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Abstract

Breathing abnormalities have led to quite an increase in mortality rate in the past
few decades due to excessive industrialization and environmental changes. A Software
Defined Radio(SDR) based system is used to detect and analyze respiratory patterns,
enabling non-contact monitoring of breathing. Afterwards Machine learning algorithm
is applied to classify breathing patterns and detect abnormalities. The proposed
system is a non-invasive, low cost and portable solution that has the potential to
improve early detection of breathing abnormalities thus contributing to the safety of
humanity through early tackling of any abnormality in breathing if detected. This
is significant because current methods for monitoring breathing patterns are often
invasive, uncomfortable for patients, and expensive. This study will demonstrate the
potential of SDR based radar for remote non-invasive breath monitoring.
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Chapter 1

Introduction

1.1 Background

In the recent years we have seen a global level pandemic called Covid-19 which took
many lives. This pandemic was also prone to spreading through breathing and also
caused breathing abnormalities within the targets|[15].Also According to WHO survey
for top 10 causes of deaths, the 3rd one is COPD and 4th one is lower respiratory
infection[I0].Breathing abnormalities like Apnea(temporary ceasing of breathing),
Bradypnea (slower respiratory rate) and Tachypnea(abnormally Rapid breathing)
are a significant cause of mortality world wide.As breathing abnormalites are quite
common in the world, they can have huge consequences as mentioned before.

So there is a huge need to detect breathing abnormalities in an efficient manner.This
will not only help in early detection of breathing illnesses but also reduce casualty
count globally.

For the purpose of tackling such issues we require a smart and capable breathing
abnormality perception system.The field of Wireless communication fulfils the criteria
for such a system.In the past the only use of wireless communication was simply
“communication”. But in recent years it has emerged as a helpful tool in the field of
medical sciences.Wireless communication offers greater accuracy, avoids the burden
of manual tasks and one can access the data in real-time. The technologies based on
Wireless communication can be employed in two ways:

Wearable Smart watch,

Invasive ‘ SENS50rs Smartphone
' Human Health | '
Sensing

) Thermal or
| Technologies — Camera based depth camera
Mon-invasive }( S J—

“\x i
~  RFbased Radgr WL

Figure 1.1: Health Sensing Technologies

Currently, the most common methods for monitoring breathing patterns involve
invasive procedures or uncomfortable devices. Generally it would be quite uncomfortable
for a person with chronic breathing abnormalities if he has to deal with invasive
methods such as putting on certain sensors.Many researchers have recently developed
and evaluated technologically advanced wearable inertial sensing-based sports activity
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monitoring systems for physical activities such as running, jumping, cycling, golf,
tennis, and badminton[2].Invasive methods also carry the risk of infection or spread
of disease.So a better choice is the approach of non-invasive breathing detection. Non-
contact monitoring methods have emerged as a promising alternative for monitoring
breathing patterns.These methods rely on sensors that can detect changes in motion
caused by breathing without requiring any physical contact with the patient. They
offer a range of advantages over invasive and non-invasive methods, including increased
patient comfort and reduced risk of infection.

However even within non-invasive methods of breathing detection there are certain
challenges such as accuracy and signal processing.In recent years though, the advancement
in research on software defined radio(SDR) technology has enabled the development
of SDR based radar systems for breath monitoring.The system uses radio waves and
can be highly accurate when properly configured.

The need for more accurate and efficient methods for detecting breathing abnormalities,
such as sleep apnea, which can lead to serious health issues if left untreated. The
limitations of current methods for detecting breathing abnormalities, such as invasive
procedures and wearable sensors, which can be uncomfortable,inconvenient,and expensive.
The potential for SDR technology to provide a non-invasive and cost-effective solution

for detecting breathing abnormalities, by leveraging the radio waves that are naturally
emitted by the human body.

The study developed a non-contact SDR-based RF sensing platform to overcome
limitations in RF-based sensing methods and enable monitoring of breathing abnormalities[9] [21] [12].
Two types of information are obtained and widely used in the time domain by RF-
based sensing. The breathing pattern, which is essentially a detailed process of
inhalation and exhalation over time, is one piece of information. The breathing rate
is another piece of information[I7].

1.2 Problem Statement

The applicable wireless based technologies face certain problems:

e Contact-based technologies may be a source of viral infection spread.

e Frequent use of contact-based health monitoring may cause inconvenience for patients.
e Difficulty in accurately diagnosing health problems through contact based technology.
e In hospitals, more resources are used for patient care and monitoring.

1.3 Project objectives

Following are the project’s objectives:

e Designing SDR test bed for the measurement of breathing exercises .

e Breathing rates i-e Normal, slow, and fast are detected according to a defined
standard.

e Analysing and classifying abnormalities in collected samples using machine learning
with great accuracy.

e Make a comparison of the system proposed and the data present of the already
used invasive technologies to evaluate the reliability, accuracy and effectiveness of the
proposed system.

e Improve the machine learning and signal processing to increase the accuracy of
breathing abnormality detection.

e Explore the scalability and feasibility of the proposed system for deployment in
hospitals and other healthcare facilities.
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1.4 Research Question

The thesis addresses following questions:

1. How can SDR be applied to measure and classify breathing abnormalities without
the need of any physical contact?

2. What among the non-contact technologies is best for breathing abnormality
detection?

3. What are the standards for the different breathing states of humans?

4. What are the most important features of SDR signals for detecting breathing
abnormalities, and how can these features be extracted and analyzed?

5. How can machine learning algorithms be applied to SDR signals to accurately
classify different types of breathing abnormalities?

1.5 Project Application For the Betterment of the Society

The project plays a vital role in the betterment of society.It is a secure and stable
method for the detection of any abnormality in breathing of patients. It is also quite
reliable and flexible. One of the most important advantages of the proposed system
is its ability to provide continuous, real-time monitoring of breathing patterns. This
can be especially useful in critical care settings, such as intensive care units, where
patients require constant monitoring and timely intervention in case of any respiratory
distress.

Moreover, the proposed system can also help to improve the accuracy of diagnosis and
treatment of respiratory conditions. By providing objective and accurate assessments
of breathing patterns, healthcare professionals can make more informed decisions
about the appropriate course of treatment for patients. This can lead to better
outcomes and a more efficient use of healthcare resources.

Another important advantage of the proposed system is its ability to be used in
a variety of settings, including in-home care and remote monitoring. This can be
especially useful for patients with chronic respiratory conditions, who may require
regular monitoring but do not need to be hospitalized. With the non-contact system,
patients can be monitored remotely, reducing the need for frequent hospital visits and
improving their quality of life.

In addition to healthcare, the proposed system could have broader societal implications,
such as in disaster response and recovery.In the aftermath of natural disasters(i.e.
Earthquakes etc.) or conflicts, there is often a shortage of healthcare professionals and
resources, making it difficult to provide adequate care for affected populations.The
non-contact system, being portable and automated, can be quickly deployed to affected
areas and used to assess and monitor the respiratory health of patients, thus facilitating
more effective and efficient healthcare delivery.

Lastly, the proposed system can also contribute to the development of new technologies
and innovations in the field of healthcare.The use of SDR-based radar technology and
machine learning algorithms can pave the way for new applications and solutions in
healthcare, such as the development of smart healthcare devices and systems that
can be used for a variety of medical conditions and health monitoring.

