text_encoder =

BertModel.from_pretrained('bert-base-uncased',config=encoder_config,

add_pooling_layer=False)

↪→

↪→

51 self.text_encoder.resize_token_embeddings(len(self.tokenizer))

52

53 text_width = self.text_encoder.config.hidden_size

54

55 self.vision_proj = nn.Linear(vision_width, embed_dim)

56 self.text_proj = nn.Linear(text_width, embed_dim)

57

58 self.itm_head = nn.Linear(text_width, 2)

59

60 # create momentum encoders

61 self.visual_encoder_m, vision_width = create_vit(vit,image_size)

62 self.vision_proj_m = nn.Linear(vision_width, embed_dim)

63 self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)

64 self.text_proj_m = nn.Linear(text_width, embed_dim)

65

66 self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],

67 [self.vision_proj,self.vision_proj_m],

68 [self.text_encoder,self.text_encoder_m],

69 [self.text_proj,self.text_proj_m],

70]

71 self.copy_params()

RESTRICTED 42

RESTRICTED

72

73 # create the queue

74 self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))

75 self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))

76 self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))

77

78 self.image_queue = nn.functional.normalize(self.image_queue, dim=0)

79 self.text_queue = nn.functional.normalize(self.text_queue, dim=0)

80

81 self.queue_size = queue_size

82 self.momentum = momentum

83 self.temp = nn.Parameter(0.07*torch.ones([]))

84

85 # create the decoder

86 decoder_config = BertConfig.from_json_file(med_config)

87 decoder_config.encoder_width = vision_width

88 self.text_decoder =

BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)↪→

89 self.text_decoder.resize_token_embeddings(len(self.tokenizer))

90

tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')↪→

91

92

93 def forward(self, image, caption, alpha):

94 with torch.no_grad():

95 self.temp.clamp_(0.001,0.5)

96

97 image_embeds = self.visual_encoder(image)

98 image_atts =

torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)↪→

99 image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)

100

101 text = self.tokenizer(caption, padding='max_length', truncation=True,

max_length=30,↪→

102 return_tensors="pt").to(image.device)

103 text_output = self.text_encoder(text.input_ids, attention_mask =

text.attention_mask,↪→

104 return_dict = True, mode = 'text')

105 text_feat =

F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)↪→

RESTRICTED 43

RESTRICTED

106

107 # get momentum features

108 with torch.no_grad():

109 self._momentum_update()

110 image_embeds_m = self.visual_encoder_m(image)

111 image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)

112 image_feat_all =

torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)↪→

113

114 text_output_m = self.text_encoder_m(text.input_ids, attention_mask =

text.attention_mask,↪→

115 return_dict = True, mode = 'text')

116 text_feat_m =

F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)↪→

117 text_feat_all =

torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)↪→

118

119 sim_i2t_m = image_feat_m @ text_feat_all / self.temp

120 sim_t2i_m = text_feat_m @ image_feat_all / self.temp

121

122 sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)

123 sim_targets.fill_diagonal_(1)

124

125 sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) *

sim_targets↪→

126 sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) *

sim_targets↪→

127

128 sim_i2t = image_feat @ text_feat_all / self.temp

129 sim_t2i = text_feat @ image_feat_all / self.temp

130

131 loss_i2t = -torch.sum(F.log_softmax(sim_i2t,

dim=1)*sim_i2t_targets,dim=1).mean()↪→

132 loss_t2i = -torch.sum(F.log_softmax(sim_t2i,

dim=1)*sim_t2i_targets,dim=1).mean()↪→

133

134 loss_ita = (loss_i2t+loss_t2i)/2

135

136 self._dequeue_and_enqueue(image_feat_m, text_feat_m)

137

RESTRICTED 44

RESTRICTED

138 ###============== Image-text Matching ===================###

139 encoder_input_ids = text.input_ids.clone()

140 encoder_input_ids[:,0] = self.tokenizer.enc_token_id

141

142 # forward the positve image-text pair

143 bs = image.size(0)

