
Gesture Control Robot Using Image Processing
and Object Tracking Algorithm

Session: BS Electrical Engineering 2023

Project Supervisor: Dr. Abdullah Waqas

Submitted By

Muhammad Tayyab F19603018
Saad Ahmad F19603036

MuhammadWaqasF19603023
Muhammad Haseeb Khalil F19603016

Electrical Engineering Department

National University of Technology
(NUTECH)

Certification

This is to certify that Muhammad Tayyab (F19603018), Saad Ahmed

(F19603036), Muhammad Waqas (F19603023), Haseeb Khalil (F19603016) have

successfully completed the final project “GESTURE CONTROL ROBOT USING

IMAGE PROCESSING AND OBJECT TRACKING ALGORITHUM”, at the

National University of Technology (NUTECH), Islamabad, to fulfill the partial

requirement of the degree BS of Electrical Engineering.

External Examiner Project Supervisor

[Name of Examiner] Dr. Abdullah waqas

[Designation] Assistant Professor

Chairman

Electrical Engineering Department

National University of Technology, Islamabad

Project Title (PROSTHETIC HAND FOR DISABLED PERSON)
Sustainable Development Goals

(Please tick the relevant SDG(s) linked with FYDP)

SDG No Description of SDG SDG No Description of SDG

SDG 1 No Poverty SDG 9 Industry, Innovation, and Infrastructure

SDG 2 Zero Hunger SDG 10 Reduced Inequalities

SDG 3 Good Health and Well Being SDG 11 Sustainable Cities and Communities

SDG 4 Quality Education ✔ SDG 12 Responsible Consumption and Production

SDG 5 Gender Equality SDG 13 Climate Change

SDG 6 Clean Water and Sanitation SDG 14 Life Below Water

SDG 7 Affordable and Clean Energy SDG 15 Life on Land

SDG 8 Decent Work and Economic Growth SDG 16 Peace, Justice and Strong Institutions

SDG 17 Partnerships for the Goals

Range of Complex Problem Solving

 Attribute Complex Problem

1
Range of conflicting
requirements

Involve wide-ranging or conflicting technical, engineering and other issues. ✔

2 Depth of analysis required
Have no obvious solution and require abstract thinking, originality in
analysis to formulate suitable models.

✔

3 Depth of knowledge required
Requires research-based knowledge much of which is at, or informed by, the
forefront of the professional discipline and which allows a
fundamentals-based, first principles analytical approach.

✔

4 Familiarity of issues Involve infrequently encountered issues ✔

5 Extent of applicable codes
Are outside problems encompassed by standards and codes of practice for
professional engineering.

✔

6
Extent of stakeholder
involvement and level of
conflicting requirements

Involve diverse groups of stakeholders with widely varying needs.

7 Consequences Have significant consequences in a range of contexts. ✔

8 Interdependence Are high level problems including many component parts or sub-problems ✔

Range of Complex Problem Activities

 Attribute Complex Activities

1 Range of resources
Involve the use of diverse resources (and for this purpose, resources include
people, money, equipment, materials, information and technologies).

✔

2 Level of interaction
Require resolution of significant problems arising from interactions between
wide ranging and conflicting technical, engineering or other issues.

✔

3 Innovation
Involve creative use of engineering
principles and research-based knowledge in novel ways.

✔

4
Consequences to society and
the environment

Have significant consequences in a range of contexts, characterized by
difficulty of prediction and mitigation.

✔

5 Familiarity
Can extend beyond previous experiences by applying principles-based
approaches.

✔

Abstract

These days, robotic arms are employed in a variety of contexts, including

pick-and-place tasks in artificial automation operations and in the military, defense, and

medical fields. The Replicating Gesture Robotic arm is a servo-controlled robotic arm

that imitates human arm motions in three dimensions. This design's primary goal is to

manage the robotic arm.

Using mortal gestures. The robotic arm moves and completes the task while the

system mimics the actions of human hands. It is coded so that the expected behavior for

the fatal gesture is carried out. Consequently, the model we suggested will be quite useful.

Keywords: Servo motor, Arduino Mega, and robotic arm

Undertaking

I certify that the project Gesture Control Robot Using Image Processing and

Object Tracking Algorithm is our own work. The work has not, in whole or in part,

been presented elsewhere for assessment. Where material has been used from other

sources it has been properly acknowledged/ referred.

Muhammad Tayyab
F19603018
Saad Ahmad
F19603036

MuhammadWaqas
F19603023

Muhammad Haseeb Khalil
F19603016

ACKNOWLEDGMENT

In the name of Allah Almighty, the foremost gracious and therefore the most

merciful. First and foremost, we are glad that Allah Almighty has given us the

strength, knowledge, ability, and opportunity to undertake this study and complete

it satisfactorily.

Secondly, we would like to thank and express our heartfelt gratitude to our

supervisor Dr. Abdullah Waqas for his continuous support, zeal, patience, valuable

advice, encouragement, and unwavering guidance that helped us exceptionally in

our Final Year Project. His unparalleled knowledge, insightful suggestions, intense

experience, and professional competence have empowered us to accomplish this

successfully. Without him, this would not have been possible. We would not have

imagined having a better supervisor and mentor for our BS study.

We would also be thankful to the university staff for their support and assistance.

Most importantly, we would like to thank our friends, colleagues, and lab mates for

their continuous support throughout the process.

1

DEDICATED TO

It is impossible to extend enough thanks to our families, especially our parents, who

gave us the encouragement we needed through the process.

2

TABLE OF CONTENTS

Chapter 1 1

INTRODUCTION 1
1.1 Background 1

1.2 Problem Statement 1

1.3 Design Overview 1

1.4 Novelty 2

1.5 Time Frame 2
1.5.1 Semester VII 2
1.5.2 Semester VIII 3

1.6 Resources Required 4
1.6.1 Components 4
1.6.2 Equipment 4

Chapter 2 5

LITERATURE REVIEW 5
2.1 Gesture Recognition for Human-Machine Interaction 5

2.2 Three Layers of Gesture Recognition 5

2.3 Cost-effective Approach: Arduino UNO & OpenCV 5

2.4 Wireless Control 6

Chapter 3 7

THEORY 7
3.1 Anatomy of Human Hand Wrist 7
3.1.1 The Bones and Joints 7
3.1.2 The Tendons 8

3.2 Arduino Uno 8

3.3 MG996R Servo Motor 10
3.3.1 Pulse Width Modulation 10

3.4 Battery Bank 11

3.5 ESP8266 11

Chapter 4 12

PYTHON PROGRAMMING 12
4.1 Introduction 12

3

4.1.1 Syntax and Semantics 12
4.1.2 Typing 12
4.1.3 Libraries 12
4.1.4 Integrated Development Environment 12

4.2 Spyder IDE 12

4.3 Open Computer Vision Library (OpenCV) 13

4.4 Media pipe 13

4.5 Python Code 14
4.5.1 Libraries 14
4.5.2 Wireless Communication 14
4.5.3 Models 15
4.5.4 Webcam 16
4.5.5 Function to Calculate Angle 16
4.5.6 Function to Pad Zeros 17
4.5.7 Function for Finger Angles 17
4.5.8 Initializing Finger Values 18
4.5.9 Initializing Holistic and Setting Frame 18
4.5.10 Detections 19
4.5.11 X and Y parameters 20
4.5.12 Calculating Angles 20
4.5.13 Data Transmission 21
4.5.14 Terminating Window 22

Chapter 5 23

ARDUINO CODING 23
5.1 Arduino IDE 23
5.1.1 Arduino IDE Language 23

5.2 Code for Arduino UNO/MEGA 24
5.2.1 Including Library and defining variables 24
5.2.2 Setup 25
5.2.3 Receiving Data 25
5.2.4 Initial Value 26
5.2.5 Servo Control 27
5.2.6 Loop 27

