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Abstract 

Increased demands for computer hardware accelerators that speed up computational tasks are 

coming from different domains, where the degree of complexity is massive, e.g., artificial 

intelligence, scientific computing, or data analytics. This thesis covers the hardware 

implementation of a RISC-V-based processor and of the accelerator units that will run on it, 

which are designed to speed up a particular type of matrix operations. By exploiting the 

capabilities offered by Field Programmable Gate Array (FPGA) platforms, Intellera can focus 

on addressing the performance issues tied to matrix operations with a view of offloading the 

CPU-intensive portion to a customized hardware accelerator. 

Our project starts with a detailed architecture design examination of the processor accompanied 

with acceleration hardware techniques, which consequently facilitates the design of the 

Intellera processor. The crucial elements of the processor including the custom instruction set 

architecture (ISA), are efficiently produced with pipelining design techniques and hardware 

accelerators using hardware description languages like Verilog for their implementation. 

In conclusion, the development of Intellera is the high point of the design in the sphere of 

processor hardware acceleration. The successful development and testing of the Intellera 

processor set the stage for the research and creativity of the coming-age technology of 

hardware-accelerated computing for the years to come. Strides in efficiency, collaboration, 

development, and eventually deployment in real life are marked, adding all systems together 

to form a basis for future progress in high-performance computing architecture.  
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Chapter 1: Introduction 

Nowadays, the ongoing extraordinarily fast growth in computational requirements throughout the 

different fields faced technology providers with the main challenge of finding fast, effective 

solutions. Processors that can power complex AI algorithms and computational tasks are now more 

in demand as the need for high performance computing machines that can-do real-time processing 

is now being exhausted. In response to the rise of such multimedia applications together, Intellera 

project is born for a pioneering venture in designing and building a high-speed RISC-V-based 

processor with special-purpose hardware accelerators optimized for matrix manipulation. 

 

1.1 Background of the Project: 

1.1.1 CISC and RISC Architectures 

Complex Instruction Set Computing (CISC) and Reduced Instruction Set Computing (RISC) 

represent two fundamental approaches to processor design. CISC architectures, like those found 

in x86 processors, are characterized by a wide range of complex instructions allowing for more 

functions within a single instruction. This complexity can lead to slower performance in some 

cases due to the intricate decoding required. In contrast, RISC architectures streamline operations 

by focusing on a smaller set of instructions, which can be executed more rapidly, providing 

advantages in power efficiency and performance predictability, particularly useful in embedded 

systems [1]. 

1.1.2 GPU and TPU Technologies 

Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) have revolutionized areas 

requiring massive parallelism such as graphics rendering and machine learning. GPUs, at first 

developed for use in imaging, turned out to be the saviors of general-purpose computing because 

they are designed in such a way that the processor can take multiple calculations at a given time. 

While TPUs, on the other hand, these are geared accelerators from Google, which are specially 

designed in order to speed up tensor operations within neural network environments, providing 



 

 

orders of magnitude of a performance gain with regard to processing times and power consumption 

as compared to the traditional CPU processors [2]. 

 

1.2 Motivation Behind the Project: 

The primary motivation for the Intellera project is rooted in the limitations of traditional 

computational architectures when dealing with specific applications such as AI and large-scale 

data analytics. In terms of the market, high-priced TPU and GPU chips are being used over-

precatory, therefore creating room for a specific and integrated approach. With the employment of 

matrix processing features right on-chip a RISC-V based processor, there is the chance to crucially 

decrease power consumption and pricing, making data centers available for the more compact, 

portable and resource-saving environments. 

The following is also crucial, which is the memory access patterns, and their association with 

matrix operations, which require high memory efficiency. Inefficient memory routes can cause 

capacity loads that will result in lowering down the performance. Matrix assignments might 

constitute a headache for processors in a row, because these can stall machine due to lack of 

efficient memory access. As a result, processors will need more time to perform operations, and 

the efficiency overall would decline. Besides, energy efficiency is one of the major parameter in 

modern processor design, contemporaneous processor considered to be fast but however its normal 

operation will consume excessive power under heavy computational like matrix multiplication. 

Such limitations indicate the imperativeness of designing structures which seek speeding up 

Figure 1.1: GPU Architecture 



 

 

memory locality, energy efficiency, scalability, and flexibility to meet the expected challenges in 

the coming times. 

1.3 Scope of Intellera: 
The scope of the Intellera project is both ambitious and technically demanding. Such a 

development includes the making of a RISC-V processor with a built-in Matrix MAC unit in its 

inner make-up framework. This integration seeks to increase a processor's capabilities to make 

specific progress on mission-critical tasks like matrix multiplication, the backbone of artificial 

intelligence and machine learning processes. The project use FPGA for sample and optimization 

processor architecture. Among the most advantageous qualities of the FPGAs are their ability to 

be reconfigured in a hardware fashion and rapid prototyping of designs that are utilized 

individually to enhance performance and resource utilization; thus these devices prove convenient 

for iterative design processes.  

Further on, the technical design and implementation come with validation and testing phases in 

large scope. These stages are crucial disciplines to be understood well that the processor can match 

its theoretical performances and at the same time operate reliably under real time applications. We 

will perform thorough testing, covering a range of manufacturing scenarios in order to reveal and 

eliminate any false operating of the processor. Finally, designing a chip with enough functionality 

to fulfill industry needs is the main goal which should be achieved through device design that is 

high-performance, energy-efficient and reliable enough to be used in numerous electronic 

products. 

1.4 Objectives: 

The objectives of the Intellera project are various: 

Architectural Design and Enhancement: To design a 5-stage pipelined 32-bit RISC-V processor 

that can add a matrix MAC unit for matrix operation and a hazard detection unit that helps to 

manage the data dependence. 