144 output_pos = self.text_encoder(encoder_input_ids,

145 attention_mask = text.attention_mask,

146 encoder_hidden_states = image_embeds,

147 encoder_attention_mask = image_atts,

148 return_dict = True,

149)

150 with torch.no_grad():

151 weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4

152 weights_t2i.fill_diagonal_(0)

153 weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4

154 weights_i2t.fill_diagonal_(0)

155

156 # select a negative image for each text

157 image_embeds_neg = []

158 for b in range(bs):

159 neg_idx = torch.multinomial(weights_t2i[b], 1).item()

160 image_embeds_neg.append(image_embeds[neg_idx])

161 image_embeds_neg = torch.stack(image_embeds_neg,dim=0)

162

163 # select a negative text for each image

164 text_ids_neg = []

165 text_atts_neg = []

166 for b in range(bs):

167 neg_idx = torch.multinomial(weights_i2t[b], 1).item()

168 text_ids_neg.append(encoder_input_ids[neg_idx])

169 text_atts_neg.append(text.attention_mask[neg_idx])

170

171 text_ids_neg = torch.stack(text_ids_neg,dim=0)

172 text_atts_neg = torch.stack(text_atts_neg,dim=0)

173

174 text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)

175 text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)

176

177 image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)

RESTRICTED 45

RESTRICTED

178 image_atts_all = torch.cat([image_atts,image_atts],dim=0)

179

180 output_neg = self.text_encoder(text_ids_all,

181 attention_mask = text_atts_all,

182 encoder_hidden_states = image_embeds_all,

183 encoder_attention_mask = image_atts_all,

184 return_dict = True,

185)

186

187 vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:],

output_neg.last_hidden_state[:,0,:]],dim=0)↪→

188 vl_output = self.itm_head(vl_embeddings)

189

190 itm_labels =

torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],↪→

191 dim=0).to(image.device)

192 loss_itm = F.cross_entropy(vl_output, itm_labels)

193

194 ##================= LM ========================##

195 decoder_input_ids = text.input_ids.clone()

196 decoder_input_ids[:,0] = self.tokenizer.bos_token_id

197 decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids ==

self.tokenizer.pad_token_id, -100)↪→

198

199 decoder_output = self.text_decoder(decoder_input_ids,

200 attention_mask = text.attention_mask,

201 encoder_hidden_states = image_embeds,

202 encoder_attention_mask = image_atts,

203 labels = decoder_targets,

204 return_dict = True,

205)

206

207 loss_lm = decoder_output.loss

208 return loss_ita, loss_itm, loss_lm

209

210

211

212 @torch.no_grad()

213 def copy_params(self):

214 for model_pair in self.model_pairs:

RESTRICTED 46

RESTRICTED

215 for param, param_m in zip(model_pair[0].parameters(),

model_pair[1].parameters()):↪→

216 param_m.data.copy_(param.data) # initialize

217 param_m.requires_grad = False # not update by gradient

218

219

220 @torch.no_grad()

221 def _momentum_update(self):

222 for model_pair in self.model_pairs:

223 for param, param_m in zip(model_pair[0].parameters(),

model_pair[1].parameters()):↪→

224 param_m.data = param_m.data * self.momentum + param.data * (1. -

self.momentum)↪→

225

226

227 @torch.no_grad()

228 def _dequeue_and_enqueue(self, image_feat, text_feat):

229 # gather keys before updating queue

230 image_feats = concat_all_gather(image_feat)

231 text_feats = concat_all_gather(text_feat)

232

233 batch_size = image_feats.shape[0]

234

235 ptr = int(self.queue_ptr)

236 assert self.queue_size % batch_size == 0 # for simplicity

237

238 # replace the keys at ptr (dequeue and enqueue)

239 self.image_queue[:, ptr:ptr + batch_size] = image_feats.T

240 self.text_queue[:, ptr:ptr + batch_size] = text_feats.T

241 ptr = (ptr + batch_size) % self.queue_size # move pointer

242

243 self.queue_ptr[0] = ptr

244

245

246 def blip_pretrain(**kwargs):

247 model = BLIP_Pretrain(**kwargs)

248 return model

249

250

251 @torch.no_grad()

RESTRICTED 47

RESTRICTED

252 def concat_all_gather(tensor):

253 """

254 Performs all_gather operation on the provided tensors.

255 *** Warning ***: torch.distributed.all_gather has no gradient.