5.3 Code for ESP8266 28
5.3.1 Declaration 28
5.3.2 ESP Code Setup 29
5.3.3 ESP Communication 30

4

Chapter 6 32

PHYSICAL STRUCTURE 32
6.1 The Robotic Hand 32
6.1.1 The Fingers 32

6.2 Forearm 35

6.3 The Humanoid Dummy (Mannequin) 36

Chapter 7 38

RESULTS AND DISCUSSIONS 38
7.1 Imitation Test 38
7.1.1 Fingers Test 38

Chapter 8 42

CONCLUSIONS AND FUTURE WORK 42
8.1 Conclusions 42

8.2 Future Work 43

REFERENCES 46

5

Table of Figures
Figure 1.0.1 Proteus Design 2
Figure 1.0.2 Gantt chart 1 2
Figure 1.0.3 Gantt chart 2 3
Figure 3.0.1 Bones & Joints of Human Hand [7] 7
Figure 3.0.2 Human Hand Tendons working [8] 8
Figure 3.0.3 Arduino UNO [10] 9
Figure 3.0.4 MG996R Servo Motor [12] 10
Figure 3.0.5 Pulse Width 11
Figure 4.0.1 Spyder IDE 13
Figure 4.0.2 Libraries 14
Figure 4.0.3 IP Address 14
Figure 4.0.4 Models 15
Figure 4.0.5 Webcam Command 16
Figure 4.0.6 Function to Calculate Angle 16
Figure 4.0.7 Function to Pad Zeros 17
Figure 4.0.8 Function to Calculate Finger Angle 17
Figure 4.0.9 Initializing Finger Values 18
Figure 4.0.10 Initializing Holistic Model 18
Figure 4.0.11 Detections 19
Figure 4.0.12 Parameters Extraction 20
Figure 4.0.13 Calculating Joints Angles 20
Figure 4.0.14 Data Transmission 21
Figure 4.0.15 Terminating Windows 22
Figure 5.0.1 Arduino IDE 23
Figure 5.0.2 Including Libraries 24
Figure 5.0.3 Setup 25
Figure 5.0.4 Data Receiving 25
Figure 5.0.5 Zero Position 26
Figure 5.0.6 Servo Control 27
Figure 5.0.7 Loop 27
Figure 5.0.8 Declaring variables 28
Figure 5.0.9 ESP Setup 29
Figure 5.0.10 ESP Communication 30
Figure 6.0.1 3D Printed Hand 32
Figure 6.0.2 The side view of a 3D-printed finger, the turquoise parts is the PLA

filament acting as joints. [16] 33

6

Figure 6.0.3 The side view of the 3D-printed thumb. [16] 33
Figure 6.0.4 3D Printed Arm 34
Figure 6.0.5 Top view of the hand, without the fingertips. [16] 34
Figure 6.0.6 The small and large gears for the wrist rotational motion. [16] 35
Figure 6.0.7 The rotational attachment piece for servo motor. [16] 35
Figure 6.0.8 Forearm with servos. [16] 36
Figure 6.0.9 3D-printed servo pulley for the servo motor. [16] 36
Figure 6.0.10 The Mannequin Connected with the robotic Arm. [15] 37
Figure 7.0.1 Thumb testing [15] 38
Figure 7.0.2 Pinky Finger testing [15] 39
Figure 7.0.3 Ring Finger testing [15] 39
Figure 7.0.4 Index Finger testing [15] 39
Figure 7.0.5 Ring & Middle finger testing [15] 40
Figure 7.0.6 Full Fist to Open hand test [15] 40
Figure 7.0.7 Fist except Thumb [15] 41

7

LIST OF ABBREVIATIONS
OpenCV: Open Computer Vision 1
CSR: Corporate Social Responsibility 5
EMS: Environmental Management System 5
Geo-SAT: Geotechnical Sustainability Assessment Tool ix
LEED: Leadership in Energy and Environmental Design 1
SD: Sustainable Design 1
PWM: Pulse Width Modulation--2

ESP: Encapsulating Security Payload---4

PC: Personal Computer--4

DMM: Digital Multi Meter--4

DSP: Digital Signal Processing---5

IOT: Internet of Thing---9

CV ZONE: Computer vision Zone---12

BGR: Blue Green Red--15

RGB: Red Green Blue--15

TCP: Transmission Control Protocol---17

IDE: Integrated Development Environment---19

UART: Universal Asynchronous Receiver-Transmitter--------------------------------------23

IEEE: Institute of Electrical and Electronics Engineers--5

IEEE: Institute of Electrical and Electronics Engineers--9

USB: Universal Serial Bus---7

MIME: Multipurpose Internet Mail Extensions --10

HTTP: Hypertext Transfer Protocol ---10

GPU: Graphics processing unit ---11

IP: Internet Protocol --12

TCP: Transmission Control Protocol --12

Wi-Fi: Wireless Fidelity ---05

SSID: Service Set Identifier ---23

LED: Light-emitting diode --25

PWM: Pulse Width Modulation --08

DC: Direct Current ---08

RAM: Random-access memory---08

8

ROM: Read-only memory---08

9

Chapter 1

INTRODUCTION

1.1 Background

The development of computer vision and robotics has led to the creation of gesture

control robots that use image processing and object tracking algorithms. While object

tracking algorithms concentrate on tracking the movements of certain objects within a

scene, image processing entails extracting information from digital stills or moving

pictures. Robotic systems now have these technologies built in to help them understand

human motions and offer simple control schemes.

Gesture control robots record real-time images of the user's movements by

integrating cameras. These images are subjected to analysis by image processing

algorithms, which track and recognize things like the user's hands. The robot can then

comprehend the gestures and react appropriately thanks to object tracking algorithms,

which keep track of the object's position and movement.

Robots with gesture controls have found use in a variety of fields, including

manufacturing, healthcare, and gaming. By doing away with the use of physical

controllers or complicated interfaces, these robots provide a more comfortable and natural

method for people to connect with machines.

The robustness and accuracy of gesture recognition, as well as the adaptation of these

robots to various surroundings, are all being improved through ongoing developments. In

the future, it is anticipated that gesture control robots will revolutionize human-robot

interaction and have even more diverse applications as technology advances.

1.2 Problem Statement

To design a robot that can imitate human gesture. And will be replacing human being

in such places where human life is in danger and where human access is limited.

1.3 Design Overview

The overall all system consist of eight servo motor. The first five servo’s control the

figures movement and next servo control the shoulder and next control the elbow

movement and last one control the wrist movement as shown in figure 1.0.1.

1

Figure 1.0.1 Proteus Design

1.4 Novelty

We control the robotic arm using image processing and object tracking algorithm.

Python used to detect and to give data points of human joints. Which are then

communicated to Arduino. We give signal to the Arduino, Arduino generate PWM to

operate the servo, and these servos control the arm movement.

1.5 Time Frame

1.5.1 Semester VII

2

1.5.2 Semester VIII

3

1.6 Resources Required

1.6.1 Components

MG996R

MG945

Arduino UNO

ESP WIFI Module

Battery

Fishing Wire

Male/Female Wire

Dummy

Transistor (LM7805)

Vero Board

Connector

1.6.2 Equipment

PC

3D Printer

DMM

Power supply

Portable Grinder

4

Chapter 2

LITERATURE REVIEW

The purpose of a literature review is to identify the current state of knowledge,

identify gaps or controversies in the existing literature, and provide a theoretical and

conceptual framework for the project.

2.1 Gesture Recognition for Human-Machine Interaction

Gesture recognition facilitates the establishment of a seamless rapport between

mankind and machinery, obviating the necessity for mechanical or electro-mechanical

contrivances. It empowers users to engage with computers and exert dominion over them

by means of indicative gesticulations directed towards the display. The advent of gesture

recognition technology potentially heralds the supplanting of conventional input

apparatuses, including mice, keyboards, and touch screens. The attainment of gesture

recognition is predicated upon the convergence of computer vision and image processing

methodologies. Hand interactive systems, as commonly implemented, exhibit a tripartite

structure, encompassing the realms of detection, tracking, and recognition. [1]

2.2 Three Layers of Gesture Recognition

The three layers of gesture recognition systems are detecting, tracking, and

recognizing. The detection layer extracts visual features associated with the presence of

hands in the camera's field of view. The tracking layer establishes temporal data

association between successive image frames to track the movement of hands. The

recognizing layer groups the spatiotemporal data extracted from the previous layers and

assigns labels to specific gesture classes. [2]

2.3 Cost-effective Approach: Arduino UNO & OpenCV

DSP processors are highly qualified for signal processing but not cost-effective for

the project. Arduino Uno, a low-cost single board computer, was used instead. Python

programming language is utilized with the OpenCV library for gesture recognition.

OpenCV is an open-source library that requires fewer resources compared to costly

MATLAB software. [1]

5

2.4 Wireless Control

The system uses wireless control for better portability. An ESP8266 module is used

to make it wireless The ESP8266 module allows microcontrollers to establish a

connection with 2.4 GHz Wi-Fi networks, utilizing the IEEE 802.11 ban standard.