In conclusion, the project on ”intelligent non-contact breathing abnormality detection
using SDR” has several potential benefits for society, including improved patient
outcomes, more efficient use of healthcare resources, and the development of new
healthcare technologies and innovations. Its ability to provide accurate, real-time
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monitoring of breathing patterns in a non-invasive and patient-friendly manner makes
it a valuable addition to the healthcare field, with potential applications beyond
healthcare as well.

1.6 UN Stainability Goals

The project meets the UN’s sustainable development goals.

1.6.1 Good Health and Well-Being (Goal 3)

Ensure Healthy Life and Promote well-being for all at all ages.

By providing a non-invasive and accurate method for monitoring breathing patterns,
the proposed system can help to improve the diagnosis and treatment of respiratory
conditions, leading to better health outcomes for patients. Moreover, the system’s
portability and remote monitoring capabilities can improve access to healthcare,
especially for those in remote or under-served areas.
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Figure 1.2

1.6.2 Industry Innovation and Infrastructure (Goal 9)

Build resilient infrastructure, promote inclusive and sustainable industrialization,
and foster innovation.

The use of SDR-based radar technology and machine learning algorithms in the
proposed system can pave the way for new innovations in healthcare and contribute to
the development of new technologies and industries. This can lead to economic growth
and the creation of new jobs.

o

Figure 1.3

1.6.3 Sustainable Cities and Communities (Goal 11)

Make cities and human settlements inclusive, safe, resilient and sustainable.
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By enabling remote monitoring of patients, the proposed system can reduce the
need for frequent hospital visits, thereby reducing traffic congestion and air pollution
in cities. Additionally, the project’s potential application in disaster response and
recovery can help to ensure the strength of cities and communities against natural
disasters and conflicts.

Figure 1.4

1.7 Thesis Overview

The thesis begins with an introduction that provides background information on the
challenges of contact-based health monitoring and the need for non-contact methods
of detecting breathing abnormalities. The problem statement will be identified, highlighting
the limitations of current monitoring techniques and the potential benefits of the
proposed system.

The research objectives and questions will then be presented, outlining the specific
goals and methods of the project.The literature review will follow, surveying the
relevant literature on SDR-based radar technology, machine learning algorithms, and
respiratory conditions.The methodology chapter will then describe the hardware and
software components of the proposed system, as well as the data collection and
analysis procedures.

The results of the experiments will be presented,including the accuracy of the system
in detecting breathing abnormalities compared to current contact-based methods.The
discussion section will interpret the results, addressing the project’s limitations and
potential for further development. Finally, the conclusion will summarize the project’s
contributions to the field and its potential applications in healthcare and disaster
response.

1.8 Project Timeline

STARTING

WEEK DATE

DESCRIPTION OF MIIESTONE

DURATION
IN WEEK

1 15-09-22 Literature review for FYP proposal plus > weeks
defence
2 01-10-22 Data set collection 4 weeks
01-11-22 Literature review related to project
3 . - 2 weeks
working
4 15-11-22 Feature extraction 4 weeks
=3 15-12-22 Breathing abnormalities perception 6 weeks
-02-23 i : i arni or
6 01-0 Appl_ying fnar.:lnne learning for & aalis
: _classification
5-03-23 -formes E i 5 j E: i
- 15-0 Pel_t?uu'_ance analysis of project and its A sasles
verification
2 15-04-23 Documentation and presentation work 4 weeks

Figure 1.5
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Chapter 2

Literature Review

2.1 Breathing definition and importance

The process by which living organisms, including humans, exchange oxygen and
carbon dioxide with their surroundings is known as breathing. It consists of inhaling
oxygen-rich air into the lungs and then exhaling carbon dioxide. Breathing is a vital
bodily function that provides oxygen for cellular respiration while also removing waste
gases from the body.

Proper breathing is essential for overall health and well-being. It ensures that
oxygen reaches the cells of the body, allowing energy production and supporting vital
organ functions. Furthermore, efficient breathing aids in the regulation of the body’s
pH balance by controlling the levels of carbon dioxide in the bloodstream. Stress
reduction, relaxation, and optimal mental and physical performance are all benefits
of balanced breathing.

2.2 Breathing abnormalities and causes

Breathing abnormalities are deviations from normal respiration patterns and rhythms.
These abnormalities can be caused by a variety of factors, including physiological,
psychological, and environmental factors. Common causes of breathing problems
include:

e Respiratory problems:
Asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and bronchitis
can all cause abnormal breathing patterns. These conditions can cause shortness
of breath, wheezing, or difficulty properly exhaling or inhaling.

e Anxiety and stress:
Emotional factors such as anxiety, stress, and panic attacks can all have an
impact on breathing. Hyperventilation is a common reaction to intense stress or
anxiety, characterised by rapid and shallow breathing.

e Sleep disorders:
Sleep apnea and other sleep-related disorders can disrupt normal breathing while
sleeping. These disorders frequently cause periods of interrupted breathing,
resulting in oxygen deprivation and death.

e Medications and substances:
Some medications, such as opioids and sedatives, can impair respiratory function,
resulting in slow or shallow breathing. Substance abuse, such as alcohol and drug
use, can also have an impact on breathing patterns.
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e Neurological disorders:
Neurological disorders such as Parkinson’s disease, multiple sclerosis, or spinal
cord injuries can impair respiratory muscle control, resulting in breathing difficulties.

e Environmental factors:
Pollutants, allergens, and irritants in the air can cause respiratory symptoms
and interfere with breathing. Breathing abnormalities can be exacerbated by
poor air quality, smoking, or occupational hazards.

It is critical to determine the underlying cause of breathing problems and seek
appropriate medical attention. Medication, breathing exercises, lifestyle changes, or
addressing the underlying condition causing the abnormal breathing patterns are all
treatment options.

2.3 SDR

Software Defined Radio (SDR) is a game-changing technology that has changed
the face of wireless communication. Unlike traditional radios, which rely on fixed
hardware components to perform specific functions, SDR defines and controls its
operations through software. Because of its adaptability and flexibility, SDR has
become an indispensable tool in a variety of domains, including telecommunications,
military applications, and research.

e Functionality of SDR:
SDR’s functionality is derived from its ability to manipulate radio signals using
software. SDR can process, modify, and transmit data using various modulation
schemes, such as amplitude modulation (AM), frequency modulation (FM),
and phase modulation (PM), by digitising analogue signals. Furthermore, SDR
supports dynamic spectrum allocation, allowing multiple wireless standards to
coexist on the same hardware.

e SDR Advantages:

SDR radios have several advantages over traditional radios. For starters, because
it is software-based, it allows for simple upgrades and enhancements, eliminating
the need for costly hardware replacements. Second, SDR enables rapid prototyping
and development of new communication systems, thereby shortening the time to
market for innovative technologies. Furthermore, SDR facilitates interoperability
between various wireless standards, allowing for seamless communication between
disparate networks.

e Limitation of SDR:
While SDR has numerous advantages, it also has some limitations. One significant
challenge is the increased vulnerability to cyber threats as a result of software
reliance. To protect against unauthorised access and potential attacks, SDR
systems must implement strong security measures. Furthermore, the computational
requirements of SDR can be demanding, necessitating powerful hardware to
ensure real-time data processing and transmission.

e SDR platform design consideration:
Creating an effective SDR platform necessitates taking into account a number of
factors. Selecting appropriate hardware components, such as analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs), to ensure accurate
signal conversion is one of them. Furthermore, the platform’s architecture should
be capable of high-speed data transfer and signal processing. To accommodate
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evolving communication standards, power consumption, cost-effectiveness, and
scalability must all be carefully considered.

e Software environments for SDR:
There are several software environments available for developing and deploying
SDR applications. GNU Radio, a free and open-source software development
toolkit, and MATLAB/Simulink, a proprietary software suite widely used in
research and industry, are two popular options. These environments offer a
variety of signal processing, modulation, and demodulation tools and libraries,
making them invaluable for SDR prototyping and experimentation.