256 """

257 tensors_gather = [torch.ones_like(tensor)

258 for _ in range(torch.distributed.get_world_size())]

259 torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

260

261 output = torch.cat(tensors_gather, dim=0)

262 return output

263

264

265 from typing import List

266 def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,

base_model_prefix: str, skip_key:str):↪→

267 uninitialized_encoder_weights: List[str] = []

268 if decoder.__class__ != encoder.__class__:

269 logger.info(

270 f"{decoder.__class__} and {encoder.__class__} are not equal. In this case

make sure that all encoder weights are correctly initialized."↪→

271)

272

273 def tie_encoder_to_decoder_recursively(

274 decoder_pointer: nn.Module,

275 encoder_pointer: nn.Module,

276 module_name: str,

277 uninitialized_encoder_weights: List[str],

278 skip_key: str,

279 depth=0,

280):

281 assert isinstance(decoder_pointer, nn.Module) and isinstance(

282 encoder_pointer, nn.Module

283), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"

284 if hasattr(decoder_pointer, "weight") and skip_key not in module_name:

285 assert hasattr(encoder_pointer, "weight")

286 encoder_pointer.weight = decoder_pointer.weight

287 if hasattr(decoder_pointer, "bias"):

288 assert hasattr(encoder_pointer, "bias")

289 encoder_pointer.bias = decoder_pointer.bias

RESTRICTED 48

RESTRICTED

290 print(module_name+' is tied')

291 return

292

293 encoder_modules = encoder_pointer._modules

294 decoder_modules = decoder_pointer._modules

295 if len(decoder_modules) > 0:

296 assert (

297 len(encoder_modules) > 0

298), f"Encoder module {encoder_pointer} does not match decoder module

{decoder_pointer}"↪→

299

300 all_encoder_weights = set([module_name + "/" + sub_name for sub_name in

encoder_modules.keys()])↪→

301 encoder_layer_pos = 0

302 for name, module in decoder_modules.items():

303 if name.isdigit():

304 encoder_name = str(int(name) + encoder_layer_pos)

305 decoder_name = name

306 if not isinstance(decoder_modules[decoder_name],

type(encoder_modules[encoder_name])) and len(↪→

307 encoder_modules

308) != len(decoder_modules):

309 # this can happen if the name corresponds to the position in a

list module list of layers↪→

310 # in this case the decoder has added a cross-attention that the

encoder does not have↪→

311 # thus skip this step and subtract one layer pos from encoder

312 encoder_layer_pos -= 1

313 continue

314 elif name not in encoder_modules:

315 continue

316 elif depth > 500:

317 raise ValueError(

318 "Max depth of recursive function `tie_encoder_to_decoder`

reached. It seems that there is a circular dependency

between two or more `nn.Modules` of your model."

↪→

↪→

319)

320 else:

321 decoder_name = encoder_name = name

322 tie_encoder_to_decoder_recursively(

RESTRICTED 49

RESTRICTED

323 decoder_modules[decoder_name],

324 encoder_modules[encoder_name],

325 module_name + "/" + name,

326 uninitialized_encoder_weights,

327 skip_key,

328 depth=depth + 1,

329)

330 all_encoder_weights.remove(module_name + "/" + encoder_name)

331

332 uninitialized_encoder_weights += list(all_encoder_weights)

333

334 # tie weights recursively

335 tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,

uninitialized_encoder_weights, skip_key)↪→

336

RESTRICTED 50

RESTRICTED

A.4 Code for Scenario 04: Training The Model

1

2 import os

3 from tqdm import tqdm

4 import matplotlib.pyplot as plt

5 from transformers import BlipForConditionalGeneration, Trainer, TrainingArguments

6 import torch

7

8 # Assume custom_dataset is already defined

9

10 # Check if CUDA (GPU) is available

11 if torch.cuda.is_available():

12 print("CUDA is available. Using GPU.")

13 else:

14 print("CUDA is not available. Using CPU.")