6

Chapter 3

THEORY

Once the subject was chosen for the bachelor’s thesis project the initial research was

done. Previous bachelor’s theses regarding a Robotic Hand Controlled by Glove Using

Wireless Communication [3], Gesture Replication Robo-Arm [4] , Robotic Telekinesis:

Learning a Robotic Hand Imitator [5], gesture based wireless control of robotic hand

using image processing [1] and The Manipulation of Real-Time Kinect-Based Robotic

Arm Using Double-Hand Gestures [6] were needed for the project.

3.1 Anatomy of Human Hand Wrist

3.1.1 The Bones and Joints

The carpus and five fingers make up the human hand Figure. The grouping of eight

tiny bones known as the carpus is located between the wrist and the tips of the fingers.

The Navicular, Lunate, Triquetrum, Pisiform, Greater Multangular, Lesser Multangular,

Capitate, and Hamate are among these bones. The Radiocarpal (RC) joint helps to link the

hand to the fingers. The four joints, three phalanges, and one metacarpal bone (M) make

up each finger, except for the thumb. The first phalanx (FP), second phalanx (SP), and

third phalanx (TP) are the three phalanges. The distal interphalangeal joint (DIP),

proximal interphalangeal joint (PIP), metacarpophalangeal joint (MP), and either

carpometacarpal joint (CM) or intercarpal joint (IC) are the four joints. [7]

7

Bones &oints of Human Hand [7]

3.1.2 The Tendons

Flexor tendons: Located on the palm side, responsible for flexing the fingers and

thumb. Extensor tendons: Located on the back of the hand, responsible for extending the

fingers and thumb. Tendons run through sheaths, allowing smooth gliding motion. [7]

Figure 3.0.2 Human Hand Tendons working [8]

3.2 Arduino Uno

The open-source electronics platform known as Arduino offers the Arduino Uno, an

open-source microcontroller. This microcontroller is programmed in the Arduino

programming language, which has its origins in the open-source Wiring microcontroller

architecture. The Arduino Integrated Development Environment (IDE), which is based on

the Processing software, is used to write the code. The Arduino Uno microcontroller is

linked to a battery for operation, and a USB cable (USB-A to USB-B) is used to upload

the compiled programming to the controller. The table below contains important details

about the Arduino Uno microcontroller. Data from the glove is received by the Arduino

Uno, which is then utilized to control the fingers of the robotic hand and wrist. [9]

8

Figure 3.0.3 Arduino UNO [10]

Table 3.1: Tech specs of the Arduino-Uno microcontroller. [10]

Microcontroller name ATmega328P

Operating Volts 5 Volt

Input Volt 6-20 Volt

Digital Input/Output Pins 14 (6 are PWM out)

PWM Digital In/Out Pins 6

Analog Input signal Pins 6

DC Current per In/Out Pin 20 milli Amps

DC Current for 3.3Volt Pin 50 milli Amps

Flash Memory storage 32 Kilo Bytes

Static RAM 2 Kilo Bytes

Electrically Erasable Programmable ROM 1 Kilo Bytes

Clock Speed in MHz 16

LED_BUILT-IN 13

Length in mm 68.6

Width in mm 53.4

Weight in grams 25

3.3 MG996R Servo Motor

The MG996R servo motors, shown in the image, weigh 55 g and have a torque of 11

kg/cm at 6 V and 9.4 kg/cm at 4.8 V. This means that, depending on the power source, the

motor can lift either 11 kg or 9.4 kg at a distance of 1 cm perpendicular to the shaft. The

9

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf

kg/cm to N/m conversion factor is 0.981. The operational voltage ranges from 4.8 to 6.6

V, and the rotation is 180°. The microcontroller and the power supply must be linked to

the three wires on the motor. The red wire should be connected to the battery (power

source), the orange wire to an Arduino pin that can send the pulse width modulated

(PWM) signal to the motor, and the brown wire is the ground wire and should be linked

to the Arduino's ground input. The robotic hand's fingers may bend and stretch thanks to

the servo motors. [11]

Because servo motors include internal controls that can adjust both position and speed,

they are used because of their ease of installation. In contrast to stepper motors, which

work through an open loop and require a given number of steps, this enables the

specification of a desired position. Simple servo motors only require three wires because

of the internal self-regulating nature of servo motors. [13]

3.3.1 Pulse Width Modulation

The method of pulse width modulation makes it possible to use digital outputs on

analogue circuits by producing analogue signals from digital signals. Instead of using

straight analogue signals, PMW on a digital signal can save system expenses and power

usage. Utilising PMW can also reduce the effects of system noise. The method is based

on altering the duty cycle, which is the duration of the digital signal applied in relation to

a square wave's period. For instance, the analogue signal produced by a 5 V supply and a

10% duty cycle is 0.5 V. Figure shows signals with various duty cycles. [14]

10

3.4 Battery Bank

A battery bank of 7.4-8.4V is used having total 12Ah charge. It was made using

lithium cell of 3.7V. 6 cells are used to make such a battery bank. This battery bank

contains more energy than required as we need approximately 8Amp. However this bank

can provide 12amps this increases the battery time of robot.

3.5 ESP8266

The ESP8266 is an affordable and versatile microcontroller module equipped with

built-in Wi-Fi capabilities. It is commonly used in IOT applications to connect

microcontrollers to Wi-Fi networks and enable internet communication. With its compact

size, powerful processor, and ample memory, the ESP8266 supports the IEEE 802.11

b/g/n Wi-Fi standards. It can be programmed using various development environments

and languages like Arduino IDE or NodeMCU Lua firmware. Due to its

cost-effectiveness and flexibility, the ESP8266 has gained popularity among hobbyists,

makers, and developers for a wide range of IoT projects.

11

Chapter 4

PYTHON PROGRAMMING

o 4.1 Introduction

Python is a high level and all-purpose programming language. With the off-side rule

and substantial indentation, its design philosophy prioritizes readability of the code. It is

an interpreter language. Latest version of python is 3.11.4 as of June 2023.

Python`s memory management system combines reference counting and cycle detecting

garbage collector with dynamic typing. Method and variable names bound via dynamic

name resolution, which takes place while the program is running.

▪ 4.1.1 Syntax and Semantics

Python is made easy to read. Its formatting is distinct and usually using English

keywords. Unlike other language, it does not use curly brackets to limit blocks, and not

even semicolon is used to terminate a statement.

▪ 4.1.2 Typing

Duck typing is used in python, which has typed objects but un-typed variable names.

Type restriction aren`t verified at build time; instead, actions on an object could fail,

indicating that it is not the right type.

▪ 4.1.3 Libraries

Python supported a wide variety of libraries and this is one of the strengths of

python. For internet facing applications, protocols and standard such as Multipurpose

Internet Mail Extensions (MIME) and Hypertext Transfer Protocol (HTTP) are also

supported.

▪ 4.1.4 Integrated Development Environment

Python has a number of Integrated Development Environment (IDE). It comes with a

12

default IDE. One of the main distributions for python IDEs is Anaconda, which includes

Spyder, Jupiter, PyCharm and many more IDEs.

o 4.2 Spyder IDE

It is a powerful IDE for python programming. It is an open-source software can be

downloaded independently or can be used through Anaconda distribution.

In this project we used Spyder IDE for python programming.

Figure 4.0.1 Spyder IDE

o 4.3 Open Computer Vision Library (OpenCV)

OpenCV is a programming library, which is mainly used for real-time computer

vision. It is a cross platform and licensed as free and open source. It features GPU

acceleration for the real-time operations.

We have used it to get real time data from live feed of camera. Which is then processed to

get the desired results. It opens the webcam of the pc or laptop and get the real time data

from it.

o 4.4 Media pipe

Media pipe is framework containing a wide range of machine learning solutions. It

contains everything required in order to customize and deploy easily.

We are using Media pipe holistic solution which gives us the detection of different joints

13

of human body, which includes shoulder, elbows, fingers, arms, hip joints and etc.

o 4.5 Python Code

▪ 4.5.1 Libraries

Figure 4.0.2 Libraries

Importing different libraries in order to perform desired task.

● Media pipe: It is a Python framework used for building machine-learning

pipelines that process multimedia data like images and videos.

● Cv2: This library, known as OpenCV, provides functions for image and

video processing.

● NumPy: It is a powerful Python library used for numerical computing,

offering support for large arrays and matrices, along with mathematical

functions.

● CV Zone: This appears to be a custom module or package called cvzone,

which likely includes a class called Hand Detector for hand tracking in

images or videos.

