
FINAL YEAR PROJECT REPORT

MULTI AGENT REINFORCEMENT LEARNING
FOR SUM-RATE MAXIMIZATION IN UAV

ASSISTED IoT NETWORKS

By

A/C SYED ASAD ABBAS MEHDI

Pak/20095032, 95(B) EC

ADVISOR

SQUADRON LEADER DR SYED KHURRAM

MAHMUD

CO-ADVISOR

WING COMMANDER ENGINEER ZAHID

ALI

COLLEGE OF AERONAUTICAL

ENGINEERING

PAF Academy, Asghar Khan, Risalpur

February 16, 2024

RESTRICTED

MULTI AGENT REINFORCEMENT LEARNING
FOR SUM-RATE MAXIMIZATION IN UAV

ASSISTED IoT NETWORKS

By

A/C SYED ASAD ABBAS MEHDI

Pak/20095032, 95(B) EC

ADVISOR

SQUADRON LEADER DR SYED KHURRAM MAHMUD

CO-ADVISOR

WING COMMANDER ENGINEER ZAHID ALI

Report submitted in partial fulfillment of the requirements for the degree of Bachelors of Engineering

in Avionics, (BE Avionics)

In

COLLEGE OF AERONAUTICAL ENGINEERING

PAF Academy, Asghar Khan, Risalpur

February 16, 2024

RESTRICTED 2

RESTRICTED

Approval
It is certified that the contents and form of the project entitled “MULTI AGENT REINFORCEMENT

LEARNING FOR SUM-RATE MAXIMIZATION IN UAV ASSISTED IoT NETWORKS” submitted

by Aviation Cadet Syed Asad Abbas Mehdi have been found satisfactory for the requirement of the

degree.

Advisor: SQUADRON LEADER DR SYED KHURRAM MAHMUD

Signature:

Date:

Co-Advisor: WING COMMANDER ENGINEER ZAHID ALI

Signature:

Date:

RESTRICTED 3

RESTRICTED

Dedication
I want to take this opportunity to express my sincere gratitude to all those who have played a significant

role in making this project possible. I would like to extend a special thanks to my loving family and my

dedicated advisor, whose unwavering support and guidance have been instrumental in my academic

success. Without their encouragement and support, I would not have been able to reach this point. To

my parents, in particular, I owe a debt of gratitude for their selfless sacrifices, endless encouragement,

and unwavering belief in me. This report is a tribute to them and all those who have contributed to my

journey, and I am honored to share this achievement with them.

RESTRICTED 4

RESTRICTED

Acknowledgement
I express my sincere gratitude to Allah Almighty, who bestowed upon me the strength and determination

to complete this project to the best of my abilities. My parents, whose unfailing love, unrelenting

support, and steadfast prayers have been the compass in my life, deserve the utmost gratitude. Without

their support, this accomplishment would not have been possible. I am immensely grateful to my

advisor, Squadron Leader Dr. Syed Khurram Mahmud, for his constant guidance, invaluable feedback,

and unwavering support. His encouragement and mentorship have been instrumental in shaping my

research skills and intellectual growth. I also extend my heartfelt thanks to my co-advisor, Wing

Commander Engineer Zahid Ali, for his valuable input and for sharing his expertise in the field. I

am grateful to all my teachers and colleagues who have contributed to my academic and professional

growth in various ways. Finally, I would like to acknowledge the support of my friends and family

members, who have been there for me throughout my academic journey. Thank you all for your

support, encouragement, and motivation.

RESTRICTED 5

RESTRICTED

Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as a promising solution to enhance the performance

of Internet of Things (IoT) networks by providing dynamic and flexible communication support.

Maximizing the sum rate, a critical metric representing the aggregate throughput of active devices, is

essential for efficient resource allocation and improved network efficiency in UAV-assisted IoT systems.

This paper explores the application of Multi-Agent Reinforcement Learning (MARL) to achieve

sum rate maximization in UAV-assisted IoT networks. MARL enables UAVs to make coordinated

decisions, and dynamically allocate resources based on the generated demand. The benefits of MARL

in UAV-assisted IoT networks include optimizing energy-efficient data exchange, minimizing spectrum

interference, and enhancing sum rate (total data rate) by dynamically adapting resource allocation and

task distribution in UAV-assisted IoT networks. Despite challenges, such as UAV height, position,

environment modeling, and training algorithm efficiency. MARL offers a promising avenue for

optimizing sum rates and enabling innovative IoT applications in diverse and dynamic environments.

RESTRICTED 6

RESTRICTED

Contents

List of Figures 4

List of Tables 5

1 Introduction to the Project 6

1.1 Project Title . 6

1.2 Project Motivation . 6

1.3 Project Description . 6

1.4 Scope of the Project . 7

1.5 Project Structure . 8

1.6 Summary . 9

2 Literature Review 11

2.1 Basic Overview . 11

2.2 Unfolding IoT: The evolution of connected devices . 11

2.3 OMA-UAV Regime . 12

2.4 Applications of OMA-UAV aided IoT networks . 13

2.4.1 Surveillance and Reconnaissance . 14

2.4.2 Communication and Connectivity Support . 14

2.4.3 Agriculture and Environmental Monitoring . 15

2.4.4 Target Tracking and Autonomous Swarm Operations . 15

2.5 Key Performance Indicators(KPIs) . 15

2.5.1 Sum-rate . 15

2.5.2 Energy efficiency . 16

2.5.3 Spectrum efficiency . 16

2.6 Reinforcement Learning . 16

2.6.1 Agent in Reinforcement Learning . 18

2.6.2 Environment in Reinforcement Learning . 19

2.6.3 State Mechanism in Reinforcement Learning . 19

2.6.4 Action Mechanism in Reinforcement Learning . 20

2.6.5 Reward Mechanism in Reinforcement Learning . 20

2.6.6 Markov Decision Process in Reinforcement Learning . 21

2.6.7 Q-Learning . 22

RESTRICTED 1

RESTRICTED

2.6.8 Deep Q-Network (DQN) . 23

2.6.9 Deep Deterministic Policy Gradient (DDPG) . 23

2.7 Deep Learning . 24

2.8 Neural Network . 24

2.9 Optimizers . 25

2.9.1 Adam . 25

2.10 Activation Function . 25

2.10.1 ReLU . 25

2.10.2 Sigmoid . 26

2.10.3 Softmax . 26

2.11 Loss Function . 26

2.11.1 Loss function for regression . 26

2.11.2 Loss function for classification . 27

2.12 Deep Q-Network Architecture . 27

2.13 Chapter Summary . 29

3 System Model 30

3.1 Methodology . 30

3.2 Problem Formulation . 31

3.2.1 Optimization Function . 31

3.3 Environment Modelling . 35

3.3.1 Introduction . 35

3.3.2 Environment Initialization . 36

3.3.3 Observation and Action Spaces . 36

3.3.4 UAV Movement . 36

3.3.5 Termination and Rewards . 36

3.3.6 Data Rate Calculation . 37

3.4 MARL Algorithm Framework . 38

3.5 Neural Network Architecture (Q-Network Class) . 39

3.6 DQN Agent Class . 40

3.6.1 Neural Networks . 40

3.6.2 Optimization . 42

3.6.3 Hyperparameters . 43

3.7 Training Procedure . 43

RESTRICTED 2

RESTRICTED

3.8 Plotting and Analysis . 43

4 Results And Discussion 45

4.1 Average Sum-Rate Comparison . 45

4.2 Learning Rates: Navigating UAV Collisions . 48

4.3 Energy Efficiency Comparison . 51

4.4 Spectrum Efficiency Comparison . 52

4.5 Deciphering DQN Learning Rates: A Loss Perspective . 54

4.6 DQN Batch Size Analysis . 57

5 Conclusion and Future Direction 59

A Program Code 62

A.1 Importing Libraries . 62

A.2 Environment Modelling . 62

A.3 DQN AGENT: Agent Network . 66

A.4 DQN AGENT: Network Code . 67

A.5 DQN AGENT: Training Procedure . 69

A.6 Plotting Reward Curves . 71

A.7 Plotting Loss Function (for Agent-0 for example) . 72

A.8 Plotting Cumulative Sum Rate . 75

A.9 Plotting Energy Eficiency . 76

A.10 Plotting Spectrum Eficiency . 77

A.11 Plotting Collision Rate . 78

A.12 Analyzing Different Batch-Sizes With Best Learning Rate 0.001 . 78

B Bibliography 80

Bibliography 80

RESTRICTED 3

RESTRICTED

List of Figures
1 A flow chart representation illustrating the identification of challenges, proposed solutions, along with

desirable and key performance indicators being provided. Additionally, frameworks for reinforcement

learning are depicted. These visual aids are elaborated upon in later chapters, as detailed in section 1.5 of

chapter 1. 10

2 UAV-assisted IoT application scenarios [11] . 14

3 The relationship between AI, ML, RL, DL and DRL. Subdomains of machine learning include reinforcement

learning. Deep learning facilitates both, supervised and reinforcement learning. 17

4 RL algorithms and classification . 18

5 Illustration of RL paradigm with basic elements, such as agent, environment, reward, state and action [36]. 19

6 Illustration of a Markov Decision Process (MDP) diagram with five states (“1st S” to “5th S”) connected

by actions (“a0” to “a4”). The “1st S” state has a reward labeled “rS” . 21

7 Q-learning [7] . 22

8 Deep Q-learning [7] . 23

9 DDPG Actor-Critic Neural Networks [8] . 24

10 ReLU Activation Function [37] . 26

11 DQN Architecture . 28

12 Methodology . 30

13 Depiction of UAV assisted IoT network modelled for sum-rate maximization using Multi Agent Reinforcement

Learning. 34

14 Environment Modelling of UAV assisted IoT netwroks. 35

15 Illustration of a multi-layer fully connected neural network architecture with 8 input features, 32 hidden

neurons in the hidden layer with ReLU activation, and 5 output neurons. 39

16 Average reward comparison with its varying learning rates. 45

17 The figure shows the cumulative sum-rate (bps) achieved by our DQN agents when trained with three

different learning rates of 0.1, 0.01, and 0.001 respectively. 47

18 The impact of different learning rates on UAV collisions. 48

19 The plot illustrates the impact of changing batch sizes on the sum rate achieved by DQN Agents. After

optimizing the sum rate with the best learning rate (0.001), this analysis explores the performance sensitivity

to different batch sizes. 50

20 Average energy efficiency comparison with its varying learning rates of DQN. 51

21 Average spectrum efficiency comparison with its varying learning rates of DQN. 53

22 Comparative Loss Analysis for DQN Agents with Learning Rates of 0.001, 0.01, and 0.1 54

RESTRICTED 4

RESTRICTED

23 Loss for DQN Agents with Learning Rate of 0.001 . 55

24 Loss for DQN Agents with Learning Rate of 0.01 . 55

25 Loss for DQN Agents with Learning Rate of 0.1 . 56

26 The plot illustrates the impact of changing batch sizes on the sum rate achieved by DQN Agents. After

optimizing the sum rate with the best learning rate (0.001), this analysis explores the performance sensitivity

to different batch sizes. 57

List of Tables
1 Environment Parameters . 32

RESTRICTED 5

RESTRICTED

Chapter 1

1 Introduction to the Project

1.1 Project Title

The title of the project is ”Multi Agent Reinforcement Learning For Sum Rate Maximization
In UAV Assisted IoT Networks”.