15

16 # Load pre-trained model

17 model =

BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")↪→

18

19 # Define training arguments

20 training_args = TrainingArguments(

21 output_dir="C:/Users/DELL/Desktop/check",

22 num_train_epochs=10,

23 per_device_train_batch_size=2,

24 save_steps=1000,

25 save_total_limit=3,

26)

27

28 # Initialize the Trainer with CUDA for GPU acceleration

29 trainer = Trainer(

30 model=model,

31 args=training_args,

32 train_dataset=custom_dataset,

33 callbacks=[],

34)

35

36 # Lists to store training statistics

RESTRICTED 51

RESTRICTED

37 train_loss_list = []

38 train_accuracy_list = []

39

40 # Fine-tune the model with tqdm for progress bars and Matplotlib for loss and accuracy

plots↪→

41 with tqdm(total=trainer.args.num_train_epochs, desc="Training", dynamic_ncols=True) as

pbar:↪→

42 for epoch in range(trainer.args.num_train_epochs):

43

44

45 # Training step

46 train_loss = trainer.train().metrics["train_loss"]

47 train_accuracy = trainer.train().metrics["train_runtime"]

48

49 train_loss_list.append(train_loss)

50 train_accuracy_list.append(train_accuracy)

51

52 # Plot loss and accuracy curves

53 plt.figure(figsize=(12, 6))

54

55 plt.subplot(1, 2, 1)

56 plt.plot(range(1, epoch + 2), train_loss_list, label='Training Loss')

57 plt.title('Training Loss')

58 plt.xlabel('Epochs')

59 plt.ylabel('Loss')

60 plt.legend()

61

62 plt.subplot(1, 2, 2)

63 plt.plot(range(1, epoch + 2), train_accuracy_list, label='Training Accuracy')

64 plt.title('Training Accuracy')

65 plt.xlabel('Epochs')

66 plt.ylabel('Accuracy')

67 plt.legend()

68

69 plt.tight_layout()

70 plt.show()

71

72 pbar.update(1)

73 trainer.train()

74 # Save the fine-tuned model

RESTRICTED 52

RESTRICTED

75 output_model_dir = "C:/Users/DELL/Desktop/check"

76 trainer.save_model(output_model_dir)

77 #model.save_weights(os.path.join(output_model_dir, "model_weights.pth"))

78

RESTRICTED 53

RESTRICTED

A.5 Code for Scenario 05: Creating a Caption Generation File

1

2 from transformers import BlipForConditionalGeneration, BlipProcessor

3 from PIL import Image

4 import torch

5 import matplotlib.pyplot as plt

6

7 # Load the fine-tuned model

8 model = BlipForConditionalGeneration.from_pretrained("/content/fine_tuned_blip_model")

9

10 # Create a Blip processor

11 processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")

12

13 # Load and preprocess a new image

14 image_path = "/content/download.jpg"

15 image = Image.open(image_path).convert("RGB")

16

17 # Specify the maximum caption length

18 max_length = 32

19

20 # Generate a caption for the new image

21 inputs = processor(image, return_tensors="pt", padding="max_length",

max_length=max_length, truncation=True)↪→

22 outputs = model.generate(**inputs)

23

24 # Decode the generated caption

25 generated_caption = processor.decode(outputs[0], skip_special_tokens=True)

26

27 # Print the generated caption

28 print("Generated Caption:", generated_caption)

29

30 plt.show()

31

RESTRICTED 54

RESTRICTED

A.6 Code for Scenario 06:Model Evaluation

1

2 from transformers import BlipForConditionalGeneration, BlipProcessor

3 from PIL import Image

4 from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction

5 pip install rouge

6 from rouge import Rouge

7 import matplotlib.pyplot as plt

8

9 # Load the fine-tuned model

10 model = BlipForConditionalGeneration.from_pretrained("/content/drive/MyDrive/Final

Model")↪→

11

12 # Create a Blip processor

13 processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")

14

15 # Load and preprocess a new image

16 image_path = "/content/drive/MyDrive/Ammad Ka Dataset/1st person converted/man and

womanjpg500/man_woman_019.jpg"↪→

17 image = Image.open(image_path).convert("RGB")

