

HARDWARE ACCELERATION OF MATRIX MAC

PROCESSOR ON FPGA

Session: BSc. Spring 2024

Project Supervisor: Fahad Bin Muslim

Submitted By:

Saad Khan (Team Lead)

Mahnoor Maleeka

Syed Zaeem Shakir

Faculty of Computer Science and Engineering

Ghulam Ishaq Khan Institute of Engineering Sciences &

Technology

A Hardware Acceleration of MATRIX MAC Processor on FPGA

i

A Hardware Acceleration of MATRIX MAC Processor on FPGA

ii

Abstract

Increased demands for computer hardware accelerators that speed up computational tasks are

coming from different domains, where the degree of complexity is massive, e.g., artificial

intelligence, scientific computing, or data analytics. This thesis covers the hardware

implementation of a RISC-V-based processor and of the accelerator units that will run on it,

which are designed to speed up a particular type of matrix operations. By exploiting the

capabilities offered by Field Programmable Gate Array (FPGA) platforms, Intellera can focus

on addressing the performance issues tied to matrix operations with a view of offloading the

CPU-intensive portion to a customized hardware accelerator.

Our project starts with a detailed architecture design examination of the processor accompanied

with acceleration hardware techniques, which consequently facilitates the design of the

Intellera processor. The crucial elements of the processor including the custom instruction set

architecture (ISA), are efficiently produced with pipelining design techniques and hardware

accelerators using hardware description languages like Verilog for their implementation.

In conclusion, the development of Intellera is the high point of the design in the sphere of

processor hardware acceleration. The successful development and testing of the Intellera

processor set the stage for the research and creativity of the coming-age technology of

hardware-accelerated computing for the years to come. Strides in efficiency, collaboration,

development, and eventually deployment in real life are marked, adding all systems together

to form a basis for future progress in high-performance computing architecture.

A Hardware Acceleration of MATRIX MAC Processor on FPGA

iii

Undertaking

I certify that the project Hardware Acceleration of MATRIX MAC Processor on

FPGA is our own work. The work has not, in whole or in part, been presented elsewhere for

assessment. Where material has been used from other sources it has been properly

acknowledged/ referred.

 Saad Khan

 2020414

 Mahnoor Maleeka

 2020217

 Syed Zaeem Shakir

 2020487

A Hardware Acceleration of MATRIX MAC Processor on FPGA

iv

Acknowledgement

Hereby, we would like to extend our heartfelt gratitude to Dr. Fahad bin Muslim, who

provided essential support and informative mentoring during this project process. Leadership,

persistence, and inspiration are the integrals of my research and unique contributions to

outcomes.

Our thanks also go to the faculty and administration of the Ghulam Ishaq Khan Institute of

Engineering Sciences and Technology (GIKI) for their help and crucial support in learning

and in research.

In addition to that, we are grateful to Mr. Kashif for also contributing the same through

valuable knowledge and information on the possibility to build an Intellera processor

development. His achievements, professional acumen, and co-existence had vastly expanded

the scope of our project and improved the social value.

We would also like to thank all our colleagues who come forward to volunteer their time,

talent, and dedication for the project's completion. Our devotion and teamwork have become

the resource that enables us to handle any challenges and accomplish the tasks given.

Finally, we will express gratitude to our families and friends for their unwavering support,

firm attitude and constant inspiration in the whole trying time. Our parents have always been

there to support us.

Working as a unit was the fundamental part that enabled the project to accomplish its

purpose. Many people also were involved in this work. We wholeheartedly glory in the

indispensable efforts of every stakeholder who in one way or another helped to the greatness

of this project.

A Hardware Acceleration of MATRIX MAC Processor on FPGA

V

Table of Contents

Session: BSc. Spring 2024 .. 1

Abstract ... ii

Undertaking.. iii

Acknowledgement ... iv

Chapter 1: Introduction ... 10

1.1 Background of the Project: ... 10

1.1.1 CISC and RISC Architectures .. 10

1.1.2 GPU and TPU Technologies .. 10

1.2 Motivation Behind the Project: .. 11

1.3 Scope of Intellera: ... 12

1.4 Objectives: .. 12

Chapter 2: Literature Survey ... 14

2.1 Evolution of RISC-V Architecture: .. 14

2.2 Advancements in Pipeline Architectures: ... 14

2.3 Matrix MAC Units and Their Integration in Processors: .. 14

2.4 FPGA Implementation and Its Strategic Importance: ... 15

2.5 Challenges and Opportunities in FPGA-Based Processor Design:............................. 15

2.6 Study of Hazard Units in Pipelined Processors: .. 15

Chapter 3: Design (Systems Requirements/Specifications) ... 16

3.1 Systems Requirements: ... 16

3.1.1 Functional Requirements: .. 16

3.1.2 Functional Requirements with Traceability information 17

3.1.3 Non-functional Requirements .. 19

3.2 System Specifications: .. 20

3.2.1 Architectural Design .. 20

3.2.2 Intellera Development View .. 21

3.2.3 Hardware Interface ... 21

3.2.4 Software Interfaces .. 23

A Hardware Acceleration of MATRIX MAC Processor on FPGA

VI

Chapter 4: Proposed Solution (Methodology, Implementation) ... 23

4.1 Control Unit: ... 24

4.2 Single Cycle Processor: .. 25

4.3 Five Staged Pipelined Processor: .. 26

4.4 Control Hazard Unit:... 26

4.5 MAC Module: ... 27

4.5.1 Custom Instruction Set for Matrix Manipulation (32 bits): 28

4.5.2 Supported Instruction Set and Functionalities: .. 29

4.6 MAC Decoder: .. 30

4.6.1. Inputs: ... 30

4.6.3. Decoding Logic:.. 31

4.6.4. Integration with Control Unit: .. 31

4.6.5. Key Roles in Matrix Operations: .. 31

4.7 Register File: .. 31

4.8 Control Unit for Matrix Operations: ... 32

4.9 Data Memory: ... 32

4.10 Five Stage Pipelined Processor with Matrix MAC: .. 33

4.11 UART Transceiver with Matrix MAC: ... 34

Chapter 5: Results and Discussion .. 35

5.1 Benchmarking Tests Setup: ... 35

5.2 Performance Evaluation: ... 36

5.2.1 Resource Utilization... 36

5.2.2 Operational Frequency ... 36

5.2.3 Power Efficiency .. 36

5.2.4 Throughput Analysis .. 36

5.2.5 Latency Measurements .. 37

Chapter 6: Conclusion and Future Work ... 38

6.1 Conclusion: ... 38

6.2 Achievements: ... 38

6.3 Lessons Learned: .. 38

A Hardware Acceleration of MATRIX MAC Processor on FPGA

VII

6.4 Future Work: ... 39

6.4.1 Implementing MMU as an In-built System ... 39

6.4.2 Expansion to System-on-Chip (SoC) Architecture .. 39

6.4.3 Broadening the Custom Instruction Set ... 39

GLOSSARY .. 40

REFERENCES ... 42

APPENDIX A ... 44

APPENDIX B ... 45

A Hardware Acceleration of MATRIX MAC Processor on FPGA

VIII

List of Tables

Table 3.1 Functional Requirement 1 ..17
Table 3.2 Functional Requirement 2 ..18
Table 3.3 Functional Requirement 3 ..18
Table 3.4 Functional Requirement 4 ..19
Table 3.5 Functional Requirement 5 ..19
Table 4.1: Modified MAC ISA ..29
Table 5.1: Benchmarking and Testing of Matrix MAC Instr.35
Table 5.2 Performance Metrics before and after Matrix MAC Unit36
Table A.1 RISC-V ISA...44