1.2 Project Motivation

RL-based methods are used because they can learn without needing specific models or
data. The RL agent learns by trying out different actions, using rewards and penalties
to figure out what works best [1]. However, these methods have limits on how much
they can learn because they can only interact with the environment for a set amount of
time. Despite this, they can still find good strategies for things like improving network
performance, such as data transmission rates or energy and spectrum efficiency.

In UAV-assisted IoT networks, managing network resources is made more complicated
by considering the UAV’s flight patterns and behavior [2]. This makes it harder to
optimize everything together. Also, the network conditions can change, which makes it
even trickier to find good strategies in a limited time.

To make RL methods work better in these situations, we can adjust how we manage
large sets of data, change settings based on what’s happening, create better ways to
measure success, design specific environments to learn in, and combine RL with other
methods [24]. Doing these things can help improve how well RL works and, ultimately,
how well the wireless network performs.

1.3 Project Description

In the era of wireless communication, the utilization of Unmanned Aerial Vehicles
(UAVs) in Internet of Things (IoT) networks presents a promising avenue for improving
communication efficiency. This project delves into the realm of multi-agent reinforcement
learning to address the challenge of maximizing the sum rate in UAV-assisted IoT

RESTRICTED 6

RESTRICTED

networks. The key objective is to develop intelligent agents that can autonomously learn
optimal strategies to enhance the overall data transmission rates in dynamic and complex
environments [1].

The project involves the design and implementation of a sophisticated multi-agent
system, where each agent represents a UAV tasked with optimizing communication
parameters to achieve the collective goal of maximizing the sum rate across the IoT
network [2, 3]. Reinforcement learning algorithms will be employed to enable the
agents to adapt and learn from their interactions with the environment, making informed
decisions regarding communication protocols, routing strategies, and resource allocation.

1.4 Scope of the Project

The integration of unmanned aerial vehicles (UAVs) into wireless networks has brought
about significant advancements due to their adaptability and widespread availability.
With the rapid expansion of 5G services, the utilization of IoT devices has surged,
necessitating efficient communication strategies. In this context, reinforcement learning
(RL) emerges as a promising approach to enhance the sum-rate between UAVs and IoT
users. By leveraging RL techniques, UAVs can dynamically adjust and optimize their
data transmission rates, leading to improved performance and enhanced communication
efficiency within UAV-enabled IoT networks.

This research focuses on optimizing the sum-rate within UAV-assisted IoT networks,
where UAVs serve as relays between IoT network devices. Enhancing the sum-rate
directly impacts both energy and spectrum efficiency within the network. To address this
challenge, an RL-based approach is developed, aiming to find solutions within a limited
number of learning cycles. The RL framework is specifically tailored to the operational
scenario of UAVs, incorporating carefully designed Markov Decision Processes (MDPs),
state and action mechanisms, and reward functions.

Additionally, the study examines the effects of adjusting RL hyper-parameters on
network performance, providing insights into the interplay between reinforcement
learning and network optimization.

RESTRICTED 7

RESTRICTED

1.5 Project Structure

This project report is organised as illustrated by the flow chart presented in Fig. 01 as
followed:

Chapter 2 provides an extensive review of the literature, covering various aspects
related to UAV-assisted IoT networks. It begins with a basic overview and then delves
into the evolution and applications of IoT devices, particularly in the context of UAV
support. The chapter also discusses key performance indicators (KPIs) such as sum-
rate, energy efficiency, and spectrum efficiency. Moreover, it explores reinforcement
learning (RL) techniques, including the agent, environment, state mechanism, action
mechanism, reward mechanism, Markov Decision Process (MDP), Q-Learning, Deep Q-
Network (DQN), and Deep Deterministic Policy Gradient (DDPG). Additionally, deep
learning concepts such as neural networks, optimizers like Adam, activation functions
like ReLU, Sigmoid, and Softmax, and loss functions for regression and classification
are covered. The chapter concludes with a summary of the discussed topics, providing a
comprehensive foundation for the subsequent chapters.

Chapter 3 presents the methodology employed in the research project, outlining the
approach taken to optimize functions within the system model of UAV-assisted IoT
networks. It details the process of modeling the environment, specifically focusing
on the intricacies of UAV assistance in IoT networks. The chapter also introduces the
Multi-Agent Reinforcement Learning (MARL) architecture framework designed for the
project, which includes the implementation of the Deep Q-Network (DQN) algorithm.
By synthesizing these components, the chapter provides a comprehensive framework
for the optimization of system functions within UAV-assisted IoT networks. Finally,
a summary encapsulates the key points discussed in the chapter, setting the stage for
further exploration in subsequent sections.

Chapter 4 explores the results and discussions stemming from the analysis of network
performance, specifically focusing on metrics such as sum-rate, energy efficiency,
spectrum efficiency, collision rate, and cumulative sum rate. The chapter scrutinizes the
impact of different learning rates of the Deep Q-Network (DQN) algorithm, varying
between 0.001, 0.01, and 0.1, on the observed results. Through comparative analysis,

RESTRICTED 8

RESTRICTED

the findings are contextualized, providing insights into the efficacy of the implemented
methodologies and algorithms in optimizing the performance of UAV-assisted IoT
networks.

Chapter 5 concludes this project report, which is followed by the future vision and
applications.

1.6 Summary

The introduction of the project, titled ”Multi-Agent Reinforcement Learning for Sum
Rate Maximization in UAV Assisted IoT Networks,” presents the motivation, description,
scope, and structure of the project. The motivation behind the research lies in optimizing
network performance within UAV-assisted IoT environments. The project aims to
employ Multi-Agent Reinforcement Learning (MARL) to maximize the sum-rate,
addressing challenges in energy and spectrum efficiency. The scope involves examining
various applications and performance indicators, utilizing MARL architecture with
Deep Q-Network (DQN) algorithms. The project structure delineates chapters covering
literature review, methodology, results, and discussions. Through this comprehensive
approach, the project seeks to contribute to enhancing communication efficiency in
UAV-enabled IoT networks.

RESTRICTED 9

RESTRICTED

Figure 1: A flow chart representation illustrating the identification of challenges, proposed solutions, along with desirable
and key performance indicators being provided. Additionally, frameworks for reinforcement learning are depicted. These
visual aids are elaborated upon in later chapters, as detailed in section 1.5 of chapter 1.

RESTRICTED 10

RESTRICTED

Chapter 2

2 Literature Review
The chapter focuses on the utilization of unmanned aerial vehicles (UAVs) to assist
in managing Internet of Things (IoT) networks using reinforcement learning (RL)
frameworks for intelligent resource allocation. This chapter provides an overview of
the technologies involved in the research and identifies potential challenges. It begins
with a discussion on the emergence of IoT, followed by the use of UAVs and orthogonal
multiple access (OMA) to support IoT networks, and its applications. The significance
of sum-rate as a key performance indicator (KPI) in resource allocation scenarios is also
addressed. Furthermore, the discussion covers the application of reinforcement learning
in solving optimization problems involving OMA and UAVs, with a focus on existing
deep RL frameworks and areas for potential performance improvement in UAV-assisted
networks.

2.1 Basic Overview

Multi-agent reinforcement learning (MARL) can be applied to maximize the sum rate

in UAV-assisted IoT networks. In this scenario, multiple UAVs act as agents, aiming

to optimize the overall communication throughput in the network [12]. Using MARL

techniques, the UAVs can learn to coordinate their actions, to maximize the sum rate

while considering interference, channel conditions, and network constraints. MARL

enables autonomous and adaptive decision-making processes in dynamic and complex

UAV assisted IoT environments, leading to improved network performance.

2.2 Unfolding IoT: The evolution of connected devices

The 21st century is witnessing a profound transformation in how we engage with

technology, primarily catalyzed by the emergence of IoT networks. These intricate webs

of interconnected devices, sensors, and objects are revolutionizing communication and

data exchange over the internet. Their integration into the fabric of fifth-generation

(5G) and upcoming network infrastructures underscores their significance. The pivotal

RESTRICTED 11

RESTRICTED

role of 5G in facilitating the widespread adoption of IoT cannot be overstated, as it

delivers faster, more reliable, and lower-latency connectivity, along with increased

bandwidth and capacity. This synergy between IoT and 5G is propelling advancements

across diverse sectors, from industrial automation to healthcare, transportation, urban

development, and beyond [1, 3].