● Time: A standard Python module that offers functions related to time, such

as measuring intervals and introducing delays in code execution.

● Socket: A module used for low-level network programming in Python,

enabling network connections and communication with other machines.

▪ 4.5.2 Wireless Communication

Figure 4.0.3 IP Address

14

The code assigns values to two variables, ESP_IP and ESP_PORT, which are utilized

for defining the IP address and port number used to establish communication with an ESP

device.

The variable ESP_IP is set to '192.168.15.4', representing the specific IP address

assigned to the ESP device. The actual IP address may differ based on the network

configuration and setup of the ESP device.

The variable ESP_PORT is assigned the value 8888, which denotes the port number

employed for the communication. The port number 8888 is commonly utilized for

network communication, although it can be modified to any available port based on the

project's requirements or network configuration.

▪ 4.5.3 Models

Figure 4.0.4 Models

The provided code segment obtains various models or modules for hand detection,

pose estimation, and holistic analysis using the mediapipe library.

● Detector = HandDetector (detectionCon=0.8, maxHands=1): This
line creates a HandDetector object from the cvzone.HandTrackingModule

module. It sets the detection confidence threshold to 0.8 and restricts the

maximum number of detected hands to 1.

● mp_drawing = mp.solutions.drawing_utils: This line imports the

drawing_utils module from mediapipe.solutions and assigns it to the variable

mp_drawing. It provides functions for drawing visualizations of the results.

● mp_holistic = mp.solutions.holistic: This line imports the holistic

module from mediapipe.solutions and assigns it to the variable mp_holistic. It

allows for holistic analysis, encompassing body pose estimation, face

analysis, and hand tracking.

15

● mp_pose = mp.solutions.pose: This line imports the pose module

from mediapipe.solutions and assigns it to the variable mp_pose. It enables

body pose estimation through the Pose class.

● mp_Hand= mp.solutions.hands: This line imports the hands module

from mediapipe.solutions and assigns it to the variable mp_Hand. It enables

hand tracking via the Hands class.

● Hands = mp_Hand. Hands (static_image_mode=False,
max_num_hands=2, min_detection_confidence=0.8): This line initializes a

Hands object for hand tracking. It sets static_image_mode to False, indicating

that real-time video frames will be processed. Additionally, it configures

max_num_hands to 2, allowing the detection of a maximum of 2 hands, and

min_detection_confidence to 0.8, representing the minimum confidence

threshold for hand detection.

These models and objects will be used later in the code to perform tasks such as hand

detection, pose estimation, and holistic analysis.

▪ 4.5.4 Webcam

Figure 4.0.5 Webcam Command

The provided code segment initializes the webcam or video capture device using the

OpenCV library.

Cap = cv2.VideoCapture (1): This line creates a Video Capture object named cap to

access the webcam. The argument 1 represents the index or ID assigned to the specific

webcam to be used. The index may vary depending on the available camera devices. In

this case, the value 1 indicates the second webcam device.

16

▪ 4.5.5 Function to Calculate Angle

Figure 4.0.6 Function to Calculate Angle

A function called calculate angle that determines the angle between four points: a, b,

c, and d.

The function takes four parameters: a, b, c, and d, representing the coordinates of the four

points. The coordinates a, b, and c are converted into NumPy arrays. The radians variable

calculates the angle between the vectors ba and bc using the arctan2 function.

The angle variable stores the absolute angle in degrees, obtained by converting the

radians to degrees. The function checks the value of the parameter d. If it is 0, the angle is

adjusted to be within the range of 0 to 180 degrees by subtracting it from 360 degrees if it

exceeds 180. The angle is then converted to an integer. If d is 1, the angle is directly

converted to an integer. Finally, the function returns the calculated angle.

17

▪ 4.5.6 Function to Pad Zeros

Figure 4.0.7 Function to Pad Zeros

A function named pad_zeros that adds leading zeros to the elements of an array.

The function accepts an array called arr as input. It initializes an empty string variable

called send to store the padded values. The function iterates over each element in the

array using a for loop. For each element, it checks if the length of its string representation

is less than 3. If the length is less than 3, it pads leading zeros to the string representation

using the zfill method. The padded or original string representation of the element is then

appended to the send variable. After iterating through all the elements, the function

returns the final concatenated string containing the padded values.

▪ 4.5.7 Function for Finger Angles

Figure 4.0.8 Function to Calculate Finger Angle

The function starts by checking if the value of the finger is either 1 or 0. If the finger

value is 1, the function returns an angle of 0 degrees. Similarly, if the finger value is 0, the

function returns an angle of 90 degrees. However, if the finger value is any other value,

the function raises a Value Error exception.

18

▪ 4.5.8 Initializing Finger Values

Figure 4.0.9 Initializing Finger Values

This only to initialize the fingers values to zero. This will set the fingers in default

open position, as well as helps overcome Value Error exception in above code.

▪ 4.5.9 Initializing Holistic and Setting Frame

Figure 4.0.10 Initializing Holistic Model

The provided code executes a continuous loop while the video stream is active.

During each iteration, the following steps are performed:

● The next frame is read from the video stream.

● The color space of the frame is converted from BGR to RGB.

● The Holistic object is utilized to detect and track landmarks of the human

body in the frame.

● The frame is converted back to the BGR color space for visualization

purposes.

19

● The pose landmarks and right-hand landmarks are extracted from the

results obtained by the Holistic object.

● If no landmarks are detected in the frame, the code proceeds to the next

iteration.

● The try-except blocks are used to handle situations where no landmarks

are detected. In such cases, the code simply moves to the next iteration.

The variables landmarks and landmarks_1 hold the pose landmarks and right hand

landmarks, respectively. These variables can be utilized for further processing of the

video stream, such as tracking the movement of the user's body or hands.

▪ 4.5.10 Detections

Figure 4.0.11 Detections

The code utilizes the mp_drawing module to draw pose landmarks on an image. The

POSE_CONNECTIONS variable is a list containing pairs of landmark indices that

specify the connections between pose landmarks. The draw landmark’s function uses this

information to draw lines connecting the corresponding landmarks on the image.

The image is displayed on the screen using the cv2.imshow function. To horizontally

mirror the image, the cv2.flip function is employed.

The code checks if there are any hand landmarks detected in the image. If hand landmarks

are present, the code iterates through each hand landmark and retrieves the landmark list

and the bounding box.

To determine whether the fingers are open or closed, the code employs the detector

object. The fingersUp function is used, which returns a list of Boolean values. Each value

indicates whether the corresponding finger is open or closed.

20

The finger_angle function is used to calculate the angle of each finger. This function

returns the angle of the finger in degrees.

▪ 4.5.11 X and Y parameters

Figure 4.0.12 Parameters Extraction

The code retrieves the x and y coordinates of several landmarks: right index finger,

right shoulder, left shoulder, right elbow, right wrist, and right hip. These coordinates are

stored in a list of lists. The landmarks variable is a list of landmark objects. Each

landmark object contains the x, y, z, and visibility coordinates of a specific landmark. The

mp_pose. PoseLandmark class defines the names and indices of the pose landmarks. By

accessing the value property of a landmark object, the index of the landmark can be

obtained. The extracted x and y coordinates of the landmarks are valuable for tracking the

movement of the user's body or hands, as well as for gesture detection. For instance, the

code could be employed to track the user's right hand and identify when the user forms a

fist gesture.

▪ 4.5.12 Calculating Angles

Figure 4.0.13 Calculating Joints Angles

The provided code calculates the angles between specific landmarks in the body,

1. Hip joint, right shoulder, and Elbow.

2. Left shoulder, right shoulder, and Elbow.

21

3. Right shoulder, right elbow, and Wrist

4. Right elbow, right wrist and left middle.

The calculation is performed using the calculate angle function. This function accepts

three arguments: the start landmark, the end landmark, and a flag indicating whether the

angle should be measured in degrees or radians. The function computes and returns the

angle between the two landmarks in degrees.

By utilizing the calculate angle function with the appropriate landmark pairs, you can

determine the angles formed by different body parts. These angles can be useful for

various applications, such as tracking body posture or analyzing movement patterns.

▪ 4.5.13 Data Transmission

Figure 4.0.14 Data Transmission

The code performs the following tasks:

The angles of the fingers and shoulders are assigned to a list.

The list is then padded with leading zeros so that all elements have a length of 3.

The padded list is assigned to the variable message.

Additionally, the code involves the following steps related to TCP/IP socket

communication:

A TCP/IP socket is created using the socket module. The socket.AF_INET parameter

specifies that the socket should use the IPv4 protocol, and the socket.SOCK_STREAM

parameter indicates that it should be a stream socket.