A Hardware Acceleration of MATRIX MAC Processor on FPGA

IX

List of Figures

Figure 1.1: GPU Architecture .. 11
Figure 3.1 Architectural Design of Complete Processor20
Figure 3.2 Processor Development Stages...21
Figure 4.1: Control Unit with ALU Decoder ...24
Figure 4.2: Complete Single Cycle Processor Architecture...........................25
Figure 4.3: Complete 5 Staged Pipelined Processor Architecture26
Figure 4.4: Complete 5 Staged Pipelined Processor with Hazard Unit Architecture 26
Figure 4.5: Internal Architecture of Matrix MAC Unit27
Figure 4.6: Modified MAC Decoder ...30
Figure 4.7: Modified Control Unit ...32
Figure 4.8: Complete 5 Staged Pipelined Processor with Hazard & Matrix MAC Unit

Architecture..33
Figure 4.9: UART Interfacing ..34
Figure 5.1 Behavioral simulation of MAC Instructions, Testing Addition and Multiplication of

Matrices..35

Chapter 1: Introduction

Nowadays, the ongoing extraordinarily fast growth in computational requirements throughout the

different fields faced technology providers with the main challenge of finding fast, effective

solutions. Processors that can power complex AI algorithms and computational tasks are now more

in demand as the need for high performance computing machines that can-do real-time processing

is now being exhausted. In response to the rise of such multimedia applications together, Intellera

project is born for a pioneering venture in designing and building a high-speed RISC-V-based

processor with special-purpose hardware accelerators optimized for matrix manipulation.

1.1 Background of the Project:

1.1.1 CISC and RISC Architectures

Complex Instruction Set Computing (CISC) and Reduced Instruction Set Computing (RISC)

represent two fundamental approaches to processor design. CISC architectures, like those found

in x86 processors, are characterized by a wide range of complex instructions allowing for more

functions within a single instruction. This complexity can lead to slower performance in some

cases due to the intricate decoding required. In contrast, RISC architectures streamline operations

by focusing on a smaller set of instructions, which can be executed more rapidly, providing

advantages in power efficiency and performance predictability, particularly useful in embedded

systems [1].

1.1.2 GPU and TPU Technologies

Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) have revolutionized areas

requiring massive parallelism such as graphics rendering and machine learning. GPUs, at first

developed for use in imaging, turned out to be the saviors of general-purpose computing because

they are designed in such a way that the processor can take multiple calculations at a given time.

While TPUs, on the other hand, these are geared accelerators from Google, which are specially

designed in order to speed up tensor operations within neural network environments, providing

orders of magnitude of a performance gain with regard to processing times and power consumption

as compared to the traditional CPU processors [2].

1.2 Motivation Behind the Project:

The primary motivation for the Intellera project is rooted in the limitations of traditional

computational architectures when dealing with specific applications such as AI and large-scale

data analytics. In terms of the market, high-priced TPU and GPU chips are being used over-

precatory, therefore creating room for a specific and integrated approach. With the employment of

matrix processing features right on-chip a RISC-V based processor, there is the chance to crucially

decrease power consumption and pricing, making data centers available for the more compact,

portable and resource-saving environments.

The following is also crucial, which is the memory access patterns, and their association with

matrix operations, which require high memory efficiency. Inefficient memory routes can cause

capacity loads that will result in lowering down the performance. Matrix assignments might

constitute a headache for processors in a row, because these can stall machine due to lack of

efficient memory access. As a result, processors will need more time to perform operations, and

the efficiency overall would decline. Besides, energy efficiency is one of the major parameter in

modern processor design, contemporaneous processor considered to be fast but however its normal

operation will consume excessive power under heavy computational like matrix multiplication.

Such limitations indicate the imperativeness of designing structures which seek speeding up

Figure 1.1: GPU Architecture

memory locality, energy efficiency, scalability, and flexibility to meet the expected challenges in

the coming times.

1.3 Scope of Intellera:
The scope of the Intellera project is both ambitious and technically demanding. Such a

development includes the making of a RISC-V processor with a built-in Matrix MAC unit in its

inner make-up framework. This integration seeks to increase a processor's capabilities to make

specific progress on mission-critical tasks like matrix multiplication, the backbone of artificial

intelligence and machine learning processes. The project use FPGA for sample and optimization

processor architecture. Among the most advantageous qualities of the FPGAs are their ability to

be reconfigured in a hardware fashion and rapid prototyping of designs that are utilized

individually to enhance performance and resource utilization; thus these devices prove convenient

for iterative design processes.

Further on, the technical design and implementation come with validation and testing phases in

large scope. These stages are crucial disciplines to be understood well that the processor can match

its theoretical performances and at the same time operate reliably under real time applications. We

will perform thorough testing, covering a range of manufacturing scenarios in order to reveal and

eliminate any false operating of the processor. Finally, designing a chip with enough functionality

to fulfill industry needs is the main goal which should be achieved through device design that is

high-performance, energy-efficient and reliable enough to be used in numerous electronic

products.

1.4 Objectives:

The objectives of the Intellera project are various:

Architectural Design and Enhancement: To design a 5-stage pipelined 32-bit RISC-V processor

that can add a matrix MAC unit for matrix operation and a hazard detection unit that helps to

manage the data dependence.

FPGA Implementation: Building the required processor and placing it onto an FPGA platform for

trial periods, hence it could be modularized and real-time performance tuning purposes.

Performance Optimization: To deliver an operating unit that is able to do something a CPU, GPU

and TPU setup can do- yet with reduced power consumption and operation latency.

Comprehensive Validation: To conduct extensive testing to ensure stability, accuracy, and

efficiency of the processor under various computational loads.