As IoT permeates various industries, its impact on society continues to expand. Wearable

devices are revolutionizing healthcare by enabling personalized monitoring and diagnostics,

while autonomous vehicles are reshaping transportation systems, paving the way for

safer and more efficient mobility. Moreover, the concept of smart cities, empowered by

IoT technologies, promises to enhance urban living through real-time monitoring and

optimization of infrastructure and services. With projections estimating the proliferation

of IoT devices to surpass 25 billion by 2025, the momentum behind this technological

paradigm shift is undeniable [3, 4, 5, 6, 7]. Looking ahead, further innovations in edge

computing, artificial intelligence (AI), and next-generation connectivity, such as 6G,

hold the promise of unlocking even greater possibilities within the ever-evolving IoT

ecosystem, driving unprecedented growth and transformation.

2.3 OMA-UAV Regime

Orthogonal Multiple Access (OMA) is a crucial technology in the realm of wireless

communication systems, particularly in the context of Unmanned Aerial Vehicle (UAV)-

assisted Internet of Things (IoT) networks. OMA operates on the principle of allocating

orthogonal resources to different users, allowing simultaneous transmissions without

causing interference. This allocation ensures that each user’s signal occupies a distinct

portion of the spectrum, thereby enabling multiple users to access the network concurrently.

The essence of OMA lies in its ability to mitigate interference among users, enhancing

the overall efficiency and reliability of the communication system [19, 20, 21].

RESTRICTED 12

RESTRICTED

In the context of UAV-assisted IoT networks, OMA plays a pivotal role in optimizing

resource allocation to meet the diverse requirements of IoT devices. The challenge lies in

effectively managing the limited spectrum resources available for communication, while

catering to the varying needs of different IoT applications [21, 23]. OMA addresses

this challenge by allocating orthogonal resources, such as time slots, frequency bands,

or codes, to IoT devices served by the UAV. By doing so, OMA ensures that each IoT

device can transmit its data without causing interference to others, thereby maximizing

the overall network capacity and throughput.

Mathematically, the sum rate generally in an OMA-UAV assisted IoT network can

be expressed as:

Rsum =
N∑
i=1

log2

(
1 +

an.Pi|gi|
σ2

)
Where:

• Rsum represents the sum rate of all IoT devices in the network.

• N denotes the total number of IoT devices.

• Pi represents the transmit power of the ith IoT device.

• an represents the power coefficient.

• gi denotes the channel gain between the UAV and the ith IoT device.

• σ2 represents the noise power.

2.4 Applications of OMA-UAV aided IoT networks

The UAV and IoT when combined together brings powerful technologies to enable a

range of exciting applications and showcasing the potential of this innovative network

paradigm. Figure 2 illustrates some of the main applications of UAV-assisted IoT

networks, while some of them are described as followed.

RESTRICTED 13

RESTRICTED

Figure 2: UAV-assisted IoT application scenarios [11]

2.4.1 Surveillance and Reconnaissance

These networks provide real-time intelligence, surveillance, and reconnaissance capabilities.

Hence, facilitating battlefield monitoring, border security, disaster response, and environmental

research [10].

2.4.2 Communication and Connectivity Support

This powerful network is ensuring continuous connectivity for military operations

and supporting emergency responders and remote communities in areas with limited

infrastructure [9].

RESTRICTED 14

RESTRICTED

2.4.3 Agriculture and Environmental Monitoring

UAV assisted IoT networks provide valuable assistance by using drones. The drones

are equipped with sensors and cameras to collect data about crops, soil, and weather

conditions. Fields are remotely monitored by farmers and decisions about irrigation,

fertilization, and pest control, are made that lead to better crop yields. Hence, through

this farmers can optimize their practices and enhance overall agricultural productivity

and sustainability [10].

2.4.4 Target Tracking and Autonomous Swarm Operations

UAVs when equipped with can enable precise target tracking in military operations and

can also be deployed for autonomous swarm operations. They also help serve civilian

purposes like surveillance, traffic monitoring, and industrial asset management [9].

UAV assisted IoT networks demonstrate their versatility by offering seamless integration

of technologies that is bringing significant advantages and enhancing various aspects of

modern society and defense operations.

2.5 Key Performance Indicators(KPIs)

The project’s key performance indicators (KPIs) are thoughtfully identified and carefully

documented in the following section for comprehensive evaluation and efficient monitoring

throughout the project’s lifecycle.

2.5.1 Sum-rate

Sum-rate refers to the total data rate achieved by all agents in a network and indicates

the collective capacity of the network to transmit data [24]. It is measured in bits per

second (bps). The formula for the sum-rate is:

RESTRICTED 15

RESTRICTED

Sum Rate =
N∑
n=1

ω

K
log2(1 + SINRn)

In above formula the SINR represents signal-to-interference-plus noise ratio. It measures

the quality of a received signal, considering the influence of noise and interference power.

2.5.2 Energy efficiency

Energy efficiency means getting the most out of a system while using as little energy as

possible, making it environmentally friendly and cost-effective.

EE =
Sum Rate

Power of IoT

2.5.3 Spectrum efficiency

It refers to the ability of a communication system to utilize available wireless frequencies

to enhance data transmission, and accommodate more users within the given spectrum

resources.

EE =
Sum Rate

UAV bandwidth

2.6 Reinforcement Learning

Reinforcement Learning (RL) has evolved into a widely adopted tool for optimizing

systems and making decisions, often outperforming conventional optimization algorithms

in dynamic and intricate settings [27, 28, 29]. It is a sub-domain of ML, which is a sub

domain of artificial intelligence (AI) as shown in figure 3 [25, 26].

RESTRICTED 16

RESTRICTED

Figure 3: The relationship between AI, ML, RL, DL and DRL. Subdomains of machine learning include reinforcement
learning. Deep learning facilitates both, supervised and reinforcement learning.

Its capacity to navigate complex environments makes it particularly relevant. RL has

emerged as a pivotal technique in enhancing the efficacy of Unmanned Aerial Vehicles

(UAVs) within the realm of IoT [2, 3]. Since its inception, RL has attracted substantial

attention, wielding its robust data processing and analysis capabilities to imbue devices

with intelligence, catalyzing transformative shifts across various industries [4, 5].

By seamlessly integrating RL into UAVs, their communication prowess, networking

capabilities, and flight safety can be elevated, culminating in improved service quality

within IoT applications [6].

Figure 4 illustrates the primary categories of RL algorithms and their classifications.

RL can be categorized into two main branches: model-based RL and model-free RL.

The former entails training models through data analysis to make predictions regarding

unfamiliar data.

RESTRICTED 17

RESTRICTED

Figure 4: RL algorithms and classification

Moreover, this section entitles the theoretical aspects of reinforcement learning

(RL). It will cover the fundamental elements of RL, including a discussion on temporal

difference-based methods, Q-learning, deep Q-networks (DQNs), and Deep Deterministic

Policy Gradient (DDPG).

2.6.1 Agent in Reinforcement Learning

In the reinforcement learning (RL) paradigm, the agent serves as the central learning

entity. Its primary objective is to maximize rewards by selecting appropriate actions

within a defined time horizon [24]. This process involves utilizing states through the

action mechanism. For instance, in Figure 4, the agent earns a reward by executing

action at time over state. Within the context of this project, the Unmanned Aerial Vehicle

(UAV) is conceptualized as an agent operating within an Internet of Things (IoT) region.

Its role is to make network-oriented decisions aimed at maximizing its reward. This

instantaneous reward may be represented by metrics such as achieved communication

rates which is sum rate. [24, 30]

RESTRICTED 18

RESTRICTED

Figure 5: Illustration of RL paradigm with basic elements, such as agent, environment, reward, state and action [36].

2.6.2 Environment in Reinforcement Learning

In the context of reinforcement learning (RL), the environment encompasses a collection

of physical or virtual elements within a physical world or simulated environment. These

elements are engaged in interactions with the RL agent through a predefined set of

actions. It’s important to note that the actions performed by the agent do not have

the capability to modify or influence the intrinsic dynamics of the environment. In

scenarios where the environment is familiar, the outcomes of actions are anticipated

beforehand [24, 30]. Conversely, in unknown environments, the outcomes of actions

remain uncertain until executed. The RL agent evolves a policy by iteratively taking

actions over states to grasp the underlying dynamics of the environment. For instance,

consider an IoT region where a UAV acts as the agent, making decisions and interacting

with its surroundings. The term ”environment” can also be interchangeable with the

problem or challenge that the agent seeks to solve. Environments can exist in various

forms: virtual (e.g., computer games or programs), physical (e.g., a UAV navigating an

IoT region).

2.6.3 State Mechanism in Reinforcement Learning

In reinforcement learning, the state at a particular time step portrays the observations

perceived by the agent. It can also signify the outcome of an action initiated by the

RESTRICTED 19

RESTRICTED

agent. Each state or observation within the decision model of the environment is linked

with either a stochastic or deterministic reward. These rewards stem from the underlying

dynamics encapsulated within the environment model [24, 30]. For instance, when a

UAV alters its position, it transitions to a different position, which is then regarded as a

new state or observation.

2.6.4 Action Mechanism in Reinforcement Learning

In the setup of reinforcement learning, when the agent takes an action, it leads to a

specific outcome. This outcome determines the state the agent ends up in and the reward

it receives. The action mechanism is customized based on the characteristics of the

environment or its model. For instance, in the earlier example, the action at a given time

could involve the UAV adjusting its altitude while providing network services to ground

equipment or users [24, 30].

2.6.5 Reward Mechanism in Reinforcement Learning

In reinforcement learning, the reward system plays a crucial role in shaping how the

agent learns. When the agent takes an action in a certain state of the environment,

it leads to a new state and a corresponding reward. This reward is based on specific

performance metrics, with different parameters having different importance levels. The

reward can encourage or discourage the agent from repeating a certain action in a

given state [24, 30]. In the example mentioned earlier, the reward could be a network

performance metric or a combination of multiple metrics, where some metrics carry

more weight than others. The trend of rewards over time influences how the agent learns

from its experiences. Designing the reward system is vital in determining the overall

behavior and decisions of the agent as it interacts with the environment.