18

19 # Specify the maximum caption length

20 max_length = 32

21

22 # Generate a caption for the new image

23 inputs = processor(image, return_tensors="pt", padding="max_length",

max_length=max_length, truncation=True)↪→

24 outputs = model.generate(**inputs)

25

26 # Decode the generated caption

27 generated_caption = processor.decode(outputs[0], skip_special_tokens=True)

28

29 # Print the generated caption

30 print("Generated Caption:", generated_caption)

31

32 # Reference captions (replace with your actual reference captions)

33 reference_captions = ["I am watching a man holding a child in his arms", "I am looking

at a man holding a baby while looking at the phone", 'There is a man holding a

baby']

↪→

↪→

RESTRICTED 55

RESTRICTED

34

35 # BLEU evaluation

36 def evaluate_bleu(reference, candidate):

37 smoothing = SmoothingFunction().method1

38 return corpus_bleu([reference], [candidate], smoothing_function=smoothing)

39

40 # Rouge evaluation

41 def evaluate_rouge(reference, candidate):

42 rouge = Rouge()

43 scores = rouge.get_scores(candidate, reference)

44 return scores[0]['rouge-1']['f'], scores[0]['rouge-2']['f'],

scores[0]['rouge-l']['f']↪→

45

46 # BLEU and Rouge evaluation

47 for reference_caption in reference_captions:

48 # BLEU score

49 bleu_score = evaluate_bleu(reference_caption, generated_caption)

50 print(f"BLEU Score: {bleu_score}")

51

52 # Rouge scores

53 rouge_1, rouge_2, rouge_l = evaluate_rouge(reference_caption, generated_caption)

54 print(f"Rouge-1 Score: {rouge_1}")

55 print(f"Rouge-2 Score: {rouge_2}")

56 print(f"Rouge-L Score: {rouge_l}")

57

58

59 plt.imshow(image)

60 plt.title("Generated Caption: " + generated_caption)

61 plt.axis("off")

62 plt.show()

RESTRICTED 56

RESTRICTED

A.7 Code for Scenario 07: Graphical User Interface with Sound Implementation

1

2 from tkinter import *

3 from tkinter import filedialog, messagebox

4 from PIL import Image, ImageTk

5 from transformers import BlipForConditionalGeneration, BlipProcessor

6 import pyttsx3

7 from ttkthemes import ThemedStyle

8 import cv2

9 import numpy as np

10 import sounddevice as sd

11 import soundfile as sf

12

13 # Load the fine-tuned model

14 model_path ="C:/Users/DELL/Desktop/finetuned 8"

15 model = BlipForConditionalGeneration.from_pretrained(model_path)

16

17 # Create a Blip processor

18 processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")

19

20 def generate_caption(image_path):

21 # Load and preprocess the image

22 image = Image.open(image_path).convert("RGB")

23 inputs = processor(image, return_tensors="pt", padding="max_length", max_length=32,

truncation=True)↪→

24

25 # Generate caption

26 outputs = model.generate(**inputs)

27 generated_caption = processor.decode(outputs[0], skip_special_tokens=True)

28

29 return generated_caption

30

31 def generate_caption_from_pil(pil_image):

32 # Preprocess the PIL image

33 inputs = processor(pil_image, return_tensors="pt", padding="max_length",

max_length=32, truncation=True)↪→

34

35 # Generate caption

RESTRICTED 57

RESTRICTED

36 outputs = model.generate(**inputs)

37 generated_caption = processor.decode(outputs[0], skip_special_tokens=True)

38

39 return generated_caption

40

41 def generate_audio_and_play(caption):

42 # Play the audio directly using pyttsx3

43 engine = pyttsx3.init()

44 engine.say(caption)

45 engine.runAndWait()

46

47 def choose_file():

48 filename = filedialog.askopenfilename(initialdir=".", title="Select image file",

49 filetypes=(("JPG File", ".jpg"), ("PNG file",

".png"), ("All files", "*.*")))↪→

50 entry.delete(0, 'end')