Chapter 2: Literature Survey

In the chapter on literature survey from Intellera project, a thorough review of latest research

papers, publications, and innovations in RISC-V (Reduced Instruction Set Computer) architecture,

accelerators for matrix manipulation using hardware by FPGA, and relevant technologies will be

presented thereby. The first chapter is meant to define the theoretical scheme, highlight specific

innovations and progress, critique the approaches and methods which have already been developed,

and to find the void spaces or distinct areas for future work.

2.1 Evolution of RISC-V Architecture:

The RISC-V architecture has rapidly become a focal point for innovation in processor design,

offering a license-free ISA that enables broad modifications and customizations. Studies like that

of Dennis et al. [3] illustrate the practical applications of RISC-V in embedded systems,

demonstrating how it can be implemented to achieve significant efficiencies on FPGA platforms.

Similarly, Malone et al. [4] discuss the adoption of RISC-V in radiation-tolerant FPGAs,

highlighting its potential for space applications where robustness and reliability are paramount.

The adaptability and the fact that it can be used for many purposes that have limited costs are the

essential features of RISC-V that are critical for narrow down efforts like Intellera where we aim

to push the boundaries of advanced computational abilities but still keep the costs relatively low.

2.2 Advancements in Pipeline Architectures:
Pipelined architecture design plays a great role in nowadays processors, so to improve the overall

processor performance. The path which starts with simple pipelines, as explained in Qingxin and

Li [5], direct pipelines with more levels yield better result especially for custom applications such

as embedded systems. A 5 stage pipeline would be a good implementation in RISC-based

processors which greatly enhance the speed of processing the instructions so that it wouldn't take

so long for those that require high computational resource with minimal latency.

2.3 Matrix MAC Units and Their Integration in Processors:
The capability to incorporate MAC units straight into the computation units is a major

improvement by far, as it makes it possible to complete computation tasks involving complex math

operations much faster. Krishna [6] undergoes an in-depth review of MAC designs implemented

with trees like Booth tree and Wallace, underline how these designs consume power and alter

performance in FPGA chips. The incorporation of such units is indeed both mostly essential and

advantageous in digital signal processing and artificial intelligence, where matrix operations are

usually rapid and efficient This coincides with project's Intellera goal to review the default setting

in RISC-V processor configuration thus bypassing the need for expensive external accelerators

like the GPU and TPU.

2.4 FPGA Implementation and Its Strategic Importance:
FPGA technology is the most important tool in the design and detection of innovative processors

given the fact that it is multi-purpose and very efficient (indicates that this is a permanent trend).

The work [7] of Kamaleldin on a modular RISCV many-core architecture for FPGA accelerators

shows the optimized performance of FPGAs in option minimization, cost reduction, and system

flexibility by means of scaling up the number of cores. It is vital to the Intellera project as it is the

FPGA technology that is essential for the prototype and refinement of the processing design of the

processor which ensures an always-optimized performance and the ability to adapt.

2.5 Challenges and Opportunities in FPGA-Based Processor Design:
From the point of view of Jacobsen et al. [8] in their analysis of the RIFFA framework, the

introduction of engines of processors into FGPAs creates new possibilities and problems. This is

the foundation of the FPGA integrative development block, which successfully connects FPGA

accelerators to the traditional computing systems overcoming the gap of the performance readiness

of the integrated system. Insights from such research can actually be priceless for the Intellera

project as they help to design a processor that not only caters to predetermined performance criteria

but also can be later easily integrated into already built up technology ecosystems.

2.6 Study of Hazard Units in Pipelined Processors:
The detection units of hazards are of fundamental importance to accomplishing productive flow

processors as they detect and rectify data, control, and structural hazards that might compromise,

processors’ performance. In addition, Navin et al, come up with an innovative technique which

uses a co-processor to do away with the control hazards, an effort aimed at boosting the pipeline's

efficiency [9].

Chapter 3: Design (Systems Requirements/Specifications)

In this Chapter we consider the detailed design of the Intellera system, with a focus on the systems

requirements and specifications that are necessary for development and implementation of the

system. In the design phase of the hardware model, the focus is on the architecture of hardware,

software integration, and performance targets, enabling matrix manipulation to be efficient on the

FPGA-based platform.

3.1 Systems Requirements:
Systems specifications for the Intellera project state the system component and functionality as

well as the expected performance metrics to be met to realize the objectives. These stipulations

serve as a framework for the design and development phases.

3.1.1 Functional Requirements:

1) Basic RISC-V ISA: Intellera processor is required to execute the simple “RISC-V instructions”

adhering to the RISC-V instruction set architecture rules.

2) Custom ISA: In order to do that, the entire system will be made from a processor specially

designed for a particular instruction set architecture (ISA), where matrix operations are the primary

focus.

3) Matrix Multiplication: The processor needs to be so fast in its respective operations for the matrix

multiplication instruction being inputted.

4) Matrix Addition: It should also perform matrix addition precisely, which involves computations

according to implied derivatives.

5) Register File: Register file should be present in order to address memory requirements of data

and results during execution of instructions.

6) Data Memory Access: Memory will support processor with ‘read’ and ‘write’ commanding

operations indication. It should be provided with a mechanism to resolve the memory access

conflict hazards.

7) Arithmetic and Logic Unit (ALU): An ALU is needed to implement only the operations of the

RISC-V and the Matrix Multiplication instructions included in Verilog.

8) Control Unit: The control unit must produce instructions, develop the flow of instructions and

execute them, including branch and jump instructions.

9) Compatibility: The processor (the RV32I ISA standard) must be compliant with the RISC-V

instruction set. On the other hand, it must also include specific Matrix MAC instructions.

10) Hazard Unit: In the valuator there should be the Hazard Unit that would settle all possible

hazards. Among the mentioned errors, control, Structure and Data Hazards stand out as the ones

that are the most commonly occurring types of errors.

11) Pipelining: The processor shall have at least five pipeline stages, bunch of them, such as fetch,

decode, execute, and memory write-backs, so as to better complete instructions.

12) FPGA Implementation: The hardware design of the processor and its components need to be

such that it act together with the FPGA mechanism capitalizing on the latter's hardware prototyping

advantages.

3.1.2 Functional Requirements with Traceability information

Table 3.1 Functional Requirement 1

Requirement ID 01 Requirement
Type

Functional Use Case # 00

Status New yes Agreed-to yes Baselined yes Rejected No

Parent
Requirement #

N/A

Description
The processor must execute basic RISC-V instructions, adhering to the RISC-V ISA.

Rationale This requirement ensures compatibility with the standard RISC-V instruction set, forming the
foundation for further customizations

Source Source Document -

Acceptance/Fit
Criteria

Successful execution of standard RISC-V instructions.