RESTRICTED 20

RESTRICTED

2.6.6 Markov Decision Process in Reinforcement Learning

Markov Decision Process (MDP) is like a game where agents have to make decisions

to get the best outcome. It is like playing a game where agent move from one state to

another, and at each state, it have different actions to take. However, the outcome of

each action depends only on the current state agent is in, not on how it got there. So,

agent can’t change the past, and have to make decisions based only on what you know

now [24, 30].

Figure 6: Illustration of a Markov Decision Process (MDP) diagram with five states (“1st S” to “5th S”) connected by
actions (“a0” to “a4”). The “1st S” state has a reward labeled “rS”

In an MDP, main goal is to find the best strategy or policy to maximize your rewards

over time. Agent do this by learning which actions to take in each state to get the most

reward in the long run. It’s like figuring out the best moves to make in a game to win

the most points. MDPs are used in many areas, like artificial intelligence, robotics,

and economics, to help make decisions in situations where there’s uncertainty and

randomness involved. A Markov decision process comprises of following entities:

RESTRICTED 21

RESTRICTED

1. A set comprising all possible states S,

2. A set comprising all possible actions A,

3. Associated reward/utility function against each state as a consequence of an action

taken is depicted as:

R(st, at) = E[rt+1|st, at]

4. A discount factor γ.

2.6.7 Q-Learning

Q-learning is a reinforcement learning algorithm that learns the best actions to take in

different situations. It does this by storing action-values in a table called the Q-table.

The agent interacts with the environment, updating the Q-values based on rewards and

transitions. Through exploration and exploitation, the agent learns to make decisions

that maximize longterm rewards [24, 31]. During training, the agent uses the Q-learning

update rule to adjust the Q-values, gradually converging towards the optimal policy.

Once trained, the agent can use the learned Q-values to select actions that maximize

expected rewards in each state, enabling it to make intelligent decisions to achieve a

specific goal.

Figure 7: Q-learning [7]

RESTRICTED 22

RESTRICTED

2.6.8 Deep Q-Network (DQN)

Deep Q-Network is a reinforcement learning algorithm that combines Q-learning with

deep neural networks. It employs a neural network, called the Q-network, to estimate

the Q-values for different state-action pairs [24, 31]. DQN addresses the challenges

posed by complex state spaces by leveraging deep learning techniques. The agent

interacts with the environment, gathering experiences that are stored in a replay buffer.

Periodically, the Q-network is trained using randomly selected experiences to update

the Q-values. To ensure stability, a separate target network is used to compute the target

Q-values.

Figure 8: Deep Q-learning [7]

2.6.9 Deep Deterministic Policy Gradient (DDPG)

DDPG, which stands for Deep Deterministic Policy Gradient, is an actorcritic algorithm

utilized in reinforcement learning. It combines the strengths of policy-based and value-

based approaches [24]. The primary components of DDPG are deep neural networks,

which are used to approximate both the policy (actor) and the Q-values (critic). The

actor network is responsible for directly generating optimal actions given specific states,

while the critic network evaluates the quality of these actions. Through iterative updates

based on observed rewards, DDPG learns an optimal policy that aims to maximize

cumulative rewards. This is achieved by adjusting the actor and critic networks to

improve their performance. By employing deep neural networks, DDPG can handle

complex and continuous action spaces, making it well-suited for tasks like robotic

control and autonomous driving.[31]

RESTRICTED 23

RESTRICTED

Figure 9: DDPG Actor-Critic Neural Networks [8]

2.7 Deep Learning

Deep learning is like a branch of machine learning. In this approach, we use deep neural

networks to learn from labeled datasets. In reinforcement learning, we also use deep

learning, and when we combine the two, we get something called deep reinforcement

learning (DRL). In DRL, the deep neural network learns and understands different

actions to take in different situations. We call this set of actions the policy [24, 30].

2.8 Neural Network

A neural network is a computational model inspired by the structure and functioning of

the human brain. It’s a type of machine learning algorithm that’s particularly effective

for tasks involving pattern recognition and classification. At its core, a neural network

consists of interconnected nodes, or neurons, organized into layers. These layers include

an input layer, one or more hidden layers, and an output layer. Each neuron in the

network receives input signals from neurons in the previous layer, processes them, and

produces an output signal that is passed on to neurons in the next layer.

RESTRICTED 24

RESTRICTED

2.9 Optimizers

An optimizer is crucial in training neural networks. It guides how the network learns

and adjusts its weights and biases. The main aim is to minimize the loss function by

updating parameters using gradients from backpropagation [37]. There are different

optimizers, each with its own way of reducing the loss. Some adjust learning rates,

others use momentum for faster convergence. Picking the right optimizer is vital as it

affects training speed, convergence, and how well the model generalizes. One of the

most common optimizer used in RL tasks include the Adam optimizer as explained

below:

2.9.1 Adam

Adaptive Moment Estimation(Adam) optimizer uses adaptive learning rates to update the

model parameters, which helps to achieve faster convergence and better generalization.

Adam is a popular optimizer used in reinforcement learning tasks because of its easy

implementation. Moreover, it is faster and calculates the exponential moving average of

gradients [37].

2.10 Activation Function

The neuron represents the non-linear function applied to the input of the node, and that

non-linear function is called the Activation function. Activation functions introduce

non-linearity to the model, allowing it to learn more complex relationships and patterns.

Common activation functions include ReLU (Rectified Linear Unit), Sigmoid, and

Softmax.

A neural netwrok without the activation function is essentially just the linear regression.

2.10.1 ReLU

ReLU (Rectified Linear Unit) is the most commonly used activation function in neural

networks. This function is simple and fast, thus making it a popular choice for deep

neural networks.

RESTRICTED 25

RESTRICTED

ReLU is defined as R(x)= max(0, x):

Figure 10: ReLU Activation Function [37]

2.10.2 Sigmoid

Sigmoid is an activation function usually used in the output layer of the binary classification,

where result is either 0 or 1. As value for sigmoid function lies between 0 and 1 only so,

results can be easily predicted to be 1 if value is greater than 0.5 and 0 otherwise.

2.10.3 Softmax

Softmax is applied to the last layer and only when we want the neural network to predict

probability scores in the multi-class classification problems. Since, it produces values in

the range of 0 to 1 , so they can represent probability scores.

2.11 Loss Function

Broadly, loss function can be classified into two major categories depending upon the

type of learning task we are dealig with- Regression losses and Classification Losses.

2.11.1 Loss function for regression

• Mean Squared Error (MSE)

Mean Squared Error (also known as L2 loss is the average of the squared difference

between the actual and predicted values. It is calculated using the formula:

RESTRICTED 26

RESTRICTED

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where n is the number of samples, yi is the actual value, and ŷi is the predicted value.

2.11.2 Loss function for classification

• Binary Cross Entropy Loss

This is the most common loss function that have two classes. It gives the probability

value between 0 and 1 for a binary classification task. It calculates the average difference

between predicted and actual classification.The binary cross-entropy formula is given

by:

H(y, ŷ) = − 1

N

N∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi))

• Categorical Cross Entropy Loss

Categorical Cross Entropy Loss is essentially the Binary Cross Entropy Loss expanded

to multiple classes. The categorical cross entropy loss formula is given by:

Loss = −
N∑
i

yi · log(ŷi)

where N is the number of classes, yi is the true probability distribution, and ŷi is the

predicted probability distribution.

2.12 Deep Q-Network Architecture

DQN, or Deep Q-Network, is a reinforcement learning algorithm that combines Q-

learning with deep neural networks to enable learning directly from raw sensory input.

It was introduced by Volodymyr Mnih and others in their seminal paper ”Playing Atari

RESTRICTED 27

RESTRICTED

with Deep Reinforcement Learning” in 2013. [26]

Figure 11: DQN Architecture

In our specific DQN architecture, the neural network consists of an input layer with

eight neurons, representing an 1D array vector containing 8 features. This vector serves

as the state representation for the agent. The network then features a hidden layer

comprising 32 neurons, which learns to capture the complex relationships within the

state space. The output layer, with five neurons corresponding to discrete actions (no

movement, up, down, left, and right), produces Q-values for each action.

The network is trained using the Mean Squared Error loss function, and the training

process involves experience replay, where batches of experiences are randomly sampled

from a replay buffer, breaking temporal correlations between consecutive experiences.

To enhance stability, a target Q-network, mirroring the main network, is employed, and

its parameters are updated less frequently.

Additionally, the exploration-exploitation strategy follows an epsilon-greedy approach,

where with probability epsilon, a random action is chosen, and otherwise, the action

RESTRICTED 28

RESTRICTED

with the highest predicted Q-value is selected. This architecture enables our DQN to

effectively learn and make decisions in an environment with 8-dimensional state input

and 5 discrete action choices.

2.13 Chapter Summary

In this chapter, we traced the evolution of the Internet of Things (IoT) and its impact

across industries, setting the stage for the discussion on Orthogonal Multiple Access

(OMA) - Unmanned Aerial Vehicle (UAV) regimes. We emphasized OMA’s significance

in optimizing communication efficiency in IoT networks, particularly with UAV assistance.

Exploring various applications of OMA-UAV setups, we highlighted their potential to

enhance connectivity and coverage. Moving forward, we scrutinized key performance

indicators (KPIs) crucial for evaluating the effectiveness of such networks, including

sum rate, energy efficiency, and spectrum efficiency. Transitioning into reinforcement

learning (RL), we delved into its core concepts and applications within dynamic

environments like IoT networks. Furthermore, we explored the fusion of deep learning

with RL to create Deep Reinforcement Learning (DRL), presenting neural network

architectures, optimizers, activation functions, and loss functions as integral components.

This comprehensive review sets the groundwork for further research and experimentation

in the field, poised to unlock new advancements in IoT-enabled technologies.

RESTRICTED 29

RESTRICTED

Chapter 3

3 System Model

3.1 Methodology

The project is structured into distinct phases, as outlined below, ensuring a systematic

approach towards its successful completion.