The socket is connected to the ESP device. The IP address of the ESP is specified by the

ESP_IP variable, and the port number is specified by the ESP_PORT variable.

The message is sent to the ESP. The str(message).encode() expression converts the

22

message variable to a string and then encodes it as a byte sequence. The sock.sendall()

method sends the byte sequence to the ESP.

The code pauses its execution for 0.8 seconds. This delay allows the ESP device to

receive the message effectively.

These steps collectively enable the transfer of the padded message to the ESP device

using a TCP/IP socket connection.

▪ 4.5.14 Terminating Window

Figure 4.0.15 Terminating Windows

The video capture object is released using the cap.release() function, which also

releases any associated system resources. When you are done using the video capture,

you should call this.

All open windows produced by OpenCV are closed and destroyed using the

cv2.destroyAllWindows() function. To make sure all windows are correctly closed at the

end of a program, this technique is frequently employed.

When using OpenCV, both of these function calls are necessary for effective resource

management and cleanup.

23

Chapter 5

ARDUINO CODING

5.1 Arduino IDE

The user-friendly software tool known as the Arduino IDE is used to program

Arduino boards. It offers a straightforward and understandable user interface for creating,

assembling, and uploading code to Arduino microcontrollers. The Arduino IDE gives

users the ability to develop and release their projects more quickly thanks to features like

code highlighting, a serial monitor, and sizable library selection. The user-friendly

software tool known as the Arduino IDE is used to program Arduino boards. It offers a

straightforward and understandable user interface for creating, assembling, and uploading

code to Arduino microcontrollers. The Arduino IDE gives users the ability to develop and

release their projects more quickly thanks to features like code highlighting, a serial

monitor, and a sizable library selection.

Figure 5.0.1 Arduino IDE

5.1.1 Arduino IDE Language

The Arduino IDE utilizes an adapted version of C++ called the Arduino

24

programming language. It offers a simplified syntax suitable for beginners while

maintaining compatibility with the more advanced features of C++.

5.2 Code for Arduino UNO/MEGA

A program is written which receives data from serial communication and using

different techniques to extract angles from the received data. Then use the data to operate

servos.

5.2.1 Including Library and defining variables

Figure 5.0.2 Including Libraries

The `#include<Servo.h>` line imports the Servo library for servo motor control. The

`#define` statements establish constants `numOfValsRec` and `digitsPerValRec` with

respective values of 6 and 3. An integer array called `valsRec` is declared to store

received values. Multiple Servo objects, such as `Thumb`, `Index`, `Middle`, `Ring`,

`Pinky`, `Elbow`, and `Shoulder`, are created to control individual servo motors. Lastly, a

`String` variable named `Received` is declared to hold received data. In summary, this

code sets up the necessary components for managing servo motors and processing

received values on an Arduino board.

25

5.2.2 Setup

Figure 5.0.3 Setup

The `setup()` function initializes the program by performing the following tasks:

Setting up serial communication with a baud rate of 9600 using `Serial.begin(9600)`.

Associating the servo objects (`Thumb`, `Index`, `Middle`, `Ring`, `Pinky`, `Elbow`, and

`Shoulder`) with their corresponding digital pins (3, 4, 5, 6, 7, 8, and 9) using the

`attach()` method. Calling the `Zero()` function to position the servos to their initial

positions.

In summary, the `setup()` function establishes the necessary configurations for serial

communication and servo control, ensuring proper initialization of the program.

26

5.2.3 Receiving Data

Figure 5.0.4 Data Receiving

A function named `Receiving()`, which is responsible for receiving data over the

serial communication and processing it to control servos.

The function starts with an `if` statement that checks if there is data available to read from

the serial port using `Serial.available()`. If data is available, the following actions are

performed:

The received data is stored in the `Received` variable using

`Serial.readString()`.

A `for` loop is used to iterate through the `valsRec` array.

Inside the loop, the `num` variable is calculated as the product of `i` and

`digitsPerValRec`, which determines the starting index of the substring to

extract from `Received`.

The `substring()` function is used to extract a substring from `Received`

starting from `num` and with a length of `digitsPerValRec`. The `toInt()`

function is then applied to convert the extracted substring to an integer,

which is stored in the corresponding element of the `valsRec` array.

After processing the received data and populating the `valsRec` array, the

`Servo_Control()` function is called to control the servos based on the

received values. Finally, the `Received` variable is cleared by setting it to

an empty string

27

5.2.4 Initial Value

Figure 5.0.5 Zero Position

Function is designed to reset the positions of several servos to zero.

Within the `Zero()` function, each servo object (`Thumb`, `Index`, `Middle`, `Ring`,

`Pinky`, `Elbow`, and `Shoulder`) is individually instructed to move to the zero position

by utilizing the `write()` function with a value of 0 as the position argument. This action

effectively resets all the servos to their initial zero positions.

In essence, the `Zero()` function ensures that all mentioned servos are uniformly set to the

zero position, establishing a consistent starting point for their subsequent movements.

5.2.5 Servo Control

Figure 5.0.6 Servo Control

Inside the `Servo_Control()` function, each servo object (`Thumb`, `Index`,

`Middle`, `Ring`, `Pinky`, `Elbow`, and `Shoulder`) is individually directed to move to a

specific position. The desired position for each servo is obtained from the corresponding

element in the `valsRec` array.

28

To achieve this, the `write()` function is utilized for each servo, with the target

position passed as an argument. The position value is retrieved from the `valsRec` array

using the appropriate index: `valsRec[0]` for `Thumb`, `valsRec[1]` for `Index`,

`valsRec[2]` for `Middle`, and so forth.

5.2.6 Loop

Figure 5.0.7 Loop

The loop function is continuously calling ‘Receiving’ function. In order to get data

from serial and operate the servos.

5.3 Code for ESP8266

ESP is being used to make the system wireless and operate it using wifi.

5.3.1 Declaration

Figure 5.0.8 Declaring variables

The code is designed to be used with an ESP8266 module and an Arduino board. It

includes necessary libraries for Wi-Fi communication (`ESP8266WiFi`) and software

serial communication (`SoftwareSerial`).

The code can be broken down into the following sections.

1. Library Import:

29

- The code imports the required libraries, `ESP8266WiFi` for Wi-Fi functionality

and `SoftwareSerial` for software-based serial communication.

2. Wi-Fi Configuration:

- The code sets the Wi-Fi network credentials, including the network name (SSID)

and password. The specified network is "Network SSID".

3. LED and Timing Variables:

- The code defines an LED pin (pin 0) for controlling an LED.

- It also declares two variables (`previousTime` and `totalTime`) for timing

purposes.

4. UART Configuration:

- The code sets the baud rate for UART communication to 115200.

- It initializes a software serial object named "uart" on pins 1 (RX) and 3 (TX) to

establish communication between the ESP8266 module and the Arduino board.

5. TCP Server Configuration:

- The code creates a TCP server object on port 8888, enabling the ESP8266 module

to listen for incoming client connections.

6. UART Communication:

- The code sets up a software serial object named "uart" with specific RX and TX

pin numbers.

- The comments suggest connecting the ESP8266 TX pin to the Arduino RX pin

and vice versa to establish communication between the two devices.

30

5.3.2 ESP Code Setup

Figure 5.0.9 ESP Setup

The `setup()` function is responsible for initializing various components and

establishing connections. Let's go through the modifications:

1. UART Communication:

The code sets the `ledPin` as an output pin, indicating its usage for controlling an

LED. The line `uart.begin(UART_BAUD_RATE);` has been commented out, which

means that the software serial communication using the `uart` object is not being

initialized.

Instead, `Serial.begin(115200);` is used to initialize the communication through the

default hardware serial port on the Arduino board.

2. Wi-Fi Connection:

The code attempts to connect to the Wi-Fi network specified by the `ssid` and

`password` variables. It enters a while loop that waits until the ESP8266 successfully

connects to the Wi-Fi network. Within the loop, a delay of 1 second is added, and a

message indicating the connection attempt is printed to the Serial monitor.

3. TCP Server:

The code starts the TCP server by calling `server.begin()`. It prints a message to the

Serial monitor to indicate that the TCP server has been successfully started. The IP

31

address of the ESP8266 module is also printed to the Serial monitor using

`WiFi.localIP()`.

4. LED Control:

The line `digitalWrite(ledPin, true);` turns on the LED connected to the `ledPin`.