Dependencies None

Priority Essential yes Conditional no Optional No

Change History None

Table 3.2 Functional Requirement 2

Table 3.3 Functional Requirement 3

Requirement ID 02 Requirement
Type

Functional Use Case # 00

Status New yes Agreed-to yes Baselined yes Rejected No

Parent
Requirement #

01

Description The processor will support a custom instruction set architecture (ISA) optimized for matrix
operations.

Rationale Custom instructions tailored for matrix operations will improve performance and efficiency for
specific tasks.

Source Source Document -

Acceptance/Fit
Criteria

Successful execution of custom Matrix MAC instructions.

Dependencies
Requirement #1 (Basic RISC-V ISA).

Priority Essential yes Conditional no Optional No

Change History None

Requirement ID 03 Requirement
Type

Functional Use Case # 00

Status New yes Agreed-to yes Baselined yes Rejected No

Parent
Requirement #

01, 02

Description
The processor must efficiently execute matrix multiplication instruction.

Rationale
Matrix multiplication is a fundamental operation in various computational tasks and requires
optimized execution.

Source Source Document -

Acceptance/Fit
Criteria

Efficient execution of matrix multiplication with specified performance metrics.

Dependencies Requirement #2 (Custom ISA).

Priority Essential yes Conditional no Optional No

Change History None

Table 3.4 Functional Requirement 4

Table 3.5 Functional Requirement 5

3.1.3 Non-functional Requirements

1) Power Efficiency: The design will emphasize on power efficiency with a view of limiting the

power consumption of the electronic gadget. As a result, it will be fit to be used as a processor in

embedded applications.

2) Latency: The processor should be performing matrix operations and MAC processing as fast as

possible in order to reduce latency (for both standard RISC-V and Matrix MAC instructions) to

offer real-time processing capabilities.

3) Resource Utilization: FPGA resource efficiency could be improved by optimizing the LUTs,

flip-flops, and memory blocks, which are mainly used.

4) Scalability: The architecture incorporated to the processor should be able to act as an enabler for

the future advancements envisaged in the implementation or expansion of the instruction set.

Requirement ID 04 Requirement
Type

Functional Use Case # 00

Status New yes Agreed-to yes Baselined yes Rejected No

Parent
Requirement #

02

Description
It should also perform matrix addition precisely, adhering to specified computational

requirements.

Rationale
Matrix multiplication is a fundamental operation in various computational tasks and requires
optimized execution.

Source Source Document -

Acceptance/Fit
Criteria

Matrix addition is a common operation in matrix processing tasks and must yield accurate

results.

Dependencies Requirement #2 (Custom ISA).

Priority Essential yes Conditional no Optional No

Change History None

Requirement ID 05 Requirement
Type

Functional Use Case # 00

Status New yes Agreed-to yes Baselined yes Rejected No

Parent
Requirement #

N/A

Description
A register file should be available to store and access data and results during instruction

execution.

Rationale
Register files provide fast data access, crucial for efficient instruction execution and data

storage.

Source Source Document -

Acceptance/Fit
Criteria

Reliable storage and retrieval of data using the register file.

Dependencies None

Priority Essential yes Conditional no Optional No

Change History None

Furthermore, this architecture should be tailored to optimally handle accordingly various kinds of

matrix sizes and complexities.

5) Performance: Benchmark distribution shall not be inferior to advocated and take the place of

matrix arithmetic performance.

6) Compatibility: Where applicable, compatibility with existing software or systems will be

maintained.

7) Testing and Verification: Complete testing providing suites and uniformity for correctness and

functioning of applications need to put in place. Unit and substitute testing will be used to confirm

that code is working properly.

8) Documentation: It has to ensure there is detailed description of the hardware and software

components to ease the use and maintenance of software especially by its users.

3.2 System Specifications:
The Intellera RISC-V unit utilizes standard RISC-V instructions and supports special operations

of matrix for its effectiveness. Moreover, it can be programmed to display special operations which

are specific to the matrix of binary operations. It reflects the combination of hardware architecture

patterns, software integration structure, and performance criteria to be the basis of the matrix

manipulation in a field-programmable gate array (FPGA) platform..

3.2.1 Architectural Design

Figure 3.1 Architectural Design of Complete Processor

The Intellera's own system includes a fitting RISC-V processor for fast matrix operations and data

flow synchronization as well as memory units to handle matrix data and code for operations. At

the heart of it, we use a Matrix Acceleration Unit (MAC Unit). This dedicated hardware, designed

for matrix multiplication, ensures faster performance. The I/O (Input/Output) Unit is an external

data exchange facilitator, which helps Intellera to be running alongside other software applications

without problematic switching.

3.2.2 Intellera Development View

Figure 3.2 Processor Development Stages

The Intellera's instruction with five stages includes creating specifications and behavior

description, refining RTL description into detailed one using HDL and validating the RTL

simulation through both physical and logical testing. The complexity becomes evident that begins

with the mechanism converting the design to logic, and proceeding to the timing and layout

validation, which cumulates in the bit stream generation and implementation.

3.2.3 Hardware Interface
The mainstream of our FPGA-based RISC-V processor with a Matrix MAC module software

foresee the architecture of the hardware interface at which different hardware components interact

with each other through altered connections. MAIConfigURES the RISC-V processor with the

embedded Matrix MAC core and the interfaces to external power and data sources.

1. Components:
• FPGA Board: This FPGA board is our project’s hardware platform, which was chosen for

its affordability and availability. It provides the RISC-V class of microprocessors, cores of

the MAC Module and other required devices.

• RISC-V Processor with Matrix MAC Module: The heart of our project, this integrated unit

combines the 32-bit RISC-V processor with the Matrix MAC module. It is responsible for

executing instructions, including Matrix MAC operations.

• Power Supply: The FPGA board must obtain a steady power supply for the function to

work. The device is connected to a power cord so it keeps the device running at optimal

performance.

• Laptop/PC: The laptop or the PC used for programming is like an interface for the FPGA-

based system. It is the programming language that is used for the FPGAs, testing, new

experience and analyzing the system.

2. Interactions:
• Data Input: Input data for processing is provided to the combined RISC-V processor and

Matrix MAC module. The data may be generated internally or as external sensors or

sources feeding.

• Data Output: The data processed represents output by the forum unit joined and it is

obtained and later passed to external devices or processing stages.

3. Connections:
• FPGA to Power Supply: The FPGA board needs that it is connect to a reliable power supply

in order to ensure the correct voltage and current level for proper functioning.

• FPGA to Laptop/PC: The FPGA board is then linked to the input interface of a computer

be it a laptop or a personal computer, either USB or other suitable interfaces. As a result, it

enables the utilization of the programming language in debugging as well as data transfer

between the board and the development environment.