Figure 12: Methodology

Each phase will be carefully executed, allowing for efficient progress tracking and

timely milestone achievements. The environment’s characteristics are captured in a state

representation, while a reward function is formulated to quantify improvements in sum

rate based on UAV actions. A suitable MARL algorithm, such as DQN is chosen to

train the agents. During training, UAVs interact with the environment, updating their

RESTRICTED 30

RESTRICTED

policies through reinforcement learning techniques as mentioned. The trained agents

are evaluated and fine-tuned, comparing their performance against baseline methods,

and the MARL solution is eventually integrated. Hence, continuously improving sum

rate performance in the UAV-assisted IoT ecosystem.

3.2 Problem Formulation

The contribution outlined in this section aims to enhance the sum-rate throughout the

UAV’s entire trajectory. This entails optimizing the sum-rate across both the UAV’s flight

trajectory and learning cycles while adhering to communication constraints associated

with flight and Orthogonal Multiple Access (OMA). To address this intricate challenge,

a model is formulated to capture the complexities of the problem, and a Reinforcement

Learning (RL) framework is developed to optimize the sum-rate effectively.

3.2.1 Optimization Function

The objective function for maximisation of the net sum-rate is presented in this sub-

section. The control variables and relevant network and flight constraints are depicted.

The constraints pertain to minimum desired rate satisfaction.

This function aims to maximize the sum-rate, which is a measure of the total data

transmission rate in the network. The objective function is defined below in equation 1:

max
α1,1,α2,2,xu,yu

:
N∑
n=1

U∑
u=1

K∑
k=1

βk,uSRk,u →
ω

K
(log2(1 + SINR)) (1)

RESTRICTED 31

RESTRICTED

The optimisation variables include:

C1: xu ≤ X Limitation for UAV to move within the x-axis

C2: yu ≤ Y Limitation for UAV to move within the y-axis

C3: hu ≤ H UAV height is fixed

C4: ωk,u ≤ BW UAV Bandwidth can’t be changed

C5: Pmin ≤ αk,u ≤ Pmax Power range for IoT devices

The network parameters, as detailed in Table 1, provide essential insights into the

system setup. These parameters, including the UAV height, UAV bandwidth, grid size,

noise power, power levels for IoT devices 1 and 2, and the path loss exponent for the free

space model, play crucial roles in defining the system’s characteristics and constraints,

which directly influence the optimization variables previously elucidated.

Parameter Description
Grid Size The area under consideration is a square grid with dimensions of 10m × 10m.
UAV Height The altitude at which the unmanned aerial vehicle (UAV) operates is 10m.
Bandwidth (ω) The available bandwidth for communication is 10 kHz.
Noise Power The level of noise power in the system is −90 dBm.
Path Loss Exponent (β) The path loss exponent, representing the rate of signal decay with distance, is 2.3.
Pmin The minimum transmission power level is −20 dBm.
Pmax The maximum transmission power level is 30 dBm.

Table 1: Environment Parameters

RESTRICTED 32

RESTRICTED

The optimization problem involves finding optimal values for the following control

variables:

• α1,1, α2,2: Power allocation for IoT devices 1 and 2, respectively.

• xu, yu: These represent the coordinates of the UAV’s position in the grid.

The objective is to maximize the following expression:

N∑
n=1

U∑
u=1

K∑
k=1

βk,u · SRk,u →
ω

K
· (log2(1 + SINR)) (2)

where:

N∑
n=1

U∑
u=1

K∑
k=1

→ ...

• N is the number of episodes.

• U is the number of UAVs.

• K is the number of IoT devices.

Moreover, the binary matrix representation delineates the connectivity between UAVs

and IoT devices. Each element in the matrix reflects whether a UAV is linked to a

specific IoT device. For instance, the identity matrix:

[
β1,1 β2,1

β1,2 β2,2

]
→

[
1 0

0 1

]
(3)

It indicates that only the first UAV is connected to the first device, and the second

UAV is linked to the second device as shown in Figure 12. Conversely, the absence of a

connection is denoted by zero.

RESTRICTED 33

RESTRICTED

The constraints imposed by this binary representation ensure the integrity of the

communication network. The summation of all elements in the matrix signifies the total

number of active connections, ensuring it does not exceed 2, denoted by:

∑
k

∑
u

βk,u ≤ 2 (4)

This further explains that the summation across UAVs for each IoT device guarantees

that at most one UAV is connected to any given device:

∑
u

βk,u ≤ 1 (5)

This framework optimizes the utilization of resources, facilitating efficient uplink

transmission while maintaining connectivity constraints. This optimization function

aims at maximizing sum-rate while considering various constraints related to movement

along both axes, fixed height, unchangeable bandwidth and power range limitations.

Figure 13: Depiction of UAV assisted IoT network modelled for sum-rate maximization using Multi Agent Reinforcement
Learning.

RESTRICTED 34

RESTRICTED

Each term and constraint plays a pivotal role in ensuring that the optimization does not

only focus on maximizing sum-rate but also adheres to physical and technical limitations

inherent in such networks. This balance between maximization and constraint adherence

is key to the successful application of this function in real-world scenarios.

3.3 Environment Modelling

3.3.1 Introduction

A custom environment was build for simulating the movement and communication

of Unmanned Aerial Vehicles (UAVs) in a grid-based scenario. This environment

is designed to model interactions between UAVs and ground devices, considering

factors such as UAV movement, device locations, device powers, and communication

bandwidths. The primary goal is to calculate the data rate achieved by each UAV based

on its position relative to ground devices and the given communication parameters.

Figure 14: Environment Modelling of UAV assisted IoT netwroks.

RESTRICTED 35

RESTRICTED

3.3.2 Environment Initialization

The environment is initialized with a grid of a specified size (default is 10x10), where

UAVs and ground devices are randomly positioned. Each UAV is associated with a

unique identifier (agent-0 and agent-1 in this case). The number of UAVs, ground

devices, and their respective initial configurations are set within the environment.

3.3.3 Observation and Action Spaces

The observation space is defined as a Box space with a low value of 0, a high value of

500, and a shape of (8). This space encompasses information about UAV bandwidths,

the positions and bandwidths of other UAVs, and the powers of ground devices. The

action space is Discrete, representing five possible actions: no movement and movement

in four cardinal directions (up, down, left, right).

3.3.4 UAV Movement

During each step, UAVs can take actions to move within the grid. The movement is

determined by the actions taken, where 0 represents no movement, and 1 to 4 correspond

to moving up, down, left, and right, respectively. UAV positions are updated accordingly,

with boundary checks to ensure they stay within the grid.

3.3.5 Termination and Rewards

The environment has a termination condition based on the number of steps taken, with

a default limit of 100 steps. If this limit is reached, the episode is terminated for all

agents. Collisions between UAVs are detected, and if a collision occurs, a negative

reward of -1 is given to the respective UAV. The collision information is recorded in the

environment’s info dictionary.

RESTRICTED 36

RESTRICTED

3.3.6 Data Rate Calculation

The data rate for each UAV is calculated based on its position relative to ground devices.

The key factors influencing the data rate include the distance between the UAV and the

nearest ground device, the device’s power, and the communication bandwidth of the

UAV. The Signal-interference-to-Noise Ratio (SINR) is calculated using the formula:

SINR =
αn · Device Power · Channel-gain

Thermal Noise

where:

• αn is Power Coefficient,

• Device Power is the power of the ground device,

• Noise is a predefined noise value.

The distance between UAV and device, denoted as channel gain. It is calculated using

the ground distance and UAV height. The path loss is modeled using a power-distance

relation.

Distance =
1√

(UAVx − Devicex)2 + (UAVy − Devicey)2 + UAV Height2
2.3

where:

• UAVx and UAVy are the x and y coordinates of the UAV, respectively,

• Devicex and Devicey are the x and y coordinates of the ground device, respectively,

• UAV Height is the height of the UAV,

• 2.3 is the value of path loss exponent.

RESTRICTED 37

RESTRICTED

The data rate is then determined using the Shannon-Hartley theorem:

Data Rate =
UAV Bandwidth

N
· log2(1 + SINR)

3.4 MARL Algorithm Framework

Choosing an appropriate MARL algorithm or combination of algorithms to enable

decision-making among the UAV agents. Common approaches include Q-learning,

Deep Q-Networks (DQN), or actor-critic methods (DDPG). Consider the scalability and

computational requirements of the environment DQN was selected.

The Deep Q-Network (DQN) algorithm is a reinforcement learning technique used

for training agents to make decisions in environments with discrete action spaces. Below

is a comprehensive explanation of the DQN algorithm framework, used in the optimizing

the sum rate.

• Utilizes experience replay, where past experiences are stored in a replay buffer

and sampled randomly during training. This helps break the temporal correlation

between consecutive samples and reduces the likelihood of the model getting stuck

in local minima [32].

• Employs a target network, which is a separate copy of the Q-network used for

computing target Q-values during training [24, 31]. This helps stabilize the training

process by reducing the oscillations in Q-values.

RESTRICTED 38

RESTRICTED

• Balances exploration and exploitation by using an epsilon-greedy strategy, where

the agent chooses a random action with probability epsilon. This allows the agent

to explore the state space effectively [31, 32].

3.5 Neural Network Architecture (Q-Network Class)

The neural network used in the DQN algorithm is implemented through the Q-Network

class. This feed-forward neural network consists of three layers: an input layer, a hidden

layer, and an output layer as illustrated in Fig. 15. The input layer has neurons equal to

the dimensionality of the state space, which is a 1D vector array with 8 features, then

the number of neurons in the input layer would be 8. Each neuron in the input layer

corresponds to one feature in the state vector, creating a direct mapping between the

input neurons and the individual components of the state.

The hidden layer contains 32 neurons with Rectified Linear Unit (ReLU) activation, and

the output layer has neurons corresponding to the number of possible actions, which

is 5. This architecture enables the network to approximate the Q-function, predicting

Q-values for each action given a particular state.