2.4 The USRP Platform

Ettus Research, a subsidiary of National Instruments, created the Universal Software
Radio Peripheral (USRP) platform, which is a popular SDR hardware solution. For
researchers, engineers, and enthusiasts, USRP provides a versatile and configurable
platform. It consists of a motherboard and daughterboard combination that provides
a flexible framework for signal transmission and reception.

e Transmitter:
The transmitter functionality of the USRP platform allows for the generation
and transmission of radio signals. It employs digital-to-analog converters (DACs)
to convert digital signals into transmission-ready analogue waveforms. The
transmitter module provides programmable options for modulation schemes,
power levels, and signal conditioning techniques. This adaptability enables users
to tailor their transmissions to specific needs.

e Receiver:

The USRP platform’s receiver module is in charge of capturing and processing
incoming radio signals. Analog-to-digital converters (ADCs) are used to convert
received analogue signals into digital data for further processing. To improve
the quality of received signals, the receiver supports various signal demodulation
techniques and includes signal conditioning capabilities. The USRP receiver is
capable of operating over a wide frequency range, making it suitable for a variety
of wireless communication applications.

2.5 Wireless channel state information

Wireless Channel State Information (CSI) is the knowledge or estimation of a wireless
communication channel’s characteristics. It includes parameters like channel gain,
phase, and noise, all of which are important for optimising signal transmission and
reception. CSI estimation is critical in techniques such as beamforming, adaptive
modulation, and channel equalisation, allowing for efficient use of the wireless channel’s
capacity.

2.6 Orthogonal frequency division multiplexing OFDM

(Orthogonal Frequency Division Multiplexing) is a modulation technique that is
widely used in modern wireless communication systems. It divides the available
frequency spectrum into multiple orthogonal subcarriers. OFDM achieves high data
rates while mitigating the effects of multipath fading and frequency-selective channel
impairments by transmitting data symbols simultaneously on these subcarriers.

Xix



2.7 Van de Beek algorithm

The Van de Beek algorithm is a critical component of OFDM systems, addressing
the problem of inter-symbol interference (ISI) caused by multipath propagation. To
eliminate ISI, this algorithm employs a cyclic prefix, which is a copy of the last portion
of the OFDM symbol. By appending this cyclic prefix before each OFDM symbol,
the receiver can discard multipath echoes and successfully recover the transmitted
data.

2.8 Artificial intelligence

Artificial intelligence (AI) is the simulation of human intelligence in machines that
allows them to perform tasks that would normally require human cognition. Machine
learning, natural language processing, computer vision, and expert systems are all
subfields of AI. With the introduction of powerful hardware and sophisticated algorithms,
Al has made remarkable advances, revolutionising a wide range of industries and
applications.

2.9 Machine learning

Machine learning is a branch of artificial intelligence that focuses on teaching computers

to learn from data and make predictions or decisions without being explicitly programmed.
It entails the creation of algorithms and models that automatically improve their
performance as a result of experience or training. Machine learning techniques are
classified into three types: supervised learning, unsupervised learning, and reinforcement
learning.

e Supervised learning:
To learn a mapping function, supervised learning involves training a model on
labelled input-output pairs. The model learns from a dataset in which each input
is associated with a desired output. The model generalises from the training data
through iterative optimisation to make accurate predictions on unseen inputs.
Supervised learning is frequently used for classification, regression, and time
series analysis tasks.

e Unsupervised learning;:
The goal of unsupervised learning is to find patterns or structures in unlabeled
data. Unsupervised learning, unlike supervised learning, has no predefined
output labels. The model, on the other hand, identifies inherent patterns or
clusters in the input data, allowing for insights and knowledge discovery. Unsupervised
learning is commonly used for clustering, dimensionality reduction, and anomaly
detection.

e Systematic workflow for machine learning model:
Creating a machine learning model follows a systematic workflow that usually
consists of several stages. Data collection and preprocessing, feature selection
or extraction, model selection, training, validation, and testing are examples
of these stages. Furthermore, hyperparameter tuning and model evaluation are
critical steps in optimising the model’s performance and assessing its generalizability.

e Evaluation of machine learning model:
A machine learning model’s performance and generalisation abilities are assessed
during its evaluation. Depending on the task, common evaluation metrics can
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include accuracy, precision, recall, F1 score, mean squared error, and area under
the receiver operating characteristic curve (AUC-ROC). Model evaluation aids
in determining the effectiveness of the model, identifying potential issues, and
guiding improvements in the learning process.

Non-contact sensing methods have gained significant attention in recent years for
various applications.In the context of the COVID-19 pandemic,the monitoring of
physical activities and respiratory patterns remotely has become a critical need.This
literature review aims to summarize and compare multiple research papers that
propose non-contact sensing methods for monitoring physical activities and respiratory
patterns.

Wireless communication technologies are used in many of the papers to transmit

data from sensors to a processing unit or display device. The most commonly used
wireless communication technology is Bluetooth. For example, in the paper the
authors use Bluetooth to transmit data from a microcontroller to a laptop for signal
processing[l]. The authors use Bluetooth to transmit data from an accelerometer
sensor to a smartphone app for physical activity monitoring[6].
Another wireless communication technology used in the papers is ZigBee, which is a
low-power wireless communication protocol designed for wireless sensor networks. In
the paper the authors use ZigBee to transmit data from a breathing pattern sensor
to a processing unit[14].

2.10 RF Sensing Technologies

RF sensing is used in non-invasive monitoring of breathing patterns.RF signals are
transmitted towards the subject’s body and the reflected signals are analyzed to
detect changes in amplitude caused by breathing.The author used RF sensing to
detect changes in the amplitude of RF signals reflected from the human body, which
can be used to monitor breathing patterns. The authors achieved an accuracy of
96.2percentage in detecting breathing patterns using this method[I4].Various SDR
platforms are currently used for research; the most commonly used is the USRP
developed by Ettus research[11], which has become a popular[20] and appropriate
choice for wireless research and education[4][19)].