3.2.4 Software Interfaces

The interface of the software describes the involved tools and software components in the

development, programming, testing, and verification of our FPGA-based RISC-V processor with

a Matrix MAC module.

Tools and Software:

Vivado: The Vivado is the tool-box of the application program used for FPGA development. It is

the one that helps apply the Verilog code and then synthesize for the RISC-V processor as well as

the Matrix MAC module. Also, Vivado can produce a bitstream which will be useful in the

programming of the FPGA. Both this process and the Vivado tool itself offer a quick result and a

huge advantage in the development of the final device.

Venus: Venus represents an online tool employed ensuring RISC-V assembly code productivity. It

enables the programmer to write the assembly code for the RISC-V architecture and then convert

it into the hexadecimal and/or binary machine code, which can further be used by the user on the

modified RISC-V processor designed in the Vivado.

DigitalJS: DigitalJS is a software product intended for the development of FPGA-based System

algorithms incorporating visual schematics as well. It aids in the design and documentation of the

processor's architecture and connections.

Chapter 4: Proposed Solution (Methodology, Implementation)

In this chapter of the document, we explore a solution to the Intellera's project, where we discuss

our methodology as well as the setup specifications of the accelerator which is on FPGA for

computing matrix MAC operations. The proposed solution for Intellera is progressively illustrated,

in a way which takes the discussion from a single-cycle processor to pipelining and then

incorporates MAC unit. Step-by-step details are highlighted, bringing Intellera's process into view

as the architecture is explained.

4.1 Control Unit:

Figure 4.1: Control Unit with ALU Decoder

The first phase of designing the Intellera chipthe set chip involves creating the instruction control

unit (IA) block responsible for decoding instruction and coordinating the operation of the ALU

and memory units. Attached to it there is a FSM (central unit) referred to as the main controller

that processes instructions and outputs signals in accordance with the instruction types used in the

program sequencing and control flow. The time state diagrams including the delay for each of the

subway statuses was suggested as a desired option to attain for the formalism of the logics in the

Intellera main controller [10]. This FSM interprets opcodes and routes signals to various operations

including instruction memory storage (IRWrite) and the final collation of register destinations

(RegDst).

In the context of an 8-bit RISC controller IP core architecture into fetch, decode, execute units,

and stage control shows the inevitable need for subdivision of the CU's major responsibilities for

its effective functioning [11].

4.2 Single Cycle Processor:

Figure 4.2: Complete Single Cycle Processor Architecture

Furthermore, the proposed by Intellera processor cycle operating on RISC-V instruction set coded

on FPGA chip is the new matrix multiplication algorithm acceleration technology. At the core of

this architecture lies the ability to complete the stages of instruction processing—fetch, decode,

execute, write-back—within a singular clock cycle. In the fetch stage, toggles and the clock signal

direct the PC to retrieve instructions from memory, incrementing the PC by four to prepare for the

next operation. The decode phase involves the Control Unit deciphering instructions from the IR,

with opcodes identifying the specific operation, while the execute stage sees the transmission of

control signals to data path components, with the ALU performing computations as instructed.

Through this procedure,the final stage, that is the write-back stage, redresses the Register File with

the results from either the ALU or from memory, and closes the instruction execution. This

streamlined process enables Intellera to handle complex operations like matrix MAC rapidly and

efficiently, reflecting advancements in FPGA-based processor design and control unit

functionality in microprocessors.

4.3 Five Staged Pipelined Processor:

Figure 4.3: Complete 5 Staged Pipelined Processor Architecture

The improved Intellera method makes 5 pipelined stages of correlation between its processor

architecture and the one reviewed above. This enables the instruction sets to be executed in a

sequence and ensure faster task completion. This setup enables instructions to be processed in

different stages of fetching, decoding, reading operands (registers fetching), execution, and writing

results (write-back) of each pipeline stage at the same time. Each stage is designed to function in

tandem with the next, ensuring continuous operation and efficient use of the ALU, thus

significantly enhancing the throughput and reducing the latency involved in processing each

instruction. This method ensures that the processor components are utilized effectively,

maintaining constant activity and improving overall performance.

4.4 Control Hazard Unit:

Figure 4.4: Complete 5 Staged Pipelined Processor with Hazard Unit Architecture

In the pipelined design of the Intellera RISC-V processor, each instruction is processed through

several consecutive stages, enhancing throughput, and minimizing idle times within the CPU

architecture. Unlike a single-cycle design, this pipelined approach allows multiple instructions to

be in different stages (fetch, decode, execute, write-back) simultaneously, leveraging an "assembly

line" effect that maintains a steady stream of instruction processing. However, this methodology

introduces control hazards such as branch and jump hazards. Branch hazards occur when the

processor must wait to determine the outcome of a branch instruction before proceeding,

potentially stalling the pipeline. Jump hazards similarly disrupt the flow by changing the

instruction sequence unexpectedly.

These challenges necessitate advanced solutions to maintain efficiency. For instance, branch

prediction and techniques like dynamic branch prediction are utilized to minimize stalls associated

with control hazards. These methods predict the behavior of branch instructions to keep the

pipeline filled [12]. Enhanced pipelined architectures further mitigate these hazards by optimizing

the instruction flow and minimizing penalties associated with incorrect predictions, ensuring that

operations like matrix multiplication on the FPGA are executed with minimal delay and higher

efficiency.

4.5 MAC Module:

Figure 4.5: Internal Architecture of Matrix MAC Unit

The MAC module serves as the core for fixed-point matrix computations. It manages three internal

matrices:

Matrix A: Stores the first operand matrix with 25 registers (A1 to A25).

Matrix B: Stores the second operand matrix with 25 registers (B1 to B25).

Result Matrix (R): Holds the final outcome of the operation, also with 25 registers (R1 to R25).

Each register within the module is 32 bits wide.

The module is equipped with:

25 Input Ports (32 bits each): These ports facilitate loading data from the main memory into the

corresponding registers within the matrices.

25 Output Ports (32 bits each): These ports are used to store the results calculated by the MAC

unit back into the main memory.

4-bit MAC Control Signal Input (MACControl[3:0]): This dedicated input port receives control

signals that instruct the module on the specific operation to perform (e.g., multiplication, addition,

subtraction).

4.5.1 Custom Instruction Set for Matrix Manipulation (32 bits):
To seamlessly integrate with the RISC-V architecture, a custom instruction format is designed

specifically for matrix operations. Here's a breakdown of the 32-bit instruction format:

• Opcode (7 bits, bits 6-0): This field identifies the exact type of matrix instruction being issued.

• F3 (3 bits, bits 9-7), F7 (2 bits, bits 31-30): These bits select the operation to be performed.F7 is

also called MAC-OP.

• Row (10 bits, bits 19-10): This field specifies the starting row address within the chosen matrix

(relevant for load instructions).