Figure 15: Illustration of a multi-layer fully connected neural network architecture with 8 input features, 32 hidden neurons
in the hidden layer with ReLU activation, and 5 output neurons.

RESTRICTED 39

RESTRICTED

3.6 DQN Agent Class

The DQN Agent class initializes the DQN agent with essential components:

3.6.1 Neural Networks

The agent maintains two instances of the Q-Network – prediction model and target

model. The prediction model is the local Q-network that gets updated during training,

while the target model is a target Q-network used for stability in learning. As explained

below are the equations used in building the DQN agent network.

1. Soft Update of Target Model Parameters:

θtarget = τ · θlocal + (1− τ) · θtarget (6)

• Purpose: This equation updates the parameters of the target neural network

slowly towards the parameters of the local (online) neural network to increase

stability.

• Variables:

– θtarget: Parameters of the target model.

– θlocal: Parameters of the local model.

– τ : Soft update parameter (0 < τ < 1).

2. Epsilon-Greedy Policy for Action Selection:

action =

random action with probability ϵ

argmax(Q(s)) with probability 1− ϵ
(7)

RESTRICTED 40

RESTRICTED

• Purpose: This equation chooses actions according to an epsilon-greedy strategy,

balancing exploration and exploitation.

• Variables:

– ϵ: Exploration-exploitation trade-off parameter.

– Q(s): Q-values for the given state s.

3. Q-Learning Target:

Y = R + γ · (1− done) · maxa′(Qtarget(S
′, a′)) (8)

• Purpose: This equation computes the target Q-value used for training the neural

network.

• Variables:

– Y : Target Q-value.

– R: Immediate reward.

– γ: Discount factor.

– done: Boolean indicating whether the episode has terminated.

– Qtarget(S
′, a′): Q-values of the target model for the next state S ′ and all

possible actions a′.

4. Loss Calculation using Mean Squared Error (MSE):

loss = MSE(Q(s, a), Y) (9)

• Purpose: This equation computes the loss function, which quantifies the

difference between predicted Q-values and target Q-values.

RESTRICTED 41

RESTRICTED

• Variables:

– loss: Loss value.

– Q(s, a): Predicted Q-value for state s and action a.

– Y : Target Q-value.

5. Update of Epsilon for Exploration-Exploitation Trade-off:

ϵ = max(ϵmin, ϵ− ϵdecay) (10)

• Purpose: This equation updates the exploration-exploitation trade-off parameter

(ϵ) over time.

• Variables:

– ϵ: Exploration-exploitation trade-off parameter.

– ϵmin: Minimum value for ϵ.

– ϵdecay: Decay rate for ϵ.

These equations are fundamental components of the DQN algorithm, responsible for

action selection, target computation, loss calculation, and exploration strategy.

3.6.2 Optimization

The Adam optimizer is utilized for optimization, employing distinct learning rates (lr)

of 0.1, 0.01, and 0.001. This choice of learning rates influences the agent’s ability to

adapt and learn from experiences during the training process. Different learning rates

can impact the convergence speed and overall performance of the neural network.

RESTRICTED 42

RESTRICTED

3.6.3 Hyperparameters

Hyperparameters Used in DQN code are as follows:

• Learning Rate (lr): 0.1, 0.01, 0.001

• Discount Factor (gamma): 0.99

• Exploration-Exploitation Trade-off (epsilon): 1.0

• Minimum Exploration Probability (epsilon min): 0.01

• Batch Size: 64

• Replay Buffer Size: 1000

Each hyperparameter plays an important role in shaping the behavior and performance

of the DQN agents during training.

3.7 Training Procedure

The training procedure involves creating an environment (assumed to be a custom UAV

environment in this context) and initializing two DQN Agent instances with different

learning rates. The agents are then trained over a specified number of episodes, and the

best models for each agent are saved based on the average sum-rate achieved during

training.[24]

3.8 Plotting and Analysis

The code has been provided with the features to create plots showing how well the

agents are learning. These visualizations help us understand how the rewards, energy,

and spectrum efficiencies and losses change during the training episodes. Moreover, to

provide a clear picture of how effective the learning rates are for the agents the analysis

is performed in the next chapter.

RESTRICTED 43

RESTRICTED

In a nutshell, the DQN algorithm relies on a neural network to estimate the Q-function,

ensuring more stable training through experience replay, and enhances convergence with

a target network. The training strategy involves finding a balance between exploring

new actions and exploiting known ones to efficiently learn the best strategies in a given

environment.

RESTRICTED 44

RESTRICTED

Chapter 4

4 Results And Discussion

In this section we present the results on the performance of proposed framework analysis.

The comparison involves evaluating the sum-rate achieved by the DQN algorithm

under three distinct learning rates: 0.001, 0.01, and 0.1. Subsequently, using these

same learning rates, we compute the energy efficiency and spectrum efficiency. This

comparative analysis aims to provide insights into the impact of different learning rates

on the overall performance of our UAV assisted IoT environments.

4.1 Average Sum-Rate Comparison

The average sum rate comparison over the course of OMA is depicted in Fig. 16.

Figure 16: Average reward comparison with its varying learning rates.

The graph compares the sum rate achieved by DQN agents trained with three different

learning rates: 0.1, 0.01, and 0.001. The sum rate is plotted against the number of

episodes, which likely represents the amount of training the agents have undergone.

RESTRICTED 45

RESTRICTED

Here’s a comparative analysis of the three learning rates based on the graph:

1. Learning Rate 0.1 (Blue Line): This learning rate does not shows a rapid

initial increase in the sum rate, and lies at a performance gap of 27-30% approx with

maximum reward gained learning rate. However, it stabilizes at a lower sum rate

compared to the other two learning rates. The blue bar represents a learning rate of 0.1

and shows a overall sum-rate reaches approximately 570,000 bps. This suggests that a

higher learning rate might lead to smaller convergence initially and will not result in the

best long-term performance.

2. Learning Rate 0.01 (Orange Line): This learning rate shows a slight performance

gap of greater than 5% approximately and a moderate growth.To a learning rate of 0.01,

shows a cumulative sum rate of around 575,000 bps. Moreover, it eventually surpasses

the sum rate of the learning rate 0.1, indicating better performance with more episodes.

This suggests that a moderate learning rate might be a good balance between speed of

learning and long-term performance.

3. Learning Rate 0.001 (Green Line): This learning rate increases slowly but

consistently achieves the highest sum rate and gets close to 580,000 bps approximately

as shown in the Fig. 17. This suggests that a smaller learning rate is faster to learn

initially, and leads to better performance and convergence over more episodes. Hence,

setting the bench mark for this analysis.

RESTRICTED 46

RESTRICTED

Figure 17: The figure shows the cumulative sum-rate (bps) achieved by our DQN agents when trained with three different
learning rates of 0.1, 0.01, and 0.001 respectively.

In conclusion, the selection of the learning rate is paramount for achieving optimal

performance in our UAV-assisted IoT network environment. It is observed that a smaller

learning rate results in better performance metrics, including a higher maximum sum

rate, indicating more efficient utilization of the spectrum. However, these observations

are specific to the conditions of this particular experiment, and the optimal learning rate

may vary under different scenarios or parameters. Therefore, a careful balance between

convergence speed and performance stability is crucial. This approach ensures robust

and efficient training of DQN agents, ultimately leading to improved performance in

UAV-assisted IoT networks.

RESTRICTED 47

RESTRICTED

4.2 Learning Rates: Navigating UAV Collisions

Figure 18: The impact of different learning rates on UAV collisions.

The bar plots the number of collisions made by Unmanned Aerial Vehicles (UAVs) when

trained with three different Deep Q-Network (DQN) learning rates in UAV assisted IoT

networks. The blue bar, representing a learning rate of 0.1, shows the highest number of

collisions, reaching close to 500 (31-33% approx.). This indicates that a higher learning

rate leads to more collisions, suggesting that the UAVs are not learning effectively.

In contrast, the orange and green bars represent lower learning rates of 0.01 and 0.001

respectively. The orange bar is significantly lower than the blue one but still considerable

in height as it get a total of 17-19% collision rate approximately, indicating a reduction

in collisions but not optimal performance.

RESTRICTED 48

RESTRICTED

The green bar is the shortest among them all, showing that at a learning rate of

0.001, both UAVs have minimal collision rate of (14-16% aprrox.) which implies

enhanced performance and safety in navigation. This comparative analysis suggests that

a lower learning rate results in fewer collisions, thus leading to safer and more efficient

navigation for UAVs in IoT networks.

No. of Collisions =
c=1499∑
c=0

(Collisions · I [(RateIoT1 < RateQoS) ∨ (RateIoT2 < RateQoS)])

The equation represents the calculation of the total number of collisions occurring

in a system over a specified period, denoted as ”No. of Collisions.” This total is

determined by summing the individual collision events, indexed by c from episodes

0 to 1499. Each collision event is evaluated using an indicator function, denoted by

I , which returns 1 if the condition inside the brackets is true and 0 otherwise. The

condition checks whether the rate of data transmission for either IoT device 1 or IoT

device 2, represented by RateIoT1 and RateIoT2 respectively, is less than the quality of

service threshold (RateQoS). If either device’s transmission rate falls below the threshold,

it indicates a collision event, contributing to the total count of collisions.

RESTRICTED 49

RESTRICTED

Figure 19: The plot illustrates the impact of changing batch sizes on the sum rate achieved by DQN Agents. After
optimizing the sum rate with the best learning rate (0.001), this analysis explores the performance sensitivity to different
batch sizes.

The above Fig. 19 shows the power consumption by both the IoT devices over the course

of optimization for the last 10 episodes. During episode 1494, the sum rate achieved by

the IoT devices was -2 bps, which indicates a collision. A collision in this context refers

to an event where two or more devices attempt to transmit a signal at the same time over

a shared communication channel, resulting in an overlap and interference of the signals.

This collision disrupts the normal functioning of the devices and negatively impacts the

data transmission. However, for the rest of the episodes, the sum rate was a specific

positive value, indicating successful and collision-free data transmission between the

devices. This fluctuation in sum rate underscores the importance of effective collision

management in IoT devices to ensure optimal performance.