FPGA Implementation: Building the required processor and placing it onto an FPGA platform for 

trial periods, hence it could be modularized and real-time performance tuning purposes. 

Performance Optimization: To deliver an operating unit that is able to do something a CPU, GPU 

and TPU setup can do- yet with reduced power consumption and operation latency. 

Comprehensive Validation: To conduct extensive testing to ensure stability, accuracy, and 

efficiency of the processor under various computational loads. 



 

 

  



 

 

Chapter 2: Literature Survey 

In the chapter on literature survey from Intellera project, a thorough review of latest research 

papers, publications, and innovations in RISC-V (Reduced Instruction Set Computer) architecture, 

accelerators for matrix manipulation using hardware by FPGA, and relevant technologies will be 

presented thereby. The first chapter is meant to define the theoretical scheme, highlight specific 

innovations and progress, critique the approaches and methods which have already been developed, 

and to find the void spaces or distinct areas for future work. 

2.1 Evolution of RISC-V Architecture: 

The RISC-V architecture has rapidly become a focal point for innovation in processor design, 

offering a license-free ISA that enables broad modifications and customizations. Studies like that 

of Dennis et al. [3] illustrate the practical applications of RISC-V in embedded systems, 

demonstrating how it can be implemented to achieve significant efficiencies on FPGA platforms. 

Similarly, Malone et al. [4] discuss the adoption of RISC-V in radiation-tolerant FPGAs, 

highlighting its potential for space applications where robustness and reliability are paramount. 

The adaptability and the fact that it can be used for many purposes that have limited costs are the 

essential features of RISC-V that are critical for narrow down efforts like Intellera where we aim 

to push the boundaries of advanced computational abilities but still keep the costs relatively low. 

2.2 Advancements in Pipeline Architectures: 
Pipelined architecture design plays a great role in nowadays processors, so to improve the overall 

processor performance. The path which starts with simple pipelines, as explained in Qingxin and 

Li [5], direct pipelines with more levels yield better result especially for custom applications such 

as embedded systems. A 5 stage pipeline would be a good implementation in RISC-based 

processors which greatly enhance the speed of processing the instructions so that it wouldn't take 

so long for those that require high computational resource with minimal latency. 

2.3 Matrix MAC Units and Their Integration in Processors: 
The capability to incorporate MAC units straight into the computation units is a major 

improvement by far, as it makes it possible to complete computation tasks involving complex math 

operations much faster. Krishna [6] undergoes an in-depth review of MAC designs implemented 

with trees like Booth tree and Wallace, underline how these designs consume power and alter 



 

 

performance in FPGA chips. The incorporation of such units is indeed both mostly essential and 

advantageous in digital signal processing and artificial intelligence, where matrix operations are 

usually rapid and efficient This coincides with project's Intellera goal to review the default setting 

in RISC-V processor configuration thus bypassing the need for expensive external accelerators 

like the GPU and TPU. 

2.4 FPGA Implementation and Its Strategic Importance: 
FPGA technology is the most important tool in the design and detection of innovative processors 

given the fact that it is multi-purpose and very efficient ( indicates that this is a permanent trend). 

The work [7] of Kamaleldin on a modular RISCV many-core architecture for FPGA accelerators 

shows the optimized performance of FPGAs in option minimization, cost reduction, and system 

flexibility by means of scaling up the number of cores. It is vital to the Intellera project as it is the 

FPGA technology that is essential for the prototype and refinement of the processing design of the 

processor which ensures an always-optimized performance and the ability to adapt. 

2.5 Challenges and Opportunities in FPGA-Based Processor Design: 
From the point of view of Jacobsen et al. [8] in their analysis of the RIFFA framework, the 

introduction of engines of processors into FGPAs creates new possibilities and problems. This is 

the foundation of the FPGA integrative development block, which successfully connects FPGA 

accelerators to the traditional computing systems overcoming the gap of the performance readiness 

of the integrated system. Insights from such research can actually be priceless for the Intellera 

project as they help to design a processor that not only caters to predetermined performance criteria 

but also can be later easily integrated into already built up technology ecosystems. 

2.6 Study of Hazard  Units in Pipelined Processors: 
The detection units of hazards are of fundamental importance to accomplishing productive flow 

processors as they detect and rectify data, control, and structural hazards that might compromise, 

processors’ performance. In addition, Navin et al, come up with an innovative technique which 

uses a co-processor to do away with the control hazards, an effort aimed at boosting the pipeline's 

efficiency [9]. 



 

 

Chapter 3: Design (Systems Requirements/Specifications) 

In this Chapter we consider the detailed design of the Intellera system, with a focus on the systems 

requirements and specifications that are necessary for development and implementation of the 

system. In the design phase of the hardware model, the focus is on the architecture of hardware, 

software integration, and performance targets, enabling matrix manipulation to be efficient on the 

FPGA-based platform. 

 

3.1 Systems Requirements: 
Systems specifications for the Intellera project state the system component and functionality as 

well as the expected performance metrics to be met to realize the objectives. These stipulations 

serve as a framework for the design and development phases. 

3.1.1 Functional Requirements: 

1) Basic RISC-V ISA: Intellera processor is required to execute the simple “RISC-V instructions” 

adhering to the RISC-V instruction set architecture rules. 

2) Custom ISA: In order to do that, the entire system will be made from a processor specially 

designed for a particular instruction set architecture (ISA), where matrix operations are the primary 

focus. 

3) Matrix Multiplication: The processor needs to be so fast in its respective operations for the matrix 

multiplication instruction being inputted. 

4) Matrix Addition: It should also perform matrix addition precisely, which involves computations 

according to implied derivatives. 

5) Register File: Register file should be present in order to address memory requirements of data 

and results during execution of instructions.  