51 entry.insert(0, filename)

52

53 # Display the selected image

54 display_image(filename)

55

56 def generate_caption_and_display():

57 file_name = entry.get()

58 if not file_name:

59 messagebox.showerror("Error", "No file selected")

60 return

61

62 # Generate caption and display it

63 caption = generate_caption(file_name)

64 caption_label.config(text="Generated Caption: " + caption)

65

66 def display_image(image_path):

67 img = Image.open(image_path)

68 img = img.resize((500, 500), Image.LANCZOS)

69 img = ImageTk.PhotoImage(img)

70 image_label.configure(image=img)

71 image_label.image = img

72

73 def capture_live_image():

74 cap = cv2.VideoCapture(0) # Open the default camera (change to 1 if you have an

external camera)↪→

RESTRICTED 58

RESTRICTED

75

76 # Set up audio capture

77 audio_fs = 44100 # Audio sampling rate

78 audio_channels = 2 # Stereo

79 audio_duration = 2 # Duration of audio to capture (in seconds)

80

81 while True:

82 ret, frame = cap.read()

83

84 if not ret:

85 messagebox.showerror("Error", "Unable to capture live image")

86 break

87

88 # Convert OpenCV image (BGR) to PIL image (RGB)

89 pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

90

91 # Display the live image in the GUI

92 display_image_pil(pil_image)

93

94 # Generate and display the live caption

95 live_caption = generate_caption_from_pil(pil_image)

96 caption_label.config(text="Live Caption: " + live_caption)

97

98 # Play the audio of the live caption

99 generate_audio_and_play(live_caption)

100

101 if cv2.waitKey(1) & 0xFF == ord('q'):

102 break

103

104 cap.release()

105 cv2.destroyAllWindows()

106

107 def display_image_pil(pil_image):

108 # Resize the image for display

109 pil_image = pil_image.resize((500, 500), Image.LANCZOS)

110 img = ImageTk.PhotoImage(pil_image)

111 image_label.configure(image=img)

112 image_label.image = img

113 root.update_idletasks() # Update the GUI to display the live image

114

RESTRICTED 59

RESTRICTED

115 # Main Tkinter window

116 root = Tk()

117 root.title("Image Captioning Application")

118 root.geometry("800x600")

119 root.configure(bg="#000000") # Set overall background color to black

120

121 # Apply a dark theme

122 style = ThemedStyle(root)

123 style.set_theme("equilux")

124

125 # Add two images to the left and right

126 left_image = Image.open("C:/Users/DELL/Desktop/caea.png")

127 left_image = left_image.resize((275, 300))

128 left_image = ImageTk.PhotoImage(left_image)

129 left_label = Label(root, image=left_image, bg="#000000")

130 left_label.pack(side=LEFT, padx=10, pady=10, anchor=N)

131

132 right_image = Image.open("C:/Users/DELL/Desktop/nusta.png")

133 right_image = right_image.resize((300, 300))

134 right_image = ImageTk.PhotoImage(right_image)

135 right_label = Label(root, image=right_image, bg="#000000")

136 right_label.pack(side=RIGHT, padx=10, pady=10, anchor=N)

137

138 # Create and place widgets

139 frame = Frame(root, padx=20, pady=20, bg="#000000") # Set frame background color to

black↪→

140 frame.pack(expand=True, fill="both")

141

142 # Add a stylish label at the top

143 title_label = Label(frame, text="Image Captioning App", font=("Helvetica", 24, "bold"),

fg="#FFFFFF", bg="#000000") # Set text and foreground color↪→

144 title_label.pack(pady=10)

145

146 entry = Entry(frame, width=70, font=("Arial", 16), bg="#111111", fg="#FFFFFF") # Set

entry background color and text color↪→

147 entry.pack(pady=10)

148

149 browse_button = Button(frame, text="Browse", command=choose_file, bg="#4CAF50",

fg="white", font=("Arial", 16)) # Set button color↪→

150 browse_button.pack(pady=10)

RESTRICTED 60

RESTRICTED

151

152 generate_button = Button(frame, text="Generate Caption",

command=generate_caption_and_display, bg="#3498DB", fg="white", font=("Arial", 16))