To conclude, lowering the learning rate from 0.1 to 0.001 in DQN training demonstrates

a progressive reduction in collision rates over time, indicating that a slower learning rate

facilitates more stable and consistent convergence towards improved performance in the

later episodes.

RESTRICTED 50

RESTRICTED

4.3 Energy Efficiency Comparison

The energy efficiency comparison is depicted in Fig. 20. The energy efficiency metric is

of important consideration especially in UAV assisted scenario. The energy efficiency is

calculated by:

EE =
Sum Rate

Power of IoT

Analyzing the impact of different learning rates on energy efficiency reveals distinct

patterns in the behavior of the DQN algorithm. For a learning rate of 0.001, depicted

by the green line, the energy efficiency steadily increases over episodes, reaching a

peak slightly above 1.2e6 and close to 1.4e6. This gradual ascent indicates stable

convergence.

Figure 20: Average energy efficiency comparison with its varying learning rates of DQN.

In contrast, the orange line representing a learning rate of 0.01 exhibits a more aggressive

RESTRICTED 51

RESTRICTED

behavior, resulting in rapid initial growth in energy efficiency and lies at a performance

gap of 14-16% approximately from 0.001 learning rate. However, around the 400-

episode mark, oscillations become prominent, signaling potential challenges in stability.

This could imply faster convergence but may come at the expense of adaptability,

potentially leading to over fitting or difficulties in efficiently adapting to new data.

The blue line, corresponding to a learning rate of 0.1, showcases an almost immediate

rise to peak efficiency but is accompanied by significant oscillations throughout the

training process. These oscillations suggest potential instability and hint at the risk of

over-fitting issues. As it lies at a huge performance gap of 37-39% approximately from

0.001 learning rate which gives us another insight how the performance of our both

agents(UAVs) has decreased over the course of episodes.

To sum up, our examination of various learning rates (0.001, 0.01, and 0.1) in the

DQN algorithm highlights subtle trade-offs between how quickly the system converges

and how stable that convergence is. With a learning rate of 0.001, we observe a steady

and gradual increase in energy efficiency, suggesting stable convergence. Conversely, a

learning rate of 0.01 shows rapid initial growth but introduces oscillations, indicating

challenges in stability. The highest learning rate, 0.1, quickly reaches peak efficiency

but exhibits significant oscillations, signaling potential instability issues. These findings

emphasize the importance of selecting a learning rate tailored to specific needs through

further exploration and fine-tuning.

4.4 Spectrum Efficiency Comparison

The spectrum efficiency (SE) of DQN agents trained with three different learning rates.

The green line, representing a learning rate of 0.001, shows a steady and gradual increase

in SE over episodes, reaching a plateau around episode 600. This indicates consistent

performance with higher convergence and ultimately sets the benchmark for the other

RESTRICTED 52

RESTRICTED

learning rates.

Figure 21: Average spectrum efficiency comparison with its varying learning rates of DQN.

In contrast, the orange line, representing a learning rate of 0.01, escalates rapidly in

initial episodes but starts to fluctuate around episode 400 before stabilizing near episode

800. This could imply faster convergence but potential instability during training.

Moreover, this lies at a performance gap of 8-10% approximately.

The blue line, representing a learning rate of 0.1, shows rapid attainment of peak

SE but has a huge performance gap of 27-30% approximately which is Unfavorable

to agents; moreover, it is followed by significant fluctuations throughout, suggesting

potential over fitting or instability due to the aggressive update of Q-values.

In a nutshell, the learning rate of 0.001 (Green Line) appears to achieve the best

Spectrum Efficiency (SE) over the course of the episodes. It shows a steady and

consistent increase in SE, indicating a stable learning process and effective utilization of

RESTRICTED 53

RESTRICTED

the spectrum.

4.5 Deciphering DQN Learning Rates: A Loss Perspective

The plot below shows the loss calculated using Mean Square Error (MSE) for DQN

agents trained with three different learning rates.

Figure 22: Comparative Loss Analysis for DQN Agents with Learning Rates of 0.001, 0.01, and 0.1

1. Learning Rate 0.001 (Blue Line): This learning rate starts with a very high loss,

nearly reaching 8e10. However, it rapidly decreases and stabilizes around zero after

approximately 20,000 training steps. This indicates that initially, the model with this

learning rate had a significant error but adjusted quickly.

RESTRICTED 54

RESTRICTED

Figure 23: Loss for DQN Agents with Learning Rate of 0.001

2. Learning Rate 0.01 (Orange Line): The loss with this learning rate is significantly

lower initially compared to the blue line. It also decreases rapidly and appears to stabilize

close to zero, though it takes slightly more training steps to stabilize compared to the

blue line.

Figure 24: Loss for DQN Agents with Learning Rate of 0.01

RESTRICTED 55

RESTRICTED

3. Learning Rate 0.1 (Green Line): This learning rate shows the lowest initial loss

among all three. It remains relatively stable throughout the training process, indicating

that this learning rate might be too high causing the model not to converge effectively or

it has reached an optimal state quickly.

Figure 25: Loss for DQN Agents with Learning Rate of 0.1

In conclusion, A higher learning rate, while offering rapid initial learning, may lead to

instability in the training process. On the other hand, a smaller learning rate, despite

slower initial learning, tends to provide more stable and consistent performance over a

larger number of episodes.

However, it’s crucial to note that these observations are specific to the conditions of this

particular experiment. The optimal learning rate may vary under different scenarios

or parameters. This approach ensures robust and efficient training of DQN agents,

ultimately leading to improved performance in UAV-assisted IoT networks.

RESTRICTED 56

RESTRICTED

4.6 DQN Batch Size Analysis

Following the successful implementation of DQN algorithms with various learning rates,

the total data rate (sum rate) was optimized. The optimal learning rate of 0.001 was

chosen and subsequently examined with different batch sizes to assess the impact of

varying batch size on DQN Agents’ performance.

The resulting Fig. 26 illustrates the achieved sum rate across different batch sizes

for the selected optimal learning rate of 0.001.

Figure 26: The plot illustrates the impact of changing batch sizes on the sum rate achieved by DQN Agents. After
optimizing the sum rate with the best learning rate (0.001), this analysis explores the performance sensitivity to different
batch sizes.

1. Batch Size 32 (Blue Line): Initially, the DQN agent with a batch size of 32

exhibits a swift increase in the average sum rate, though a noticeable dip occurs around

the 400-episode mark. Despite this dip, performance recovers and stabilizes, aligning

with the other batch sizes.

2. Batch Size 64 (Orange Line): The DQN agent with a batch size of 64 also

demonstrates a sharp performance increase initially. Unlike the batch size of 32, this

RESTRICTED 57

RESTRICTED

line doesn’t experience a significant dip and maintains relatively stable performance

throughout the episodes.

3. Batch Size 128 (Green Line): The DQN agent’s performance with a batch size of

128 follows a similar trend to the batch size of 64, showing a consistent increase in the

average sum rate and maintaining stability throughout the episodes.

Overall, the effect of batch size seems to be insensitive to DQN performance as all

three batch sizes exhibit similar performance trends over the episodes. Despite some

fluctuations, all three lines stabilize towards the end of the observed episodes, indicating

that the DQN agent is able to learn effectively regardless of the batch size.

RESTRICTED 58

RESTRICTED

Chapter 5

5 Conclusion and Future Direction

In conclusion, the analysis of DQN agents with varying learning rates in the context of

Multi-Agent Reinforcement Learning for sum rate maximization in UAV-assisted IoT

networks has yielded insightful results. The consistent outperformance of lower learning

rates (0.001) in metrics such as sum rate, energy efficiency, and spectral efficiency

underscores the significance of meticulous learning rate selection. Notably, the observed

reduction in collisions enhances the safety aspect of the system. However, the trade-off

between convergence speed and stability is evident, as lower learning rates exhibit faster

convergence, as seen in the loss plots.

Furthermore, different reinforcement learning (RL) approaches have been developed

to address the challenges encountered in deploying UAVs to support IoT networks.

These frameworks are designed with a focus on performance metrics specific to the IoT

environment, where UAVs play a crucial role. Drawing from the findings outlined in

this report, potential future research directions may include:

As this study opens avenues for further exploration. The applicability of alternative Deep

Reinforcement Learning (DRL) algorithms, such as Q-learning, Deep Deterministic

Policy Gradient (DDPG), and Proximal Policy Optimization (PPO), warrants investigation

to assess their impact on performance. Additionally, experimenting with different action

settings, such as adjusting the angle of rotation or velocity of UAVs, could provide

valuable insights into optimizing resource utilization and system efficiency [33].

The titled ”Multi-Agent Reinforcement Learning for Sum Rate Maximization in UAV-

Assisted IoT Networks,” employing two UAVs and two IoT devices, offers a foundational

understanding. To enhance its applicability, future endeavors could explore scaling up

the system by increasing the number of UAVs and IoT devices. Real-time considerations

RESTRICTED 59

RESTRICTED

and dynamic scenarios may further enrich the model’s robustness and practicality

[33, 34, 35].

Building upon the RL strategies introduced in this report the envisioned future direction

involves the hardware realization of these methods in on-board and hardware-in-loop

configurations to support UAV-enabled IoT and heterogeneous networks. Integrating RL

frameworks for on-board learning introduces novel avenues and dimensions for further

exploration and research [34]. The process of identifying, designing, programming,

and integrating hardware with the aforementioned RL frameworks necessitates careful

consideration of complexity and energy consumption aspects. Evaluating the performance

trade-offs between hardware energy consumption, algorithmic complexity, and convergence

potential offers valuable insights [35]. Through thorough analysis and investigation,

it becomes possible to develop efficient hardware designs tailored specifically for RL

frameworks, thus enhancing their effectiveness in real-world applications.