2.11 Previous Technologies

Its types are mentioned as follows:

2.11.1 Software-Defined Radio (SDR) Technology

SDR technology is used for non-invasive monitoring of breathing and physical activity.
SDR technology allows for the creation of custom radio waveforms, making it an ideal
choice for non-contact sensing applications. SDR technology creates a radar system
that can detect changes in chest wall motion caused by breathing.The authors use
SDR technology to detect changes in the amplitude of radio frequency (RF) signals
reflected from the human body, which can be used to monitor breathing patterns|I4].
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2.11.2 Radar Technology
Doppler Radar

Doppler radar is a device that uses the Doppler effect to measure the velocity of
an object.Doppler radar has been used in several research papers related to non-
invasive breathing perception.For example, The author used a Doppler radar to detect
breathing rate and pattern without physical contact with the subject.The authors
transmitted signals at a frequency of 5.8 GHz, which were then received by a radar
sensor. The received signals were then processed using MATLAB to estimate the
subject’s breathing rate and pattern. The authors reported a high accuracy of their
system, with a correlation coefficient of 0.99 and an average error rate of 1.53perc.
The authors also emphasized the advantages of using Doppler radar, including high
accuracy and low cost[3].

Ultra-Wideband (UWB) Radar

Ultra-wideband (UWB) radar is a device that uses signals with a large bandwidth
to transmit and receive data. UWB radar has been used in several research papers
related to non-invasive breathing perception. For example, UWB radar is used to
monitor physical activities during the quarantine period. The authors used a UWDB
radar with a frequency range of 3.1 to 10.6 GHz to transmit and receive signals, which
were then processed using MATLAB to estimate the subject’s physical activities.The
authors reported a high accuracy of their system, with an average classification
accuracy[7].

Frequency Modulated Continuous Wave (FMCW) Radar

Frequency modulated continuous wave (FMCW) radar is a device that continuously
transmits a signal with a varying frequency. FMCW radar has been used in several
research papers related to non-invasive breathing perception. For example, FMCW
radar is used to monitor breathing patterns without physical contact with the subject.
The authors transmitted signals at a frequency of 24 GHz, which were then received by
a radar sensor. The received signals were then processed using MATLAB to estimate
the subject’s breathing rate and pattern. The authors reported a high accuracy
of their system, with a correlation coefficient of 0.92 and an average error rate of
1.75percent[1§].

2.11.3 Wi-Fi

Human breathing and heartbeat can result in weak motions in the abdomen and
chest. Thesemotions can have some effect on the propagation of WiFi signals and
the WiFi CSI can record these effects. In the paper the authors setup the systems
to enhance these effects based on Fresnel diffraction models and signal propagation
theory, and extract CSI from WiFi physical layer to obtain vital signs[5].

There were a few other technologies that were also previously used:

2.11.4 Video-Based Methods

They are used for monitoring breathing and physical activity. These methods use
cameras to capture images or videos of the subject, which are then processed using
computer vision algorithms to extract features related to breathing or physical activity.
Author uses a smartphone camera to capture video of a subject performing physical
activities, which is then processed using computer vision algorithms to estimate the
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subject’s heart rate and breathing rate. The authors achieved an accuracy of 97.4
percentage in estimating breathing rates and 94.4percentage in estimating heart rates
using this method[7].
Some of its types are:

Thermal Camera

Thermal imaging can be used to measure both breathing rate and exhaled air temperature
to provide useful information about the body load during physical activity and to
study potential symptoms of certain respiratory diseases.The respiratory rate is an
important indicator for monitoring of a person’s health[7].

Depth Camera

Depth cameras have proved adept at capturing the motion associated with respiration.
From the resulting respiratory volume (RV) signal, measures of both respiratory rate
and tidal volume can be made. This has prompted an interest in the use of such
cameras for providing these physiological parameters|7].

2.11.5 Inertial Measurement Units (IMUs)

An IMU is a sensor package that typically includes an accelerometer, gyroscope, and
magnetometer. These sensors can be used to measure acceleration, rotation, and
orientation of a subject’s body, which can be used to estimate physical activity.In the
paper the author used an IMU to measure acceleration of the subject’s leg during
physical activity, which is then used to estimate step count. The authors achieved an
accuracy of 93.2percentage in step count estimation using this method[7].

Some other methods in use were Acoustic methods, Microwave methods,Optical
Methods.

2.12 Classification using Machine Learning

In order to classify the breathing patterns in both single and multi-person scenarios,
we employed several machine-learning algorithms and assessed the performance of
the platform based on training time, accuracy, and prediction speed[13].Utilizing
the classification feature in MATLAB, we implemented K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), and Decision Tree algorithms to identify abnormalities
in breathing patterns.Each algorithm demonstrated significant classification capabilities.
We measured the accuracies, prediction speeds, and training times associated with
each algorithm to evaluate their effectiveness in the classification task.
These algorithms are interpreted below:

2.12.1 SVM

The Support Vector Machine (SVM) algorithm is a powerful tool for classification
tasks in machine learning. It works by drawing a line or boundary to separate
different categories of data points, such as apples and oranges.The goal is to find
the best line that maximizes the distance between the two classes, creating a clear
separation. To achieve this, SVM uses mathematical tricks to transform the data into
a higher-dimensional space, making it easier to draw the separating line. Once the
line is determined, SVM can classify new data points by assigning them to one of the
categories based on which side of the line they fall on. SVM is widely used in various
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fields and has proven to be effective in solving classification problems and successful
perception.

2.12.2 KNN

The K-Nearest Neighbors (KNN) algorithm is a simple yet effective machine-learning
technique used for classification tasks. It works by comparing a new data point to its
closest neighbors in the training data. Imagine you have a set of labeled data points,
and you want to classify a new point. KNN finds the ”k” closest data points to the
new point and looks at their labels. The new point is then assigned the label that
appears most frequently among its nearest neighbors. KNN is easy to understand and
implement, making it a valuable algorithm for research on classification problems.

2.12.3 Tree

It works like a flowchart, where each node represents a question or decision based on
a feature of the data. Imagine you have a dataset of different fruits, and you want
to classify them. The Decision Tree algorithm starts at the root node and asks a
question about a feature, depending on the answer, it follows a specific branch to
the next node and asks another question. This process continues until it reaches a
leaf node, which contains the final classification decision. Decision Trees are easy to
interpret and can handle both numerical and categorical features.

2.12.4 LDA

The Linear Discriminant Analysis (LDA) algorithm is a machine learning technique
that aims to find a linear combination of features that maximally separates different
classes in the data. LDA analyzes the data to determine the best linear equation that
can distinguish one type of data from another. It achieves this by calculating the mean
and variance of each feature for each class and using this information to estimate the
likelihood of new data belonging to a specific class. By finding the optimal linear
discriminant, LDA can effectively classify new data based on their measurements.
The simplicity and interpretability of LDA make it it an accurate classification tool
in various domains.