6) Data Memory Access: Memory will support processor with ‘read’ and ‘write’ commanding 

operations indication. It should be provided with a mechanism to resolve the memory access 

conflict hazards. 

7) Arithmetic and Logic Unit (ALU): An ALU is needed to implement only the operations of the 

RISC-V and the Matrix Multiplication instructions included in Verilog.  

8) Control Unit: The control unit must produce instructions, develop the flow of instructions and 

execute them, including branch and jump instructions. 



 

 

9) Compatibility: The processor (the RV32I ISA standard) must be compliant with the RISC-V 

instruction set. On the other hand, it must also include specific Matrix MAC instructions. 

10) Hazard Unit: In the valuator there should be the Hazard Unit that would settle all possible 

hazards. Among the mentioned errors, control, Structure and Data Hazards stand out as the ones 

that are the most commonly occurring types of errors. 

11) Pipelining: The processor shall have at least five pipeline stages, bunch of them, such as fetch, 

decode, execute, and memory write-backs, so as to better complete instructions.  

12) FPGA Implementation: The hardware design of the processor and its components need to be 

such that it act together with the FPGA mechanism capitalizing on the latter's hardware prototyping 

advantages. 

3.1.2  Functional Requirements with Traceability information 

 

 

Table 3.1 Functional Requirement 1 

  

Requirement ID 01 Requirement 
Type 

Functional Use Case # 00 

Status New yes Agreed-to yes Baselined yes Rejected No  

Parent 
Requirement # 

N/A 

Description 
The processor must execute basic RISC-V instructions, adhering to the RISC-V ISA. 

 

Rationale This requirement ensures compatibility with the standard RISC-V instruction set, forming the 
foundation for further customizations 

Source  Source Document - 

Acceptance/Fit 
Criteria 

Successful execution of standard RISC-V instructions. 

Dependencies None 

Priority Essential yes Conditional no Optional No  

Change History None 



 

 

Table 3.2 Functional Requirement 2 

 

Table 3.3 Functional Requirement 3 

 

 

Requirement ID 02 Requirement 
Type 

Functional Use Case # 00 

Status New yes Agreed-to yes Baselined yes Rejected No  

Parent 
Requirement # 

01 

Description The processor will support a custom instruction set architecture (ISA) optimized for matrix 
operations. 

Rationale Custom instructions tailored for matrix operations will improve performance and efficiency for 
specific tasks. 

Source  Source Document - 

Acceptance/Fit 
Criteria 

Successful execution of custom Matrix MAC instructions. 

Dependencies 
Requirement #1 (Basic RISC-V ISA). 

Priority Essential yes Conditional no Optional No  

Change History None 

 

Requirement ID 03 Requirement 
Type 

Functional Use Case # 00 

Status New yes Agreed-to yes Baselined yes Rejected No  

Parent 
Requirement # 

01, 02 

Description 
The processor must efficiently execute matrix multiplication instruction. 

 

Rationale 
Matrix multiplication is a fundamental operation in various computational tasks and requires 
optimized execution. 

Source  Source Document - 

Acceptance/Fit 
Criteria 

Efficient execution of matrix multiplication with specified performance metrics. 

Dependencies Requirement #2 (Custom ISA). 

Priority Essential yes Conditional no Optional No  

Change History None 



 

 

Table 3.4 Functional Requirement 4 

 

Table 3.5 Functional Requirement 5 

 

3.1.3 Non-functional Requirements 

1) Power Efficiency: The design will emphasize on power efficiency with a view of limiting the 

power consumption of the electronic gadget. As a result, it will be fit to be used as a processor in 

embedded applications.  

2) Latency: The processor should be performing matrix operations and MAC processing as fast as 

possible in order to reduce latency (for both standard RISC-V and Matrix MAC instructions) to 

offer real-time processing capabilities. 

3) Resource Utilization: FPGA resource efficiency could be improved by optimizing the LUTs, 

flip-flops, and memory blocks, which are mainly used.  

4) Scalability: The architecture incorporated to the processor should be able to act as an enabler for 

the future advancements envisaged in the implementation or expansion of the instruction set. 

 

Requirement ID 04 Requirement 
Type 

Functional Use Case # 00 

Status New yes Agreed-to yes Baselined yes Rejected No  

Parent 
Requirement # 

02 

Description 
It should also perform matrix addition precisely, adhering to specified computational 

requirements. 

 

Rationale 
Matrix multiplication is a fundamental operation in various computational tasks and requires 
optimized execution. 

Source  Source Document - 

Acceptance/Fit 
Criteria 

Matrix addition is a common operation in matrix processing tasks and must yield accurate 

results. 

Dependencies Requirement #2 (Custom ISA). 

Priority Essential yes Conditional no Optional No  

Change History None 

 

Requirement ID 05 Requirement 
Type 

Functional Use Case # 00 

Status New yes Agreed-to yes Baselined yes Rejected No  

Parent 
Requirement # 

N/A 

Description 
A register file should be available to store and access data and results during instruction 

execution. 

Rationale 
Register files provide fast data access, crucial for efficient instruction execution and data 

storage. 

Source  Source Document - 

Acceptance/Fit 
Criteria 

Reliable storage and retrieval of data using the register file. 

Dependencies None 

Priority Essential yes Conditional no Optional No  

Change History None 



 

 

Furthermore, this architecture should be tailored to optimally handle accordingly various kinds of 

matrix sizes and complexities. 

5) Performance: Benchmark distribution shall not be inferior to advocated and take the place of 

matrix arithmetic performance.  

6) Compatibility: Where applicable, compatibility with existing software or systems will be 

maintained.  

7) Testing and Verification: Complete testing providing suites and uniformity for correctness and 

functioning of applications need to put in place. Unit and substitute testing will be used to confirm 

that code is working properly. 