• Offset (10 bits, bits 29-20): This field defines the offset value used to access elements within

a particular row (relevant for load instructions).

4.5.2 Supported Instruction Set and Functionalities:
The table below provides a comprehensive overview of the supported instructions, their

corresponding control signals, and their functionalities:

Table 4.1: Modified MAC ISA

4.6 MAC Decoder:

Figure 4.6: Modified MAC Decoder

Here's a more comprehensive interpretation of the MAC decoder's functionality, incorporating

insights from your previous description:

4.6.1. Inputs:

funct3 (3 bits): Extracted directly from the 32-bit instruction format. It pinpoints the precise type

of matrix instruction being executed.

MAC_OP (1 bit): Signifies whether the incoming instruction is specifically intended for the MAC

module.

MACOP (2 bits): Differentiates between categories of matrix instructions, including:

• Load operations (LMAC A, LMAC B)

• Clear operations (CLR A, CLR B, CLR R, CLR ALL)

• Store operations (STR R)

• MAC operations (MAC M, MAC ADD, MAC SUB, SUB MAC)

4.6.2. Outputs:

MACDM (2 bits): These bits convey signaling information to the main memory, indicating matrix

operations:

• 00: No matrix operation is involved.

• 01: Load Matrix A instruction is being executed.

• 10: Load Matrix B instruction is being executed.

• 11: Store Resultant Matrix instruction is being executed.

MACControl (4 bits): These bits generate the control signals that ultimately govern the MAC

module's behavior, specifying the exact operation to be performed.

4.6.3. Decoding Logic:

• The decoder meticulously analyzes the combination of funct3, MAC_OP, and MACOP input

bits to accurately determine the intended matrix instruction.

• Based on this analysis, it generates the corresponding MACControl signals to guide the MAC

module toward the correct execution.

• Simultaneously, it produces the MACDM signals to alert the main memory about ongoing

matrix operations, ensuring proper memory access and data transfer.

4.6.4. Integration with Control Unit:

The MAC decoder operates as a cohesive component within the broader control unit of your RISC-

V processor.

It collaborates with other decoders (e.g., main decoder, ALU decoder) to collectively handle the

full spectrum of instructions, including both conventional instructions and the newly introduced

matrix-specific instructions.

4.6.5. Key Roles in Matrix Operations:

Instruction Identification: Accurately pinpoints the type of matrix instruction being issued.

Signal Generation: Produces control signals (MACControl) to initiate specific operations within

the MAC module.

Memory Communication: Employs MACDM signals to coordinate with the main memory for

loading and storing matrix data.

4.7 Register File:
The register in the Intellera processor I/O, especially created for MAC module, has a dedicated

port M_A input (20 bits) which is suggested to speed up the matrix operations. In addition, this

port obeys block and row addresses which matrix arithmetic instructions provide, allowing the

entries of matrixes to get pushed to the right registers directly without further reading mechanism.

Sequentially the adaptation combines the data processing effortlessly for matrix operations and

noticeably enhances the speed of retrieving the required information consequently benefiting the

entire execution of matrix tasks. The management of this feature in the control unit guarantees that

only the M_A input is selectively activated to achieve high-quality synchronous operation between

a register file, a control unit and a MAC module, thereby bringing the performance of the processor

to a maximum level when performing matrix manipulation.

4.8 Control Unit for Matrix Operations:

Figure 4.7: Modified Control Unit

The Intellera processor’s control unit has been enlarged in its scope to include matrix operations,

incorporating more control signals (MAC_OP and MACOP) that are dedicated for the specific

sake for MAC module tasks. This is due to the fact that the exchange allows to perform not only

the common RISC-V functions but also specific commands pertaining to a matrix. A well-tailored

dedicated MAC Decoder, developing in parallel main decoder and ALU decoder, generates

specific control signals for the MAC block, according to the specific matrix instruction. This is an

implementation of peculiar matrix calculations, whereby precision of the data processing is highly

optimized, hence the improvement of the processor dedicated functions.

4.9 Data Memory:
The data memory used in the Intellera processor was greatly improved to tackle matrix operations

with specific devices that were just added like a MACDM Input and expanded data ports among

other things. The 2-bit decoder (MACDM Input), triggered by a memory operation or matrix

transfer, selects the desired placement. The choice is complemented by the selection of either the

source matrices A, B, or the operation result to be saved or loaded in memory. Besides this,

simultaneous use of 25 input and output ports allows retrieval of data in the optimal time frame

between a memory and a MAC module. The control unit makes memory access offsets

calculations, that are based on Matrix row and offset information, that is carried to the MA_M

input, in order to achieve maximum precision in data retrieval and storage. In addition, those

additors support not only a flexible and speedy approach to handling data for matrices but also an

optimal result in terms of data transfer and computation inside the framework itself.

4.10 Five Stage Pipelined Processor with Matrix MAC:

Figure 4.8: Complete 5 Staged Pipelined Processor with Hazard & Matrix MAC Unit Architecture

Intellera utilizes a 5-stage pipelined processor model to enhance the execution of matrix

multiplication operations critical for its functionality. By dividing the instruction-processing

cycle into five stages—Instruction Fetch, Instruction Decode/Register Read, Matrix Address

Calculation, Matrix Operand Access, and Execute/Write Back—Intellera enables parallel

processing of instructions, significantly increasing throughput. This method ensures

continuous operation by keeping key components like the ALU active, reducing idle cycles

and maximizing efficiency. Each stage is meticulously designed to handle specific tasks

efficiently, from fetching instructions from memory to executing operations and storing

results, thereby streamlining the entire computation process within the processor.

4.11 UART Transceiver with Matrix MAC:

Figure 4.9: UART Interfacing

To develop the UART transceiver module in Verilog, we implemented it with the transceiver for

data frame transmission and reception that were 8-bit, at one bit for start and stop bits respectively.

The transceiver data is being transmitted asynchronously in a serial/synchronous fashion like a

two-way street. Each 8 digital bits that make an individual instruction are transferred and received

through four separate 8-digital bits packets due to the UART's 8-bit communication limit. The

moment a byte has arrived the transceiver module uses a state machine to step thorough four states

that each of them corresponds a bit within a byte. These memory bytes are loaded into a holding

register in a buffer and temporally hit. Once the full set of bytes is obtained, the module joins them

into an orderly regiment of 32-bit instruction. This transfer is total and the instructions are the

integral part of the instruction memory where they are kept into reserve until they are eventually

deciphered for execution by the processor. Through this method, tasks are broken down into

smaller steps of instructions; the processor receives and executes these steps even though they are

conveyed in a step-by-step or packetized manner.