Figures 4.17, 4.18, and 4.19 show the classification of single-person scenarios
using the SVM, KNN, and Linear discriminant algorithms respectively. Figures
4.31 and 4.32 show the classification of two-person breathing scenarios using SVM
and Tree algorithm respectively. In a three-person scenario figures 4.40 and 4.41.
show the classification using SVM and Tree algorithm respectively. To evaluate the
performance of each machine learning algorithm, we used a confusion matrix that
consisted of eight predicted and true classes. In this matrix, the diagonal entries
represent the cases where the predicted class matched the actual class correctly. These
entries indicate accurate predictions made by the algorithms.However, the other cell
values outside the diagonal entries highlight instances where the machine-learning
algorithms performed poorly. These values indicate situations where the algorithms
made incorrect predictions, thus revealing areas of weakness or errors in classification.
The confusion matrix allowed us to assess and compare the performance of each
algorithm based on its ability to correctly classify the different classes[16]. By conducting
these evaluations, we gained valuable insights into the performance and efficiency of
each algorithm in accurately identifying breathing abnormalities.
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Chapter 3

Proposed Methodology

The wireless communication system is utilized to sense human body movements by
CSI information gathered by passing electromagnetic waves from the body. It is
done by transmitting and receiving the signal through multi-paths and then reviving
them with multi-path superposition. RF sensing adds environmental attributes like
proximity, strength, human movements, and other environmental influences to the
dissemination of signal is realized for clear understanding. Whenever there is a human
present in the environment where a signal is propagating there is an addition of path to
the signal due to human movements thus coming up with wireless communication [9)[21] [12].
Figure 3.1 shows the methodology block diagram which comprises of four major
blocks: wireless signal sensing followed by signal preprocessing after which there
is breathing monitoring, and lastly there is a breathing classification block. Each
block’s description and block diagram are provided below:

Wireless Signal Sensing

Signal Processing
Transmitter

Transmitier PC

Subcarmmer Selection Abnormalfities
_1_ Abnormalities Perception Classsification
Transmitter USRP '&'
Cwutlier Removal Feature Extraction
* Breath Rate » v
Wireless Channel EXenctive Abnonmalities
Smoothening classification
Receiver USRP ,I,
- Normmalization
Reciaver PC
Figure 3.1

3.1 Wireless Signal Sensing

It is done using two steps:

3.1.1 Breathing Data Collection

Breathing data is collected using an experimental setup consisting of two PCs connected
with their respective USRP kits. Both USRP kits are equipped with an omnidirectional

XXV



antenna that observes the breathing of a person in both line-of-sight and non-line-of-
sight frameworks. A transmitting PC generates an OFDM subcarrier signal while the
receiving PC preprocesses and classifies the received raw data. Placement of USRP’s
is in such a way that they are parallel to the person’s abdomens.The setup for the
data collection is established on an observation where the best results are seen.

The data set collection consisted of mainly two scenarios: single and multiple
persons.Further in the multi-person, there was a two and three-person scenario.
The activity duration was set to 30 seconds and ten sets of data were gathered for
every breathing sample.In a single-person scenario, ten participants were requested
to execute the breathing activity at fast, slow, and normal breathing rates while in a
two-person scenario, six cases were formed when both executed the breathing activity
at fast, slow, and normal breathing rates. Extensive experiments were conducted to
achieve high accuracy. The Table below shows each participant’s specifications:

S/N. | Age(Yrs.) | Height(cm) | Weight(kg) | Gender | BMI

1. 22 160 43 Female 16.79

2. 22 171 54 Male 18.46

3. 22 172 o1 Male 17.2

4 23 160 45 Female 17.5
Table 3.1

Cupboard ' % LAE desks
- o B

Cchairs

Figure 3.2

3.1.2 Breathing Data Extraction

Breathing data extraction includes three subsegments: Transmitter, a wireless channel,
and a receiver. Each segment is described below:
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Transmitter

This segment has a transmitter PC with a transmitter USRP connected using an
Ethernet cable. The transmitting PC generates random bits and converts them
to symbols using (Quadrature Amplitude Modulation) QAM. These symbols are
converted into parallel streams.Nulls, DC symbols, and cyclic prefixes are added in
each frame. Then for the channel estimation at the receiver reference symbols are
added.Afterward, the IFFT is applied to convert the signal into the time domain.
The host PC generated data is then handed over to the USRP kit in which the
signal undergoes operations such as Digital up-conversion(DUC) and digital-to-analog
conversion(DAC). Then the signal goes through a low pass filter. The evolved signal is
mixed with a specified carrier frequency and amplified using a transmitter amplifier(TA )and
transmitted through the omnidirectional antenna.

Wireless Channel

To monitor human breathing activities a wireless channel in real-time was taken
which includes valuable information regarding the environment yet there are many
different techniques to extract this information but we are manipulating CFR which
is computed through equation:

Y (k)
(k) = X0k (3.1)

Here, the transmitted and received frequency domain signals are represented by
X(k) and Y(k), respectively, and the CFR is denoted by H(k). Given that H(k) is a

complex number, following equation could be used to get the amplitude response:

H(k)=+/H% + H?, (3.2)

Here HRe and Him are the real and imaginary parts of CFR respectively. We can
determine the CFR amplitude data acquired in time history utilizing multiple frames
for a single experimental observation E by using equation:

H®yy  [HEOl, o [HUEp

E— . : :

HOl: HOles o HEOles
(3.3)

Where K is total OFDM subcarriers, F is total OFDM frames obtained during
single experiment observation E.

Receiver

The omnidirectional antenna of receiver USRP receives the signal which then passes
through amplifiers such as LNA and DA; low noise and drive amplifiers respectively.
From the signal received a baseband complex signal is acquired using a mixer and
digital Conversion Receiver(DCR). Afterward, low pass filter(LPF) is applied to
signal and is then down-converted using Digital Down Convertor (DDC). Then it
is converted to a digital signal using a Digital to Analogue Convertor(DAC) before
being sent via an Ethernet cable to the host PC. Next, the frequency domain signal
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is acquired by applying FFT. Thereafter the reference symbols, Nulls, and DC are
removed. These reference symbols were added for channel estimation which helped in
getting the equalized data and is then demodulated using QAM demodulation that
converts the symbols into bit stream.

3.2 Breathing Data Processing

It involves a number of steps, each of which is described in greater detail below:

3.2.1 Swubcarrier Selection

The first step in processing is subcarrier selection in which the most sensitive subcarriers
for breathing activity are selected[§]. It is done by measuring the variance with the
data. As seen in figure 3.4, those with little variance under 0.001 are eradicated.

3.2.2 Qutlier Removal

Succeeding the subcarrier selection, wavelet filtering is applied to remove outliers. It
not only remove outliers but also preserves sharp transitions[§].

3.2.3 Smoothening

A moving average filter was used to smoothen data and eliminate high-pitched noise
that was not caused by breathing activity. Through this, we can easily detect
breathing patterns. Results are shown in figure 3.5.

3.2.4 Normalization

The last step in processing is normalizing breathing data between 1 and -1[8]. It is
done using the equation:

Yin] — t
Y/[n] — [TL] Offse (34)
scale
Where y’[n] is normalized data, y[n] is input data. This normalized data is obtained
by regulating the offset values and scaling them as shown in figure 3.7.