8) Documentation: It has to ensure there is detailed description of the hardware and software 

components to ease the use and maintenance of software especially by its users. 

3.2 System Specifications: 
The Intellera RISC-V unit utilizes standard RISC-V instructions and supports special operations 

of matrix for its effectiveness. Moreover, it can be programmed to display special operations which 

are specific to the matrix of binary operations. It reflects the combination of hardware architecture 

patterns, software integration structure, and performance criteria to be the basis of the matrix 

manipulation in a field-programmable gate array (FPGA) platform.. 

3.2.1 Architectural Design 

 

Figure 3.1 Architectural Design of Complete Processor 

 

The Intellera's own system includes a fitting RISC-V processor for fast matrix operations and data 

flow synchronization as well as memory units to handle matrix data and code for operations. At 

the heart of it, we use a Matrix Acceleration Unit (MAC Unit). This dedicated hardware, designed 



 

 

for matrix multiplication, ensures faster performance. The I/O (Input/Output) Unit is an external 

data exchange facilitator, which helps Intellera to be running alongside other software applications 

without problematic switching. 

3.2.2 Intellera Development View 

 

Figure 3.2 Processor Development Stages 

The Intellera's instruction with five stages includes creating specifications and behavior 

description, refining RTL description into detailed one using HDL and validating the RTL 

simulation through both physical and logical testing. The complexity becomes evident that begins 

with the mechanism converting the design to logic, and proceeding to the timing and layout 

validation, which cumulates in the bit stream generation and implementation. 

3.2.3 Hardware Interface 
The mainstream of our FPGA-based RISC-V processor with a Matrix MAC module software 

foresee the architecture of the hardware interface at which different hardware components interact 



 

 

with each other through altered connections. MAIConfigURES the RISC-V processor with the 

embedded Matrix MAC core and the interfaces to external power and data sources. 

1. Components: 
• FPGA Board: This FPGA board is our project’s hardware platform, which was chosen for 

its affordability and availability. It provides the RISC-V class of microprocessors, cores of 

the MAC Module and other required devices. 

• RISC-V Processor with Matrix MAC Module: The heart of our project, this integrated unit 

combines the 32-bit RISC-V processor with the Matrix MAC module. It is responsible for 

executing instructions, including Matrix MAC operations. 

• Power Supply: The FPGA board must obtain a steady power supply for the function to 

work. The device is connected to a power cord so it keeps the device running at optimal 

performance. 

• Laptop/PC: The laptop or the PC used for programming is like an interface for the FPGA-

based system. It is the programming language that is used for the FPGAs, testing, new 

experience and analyzing the system. 

2. Interactions: 
• Data Input: Input data for processing is provided to the combined RISC-V processor and 

Matrix MAC module. The data may be generated internally or as external sensors or 

sources feeding. 

• Data Output: The data processed represents output by the forum unit joined and it is 

obtained and later passed to external devices or processing stages. 

3. Connections: 
• FPGA to Power Supply: The FPGA board needs that it is connect to a reliable power supply 

in order to ensure the correct voltage and current level for proper functioning. 

• FPGA to Laptop/PC: The FPGA board is then linked to the input interface of a computer 

be it a laptop or a personal computer, either USB or other suitable interfaces. As a result, it 

enables the utilization of the programming language in debugging as well as data transfer 

between the board and the development environment. 



 

 

3.2.4 Software Interfaces 

The interface of the software describes the involved tools and software components in the 

development, programming, testing, and verification of our FPGA-based RISC-V processor with 

a Matrix MAC module. 

Tools and Software: 

Vivado: The Vivado is the tool-box of the application program used for FPGA development. It is 

the one that helps apply the Verilog code and then synthesize for the RISC-V processor as well as 

the Matrix MAC module. Also, Vivado can produce a bitstream which will be useful in the 

programming of the FPGA. Both this process and the Vivado tool itself offer a quick result and a 

huge advantage in the development of the final device. 

Venus: Venus represents an online tool employed ensuring RISC-V assembly code productivity. It 

enables the programmer to write the assembly code for the RISC-V architecture and then convert 

it into the hexadecimal and/or binary machine code, which can further be used by the user on the 

modified RISC-V processor designed in the Vivado. 

DigitalJS: DigitalJS is a software product intended for the development of FPGA-based System 

algorithms incorporating visual schematics as well. It aids in the design and documentation of the 

processor's architecture and connections. 

 

 

 

 

 

 

 

Chapter 4: Proposed Solution (Methodology, Implementation) 
 

In this chapter of the document, we explore a solution to the Intellera's project, where we discuss 

our methodology as well as the setup specifications of the accelerator which is on FPGA for 

computing matrix MAC operations. The proposed solution for Intellera is progressively illustrated, 

in a way which takes the discussion from a single-cycle processor to pipelining and then 



 

 

incorporates MAC unit. Step-by-step details are highlighted, bringing Intellera's process into view 

as the architecture is explained. 

4.1 Control Unit: 

 
Figure 4.1: Control Unit with ALU Decoder 

The first phase of designing the Intellera chipthe set chip involves creating the instruction control 

unit (IA) block responsible for decoding instruction and coordinating the operation of the ALU 

and memory units. Attached to it there is a FSM (central unit) referred to as the main controller 

that processes instructions and outputs signals in accordance with the instruction types used in the 

program sequencing and control flow. The time state diagrams including the delay for each of the 

subway statuses was suggested as a desired option to attain for the formalism of the logics in the 

Intellera main controller [10]. This FSM interprets opcodes and routes signals to various operations 

including instruction memory storage (IRWrite) and the final collation of register destinations 

(RegDst). 