Chapter 5: Results and Discussion

5.1 Benchmarking Tests Setup:
Table 5.1: Benchmarking and Testing of Matrix MAC Instr.

To evaluate the performance and functionality of the Intellera processor, a group of benchmarking

tests that had been designed and run were employed to assess Intellera processor's performance

and usability. The benchmark tests were made to determine the correctness of the information

throughput, speed, and rate of the operations executed by Intellera's matrix MAC resources.

They cover multiple matrix operations such as loading matrix operands, putting registers into clear

state, performing matrix multiplication, matrix addition, matrix subtraction and storing the results.

Every scenario was creatively considered to check for the precision and authentic output of the

Intellera processor's matrix MAC units.

Following which the benchmarking tests were performed and the outcomes were analyzed through

simulation to measure how the Intellera processor achieved high efficiency and accuracy for

matrix manipulation.

Figure 5.1 Behavioral simulation of MAC Instructions, Testing Addition and Multiplication of

Matrices

5.2 Performance Evaluation:
Table 5.2 Performance Metrics before and after Matrix MAC Unit

Parameters

5 stage Pipelining with

Hazard Unit

5 Stage Pipelined Processor

with Matrix MAC

Lookup Tables 283 6338

Flip Flops 223 712

Frequency 333 MHz 333 MHz

Power 0.185 W 0.637 W

5.2.1 Resource Utilization
This section compares the resource utilization, specifically the number of Lookup Tables (LUTs)

and Flip Flops used in both processor configurations. The processor with the Matrix MAC utilizes

significantly more LUTs (6338 vs. 283) and Flip Flops (712 vs. 223), reflecting the complexity

and increased capability provided by the Matrix MAC unit [13].

5.2.2 Operational Frequency
Both configurations operate at the same frequency of 333 MHz, suggesting that the integration of

the Matrix MAC unit does not adversely affect the clock speed of the processor [14].

5.2.3 Power Efficiency

Despite the increased functionality, the power consumption of the processor with the Matrix MAC

unit is significantly higher (0.637 W vs. 0.185 W). That shows the implications of this increased

power demand and explores potential optimizations to mitigate power consumption while

maintaining performance [15].

5.2.4 Throughput Analysis
Throughput can be calculated as the reciprocal of the latency (time per operation) multiplied by

the clock frequency (operations per unit time):

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (1/ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦) ∗ 𝐶𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (
1

3.729
) ∗ 333

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 89 𝑀𝑂𝑃𝑆

5.2.5 Latency Measurements
Latency can be defined as the time it takes for a signal to propagate through a certain portion of

the processor. In this case, we can calculate the latency for a basic operation, such as a register-to-

register operation, assuming it occurs within a single clock cycle.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑆𝑈 + 𝑇𝐻 + 𝑇𝑊

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 2.016 𝑛𝑠 + 0.213𝑛𝑠 + 1.50𝑛𝑠

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 3.729 𝑛𝑠

Chapter 6: Conclusion and Future Work

The detailed elaboration of the Intellera processor, which is basically a hardware RISC-V

accelerator done on FPGA to handle matrix MAC operations, is an exceptional advancement in

hardware acceleration for matrix computation. As a wrap-up, this chapter is a summary of the

prominent results and the final inferences.

6.1 Conclusion:

The time will come that the process of making and examining the Intellera processor is certainty

considered as the most delicate point of affirmation of the RISC-V systems when we talk of the

processing system. What has been done then is solidify the framework of building up a MAC Unit

to a pipelined architecture and tackling the problems and requirements of high-speed matrix

operations. Technical findings of the research show that Intellera is a good evidence for the fact

that we can successfully achieve good performance with ease with the use of dedicated hardware

accelerators in processors - continuously computation, lower power usage, and massive

improvement throughput.

Intellera’s architecture reflects a meticulous balance between innovation and practical

implementation, leveraging of the flexibility of FPGA is done which not only enables the system

to perform remarkably but also retain the compatibility and scalability. The placement of the

hazard unit illustrates an integrated technique that tackles the issue of instructional pipelines’ stalls

caused by dependencies. This ensures instruction flows among the units will be smoother and

efficient.

6.2 Achievements:
The outcome of the project is by no means only about performance metrics, it covers complex

setting up of standard that can be modified according to the context. Successfully developing

custom MAC instructions has paved the way for unique signal processing functionalities

embedded directly in the processor, which has the potential to be an outstanding edge in tasks like

microprocessor systems, digital signal processing, and artificial neural networks.

6.3 Lessons Learned:
Through the design and testing phases of Intellera, valuable insights have been gained thorough

test program - the complexity of processor design as well as the trade-offs in hardware vs software

requirements has been revealed. The implementation of MAC unit into a 5-stage pipeline FPGA

architecture has many challenges that go beyond the current capability of the FPGA technology. It

has encouraged a deeper comprehension of both the potential and the limitations of this area of

technology.

6.4 Future Work:
The Intellera chip is just beginning as it aims to mark major milestones in the history of space

exploration. The development of many ways is obvious in the short term, and these could translate

to sustained improvements of the processor's efficiency and the ability to handle the more complex

and advanced demands in the computing world.

6.4.1 Implementing MMU as an In-built System
One of the most promising directions for future work is the implementation of the implicit

Memory Management Unit (the MMU) is close to the present work. An MMU that is built in

would allow the Intellera so that it could take care of more complicated memory addressing,

management, and protection features, therefore facilitating the development of advanced operating

system solutions and increasing the sophistication of application scenarios [16].

6.4.2 Expansion to System-on-Chip (SoC) Architecture
Moving Intellera from a pure perception platform to a SOC implementation it can be suitable for

a variety of applications. An SoC integration would be a solid choice as it would allow for a greater

number of peripheral interfaces, special purpose coprocessors, and dedicated hardware

accelerators, ultimately making Intellera a more useful and powerful processing platform [17].

6.4.3 Broadening the Custom Instruction Set
Building upon the current custom instruction set, Intellera could be enhanced by adding more

specialized instructions, which would cater to a wider array of matrix operations and potentially

other types of data-intensive computations.

GLOSSARY

1. ALU (Arithmetic Logic Unit) - A digital circuit used to perform arithmetic and logical

operations.

2. CISC (Complex Instruction Set Computing) - A type of processor design where each

instruction can execute several low-level operations.

3. Control Unit - The component of the processor that directs the operation of the processor by

managing the instruction cycle.

4. FPGA (Field-Programmable Gate Array) - An integrated circuit designed to be configured by a

customer or a designer after manufacturing.

5. FSM (Finite State Machine) - A computational model that can be in exactly one of a finite

number of states at any given time.

6. GPU (Graphics Processing Unit) - A specialized electronic circuit designed to rapidly

manipulate and alter memory to accelerate the creation of images in a frame buffer intended

for output to a display device.