5.3.3 ESP Communication

Figure 5.0.10 ESP Communication

The `loop()` function continuously performs the following actions:

1. Checking for Incoming Client Connections:

The code uses the `server.available()` function to check if there is a client

attempting to connect. If a client is detected, a `WiFiClient` object called `client` is

created to handle the connection.

2. Reading Data from the Client:

The code enters a loop while the client is still connected. Within this loop, it checks

if there is any data available from the client using `client.available()`. If there is data

available, it reads the data into a `String` variable named `data` using

`client.readStringUntil('\n')`. The `'\n'` character is used as the delimiter to read the data

until a new line is encountered. The `data` string is then trimmed to remove any leading

or trailing whitespace characters using `data.trim()`. Finally, the trimmed `data` is printed

to the Serial monitor using `Serial.println(data)`.

32

33

Chapter 6

PHYSICAL STRUCTURE

Gael Langerin’s open-source library and the MAKERBOT 3D printers were used

to 3D print the robotic hand. The forearm was also printed because it included a

compartment for the servo motors and the Arduino board. [15]

6.1 The Robotic Hand

The hand consists of five figures, a palm, and a wrist. The hand and forearm were

assembled with the help of glue elfy. The fingers attached with the help of copper wire

and fingers movement with the help of fishing wire. [15]

Figure 6.0.1 3D Printed Hand

▪ 6.1.1 The Fingers

The third phalanx, the second phalanx, the first phalanx (split into two halves), and

the metacarpal bone (divided into two sections) made up the six components of the

3D-printed fingers. The third and second phalanges of the open source were fused

together using epoxy glue since they lacked a distal interphalangeal junction. Both the

two pieces of the metacarpal bone and the two pieces of the first phalanx were cemented

34

together. Except for the third phalanx, which contained the fingertips, each phalange end

had two openings, as shown in figure. A 3 mm drill was used to align these holes so that

PLA filament could be threaded through them. This served as the joints of the bones by

being done in between the connected phalanges.

Figure 6.0.2 The side view of a 3D-printed finger, the turquoise parts is the PLA

filament acting as joints. [16]

Figure 6.0.3 The side view of the 3D-printed thumb. [16]

The first and third phalanges, as well as the metacarpal bone, make up the thumb's

anatomy. The third and first phalanges, the metacarpal bone (in two sections), and a

portion that uses a 3D-printed bolt to join the thumb to the palm made up the six

components of the 3D-printed thumb. The two pieces of the metacarpal bone as well as

the third and first phalanx were attached to one another using epoxy glue. The joints were

built in a similar manner to how the other finger joints are.

6.1.2 The Palm

Four sections made up the palm. This made it possible for the hand to imitate human

hand motions more faithfully. The four palm structures that extended from the wrist to the

35

carpometacarpal or internarial joints of the fingers had holes in them. To the third

phalanx, the fishing lines were fed through these openings. Bolts that were 3D-printed

and fitted into holes that had an 8 mm diameter joined the pieces together. For a more

aesthetically pleasing finish, covers were also affixed to the parts.

Figure 6.0.4 3D Printed Arm

6.1.3 The Tendons

The wrist, palm, and fingers were connected by ten 75 cm long fishing lines that

were threaded from the servo motors. Each finger was strung with two fishing lines,

which were then connected at the top of the finger by a knot. The fishing lines were

intended to simulate the tendons in the hand and forearm. The finger was stretched out by

one fishing line and flexed by another.

Figure 6.0.5 Top view of the hand, without the fingertips. [16]

6.1.4 Wrist

Two gears plus a piece that joins the hand to the forearm make up the wrist. These

gears have holes that let fishing wire run through them. The exterior surface of these

gears has teeth that essentially regulate wrist movement.

36

Two gears and a piece that joined the hand to the forearm made up the wrist. A servo

motor was employed to simulate the wrist's circular motion. Two gears that were

3D-printed were used for this; see figure 3.5. According to equation 3.1, where Z1 and Z2

were the input and output gears' respective numbers of teeth, the gearing ratio, u, was

calculated to be 6.1 [18]. The smaller gear was attached to the servo motor by using glue

to fasten it to the modified rotating attachment piece that was included with the motor.

The hand was attached to the larger gear. For added clarity, a cable holder was printed and

sewn to the wrist to distinguish the fishing lines from one another.

u = (6.1)𝑍2
𝑍1

Figure 6.0.6 The small and large gears for the wrist rotational motion. [16]

Figure 6.0.7 The rotational attachment piece for servo motor. [16]

6.2 Forearm

The construction, which was made up of two parts that combined to form the

forearm, was enclosed by a cover that was attached to the bottom of the forearm. Five

servo motors were also present in the servo bed, another component. Each servo motor

was bolted to the servo bed and then connected to each finger of the hand using fishing

lines. Five servo pulleys were also 3D printed in order to complete the connection

between the motors and the fingers. The modified rotatable attachment components that

came with the servo motors were adhered to with epoxy by the servo pulleys. The servo

pulleys' holes were threaded with the fishing lines. A screw or the cable holder's perfectly

sized holes on the servo bed were used to attach the two 3D-printed cable holder sections

37

to the servo bed. These components were essential to the building process since they

made it easier to distinguish between the fishing lines and maintain tension.

Figure 6.0.8 Forearm with servos. [16]

Figure 6.0.9 3D-printed servo pulley for the servo motor. [16]

The breadboard and the Arduino Uno's analog pins were used to link the servo motors.

Servo motors were powered using a breadboard-connected 5 V wall outlet power source

and an external 9 V battery supply for the Arduino Uno. It also connected the Arduino

Uno and the breadboard to an nRF24L01 transmitter.

38

6.3 The Humanoid Dummy (Mannequin)

We have purchased a humanoid dummy aka Mannequin from the market to give our

robotic arm a sophisticated representation. We have connected the Robotic hand & arm

with the elbow joint of mannequin and using long wires we have placed the circuits,

Arduino, ESP module inside the mannequin.

Figure 6.0.10 The Mannequin Connected with the robotic Arm. [15]

39

Chapter 7

RESULTS AND DISCUSSIONS

7.1 Imitation Test

Real-time imitation of the hand is our main goal of this project. We have tested every

hand gesture of the robotic hand. And recorded a video and some snaps are attached here

7.1.1 Fingers Test

First, we performed every finger movement test started by testing the movement of

the thumb. In the figure 7.1 we are testing the thumb movement by opening and closing

the thumb of our hand (human hand) to check the real-time response of our robotic hand.

To check its response time and if it is moving correctly or not. And we have tested its

movement successfully.

Figure 7.0.1 Thumb testing [15]

Then we tested the fingers one by one in the figure 7.2 we are testing the pinky finger and its

flexibility which is working perfectly fine.

40

Figure 7.0.2 Pinky Finger testing [15]

Then in this given figure we tested the ring finger response again and again to verify its

continuous response and smoothness.

Figure 7.0.3 Ring Finger testing [15]

Now we are testing the movement and response of the index finger in figure 7.4 to check

its real-time movements

Figure 7.0.4 Index Finger testing [15]

41

In figure 7.5 we tested the movement of two fingers at a time and checked their responsive delay

Figure 7.0.5 Ring & Middle finger testing [15]

Then after individual and double fingers test we tested the movement of all fingers at a time. In

the figure 7.6 we are testing the whole hand or the palm movements by closing and opening the

hand continuously.

Figure 7.0.6 Full Fist to Open hand test [15]

Figure 7.7 is a part of the previous test of the whole hand, figure 7.7 shows the complete

hand in a closed state or in a fist shape.

42

Figure 7.0.7 Fist except Thumb [15]

43

Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The hand gesture driven robotic hand project, demonstrated successfully with Python

programming, Servos operating through Arduino, and a successful wireless connection

was made using the ESP8266, was, in conclusion, a success. The project's goal of

developing a robotic hand that could be operated with hand gestures was successfully

accomplished. The experiment also showed how useful gesture control could be for

robotic applications.

The project encountered some difficulties, such as the requirement to create a strong

gesture detection algorithm and the requirement to make sure that the robotic hand could

faithfully replicate the user's actions. These obstacles were overcame, though, and the

project was able to succeed.