In the context of an 8-bit RISC controller IP core architecture into fetch, decode, execute units, 

and stage control shows the inevitable need for subdivision of the CU's major responsibilities for 

its effective functioning [11].  



 

 

4.2 Single Cycle Processor: 

 

Figure 4.2: Complete Single Cycle Processor Architecture 

Furthermore, the proposed by Intellera processor cycle operating on RISC-V instruction set coded 

on FPGA chip is the new matrix multiplication algorithm acceleration technology. At the core of 

this architecture lies the ability to complete the stages of instruction processing—fetch, decode, 

execute, write-back—within a singular clock cycle. In the fetch stage, toggles and the clock signal 

direct the PC to retrieve instructions from memory, incrementing the PC by four to prepare for the 

next operation. The decode phase involves the Control Unit deciphering instructions from the IR, 

with opcodes identifying the specific operation, while the execute stage sees the transmission of 

control signals to data path components, with the ALU performing computations as instructed. 

Through this procedure,the final stage, that is the write-back stage, redresses the Register File with 

the results from either the ALU or from memory, and closes the instruction execution. This 

streamlined process enables Intellera to handle complex operations like matrix MAC rapidly and 

efficiently, reflecting advancements in FPGA-based processor design and control unit 

functionality in microprocessors. 



 

 

4.3 Five Staged Pipelined Processor: 

 

Figure 4.3: Complete 5 Staged Pipelined Processor Architecture 

The improved Intellera method makes 5 pipelined stages of correlation between its processor 

architecture and the one reviewed above. This enables the instruction sets to be executed in a 

sequence and ensure faster task completion. This setup enables instructions to be processed in 

different stages of fetching, decoding, reading operands (registers fetching), execution, and writing 

results (write-back) of each pipeline stage at the same time. Each stage is designed to function in 

tandem with the next, ensuring continuous operation and efficient use of the ALU, thus 

significantly enhancing the throughput and reducing the latency involved in processing each 

instruction. This method ensures that the processor components are utilized effectively, 

maintaining constant activity and improving overall performance. 

4.4 Control Hazard Unit: 

 

Figure 4.4: Complete 5 Staged Pipelined Processor with Hazard Unit Architecture 



 

 

In the pipelined design of the Intellera RISC-V processor, each instruction is processed through 

several consecutive stages, enhancing throughput, and minimizing idle times within the CPU 

architecture. Unlike a single-cycle design, this pipelined approach allows multiple instructions to 

be in different stages (fetch, decode, execute, write-back) simultaneously, leveraging an "assembly 

line" effect that maintains a steady stream of instruction processing. However, this methodology 

introduces control hazards such as branch and jump hazards. Branch hazards occur when the 

processor must wait to determine the outcome of a branch instruction before proceeding, 

potentially stalling the pipeline. Jump hazards similarly disrupt the flow by changing the 

instruction sequence unexpectedly.  

These challenges necessitate advanced solutions to maintain efficiency. For instance, branch 

prediction and techniques like dynamic branch prediction are utilized to minimize stalls associated 

with control hazards. These methods predict the behavior of branch instructions to keep the 

pipeline filled [12]. Enhanced pipelined architectures further mitigate these hazards by optimizing 

the instruction flow and minimizing penalties associated with incorrect predictions, ensuring that 

operations like matrix multiplication on the FPGA are executed with minimal delay and higher 

efficiency. 

4.5 MAC Module: 

 

Figure 4.5: Internal Architecture of Matrix MAC Unit 

The MAC module serves as the core for fixed-point matrix computations. It manages three internal 

matrices: 

Matrix A: Stores the first operand matrix with 25 registers (A1 to A25). 



 

 

Matrix B: Stores the second operand matrix with 25 registers (B1 to B25). 

Result Matrix (R): Holds the final outcome of the operation, also with 25 registers (R1 to R25). 

Each register within the module is 32 bits wide. 

The module is equipped with: 

25 Input Ports (32 bits each): These ports facilitate loading data from the main memory into the 

corresponding registers within the matrices. 

25 Output Ports (32 bits each): These ports are used to store the results calculated by the MAC 

unit back into the main memory. 

4-bit MAC Control Signal Input (MACControl[3:0]): This dedicated input port receives control 

signals that instruct the module on the specific operation to perform (e.g., multiplication, addition, 

subtraction). 

4.5.1 Custom Instruction Set for Matrix Manipulation (32 bits): 
To seamlessly integrate with the RISC-V architecture, a custom instruction format is designed 

specifically for matrix operations. Here's a breakdown of the 32-bit instruction format: 

• Opcode (7 bits, bits 6-0): This field identifies the exact type of matrix instruction being issued. 

• F3 (3 bits, bits 9-7), F7 (2 bits, bits 31-30): These bits select the operation to be performed.F7 is 

also called MAC-OP. 

• Row (10 bits, bits 19-10): This field specifies the starting row address within the chosen matrix 

(relevant for load instructions). 

• Offset (10 bits, bits 29-20): This field defines the offset value used to access elements within 

a particular row (relevant for load instructions). 



 

 

4.5.2 Supported Instruction Set and Functionalities: 
The table below provides a comprehensive overview of the supported instructions, their 

corresponding control signals, and their functionalities: 

Table 4.1: Modified MAC ISA 



 

 

4.6 MAC Decoder: 

 

Figure 4.6: Modified MAC Decoder 

Here's a more comprehensive interpretation of the MAC decoder's functionality, incorporating 

insights from your previous description: 

4.6.1. Inputs: 

funct3 (3 bits): Extracted directly from the 32-bit instruction format. It pinpoints the precise type 

of matrix instruction being executed. 

MAC_OP (1 bit): Signifies whether the incoming instruction is specifically intended for the MAC 

module. 