Amplitude
o o o
= = =
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Figure 3.3
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3.3 Breathing Abnormality Perception

3.3.1 Breath Rate Extraction

Breathing abnormalities are perceived through breathing rate extraction in both the
multi and the single-person scenarios. It is done by transforming the CSI amplitude
information stored in time history into the frequency domain. By doing so a frequency
peak is detected which represents the breathing rate. It is computed as:

Where s is the total time for breathing activity and fmax represents the maximum
frequency peak. The number of peaks shows the how many persons were involved in
breathing activity. So if one peak is observed then it is for a single person and if more
than one peak is obtained then it is for a multi-person scenario. It can be observed

in Figure 3.
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3.4 Breathing Abnormality Classification

It is the final step in methodology Firstly, it extracts the features from breathing data
and then classifies the abnormalities in them using ML models. These ML models
work for both scenarios single and the multi-person. These steps are given in detail
beneath:

3.4.1 Breathing Feature Extraction

It is demanding and takes a longer time to come up with a classification system
with high dimensionality so to overcome this, only effective features are extracted to
enhance the model performance[8]. Abundant features were selected for the classification;
also similar features were removed. Moreover, it helps in improving prediction efficiency.
The list of the features and their details are given in table below:

3.4.2 Abnormalities Classification

For the purpose of classifying abnormalities in breathing patterns, various ML algorithms
are utilized. Each algorithm’s training time, prediction speed, and accuracy are
estimated. Initially, these algorithms were evaluated without a feature selection
method then it was re-evaluated with feature selection and is done for both the
single-person and multi-person scenario.
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H Sr. Statistical Features Description Expression H
1 Minimum Minimum value of data Y, in = min(y;)
2 Maximum Maximum value of data Ynax = max(y;)
3 Mean Mean of data Yo = % Zi\;l(}/z)
4 Variance Degree of data spread Ysp = ?1(% —Y)?
5 Standard deviation Square root of variance Y, = \/gzzjil(yl —Yn)?
6 RMS Root mean square Yrms = \/%Z?V:l(yi)z
7 Peak-to-peak value Data fluctuations about the mean Y, =Y — Ymin(t =1,2,...N)
8 Kurtosis Measure of tailedness in data Y, = %W
9 Skewness Measure of symmetry in data Y, = %W
10 Peak factor Ratio of maximum value to RMS Y, = m;:g;l)( =1,2,...N)
11 Interquartile range Mid-spread of data Yig=0Q3— Q1
12 Waveform factor Ratio of the RMS value to mean value Yw = Yﬁiﬁs
13 FFT Frequency information about data Yrpr = Zngzv Y(n)efgvmr nk
14 Frequency Min Minimum Frequency component Y fmin = Min(Yrpr)
15 Frequency Max Maximum Frequency component Y pmin = Maz(Yrrr)
16 Spectral Probability =~ Probability distribution of spectrum Yprr = #ﬁ?;w
17 Signal Energy Measure of energy component Ysr = ZfZ_N 1Y (d)[?
18 Spectrum Entropy Measure of data irregularity Yy = Zi_N Y (d)in(p(d))
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Chapter 4

Results and Discussion

Results are structured into two primary segments.The initial segment is Abnormality
sensing which showcases and examines the outcomes obtained from detecting various
breathing patterns at slow, fast and normal breaths for the single and multi-person
scenario and sense the abnormalities in them. The subsequent segment focuses on
the results obtained from the classification of these breathing patterns using diverse
machine-learning algorithms for the similar scenarios in the initial segment.

4.1 Block Diagram

- v
r Abnormality Abnormality
L Sensing Classification
| |rNorrnal ]
» Single Person P
| | Slow single Person |<7
| )
i 5 1 | Fast
Fero Cross Peak Fourier - - - - - -
Detection | Detection Transformaticn | EE | | 55 | | NN |

P
- Fourier
. - ST | *| Transformation Two Person |<7

) - o er o 4, )
Three F'erson}—b Fourier | e | | Fs | | NS |

Y

Transformation

s | | MNE | | MSN | | NSS |

|’ NN
o DA S SRR SR S | -
7!‘ ‘L - ‘L - ‘vlr - ‘L 5 |Tl1ree Person
|~ MNSF | | NFMN | | MNFS | | NFF |
Figure 4.1

According to the block diagram, we can display the results as follows:
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4.2 Abnormality Sensing

4.2.1 Single-Person Breathing Analysis

In the single-person scenario, only one subject participated in the breathing activity.

| Actual Breath | Recorded Breath
SN Suhject

Normal | Slow | Fast Nurmal‘Slmﬁ' Fast
1. | Subject!l 9 6|13 |9 ‘ﬁ 14

Tahle 4.1

Raw Data

In a single-person scenario, raw data has been collected to analyze three different
breathing patterns: normal, slow, and fast, as shown in Figure 4.2, 4.3 and 4.4
respectively.

Normal

Normal breath for a healthy person is 12-20 breaths per minute. As we are performing
30 sec breathing activity so the normal breath will be 10 breaths in 30 seconds. Figure
4.2 shows the raw breathing data of the subject at a normal rate containing nine
breaths within a duration of 30 seconds. According to raw breath data provided in
Figure 4.2, it is observed that there are nine breaths within a duration of 30 seconds.
This pattern of breathing falls within the range considered normal.

2 0.03 st e O g W g Pt P A
E - ¥ i i Ll T Bk R T e S o i - o T rgr® _J"'Iu- ."‘.

% one-
D-DT_|||||L|||r|..||||||--||---|----|----||-.--||---|---||IIII|IIII|I|I1|I|II|IIII|
0 350 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 37
OFDM Sample
Figure 4.2
Slow

Slow breath consists of under or equal to 12 breaths per minute. As we are performing
30 sec breathing activity so the slow breath will be under or equal to 6 breaths in
30 seconds. Figure 4.3 shows the raw breathing data of the subject at a slow rate
containing six breaths within a duration of 30 seconds.
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Fast
Fast breath has greater than or equal to 20 breaths per minute. As we are performing

30 sec breathing activity so the slow breath will be greater than or equal to 10 breaths
in 30 seconds. Figure 4.4 shows the raw breathing data of the subject at a fast rate

containing fourteen breaths within 30 seconds.
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Figure 4.4

Preprocess Data

The raw data is preprocessed in this step after going through various steps of subcarrier
selection, outlier removal, smoothening and normalization as discussed in the previous
chapter. The raw data is preprocessed as shown in figure 4.5, 4.6, and 4.7 respectively

for the same three patterns.

Normal
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Figure 4.5
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After the preprocessing, we apply breath rate extraction methods like zero cross-
detection, peak detection, and Fourier transformation for breath rate extraction. As

it is directly related to the breathing abnormality sensing.

Zero Cross Detection

The total number of zero crossings ZC are detected for breathing data from which
breath rate is calculated using the formula:
Breath rate = ZC/2

Normal
Here in this figure 4.8 there are 18 zero crossings so according to formula we get

breath rate of 9 breaths per 30 sec which lies in the normal breath range.

]
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Figure 4.8
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Slow
In figure 4.9 there are 12 zero crossings so according to formula we get breath rate of

6 breaths per 30 sec which lies in the range of slow breath.

-1‘5I""i""‘l""l'""I""I""'I"'"I"'"I-""I""I""'I"‘"I"“‘I""I""I
O 250 500 730 1000 1230 1500 1750 2000 2250 2500 2730 3000 3250 3500 3T
OFDM Samples
Figure 4.9

Fast
In figure 4.10 there are 27 zero crossings so according to formula we get breath rate

of almost 14 breaths per 30 sec which lies in the range of fast breath.
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Figure 4.10

Peak Detection
In peak detection peaks are detected and the number of peaks obtained represents
the breath rate.