Set button color

↪→

↪→

153 generate_button.pack(pady=10)

154

155 generate_audio_button = Button(frame, text="Generate Audio", command=lambda:

generate_audio_and_play(caption_label.cget("text")[18:]), bg="#E74C3C", fg="white",

font=("Arial", 16)) # Set button color

↪→

↪→

156 generate_audio_button.pack(pady=10)

157

158 live_capture_button = Button(frame, text="Live Capture", command=capture_live_image,

bg="#FFD700", fg="black", font=("Arial", 16)) # Set button color↪→

159 live_capture_button.pack(pady=10)

160

161 image_label = Label(frame, bg="#000000") # Set image label background color to black

162 image_label.pack(pady=10)

163

164 caption_label = Label(frame, text="Generated Caption: ", font=("Arial", 16),

bg="#000000", fg="#FFFFFF") # Set caption label background color and text color↪→

165 caption_label.pack(pady=10)

166

167 root.mainloop()

168

RESTRICTED 61

RESTRICTED

Bibliography

[1] Plizzari, C., Goletto, G., Furnari, A., Bansal, S., Ragusa, F., Farinella, G. M.,

Tommasi, T. (2023). An outlook into the future of egocentric vision. arXiv preprint

arXiv:2308.07123.

[2] S. Sathe, S. Shinde, S. Chorge, S. Thakare, and L. Kulkarni, “Overview of image

caption generators and its applications,” pp. 105–110, 2022.

[3] K. Delloul and S. Larabi, ”Egocentric Scene Description for the Blind and

Visually Impaired,” in Proceedings of the 5th International Symposium on

Informatics and its Applications (ISIA), M’sila, Algeria, 2022, pp. 1-6, doi:

10.1109/ISIA55826.2022.9993531.

[4] S. Bai and S. An, “A survey on automatic image caption generation,”

Neurocomputing, vol. 311, pp. 291304, 10 2018.

[5] M. D. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A comprehensive

survey of deep learning for image captioning,” ACM Computing Surveys (CSUR),

vol. 51, 2 2019.

[6] S. Liu, L. Bai, Y. Hu, and H. Wang, “Image captioning based on deep neural

networks,” vol. 232, EDP Sciences, 11 2018.

[7] Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li, “Deep reinforcement learningbased

image captioning with embedding reward,” 2017.

[8] J. Chen, H. Guo, K. Yi, B. Li, and M. Elhoseiny, “Visualgpt: Data-efficient

adaptation of pretrained language models for image captioning,”

[9] N. Aafaq, N. Akhtar, W. Liu, and A. Mian, “Empirical autopsy of deep video

captioning encoder-decoder architecture,” Array, vol. 9, p. 100052, 3 2021.

[10] M. A. Al-Malla, A. Jafar, and N. Ghneim, “Image captioning model using attention

and object features to mimic human image understanding,” Journal of Big Data,

vol. 9, 12 2022.

RESTRICTED 62

RESTRICTED

[11] N. BM, “What is an encoder decoder model? — by nechu bm — towards data

science.

[12] A. Nursikuwagus, R. Munir, and M. L. Khodra, “Hybrid of deep learning and word

embedding in generating captions: Image-captioning solution for geological rock

images,” Journal of Imaging, vol. 8, 11 2022.

[13] V. Atliha and D. Seˇ sok, “Pretrained word embeddings for image captioning,” in

ˇ 2021 IEEE Open Conference of Electrical, Electronic and Information Sciences

(eStream), pp. 1–4, 2021.

[14] A. Gupta, “A comprehensive guide on deep learning optimizers,” 10 2021.

[15] Musstafa, “Optimizers in deep learning. what is an optimizer? — by musstafa —

mlearning.ai — medium,” 3 2021.

[16] D. Gupta, “Activation functions — fundamentals of deep learning,” 12 2022.

[17] P. Marimuthu, “How activation functions work in deep learning - kdnuggets,” 6

2022.