MACOP (2 bits): Differentiates between categories of matrix instructions, including:  

• Load operations (LMAC A, LMAC B) 

• Clear operations (CLR A, CLR B, CLR R, CLR ALL) 

• Store operations (STR R) 

• MAC operations (MAC M, MAC ADD, MAC SUB, SUB MAC) 

4.6.2. Outputs: 

MACDM (2 bits): These bits convey signaling information to the main memory, indicating matrix 

operations:  

• 00: No matrix operation is involved. 

• 01: Load Matrix A instruction is being executed. 

• 10: Load Matrix B instruction is being executed. 



 

 

• 11: Store Resultant Matrix instruction is being executed. 

MACControl (4 bits): These bits generate the control signals that ultimately govern the MAC 

module's behavior, specifying the exact operation to be performed. 

4.6.3. Decoding Logic: 

• The decoder meticulously analyzes the combination of funct3, MAC_OP, and MACOP input 

bits to accurately determine the intended matrix instruction. 

• Based on this analysis, it generates the corresponding MACControl signals to guide the MAC 

module toward the correct execution. 

• Simultaneously, it produces the MACDM signals to alert the main memory about ongoing 

matrix operations, ensuring proper memory access and data transfer. 

4.6.4. Integration with Control Unit: 

The MAC decoder operates as a cohesive component within the broader control unit of your RISC-

V processor. 

It collaborates with other decoders (e.g., main decoder, ALU decoder) to collectively handle the 

full spectrum of instructions, including both conventional instructions and the newly introduced 

matrix-specific instructions. 

4.6.5. Key Roles in Matrix Operations: 

Instruction Identification: Accurately pinpoints the type of matrix instruction being issued. 

Signal Generation: Produces control signals (MACControl) to initiate specific operations within 

the MAC module. 

Memory Communication: Employs MACDM signals to coordinate with the main memory for 

loading and storing matrix data. 

4.7  Register File: 
The register in the Intellera processor I/O, especially created for MAC module, has a dedicated 

port M_A input (20 bits) which is suggested to speed up the matrix operations. In addition, this 

port obeys block and row addresses which matrix arithmetic instructions provide, allowing the 

entries of matrixes to get pushed to the right registers directly without further reading mechanism. 

Sequentially the adaptation combines the data processing effortlessly for matrix operations and 

noticeably enhances the speed of retrieving the required information consequently benefiting the 

entire execution of matrix tasks. The management of this feature in the control unit guarantees that 



 

 

only the M_A input is selectively activated to achieve high-quality synchronous operation between 

a register file, a control unit and a MAC module, thereby bringing the performance of the processor 

to a maximum level when performing matrix manipulation. 

4.8 Control Unit for Matrix Operations: 

 

Figure 4.7: Modified Control Unit 

The Intellera processor’s control unit has been enlarged in its scope to include matrix operations, 

incorporating more control signals (MAC_OP and MACOP) that are dedicated for the specific 

sake for MAC module tasks. This is due to the fact that the exchange allows to perform not only 

the common RISC-V functions but also specific commands pertaining to a matrix. A well-tailored 

dedicated MAC Decoder, developing in parallel main decoder and ALU decoder, generates 

specific control signals for the MAC block, according to the specific matrix instruction. This is an 

implementation of peculiar matrix calculations, whereby precision of the data processing is highly 

optimized, hence the improvement of the processor dedicated functions. 

4.9 Data Memory: 
The data memory used in the Intellera processor was greatly improved to tackle matrix operations 

with specific devices that were just added like a MACDM Input and expanded data ports among 

other things. The 2-bit decoder (MACDM Input), triggered by a memory operation or matrix 

transfer, selects the desired placement. The choice is complemented by the selection of either the 

source matrices A, B, or the operation result to be saved or loaded in memory. Besides this, 



 

 

simultaneous use of 25 input and output ports allows retrieval of data in the optimal time frame 

between a memory and a MAC module. The control unit makes memory access offsets 

calculations, that are based on Matrix row and offset information, that is carried to the MA_M 

input, in order to achieve maximum precision in data retrieval and storage. In addition, those 

additors support not only a flexible and speedy approach to handling data for matrices but also an 

optimal result in terms of data transfer and computation inside the framework itself. 

4.10 Five Stage Pipelined Processor with Matrix MAC: 

 

Figure 4.8: Complete 5 Staged Pipelined Processor with Hazard & Matrix MAC Unit Architecture 

Intellera utilizes a 5-stage pipelined processor model to enhance the execution of matrix 

multiplication operations critical for its functionality. By dividing the instruction-processing 

cycle into five stages—Instruction Fetch, Instruction Decode/Register Read, Matrix Address 

Calculation, Matrix Operand Access, and Execute/Write Back—Intellera enables parallel 

processing of instructions, significantly increasing throughput. This method ensures 

continuous operation by keeping key components like the ALU active, reducing idle cycles 

and maximizing efficiency. Each stage is meticulously designed to handle specific tasks 

efficiently, from fetching instructions from memory to executing operations and storing 

results, thereby streamlining the entire computation process within the processor. 



 

 

4.11 UART Transceiver with Matrix MAC: 

 

Figure 4.9: UART Interfacing 

To develop the UART transceiver module in Verilog, we implemented it with the transceiver for 

data frame transmission and reception that were 8-bit, at one bit for start and stop bits respectively. 