Normal
In figure 4.11, we observed 9 peaks which represent 9 breaths per 30 sec breath rate

that is a normal breath rate.
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Figure 4.11
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Slow
In figure 4.12, we observed 6 peaks which represent 6 breaths/ 30 sec breath rate

which is a slow breath rate.
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Figure 4.12

Fast
In figure 4.13, we observed 14 peaks which represent 14 breaths/ 30 sec breath rate

which lies in a fast breath range.
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Fourier Transformation

Checking the maximum frequency component fmax present in data comes under
Fourier transformation step. On the basis of fmax, breath rate is measured using
the equation:

Breath Rate = t * fmax

Normal
Figure 4.14 shows Fourier transform of normal breath rate recorded.
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Slow
Figure 4.15 below shows Fourier transform of slow breath rate recorded.
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Figure 4.15

Fast
Figure 4.16 below shows Fourier transform of fast breath rate .
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Figure 4.16

4.3 Abnormality Classification

Abnormality classification is performed for a single-person scenario, as shown in
figures 4.17,4.18, and 4.19 using SVM, KNN, and linear discriminant machine learning
algorithm and all three algorithms show a significant improvement in terms of accuracy,
training time, and prediction speed. These are discussed briefly in Chapter 2.

SVM
e Accuracy 85.2e Prediction Speed 12000 obs/sec e Training time 13.35 sec

xxxviii



ket
[

o ar 347 &
=
—

| A 0 ASE
- = o
Predicted class
Figure 4.17

KNN

e Accuracy 95.8e Prediction Speed 8800 obs/sec e Training time 14.78 sec
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Figure 4.18

Linear Dicriminant

e Accuracy 99.7e Prediction Speed 12000 obs/sec e Training time 9.2982 sec
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Figure 4.19

4.3.1 Two-Person Breathing Analysis

In the two-person scenario, two subjects participated in the breathing activity. Its
particular are:

Raw Data

Actual Breath Recorded Breath through FFT
Subject
FN NS NN FN NS NN
S-l'll}_iE.'C'[ L larq;t 55!-:-;-- lﬂrlm'mnf 14-93*'.-;5: ﬁ'g:lnh- ]-[}Huormn!
Sllh_j ect 2 ?norﬂmi' Bn-:' remal Bnﬁr:::-m' ﬁ'gﬂormn-! g'gnarrﬂ al ?'lﬂm'r'm-:zl
Tabl= 4.2

In a two-person scenario, raw data has been collected to analyze six cases of three
breathing patterns: normal, slow, and fast; out of which three case results are shown
for illustration purposes in Figure 4.20, 4.21 and 4.22 for fast-normal, normal-slow,
and normal-normal case respectively.
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Preprocess Data

The preprocess data of raw data of the two-person scenario is represented below in fig.
4.23, 4.24, and 4.25 for the cases for fast-normal, normal-slow, and normal-normal

breathing activities respectively.
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Fourier Transformation

To detect abnormalities in similar cases, the Fourier transforms of the breath data
from two individuals are extracted. The presence of two distinct peaks in the results
displayed in figures 4.26, 4.27, and 4.28 indicates that each subject is engaging in
breathing activity independently. These peaks in the Fourier transform represent the
characteristic frequencies or patterns associated with individual breathing patterns,
allowing for the identification and differentiation of the subjects.
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4.4 Abnormality Classification

The utilization of SVM and tree-based machine learning algorithms is showcased in
figures 4.29, 4.30, and 4.31 for the purpose of classifying abnormalities in a two-
person scenario. The outcomes derived from these algorithms reveal a significant
improvement in accuracy, training time, and prediction speed when compared to
previous methods.
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4.4.1 Three-Person Breathing Analysis

In the three-person scenario, two subjects participated in the breathing activity. Its
particular are:
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Raw Data
Raw data has been collected from a three-person scenario to analyze nine instances

of three breathing patterns: normal, slow, and fast. Two cases have been chosen
as examples, showcased in Figure 4.31, 4.32, to provide a visual representation of
the fast-slow-normal and normal-slow-slow scenarios, respectively, highlighting the
different breathing patterns observed in the data.
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Preprocess Data
Figures 4.33 and 4.34 present the preprocessed data of the three-person scenario,

focusing on the similar cases discussed earlier and depicted in the raw data shown

above.
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Fourier Transformation
To identify abnormalities in similar cases, the breath data from three individuals is
subjected to Fourier transform analysis. In figures 4.35 and 4.36, the resulting spectra
exhibit three distinct peaks, signifying that each person is involved in independent
breathing activity. This analysis was performed specifically for the similar cases
mentioned earlier, serving as an illustrative example.
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4.5 Abnormality Classification

Figures 4.37 and 4.38 demonstrate the SVM and tree-based machine learning algorithms
for the classification of abnormalities in a three-person scenario with respect to the
accuracy, prediction speed, and training time as classifying parameters.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Wireless communication technologies, in addition to voice, text, video, and multimedia,
have valuable applications in healthcare monitoring and detecting abnormalities. The
purpose of this study was to show how to use a software-defined radio (SDR) platform
for non-invasive detection of breathing abnormalities. The following are the key
findings:

e The OFDM technology and USRP device capture detailed wireless channel state
information (WCSI) about human body movements.

e Channel frequency response (CFR) analysis was performed using ideal, AWGN,
fading, and TFD channels via simulations on the software-designed platform.

e The simulation results showed that CFR accurately represents WCSI, taking
into account channel noise, time, and frequency dispersion.

e To synchronise OFDM frames, the Van-de-Beek technique was used, which
proved extremely useful for detecting small-scale movements that are more sensitive
to channel conditions.

e The developed platform successfully detects subtle body movements such as
breathing through real-time experiments.

e The system performs admirably in both single and multi-person scenarios.

e Using the ensemble bagged tree algorithm, the platform detects and classifies
nine breathing abnormalities in a single-person scenario with a maximum accuracy
of 99.7perc.

e In two- and three-person scenarios, the ensemble bagged tree algorithm detects
and classifies three breathing abnormalities with maximum accuracies of 93.3perc
and 88.4perc, respectively.

e Several feature selection methods were used, which resulted in improved system
performance for both single and multi-person scenarios.

e The creation of a simulated breathing abnormalities dataset addresses data
collection challenges and results in noticeable improvements in system performance.

e The dataset was collected from a maximum of ten participants, ensuring a
manageable size. Participants also received disciplined training for experiment
performance.
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e Several experiments show that the SDR-based platform is scalable, portable,
dependable, and flexible, with multifunction capabilities.

5.2 Future Work

While this study successfully monitors breathing abnormalities and aids in the early
detection of various health disorders, it does have some limitations. In a multi-person
scenario, the system was tested for a maximum of three-person cases, taking into
account only three breathing abnormalities. Furthermore, no actual COVID patients
were used in the data collection. Future extensions of this research could include
cutting-edge machine learning (ML) and deep learning (DL) algorithms that can be
modified without changing the hardware, allowing for a wide range of applications.
The following suggestions are made to improve the performance of the developed
platform:

e Extend the system’s development and testing to include more than three-person
cases, a broader range of breathing abnormalities, and actual patients.

e Research optimal parameter settings such as antenna gain, transmit power,
sampling rate, operating frequency, and modulation scheme/order further to
improve the system’s ability to detect human body movements.

e Look into using the testbed for post-surgery monitoring, heart problems, sleep
disorders, and other healthcare applications. Enhance and investigate its potential
in emergency and catastrophic situations such as earthquakes and wars.