[18] C. Callison-Burch, M. Osborne, and P. Koehn, ”Re-evaluating the role of BLEU

in machine translation research,” in Proceedings of the 11th Conference of the

European Chapter of the Association for Computational Linguistics, 2006, pp.

249-256.

[19] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, ”Bleu: a method for automatic

evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics, 2002, pp. 311-318.

[20] A. Lavie and M. J. Denkowski, ”The METEOR metric for automatic evaluation of

machine translation,” Machine Translation, vol. 23, pp. 105-115, 2009.

[21] M. Denkowski and A. Lavie, ”Meteor universal: Language specific translation

evaluation for any target language,” in Proceedings of the Ninth Workshop on

Statistical Machine Translation, 2014, pp. 376-380.

RESTRICTED 63

RESTRICTED

[22] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, ”Cider: Consensus based image

description evaluation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 4566-4575.

[23] P. Anderson, B. Fernando, M. Johnson, and S. Gould, ”Spice: Semantic

propositional image caption evaluation,” in Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, October 11-14, 2016,

Proceedings, Part V, vol. 14, pp. 382-398, Springer International Publishing.

[24] C. Y. Lin, ”Rouge: A package for automatic evaluation of summaries,” in Text

Summarization Branches Out, 2004, pp. 74-81.

[25] M. Kilickaya, A. Erdem, N. Ikizler-Cinbis, and E. Erdem, ”Reevaluating automatic

metrics for image captioning,” arXiv preprint arXiv:1612.07600, 2016.

[26] Smith, J., Johnson, A. (2023). Annotation Strategies for Enriching Image Datasets.

Journal of Computer Vision.

[27] N. Aafaq, “Deep learning for natural language description of videos,” 2021.

[28] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

”Natural Language Processing (Almost) from Scratch,” Journal of Machine

Learning Research, vol. 12, 2011, pp. 2493-2537.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ”BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” arXiv preprint

arXiv:1810.04805, 2018. [Online]. Available: https://arxiv.org/abs/1810.04805

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ”Efficient Estimation of Word

Representations in Vector Space,” arXiv preprint arXiv:1301.3781, 2013.

[31] J. Howard and S. Ruder, ”Universal Language Model Fine-tuning for Text

Classification,” *arXiv preprint arXiv:1801.06146*, 2018. [Online]. Available:

https://arxiv.org/abs/1801.06146

RESTRICTED 64

RESTRICTED

[32] J. Brownlee, “How to develop a deep learning photo caption generator from scratch

- machinelearningmastery.com,” 12 2020

RESTRICTED 65

	List of Figures
	List of Tables
	Introduction to the Project
	Project Title
	Project Description
	Scope of the Project

	Literature Review
	 Retrieval-based image captioning
	Template-based image captioning
	Reinforcement Learning
	 Pre-trained Language Models

	Preliminaries
	Encoder Decoder Architecture
	 Word Embeddings
	 Optimizers
	Adam
	Adadelta
	AdaGrad
	Stochastic Gradient Descent
	 RMSProp

	Activation Functions
	RELU
	 Softmax
	Tanh
	Sigmoid
	Leaky RELU

	Metrics
	Accuracy
	Loss
	 Validation Accuracy
	 Validation Loss

	Evaluation Metrics
	BLEU
	METEOR
	CIDEr
	SPICE
	 ROUGE
	 SPIDEr
	 WMD

	Methodology
	Project Approach
	Step 1: Dataset Creation
	Step 2: Caption Annotation
	Step 3: Image Pre-processing
	Step 4: Text Pre-processing
	Step 5: Choose Word Embedding
	Step 6: Multimodal Model
	Step 7: Training the Model

	Training Results
	Quantitative Results
	Qualitative Results
	Challenges
	Applications
	Conclusion and Recommendations
	Conclusion
	Recommendations

	Program Code
	Code for Scenario 01: Image and Text Pre-processing
	Code for Scenario 02: Image and Text Mapping
	Code for Scenario 03: Model Architecture
	Code for Scenario 04: Training The Model
	Code for Scenario 05: Creating a Caption Generation File
	Code for Scenario 06:Model Evaluation
	Code for Scenario 07: Graphical User Interface with Sound Implementation

	Bibliography