The transceiver data is being transmitted asynchronously in a serial/synchronous fashion like a 

two-way street. Each 8 digital bits that make an individual instruction are transferred and received 

through four separate 8-digital bits packets due to the UART's 8-bit communication limit. The 

moment a byte has arrived the transceiver module uses a state machine to step thorough four states 

that each of them corresponds a bit within a byte. These memory bytes are loaded into a holding 

register in a buffer and temporally hit. Once the full set of bytes is obtained, the module joins them 

into an orderly regiment of 32-bit instruction. This transfer is total and the instructions are the 

integral part of the instruction memory where they are kept into reserve until they are eventually 

deciphered for execution by the processor. Through this method, tasks are broken down into 

smaller steps of instructions; the processor receives and executes these steps even though they are 

conveyed in a step-by-step or packetized manner.  



 

 

Chapter 5: Results and Discussion 

5.1 Benchmarking Tests Setup: 
Table 5.1: Benchmarking and Testing of Matrix MAC Instr. 

 

To evaluate the performance and functionality of the Intellera processor, a group of benchmarking 

tests that had been designed and run were employed to assess Intellera processor's performance 

and usability. The benchmark tests were made to determine the correctness of the information 

throughput, speed, and rate of the operations executed by Intellera's matrix MAC resources.  

They cover multiple matrix operations such as loading matrix operands, putting registers into clear 

state, performing matrix multiplication, matrix addition, matrix subtraction and storing the results. 

Every scenario was creatively considered to check for the precision and authentic output of the 

Intellera processor's matrix MAC units. 

Following which the benchmarking tests were performed and the outcomes were analyzed through 

simulation to measure how the Intellera processor achieved high efficiency and accuracy for 

matrix manipulation. 

 

 

Figure 5.1 Behavioral simulation of MAC Instructions, Testing Addition and Multiplication of 

Matrices 



 

 

5.2 Performance Evaluation: 
Table 5.2 Performance Metrics before and after Matrix MAC Unit 

Parameters 

5 stage Pipelining with 

Hazard Unit 

5 Stage Pipelined Processor 

with Matrix MAC 

Lookup Tables 283 6338 

Flip Flops 223 712 

Frequency 333 MHz 333 MHz 

Power 0.185 W 0.637 W 

 

5.2.1 Resource Utilization 
This section compares the resource utilization, specifically the number of Lookup Tables (LUTs) 

and Flip Flops used in both processor configurations. The processor with the Matrix MAC utilizes 

significantly more LUTs (6338 vs. 283) and Flip Flops (712 vs. 223), reflecting the complexity 

and increased capability provided by the Matrix MAC unit [13]. 

5.2.2 Operational Frequency 
Both configurations operate at the same frequency of 333 MHz, suggesting that the integration of 

the Matrix MAC unit does not adversely affect the clock speed of the processor [14]. 

5.2.3 Power Efficiency 

Despite the increased functionality, the power consumption of the processor with the Matrix MAC 

unit is significantly higher (0.637 W vs. 0.185 W). That shows the implications of this increased 

power demand and explores potential optimizations to mitigate power consumption while 

maintaining performance [15]. 

5.2.4 Throughput Analysis 
Throughput can be calculated as the reciprocal of the latency (time per operation) multiplied by 

the clock frequency (operations per unit time): 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  (1/ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 )  ∗  𝐶𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (
1

3.729
)  ∗  333 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  89 𝑀𝑂𝑃𝑆 



 

 

5.2.5 Latency Measurements 
Latency can be defined as the time it takes for a signal to propagate through a certain portion of 

the processor. In this case, we can calculate the latency for a basic operation, such as a register-to-

register operation, assuming it occurs within a single clock cycle.  

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  𝑇𝑆𝑈 +  𝑇𝐻 +  𝑇𝑊 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 2.016 𝑛𝑠 +  0.213𝑛𝑠 +  1.50𝑛𝑠 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  3.729 𝑛𝑠  



 

 

Chapter 6: Conclusion and Future Work 

The detailed elaboration of the Intellera processor, which is basically a hardware RISC-V 

accelerator done on FPGA to handle matrix MAC operations, is an exceptional advancement in 

hardware acceleration for matrix computation. As a wrap-up, this chapter is a summary of the 

prominent results and the final inferences. 

 

6.1 Conclusion: 

The time will come that the process of making and examining the Intellera processor is certainty 

considered as the most delicate point of affirmation of the RISC-V systems when we talk of the 

processing system. What has been done then is solidify the framework of building up a MAC Unit 

to a pipelined architecture and tackling the problems and requirements of high-speed matrix 

operations. Technical findings of the research show that Intellera is a good evidence for the fact 

that we can successfully achieve good performance with ease with the use of dedicated hardware 

accelerators in processors - continuously computation, lower power usage, and massive 

improvement throughput. 

Intellera’s architecture reflects a meticulous balance between innovation and practical 

implementation, leveraging of the flexibility of FPGA is done which not only enables the system 

to perform remarkably but also retain the compatibility and scalability. The placement of the 

hazard unit illustrates an integrated technique that tackles the issue of instructional pipelines’ stalls 

caused by dependencies. This ensures instruction flows among the units will be smoother and 

efficient. 

6.2 Achievements: 
The outcome of the project is by no means only about performance metrics, it covers complex 

setting up of standard that can be modified according to the context. Successfully developing 

custom MAC instructions has paved the way for unique signal processing functionalities 

embedded directly in the processor, which has the potential to be an outstanding edge in tasks like 

microprocessor systems, digital signal processing, and artificial neural networks. 

6.3 Lessons Learned: 
Through the design and testing phases of Intellera, valuable insights have been gained thorough 

test program - the complexity of processor design as well as the trade-offs in hardware vs software 



 

 

requirements has been revealed. The implementation of MAC unit into a 5-stage pipeline FPGA 

architecture has many challenges that go beyond the current capability of the FPGA technology. It 

has encouraged a deeper comprehension of both the potential and the limitations of this area of 

technology. 