In conclusion, wireless communication technologies hold promise beyond traditional
applications, including healthcare monitoring and abnormality detection. The
findings of the study highlight the efficacy of an SDR-based platform in detecting
breathing abnormalities, and future improvements and applications can improve
its performance and contribute to the early detection and monitoring of various
health conditions.

xlix



Bibliography

[1]

[4]

[5]

[6]

Aboajeila  Milad Ashleibta, Qammer H Abbasi, Syed Aziz Shah,
Muhammad Arslan Khalid, Najah Abed AbuAli, and Muhammad Ali Imran.
Non-invasive rf sensing for detecting breathing abnormalities using software
defined radios. IEEE Sensors Journal, 21(4):5111-5118, 2020.

Valentina Camomilla, Elena Bergamini, Silvia Fantozzi, and Giuseppe Vannozzi.
Trends supporting the in-field use of wearable inertial sensors for sport
performance evaluation: A systematic review. Sensors, 18(3):873, 2018.

Shakti Singh Chauhan, Ananjan Basu, Mahesh P Abegaonkar, Shiban Kishen
Koul, et al. Through the wall human subject localization and respiration rate
detection using multichannel doppler radar. IEEE Sensors Journal, 21(2):1510—
1518, 2020.

Mohammed El-Hajjar, Quoc A Nguyen, Robert G Maunder, and Soon Xin Ng.
Demonstrating the practical challenges of wireless communications using usrp.
IEEE Communications Magazine, 52(5):194-201, 2014.

Yu Gu, Xiang Zhang, Zhi Liu, and Fuji Ren. Wifi-based real-time breathing
and heart rate monitoring during sleep. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1-6. IEEE, 2019.

Muhammad Bilal Khan, Ali Mustafa, Mubashir Rehman, Najah Abed AbuAli,
Chang Yuan, Xiaodong Yang, Fiaz Hussain Shah, and Qammer H Abbasi. Non-
contact smart sensing of physical activities during quarantine period using sdr
technology. Sensors, 22(4):1348, 2022.

Muhammad Bilal Khan, Mubashir Rehman, Ali Mustafa, Raza Ali Shah, and
Xiaodong Yang. Intelligent non-contact sensing for connected health using
software defined radio technology. Electronics, 10(13):1558, 2021.

Ivana Markovi¢, Milos Stojanovi¢, Jelena Stankovi¢, and Milena Stankovi¢. Stock

market trend prediction using ahp and weighted kernel Is-svm. Soft Computing,
21:5387-5398, 2017.

Carlo Massaroni, Daniel Simoes Lopes, Daniela Lo Presti, Emiliano Schena, and
Sergio Silvestri. Contactless monitoring of breathing patterns and respiratory
rate at the pit of the neck: A single camera approach. Journal of Sensors, 2018,
2018.

Sherry L Murphy, Kenneth D Kochanek, Jiaquan Xu, and Elizabeth Arias.
Mortality in the united states, 2020. 2021.

Michael W O’Brien, Jason S Harris, Otilia Popescu, and Dimitrie C Popescu.
An experimental study of the transmit power for a usrp software-defined radio.
In 2018 International Conference on Communications (COMM), pages 377-380.
IEEE, 2018.



[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

Kun Qian, Chenshu Wu, Zheng Yang, Yunhao Liu, and Kyle Jamieson. Widar:
Decimeter-level passive tracking via velocity monitoring with commodity wi-fi.
In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 1-10, 2017.

Mubashir Rehman, Raza Ali Shah, Najah Abed Abu Ali, Muhammad Bilal
Khan, Syed Aziz Shah, Akram Alomainy, Mohammad Hayajneh, Xiaodong Yang,
Muhammad Ali Imran, and Qammer H Abbasi. Enhancing system performance
through objective feature scoring of multiple persons’ breathing using non-
contact rf approach. Sensors, 23(3):1251, 2023.

Mubashir Rehman, Raza Ali Shah, Muhammad Bilal Khan, Najah Abed AbuAli,
Syed Aziz Shah, Xiaodong Yang, Akram Alomainy, Muhmmad Ali Imran, and
Qammer H Abbasi. Rf sensing based breathing patterns detection leveraging
usrp devices. Sensors, 21(11):3855, 2021.

Mubashir Rehman, Raza Ali Shah, Muhammad Bilal Khan, Najah Abed Abu
Ali, Abdullah Alhumaidi Alotaibi, Turke Althobaiti, Nacem Ramzan, Syed Aziz
Shah, Xiaodong Yang, Akram Alomainy, et al. Contactless small-scale movement

monitoring system using software defined radio for early diagnosis of covid-19.
IEEE Sensors Journal, 21(15):17180-17188, 2021.

Mubashir Rehman, Raza Ali Shah, Muhammad Bilal Khan, Syed Aziz Shah,
Najah Abed AbuAli, Xiaodong Yang, Akram Alomainy, Muhmmad Ali Imran,
and Qammer H Abbasi. Improving machine learning classification accuracy for
breathing abnormalities by enhancing dataset. Sensors, 21(20):6750, 2021.

H Kenneth Walker, W Dallas Hall, and J Willis Hurst. Clinical methods: the
history, physical, and laboratory examinations. 1990.

Anran Wang, Jacob E Sunshine, and Shyamnath Gollakota. Contactless infant
monitoring using white noise. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1-16, 2019.

Thad B Welch and Sam Shearman. Teaching software defined radio using the
usrp and labview. In 2012 IEEFE international conference on acoustics, speech
and signal processing (ICASSP), pages 2789-2792. IEEE, 2012.

Alexander M Wyglinski, Don P Orofino, Matthew N Ettus, and Thomas W
Rondeau. Revolutionizing software defined radio: case studies in hardware,
software, and education. IEEE Communications magazine, 54(1):68-75, 2016.

Shichao Yue, Hao He, Hao Wang, Hariharan Rahul, and Dina Katabi. Extracting
multi-person respiration from entangled rf signals. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2):1-22, 2018.

li



	Introduction
	Background
	Problem Statement
	Project objectives
	Research Question
	Project Application For the Betterment of the Society
	UN Stainability Goals
	Good Health and Well-Being (Goal 3)
	Industry Innovation and Infrastructure (Goal 9)
	Sustainable Cities and Communities (Goal 11)

	Thesis Overview
	Project Timeline

	Literature Review
	Breathing definition and importance
	 Breathing abnormalities and causes
	SDR
	The USRP Platform
	Wireless channel state information
	 Orthogonal frequency division multiplexing OFDM
	 Van de Beek algorithm
	 Artificial intelligence
	Machine learning
	RF Sensing Technologies
	Previous Technologies
	Software-Defined Radio (SDR) Technology
	Radar Technology
	Wi-Fi
	Video-Based Methods
	Inertial Measurement Units (IMUs)

	Classification using Machine Learning
	SVM
	KNN
	Tree
	LDA


	Proposed Methodology
	Wireless Signal Sensing
	Breathing Data Collection
	Breathing Data Extraction

	Breathing Data Processing
	Subcarrier Selection
	Outlier Removal
	Smoothening
	Normalization

	Breathing Abnormality Perception
	Breath Rate Extraction

	 Breathing Abnormality Classification
	 Breathing Feature Extraction 
	Abnormalities Classification


	Results and Discussion
	Block Diagram
	 Abnormality Sensing
	Single-Person Breathing Analysis

	 Abnormality Classification
	Two-Person Breathing Analysis

	Abnormality Classification
	Three-Person Breathing Analysis

	Abnormality Classification

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