7. Hazard Detection Unit - Part of a processor used to detect and manage situations that could

cause incorrect behavior in pipelined architectures.

8. ISA (Instruction Set Architecture) - The part of the computer architecture related to

programming, including the native data types, instructions, registers, addressing modes,

memory architecture, interrupt and exception handling, and external I/O.

9. Lookup Tables (LUTs) - A memory resource in FPGAs used to implement logic functions.

10. MAC (Multiply-Accumulate) Unit - A hardware element that performs multiply-and-

accumulate operations, often used in digital signal processing.

11. Matrix Operations - Mathematical operations involving matrices, including addition,

subtraction, multiplication, and others.

12. MMU (Memory Management Unit) - A hardware component responsible for handling

accesses to the memory requested by the CPU, performing tasks such as virtual address

translation, physical address generation, memory protection, and cache control.

13. Pipelining - A technique where multiple instructions are overlapped in execution in a

processor.

14. Register File - A small, fast storage element in a processor that holds the operands (data) and

results of the operations executed by the ALU.

15. RISC (Reduced Instruction Set Computing) - A type of processor design that allows every

instruction cycle to use a single clock cycle by using a small and highly optimized set of

instructions.

16. RTL (Register Transfer Level) - A high-level abstraction layer for a digital circuit which is used

in hardware description languages to describe the operations, timing, and structure of

electronic systems.

17. System-on-Chip (SoC) - An integrated circuit that integrates all components of a computer or

other electronic systems into a single chip.

18. TPU (Tensor Processing Unit) - An integrated circuit developed specifically for accelerating

tensor calculations.

REFERENCES

[1] Patterson, D. A., & Hennessy, J. L. (2017). Computer Organization and Design MIPS Edition.

[2] Jouppi, N. P., Young, C., Patil, N., & Patterson, D. (2017). "In-Datacenter Performance

Analysis of a Tensor Processing Unit."

[3] D. Dennis et al., "Single cycle RISC-V microarchitecture processor and its FPGA prototype,"

IEEE Symposium on Integrated Circuits and Devices, 2017.

[4] S. J. Malone, P. Saenz, and P. Phelan, "RISC-V Processors for Spaceflight Embedded

Platforms," IEEE Aerospace Conference, 2023.

[5] L. Qingxin and P. Li, "A 8-bit MCU design using a four-pipeline architecture," IEEE

International Conference on Computer and Communication Systems, 2002.

[6] N. Krishna, "Performance Analysis of MAC Unit using Booth, Wallace Tree, Array and Vedic

multipliers," International Journal of Engineering Research & Technology, 2020.

[7] A. Kamaleldin, S. Hesham, and D. Göringer, "Towards a Modular RISC-V Based Many-Core

Architecture for FPGA Accelerators," IEEE Access, 2020.

[8] M. Jacobsen, Y. Freund, and R. Kastner, "RIFFA: A Reusable Integration Framework for FPGA

Accelerators," IEEE Symposium on Field-Programmable Custom Computing Machines.

[9] A. Habibizad Navin, Ehsan Lahouti, Mahmoud Lotfi Anhar, M. Mirnia, "A new method to

prevent control hazard in pipeline processor by using an auxiliary processing unit," 2010.

[10] M. Miroshnyk, S. Poroshyn, A. Shkil, E. Kulak, I. Filippenko, D. Kucherenko, Y. Pakhomov,

S. Juliia, M. Goga, "Design of Logical Control Units Based on Finite State Machines' Patterns,"

2018.

[11] R. P. Aneesh, K. Jiju, "Design of FPGA based 8-bit RISC controller IP core using VHDL,"

2012.

[12] I. Thanga Dharsni, Kirti S. Pande, Manoj K. Panda, "Optimized Hazard Free Pipelined

Architecture Block for RV32I RISC-V Processor," 2022.

[13] W. Wang et al., "A universal FPGA-based floating-point matrix processor for mobile

systems," 2014.

[14] R. Divakaran et al., "Implementation and Verification of RISC Processor on FPGA Using

Chipscope Pro Tool," 2019.

[15] K. Sano et al., "Performance Evaluation of Finite-Difference Time-Domain (FDTD)

Computation Accelerated by FPGA-based Custom Computing Machine," 2009.

[16] S. Sajin et al., "Design of a Multi-Core Compatible Linux Bootable 64-bit Out-of-Order

RISC-V Processor Core," in Proc. IEEE Int. Conf. on VLSI Design, 2023.

[17] R. Krishnamurthy and L. Zhao, "Energy-Efficient and Ultra Low Voltage Design of Sub-

14nm SoCs and Microprocessors: Challenges and Opportunities," in Proc. IEEE Symp. on Circuits

and Systems, 2016.

APPENDIX A

Table A.1 RISC-V ISA

Instruction
ALU

Control Opcode Funct3 Funct7 Type Tested Test Cases

ADD 00000 0110011 000 0000000
R-
type YES add x3, x1, x2

SUB 00001 0110011 000 0100000
R-
type YES

sub x4, x1,
x2
sub x5,
x2, x1

MUL 00010 0110011 000 0000001
R-
type YES mul x6, x1, x2

AND 00011 0110011 111 0000000
R-
type YES and x6, x1, x2

XOR 00101 0110011 100 0000000
R-
type YES xor x10, x1, x2

OR 00100 0110011 110 0000000
R-
type YES or x7, x1, x2

SLT 01100 0110011 010 0000000
R-
type YES slt x11, x2, x1

LW N/A 0000011 010 N/A
I-
type YES

lw x25 -
11(x31)
lw
x12, 8(x10)

LI N/A 0010011 000 N/A
I-
type YES

li x2, -2
li
x10, 400

ADDi N/A 0010011 000 N/A
I-
type YES addi x1, x0, 15

SLLI 00110 0010011 001 0000000
I-
type YES slli x12, x1, 3

SRLI 00111 0010011 101 0000000
I-
type YES srli x13, x2, 3

SW N/A 0100011 010 N/A
S-
type YES

sw x6, -
3(x31)
sw
x4, 8(x10)

BGE 01000 1100011 101 N/A
B-
type YES bge x2, x1, -56

BEQ 01001 1100011 000 N/A
B-
type YES beq x1, x1, 56

BNE 01010 1100011 001 N/A
B-
type YES bne x2, x1, 12

BLT 01011 1100011 100 N/A
B-
type YES blt x2, x1, test2

APPENDIX B

GitHub Repository Link:
https://github.com/theuppercaseguy/FYP--Risc-V-32-bit-Matrix-Mac

https://github.com/theuppercaseguy/FYP--Risc-V-32-bit-Matrix-Mac