There are numerous potential uses for the project. The robotic hand, for instance,

may be utilised to operate a wheelchair or other assistance device. In industrial contexts,

the robotic hand could be utilised to complete activities that are hazardous or challenging

for people to complete. It will take the place of people in regions where their lives are in

danger and where they have limited access. For instance, in locations at risk of fire,

during severe earthquakes, during space exploration missions, in flooded areas, when

moving enormous amounts of equipment, etc.The experiment has also shown how useful

gesture control could be for upcoming robotic applications. Gesture control is anticipated

to become a more popular method of interacting with robots as gesture recognition

technology advances.

Here are some additional thoughts on the project:

The team members learned a lot by working on the project. They gained knowledge

of the fundamentals of wireless communication, gesture recognition, and robotics. In

addition, the endeavor was a lot of fun. The team members appreciated having a

challenging project to work on together and seeing their efforts pay off. The undertaking

could have a beneficial effect on the world. For instance, the robotic hand could be

utilized to provide more independence in the lives of people with disabilities.

44

8.2 Future Work

Here are some uses of gesture-controlled robots and their future implementations:

Domestic uses:

● Cleaning: Housecleaning, laundry, and meal preparation tasks can all be

performed by gesture-controlled robots. This might help folks have more time

and have an easier time of it. For instance, a gesture-controlled robot may be

set up to wash dishes, dust furniture, and vacuum floors.

● Entertainment: Video games and virtual reality settings can both be

interacted with by gesture-controlled robots. Users might enjoy brand-new,

immersive experiences as a result. For instance, a gesture-controlled

robot may be used to interact with a virtual reality environment or to control

a character in a video game.

● Security: Gesture controlled robots can be used for security purposes. For

example, a gesture-controlled robot could be used to patrol a home or

business and to detect intruders.

● Assistance for the elderly or disabled: Robots that respond to gestures

can help the elderly or crippled. For instance, a gesture-controlled robot

might be utilized as company or to assist a person with a disability about

the house.

Industrial uses:

● Automation: In industrial environments, tasks can be automated using

gesture-controlled robots. Increased productivity and safety in factories may result

from this. Robots controlled by gestures could be used to assemble goods or weld

components.

● Inspection: Robots that can be controlled by gestures can inspect machinery or

items. This could aid in raising product quality and spotting possible issues before

they cause harm.

45

● Packaging: Gesture controlled robots can be used to package products. This could

help to speed up the packaging process and to reduce the risk of errors.

● Logistics: Products can be moved around warehouses or distribution centres using

gesture-controlled robots. This might contribute to making logistical operations

more effective.

● Maintenance: Robots that respond to gestures can be used to maintain machinery

or other items. This may lessen the requirement for human intervention and

increase equipment uptime.

● Hazardous environments: In risky situations like nuclear power plants or

chemical factories, a robotic arm controlled by gestures might be deployed. By

doing this, people may be shielded from dangerous toxins.

Medical uses:

● Surgery: Gesture controlled robots can be used to perform surgery. This could

help to improve the accuracy and precision of surgery and to reduce the risk of

complications.

● Physical therapy: Gesture controlled robots can be used to provide physical

therapy. This could help patients to recover from injuries or to improve their

mobility.

● Drug delivery: Gesture controlled robots can be used to deliver drugs to patients.

This could help to improve the accuracy of drug delivery and to reduce the risk of

side effects.

● Diagnosis: Gesture controlled robots can be used to diagnose medical conditions.

This could help doctors to identify diseases earlier and to provide more effective

treatment.

● Research: Gesture controlled robots can be used for research purposes. For

example, gesture-controlled robots can be used to study the human brain or to

develop new medical treatments.

Future implementations:

46

● Virtual assistants: Gesture controlled robots could be used as virtual assistants.

For example, a gesture-controlled robot could be used to control smart home

devices, to answer questions, or to provide information.

● Education: Gesture controlled robots could be used for educational purposes. For

example, a gesture-controlled robot could be used to teach students about science,

math, or history.

● Entertainment: Gesture controlled robots could be used for entertainment

purposes. For example, a gesture-controlled robot could be used to perform in

shows or to interact with people in virtual reality environments.

● Transportation: Gesture controlled robots could be used for transportation

purposes. For example, a gesture-controlled robot could be used to drive a car or

to pilot a drone.

● Space exploration: Gesture controlled robots could be used for space exploration.

For example, a gesture-controlled robot could be used to explore other planets or

to conduct experiments in space.

These are just a few examples of the many potential uses of gesture control robots. As the

technology continues to develop, we can expect to see even more innovative and exciting

applications for these robots in the future.

47

REFERENCES

[1] S. G. M. C. P. D. M. S. H. S. P. A. Satyam M Achari, "GESTURE BASED WIRELESS CONTROL OF

ROBOTIC HAND USING IMAGE PROCESSING," International Research Journal of Engineering

and Technology (IRJET), pp. 3339-3345, 2018.

[2] S. G. M. C. P. D. M. S. H. S. P. A. Satyam M Achari1, International Research Journal of

Engineering and Technology (IRJET), Karnataka, India., 2018.

[3] M. B. MEHNAZ KAZI, "Robotic Hand Controlled by Glove," KTH ROYAL INSTITUTE OF

TECHNOLOGY, 2020.

[4] S. K. D. K. K. A. P. K. T. K. Dr. (Prof.) Laxmikant Mangate, "Gesture Replication Robo-Arm,"

International Journal for Research in Applied Science & Engineering Technology (IJRASET),

pp. 1223-1230, 2022.

[5] K. S. D. P. Aravind Sivakumar, "Robotic Telekinesis: Learning a Robotic Hand," Carnegie

Mellon University, 2022.

[6] C. Chern-Sheng Lin, "The Manipulation of Real-Time Kinect-Based Robotic Arm," Hindawi

Journal of Sensors, 2020.

[7] R. J. S. a. C. Taylor, "The anatomy and mechanics of the human hand," Artificial limbs, vol. 2,

p. 22–35, 1955.

[8] Orthobullets, "Tendons," [Online]. Available:

https://www.orthobullets.com/hand/6031/flexor-tendon-injuries.

[9] Arduino, "What is arduino?," 03 February 2020. [Online]. Available:

https://www.arduino.cc/en/guide/.

[10] Arduino, "Arduino UNO Rev3," 03 February 2020. [Online]. Available:

https://store-usa.arduino.cc/products/arduino-uno-rev3?selectedStore=us.

[11] TowerPro, "MG996R Robot Servo 180 Rotation," 1 June 2023. [Online]. Available:

https://www.towerpro.com.tw/product/mg995-robot-servo-180-rotation/.

[12] K. Electronics, "MG996R 180° Digital Metal Gear Servo - 11kg/cm - 55g," 01 june 2023.

[Online]. Available:

https://www.kiwi-electronics.com/en/mg996r-180-digital-metal-gear-servo-11kg-cm-55g-3

020.

[13] J. Hieras, PERMANENT MAGNET MOTOR TECHNOLOGY: DESIGN AND APPLICATIONS, 2010.

[14] M. Barr, "Pulse width modulation," Embedded Systems Programming, p. 2001, 103–104.

48

[15] G. Langevin, "Inmoov-open source 3d printed life size robot," 2014. [Online]. Available:

https://inmoov.fr/.

[16] M. T. H. K. M. W. Saad Ahmad, Images by Authors, Islamabad, ICT, 2023.

[17] inmoov, "Palm," 1 june 2023. [Online]. Available:

https://inmoov.fr/wp-content/uploads/2015/07/DSC04799.jpg.

[18] KTH, "Maskinelement: Handbok.," Avd. för maskinelement, Institutionen för

maskinkonstruktion, Tekniska högsk, 2008.

[19] M. K. &. M. Bill, Images, 2020.