6.4 Future Work: 
The Intellera chip is just beginning as it aims to mark major milestones in the history of space 

exploration. The development of many ways is obvious in the short term, and these could translate 

to sustained improvements of the processor's efficiency and the ability to handle the more complex 

and advanced demands in the computing world. 

6.4.1 Implementing MMU as an In-built System 
One of the most promising directions for future work is the implementation of  the implicit 

Memory Management Unit (the MMU) is close to the present work. An MMU that is built in 

would allow the Intellera so that it could take care of more complicated memory addressing, 

management, and protection features, therefore facilitating the development of advanced operating 

system solutions and increasing the sophistication of application scenarios [16]. 

6.4.2 Expansion to System-on-Chip (SoC) Architecture 
Moving Intellera from a pure perception platform to a SOC implementation it can be suitable for 

a variety of applications. An SoC integration would be a solid choice as it would allow for a greater 

number of peripheral interfaces, special purpose coprocessors, and dedicated hardware 

accelerators, ultimately making Intellera a more useful and powerful processing platform [17]. 

6.4.3 Broadening the Custom Instruction Set 
Building upon the current custom instruction set, Intellera could be enhanced by adding more 

specialized instructions, which would cater to a wider array of matrix operations and potentially 

other types of data-intensive computations. 

 

  



 

 

GLOSSARY 

1. ALU (Arithmetic Logic Unit) - A digital circuit used to perform arithmetic and logical 

operations. 

2. CISC (Complex Instruction Set Computing) - A type of processor design where each 

instruction can execute several low-level operations. 

3. Control Unit - The component of the processor that directs the operation of the processor by 

managing the instruction cycle. 

4. FPGA (Field-Programmable Gate Array) - An integrated circuit designed to be configured by a 

customer or a designer after manufacturing. 

5. FSM (Finite State Machine) - A computational model that can be in exactly one of a finite 

number of states at any given time. 

6. GPU (Graphics Processing Unit) - A specialized electronic circuit designed to rapidly 

manipulate and alter memory to accelerate the creation of images in a frame buffer intended 

for output to a display device. 

7. Hazard Detection Unit - Part of a processor used to detect and manage situations that could 

cause incorrect behavior in pipelined architectures. 

8. ISA (Instruction Set Architecture) - The part of the computer architecture related to 

programming, including the native data types, instructions, registers, addressing modes, 

memory architecture, interrupt and exception handling, and external I/O. 

9. Lookup Tables (LUTs) - A memory resource in FPGAs used to implement logic functions. 

10. MAC (Multiply-Accumulate) Unit - A hardware element that performs multiply-and-

accumulate operations, often used in digital signal processing. 

11. Matrix Operations - Mathematical operations involving matrices, including addition, 

subtraction, multiplication, and others. 

12. MMU (Memory Management Unit) - A hardware component responsible for handling 

accesses to the memory requested by the CPU, performing tasks such as virtual address 

translation, physical address generation, memory protection, and cache control. 

13. Pipelining - A technique where multiple instructions are overlapped in execution in a 

processor. 

14. Register File - A small, fast storage element in a processor that holds the operands (data) and 

results of the operations executed by the ALU. 



 

 

15. RISC (Reduced Instruction Set Computing) - A type of processor design that allows every 

instruction cycle to use a single clock cycle by using a small and highly optimized set of 

instructions. 

16. RTL (Register Transfer Level) - A high-level abstraction layer for a digital circuit which is used 

in hardware description languages to describe the operations, timing, and structure of 

electronic systems. 

17. System-on-Chip (SoC) - An integrated circuit that integrates all components of a computer or 

other electronic systems into a single chip. 

18. TPU (Tensor Processing Unit) - An integrated circuit developed specifically for accelerating 

tensor calculations. 
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APPENDIX A 

Table A.1 RISC-V ISA 

Instruction 
ALU 

Control Opcode Funct3 Funct7 Type Tested Test Cases 

ADD 00000 0110011 000 0000000 
R-
type YES add x3, x1, x2 

SUB 00001 0110011 000 0100000 
R-
type YES 

sub x4, x1, 
x2<br>sub x5, 
x2, x1 

MUL 00010 0110011 000 0000001 
R-
type YES mul x6, x1, x2 

AND 00011 0110011 111 0000000 
R-
type YES and x6, x1, x2 

XOR 00101 0110011 100 0000000 
R-
type YES xor x10, x1, x2 

OR 00100 0110011 110 0000000 
R-
type YES or x7, x1, x2 

SLT 01100 0110011 010 0000000 
R-
type YES slt x11, x2, x1 

LW N/A 0000011 010 N/A 
I-
type YES 

lw x25 -
11(x31)<br>lw 
x12, 8(x10) 

LI N/A 0010011 000 N/A 
I-
type YES 

li x2, -2<br>li 
x10, 400 

ADDi N/A 0010011 000 N/A 
I-
type YES addi x1, x0, 15 

SLLI 00110 0010011 001 0000000 
I-
type YES slli x12, x1, 3 

SRLI 00111 0010011 101 0000000 
I-
type YES srli x13, x2, 3 

SW N/A 0100011 010 N/A 
S-
type YES 

sw x6, -
3(x31)<br>sw 
x4, 8(x10) 

BGE 01000 1100011 101 N/A 
B-
type YES bge x2, x1, -56 

BEQ 01001 1100011 000 N/A 
B-
type YES beq x1, x1, 56 

BNE 01010 1100011 001 N/A 
B-
type YES bne x2, x1, 12 

BLT 01011 1100011 100 N/A 
B-
type YES blt x2, x1, test2 

 



 

 

APPENDIX B 

GitHub Repository Link: 
https://github.com/theuppercaseguy/FYP--Risc-V-32-bit-Matrix-Mac 

https://github.com/theuppercaseguy/FYP--Risc-V-32-bit-Matrix-Mac