49

APPENDIX A

Python Code
import mediapipe as mp

import cv2

import numpy as np

from cvzone.HandTrackingModule import HandDetector

import time

import socket

ESP_IP = '192.168.0.112'

ESP_PORT = 8888

#Getting Models

detector=HandDetector(detectionCon=0.8,maxHands=1)

mp_drawing = mp.solutions.drawing_utils

mp_holistic = mp.solutions.holistic

mp_pose=mp.solutions.pose

mp_Hand=mp.solutions.hands

#myserial = Serial('COM7',9600)

cap = cv2.VideoCapture(1)

hands=mp_Hand.Hands(static_image_mode=False,max_num_hands=2,
min_detection_confidence=0.8)

Initiate holistic model

def calculate_angle(a,b,c,d):

a=np.array(a)

b=np.array(b)

c=np.array(c)

radians=np.arctan2(c[1]-b[1],c[0]-b[0])-np.arctan2(a[1]-b[1]
,a[0]-b[0])

angle =np.abs(radians*180/np.pi)

if d==0:

if angle >180:

angle=360-angle

50

angle=int(angle)

elif d==1:

angle=int(angle)

return angle

def pad_zeros(arr):

send=""

for i in range(len(arr)):

if len(str(arr[i])) < 3:

send = send+str(arr[i]).zfill(3)

else:

send=send+str(arr[i])

return send

def finger_angle(val):

if val==1:

angle = 0

elif val==0:

angle=90

return angle

Thumb_angle=0

Index_angle=0

Middle_angle=0

Ring_angle=0

Pinky_angle=0

with mp_holistic.Holistic(min_detection_confidence=0.5,
min_tracking_confidence=0.5) as holistic:

myserial.write(str(0).encode())

while cap.isOpened():

ret, frame = cap.read()

Recolor Feed

image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

Make Detections

results = holistic.process(image)

results_1= hands.process(image)

pose_landmarks, left_hand_landmarks,
right_hand_landmarks

51

Recolor image back to BGR for rendering

image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

##

#extract landmarks

try:

landmarks=results.pose_landmarks.landmark

landmarks_1=results.right_hand_landmarks.landmark

print(landmarks)

except:

pass

Right hand

mp_drawing.draw_landmarks(image,
results_1.handLandmarks, mp_Hand.HAND_CONNECTIONS)

Pose Detections

mp_drawing.draw_landmarks(image,
results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)

#Frame

cv2.imshow('Gesture Control Robot',
cv2.flip(image,1))

if results_1.multi_hand_landmarks:

for handLandmarks in

results_1.multi_hand_landmarks:

lmList, bbox = detector.findHands(image,
handLandmarks)

if lmList:

fingers = detector.fingersUp(lmList[0])

Detect open or closed fingers

1 - Open finger, 0 - Closed finger

COnverting Finger angles

Thumb_angle=finger_angle(fingers[0])

Index_angle=finger_angle(fingers[1])

52

Middle_angle=finger_angle(fingers[2])

Ring_angle=finger_angle(fingers[3])

Pinky_angle=finger_angle(fingers[4])

Example output format

fingers = [0, 1, 0, 1, 0] # Thumb,
Index, Middle, Ring, Pinky

if cv2.waitKey(10) & 0xFF == ord('q'):

break

#Calculating Angle

left_middle =
[landmarks[mp_pose.PoseLandmark.RIGHT_INDEX.value].x,landmar
ks[mp_pose.PoseLandmark.RIGHT_INDEX.value].y]

shoulder_R =

[landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x,land
marks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y]

shoulder_L =
[landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,landm
arks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]

elbow =
[landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].x,landmar
ks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].y]

wrist =
[landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x,landmar
ks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y]

hip_joint =
[landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x,landmarks
[mp_pose.PoseLandmark.RIGHT_HIP.value].y]

shoulder_angle_UD=calculate_angle(hip_joint,
shoulder_R, elbow,0)

shoulder_angle_SW=calculate_angle(shoulder_L,
shoulder_R, elbow,1)

shoulder_angle_SW=270-shoulder_angle_SW

elbow_angle=calculate_angle(shoulder_R,
elbow,wrist,0)

elbow_angle=180-elbow_angle

wrist_angle=calculate_angle(elbow,wrist,left_middle,0)

53

#Assiging Data to array

data=[Thumb_angle,Index_angle,Middle_angle,Ring_angle,Pinky_
angle,elbow_angle,shoulder_angle_UD]

Send=pad_zeros(data)

message = Send

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

Connect to the ESP

sock.connect((ESP_IP, ESP_PORT))

Send the message to the ESP

sock.sendall(str(message).encode())

time.sleep(0.8)

cap.release()

cv2.destroyAllWindows()

54

APPENDIX B
Arduino Code
#include<Servo.h>

#define numOfValsRec 7

#define digitsPerValRec 3

int valsRec[numOfValsRec];

int stringlength = numOfValsRec*digitsPerValRec;

Servo Thumb;

Servo Index;

Servo Middle;

Servo Ring;

Servo Pinky;

Servo Elbow;

Servo Shoulder;

String Received;

void setup()

{

Serial.begin(115200);

Thumb.attach(3);

Index.attach(4);

Middle.attach(5);

Ring.attach(6);

Pinky.attach(7);

Elbow.attach(8);

Shoulder.attach(9);

Zero();

}

void Zero()

{

Thumb.write(0);

Index.write(0);

Middle.write(0);

Ring.write(0);

Pinky.write(0);

Elbow.write(0);

55

Shoulder.write(0);

}

void Receiving()

{

if(Serial.available())

{

Received=Serial.readString();

for(int i=0;i<numOfValsRec;i++)

{

int num =(i*digitsPerValRec);

valsRec[i]=
Received.substring(num,num+digitsPerValRec).toInt();

}

}

Servo_Control();

Received="";

}

void Servo_Control()

{

Thumb.write(valsRec[0]);

Index.write(valsRec[1]);

Middle.write(valsRec[2]);

Ring.write(valsRec[3]);

Pinky.write(valsRec[4]);

Elbow.write(valsRec[5]);

Shoulder.write(valsRec[6]);

}

void loop()

{

Receiving();

}

56

APPENDIX C
ESP Code
#include <ESP8266WiFi.h>

#include <SoftwareSerial.h>

// Wi-Fi configuration

const char* ssid = "SSID";

const char* password = "Password";

const int ledPin = 0;

unsigned long previousTime =0;

unsigned long totalTime =0;

// UART configuration

const int UART_BAUD_RATE = 115200;

// TCP server configuration

WiFiServer server(8888);

// UART communication

SoftwareSerial uart(1, 3); // RX, TX (Connect ESP8266 TX to
Arduino RX and vice versa)

void setup()

{

// Initialize UART communication

pinMode(ledPin, OUTPUT);

//uart.begin(UART_BAUD_RATE);

Serial.begin(115200);

// Connect to Wi-Fi

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{

delay(1000);

57

Serial.println("Connecting to WiFi...");

}

// Start TCP server

server.begin();

Serial.println("TCP server started.");

Serial.print("IP Address ");

Serial.println(WiFi.localIP());

digitalWrite(ledPin, true);

}

void loop()

{

// Check for incoming client connections

WiFiClient client = server.available();

if (client)

{

// Read data from the client

while (client.connected())

{

while (client.available())

{

String data = client.readStringUntil('\n');

data.trim();

Serial.println(data);

 }

 }

58

 }

}

59

CONTACT INFORMATION

1) Muhammad Tayyab
Email ID: muhammadtayyabf19@nutech.edu.pk
Mobile No: +92-317-5478535

2) Saad Ahmad
Email ID: saadahmadf19@nutech.edu.pk
Mobile No: +92-348-4548145

3) Muhammad Haseeb Khalil
Email ID: muhammadhaseebf19@nutech.edu.pk
Mobile No: +92-348-4782685

4) Muhammad Waqas
Email ID: muhammadwaqasf19@nutech.edu.pk
Mobile No: +92-344-5447449

Supervisor Name: Dr. Abdullah Waqas
Email ID: abdullah@nutech.edu.pk

60

mailto:muhammadtayyabf19@nutech.edu.pk
mailto:saadahmadf19@nutech.edu.pk
mailto:muhammadhaseebf19@nutech.edu.pk
mailto:muhammadwaqasf19@nutech.edu.pk
mailto:abdullah@nutech.edu.pk

Originality Certificate
We, the undersigned members of the capstone design project group, hereby confirm

that the group project titled "Gesture Controlled Robot" has been undertaken and

completed by us as a collaborative effort. The project report is prepared by the

undersigned group members. Any external sources, including published or unpublished

works, have been appropriately acknowledged and referenced in accordance with the

guidelines provided by NUTECH University.

As a group, we understand the severity of plagiarism and its consequences, and we

assure you that the level of plagiarism in this project report is below 20 percent. To ensure

the originality of our project report, we have utilized anti-plagiarism (Turnitin) software

to verify the uniqueness of the content.

By signing this undertaking certificate, we affirm that our project work adheres to the

principles of academic integrity. We are committed to upholding the values and standards

of NUTECH University.

Signatures of Group Members:
1.

[Muhammad Tayyab - Group Member 1]
2.

[Saad Ahmad - Group Member 2]
3.

[Muhammad Waqas - Group Member 3]
4.

[Muhammad Haseeb Khalil - Group Member 4]

Supervisor Name: Dr. Abdullah Waqas Signature ___________________

Date: __________________________

61