In the broader context, the integration of Unmanned Aerial Vehicles (UAVs) into

communication services for IoT demonstrates a promising trajectory. Leveraging the

synergy of UAVs, IoT, and Artificial Intelligence (AI) presents a compelling avenue

for innovation. As UAVs evolve into intelligent, self-directed entities, the potential for

delivering enhanced services grows exponentially. This report provides a comprehensive

overview of UAV communication, IoT, and RL technologies, addressing potential

challenges, applications, and developmental trajectories within the evolving landscape

of UAV-assisted IoT.

RESTRICTED 60

RESTRICTED

Appendices

RESTRICTED 61

RESTRICTED

A Program Code

A.1 Importing Libraries

1

2 import gymnasium as gym

3 import numpy as np

4 import tree

5 from ray.rllib.env.multi_agent_env import MultiAgentEnv

6 import torch

7 import torch.nn.functional as F

8 import torch.nn as nn

9 import torch.optim as optim

10 from torch.autograd import Variable

11 import random

12 import matplotlib.pyplot as plt

A.2 Environment Modelling

1

2 class CustomUAVEnv(MultiAgentEnv):

3 def __init__(self, config = None):

4 super().__init__()

5 self.grid_size = 10

6 self.num_uavs = 2

7 self.num_devices = 2

8 self._agent_ids = {'agent_0', 'agent_1'}#, 'agent_2'}

9

10 # Initialize grid and entities

11 self.grid = np.zeros((self.grid_size, self.grid_size), dtype=float)

12 self.uav_positions = np.random.randint(0, self.grid_size, size=(self.num_uavs,

2))↪→

13 self.device_positions = np.random.randint(0, self.grid_size,

size=(self.num_devices, 2))↪→

14 self.device_powers = 0.1+0.9*np.random.rand(self.num_devices) #device power

between 100 mW and 1 watts↪→

15 self.uav_bandwidths = np.full(self.num_uavs, 10000) #UAV bandiwdth is 1MHz

RESTRICTED 62

RESTRICTED

16 self.noise = 1e-12 # -90dBm

17 self.uav_height = 10 #10m height

18 self.steps_in_traj = 0

19 # Define observation and action spaces

20 self.observation_space = gym.spaces.Box(low=0, high=500, shape=(8,),

dtype=np.float32)↪→

21 self.action_space = gym.spaces.Discrete(5) # Assuming 4 discrete actions (e.g.,

no movement, up, down, left, right)↪→

22 self.random_state = np.random.RandomState()

23 self.infos = {"agent_0":{"collisions": 0},"agent_1":{"collisions": 0}}#,

"agent_2":{"collisions": 0}}↪→

24

25 def reset(self):

26 # Reset environment state

27 self.uav_positions = np.random.randint(0, self.grid_size, size=(self.num_uavs,

2))↪→

28 self.device_positions = np.random.randint(0, self.grid_size,

size=(self.num_devices, 2))↪→

29 self.device_powers = 0.1+0.9*np.random.rand(self.num_devices) #device power

between 100 mW and 1 watts↪→

30 self.uav_bandwidths = np.full(self.num_uavs, 10000) #UAV bandiwdth is 1MHz

31 self.steps_in_traj = 0

32 self.infos = {"agent_0":{"collisions": 0},"agent_1":{"collisions": 0}}#,

"agent_2":{"collisions": 0}}↪→

33

34 # Construct observations for each agent

35 observations = {}

36 for i in range(self.num_uavs):

37 obs = self._construct_observation(i)

38 observations[f"agent_{i}"] = obs

39 return observations

40

41 def step(self, actions):

42 self.steps_in_traj += 1

43

44 # Update UAV positions based on actions

45 for i, action in enumerate(actions.values()):

46 if action == 0: # do not move the UAV

47 pass

48 elif action == 1:# move UAV up

RESTRICTED 63

RESTRICTED

49 self.uav_positions[i][0] += 1

50 elif action == 2: # move UAV down

51 self.uav_positions[i][0] -= 1

52 elif action == 3: # move UAV left

53 self.uav_positions[i][1] -= 1

54 elif action == 4: # move UAV right

55 self.uav_positions[i][1] += 1

56

57 if (self.uav_positions[i][0] < 0) | (self.uav_positions[i][1] < 0) |

(self.uav_positions[i][0] >= self.grid_size) | (self.uav_positions[i][1] >=

self.grid_size):

↪→

↪→

58 terminateds = {"__all__": True, "agent_0": True, "agent_1": True}

59 rewards = {}

60 for i in range(self.num_uavs):

61 rewards[f"agent_{i}"] = -1

62 # Construct next observations

63 next_observations = {}

64 for i in range(self.num_uavs):

65 next_obs = self._construct_observation(i)

66 next_observations[f"agent_{i}"] = next_obs

67 return next_observations, rewards, terminateds, self.infos

68

69 # Calculate rewards for each agent

70 rewards = {}

71 for i in range(self.num_uavs):

72 reward = self._calculate_reward(i)

73 rewards[f"agent_{i}"] = reward

74

75 # Construct next observations

76 next_observations = {}

77 for i in range(self.num_uavs):

78 next_obs = self._construct_observation(i)

79 next_observations[f"agent_{i}"] = next_obs

80

81 if self.steps_in_traj > 100:

82 terminateds = {"__all__": True, "agent_0": True, "agent_1": True}#,

"agent_2": True}↪→

83 else:

84 terminateds = {"__all__": False, "agent_0": False, "agent_1": False}#,

"agent_2": False}↪→

RESTRICTED 64

RESTRICTED

85

86 return next_observations, rewards, terminateds, self.infos

87

88 def _construct_observation(self, agent_id):

89

90 obs = [self.uav_bandwidths[agent_id]]

91

92 # position of other UAVs and bandwidths

93 for i in range(self.num_uavs):

94 if i != agent_id:

95 obs.append(self.uav_bandwidths[i])

96

97 # position of ground devices (1, 0) and power

98 for i in range(self.num_devices):

99 obs.append(self.device_powers[i])

100

101 return np.concatenate([self.uav_positions[0], self.uav_positions[1], obs],

dtype=np.float16)↪→

102

103 def _calculate_reward(self, agent_id):

104

105 collision = any(

106 (i != agent_id) and np.all(self.uav_positions[i] ==

self.uav_positions[agent_id])↪→

107 for i in range(self.num_uavs)

108)

109

110 if collision:

111 self.infos[f'agent_{agent_id}']['collisions'] += 1

112 return -1

113

114 # find distance from the assigned device

115 device_dists = self._calculate_gn(self.uav_positions[agent_id], self.uav_height,

self.device_positions[agent_id])↪→

116

117 alpha_n = 0.1

118 sum_sinr = alpha_n*self.device_powers[agent_id]*device_dists/self.noise

119

120 data_rate = self.uav_bandwidths[agent_id]*np.log2(1 + sum_sinr)/1

121

RESTRICTED 65

RESTRICTED

122 return data_rate

123

124 def seed(self, seed=None):

125 if seed is None:

126 seed = np.random.randint(2**31)

127 self.random_state.seed(seed)

128

129 def _calculate_gn(self, uav_location, uav_height, device_location):

130 return 1/np.sqrt((uav_location[0] - device_location[0])**2 + (uav_location[1] -

device_location[1])**2 + uav_height**2)**2.3↪→

131

132 def render(self, mode='human'):

133 img = np.zeros((self.grid_size, self.grid_size, 3), dtype=np.uint8)

134

135 # Render UAVs as red circles

136 for pos in self.uav_positions:

137 img[pos[0], pos[1]] = [255, 0, 0]

138

139 # Render devices as blue squares

140 for pos in self.device_positions:

141 img[pos[0], pos[1]] = [0, 0, 255]

142

143 plt.imshow(img)

144 plt.show()

145 return img

146

A.3 DQN AGENT: Agent Network

1 class QNetwork(nn.Module):

2 def __init__(self, state_shape, num_actions):

3 super(QNetwork, self).__init__()

4 self.fc1 = nn.Linear(state_shape, 32)

5 self.fc2 = nn.Linear(32, num_actions)

6

7 def forward(self, x):

8 x = F.relu(self.fc1(x))

9 return self.fc2(x)

RESTRICTED 66

RESTRICTED

10

A.4 DQN AGENT: Network Code

1 class DQNAgent:

2 def __init__(self, state_shape, num_actions, batch_size=64, lr=0.001,

replay_buffer_size=1000, gamma=0.99):↪→

3 self.state_shape = state_shape

4 self.num_actions = num_actions

5 self.model = QNetwork(state_shape, num_actions)

6 self.target_model = QNetwork(state_shape, num_actions)

7 self.learning_rate = lr

8 self.optimizer = optim.Adam(self.model.parameters(), lr= self.learning_rate)

9 self.loss_fn = nn.MSELoss()

10 self.gamma = gamma # Discount factor

11 self.epsilon = 1.0 # Exploration-exploitation trade-off

12 self.epsilon_min = 0.01

13 self.explore_step = 4000

14 self.epsilon_decay = (self.epsilon - self.epsilon_min) / self.explore_step

15 self.batch_size = batch_size

16 self.replay_buffer = [] # Initialize replay buffer

17 self.replay_buffer_size = replay_buffer_size

18 self.tau = 0.01

19 self.losses = [] # New variable to store losses

20

21 # hard copy model parameters to target model parameters

22 for target_param, param in zip(self.model.parameters(),

self.target_model.parameters()):↪→

23 target_param.data.copy_(param)

24

25 def soft_update(self):

26 """Soft update model parameters.

27 _target = *_local + (1 -)*_target

28 """

29 for target_param, local_param in zip(self.target_model.parameters(),

self.model.parameters()):↪→

30 target_param.data.copy_(self.tau*local_param.data +

(1.0-self.tau)*target_param.data)↪→

RESTRICTED 67

RESTRICTED

31

32 def act(self, state):

33 if np.random.rand() <= self.epsilon:

34 return np.random.choice(self.num_actions)

35 state = torch.FloatTensor(state).unsqueeze(0)

36 q_values = self.model(state).detach().numpy()

37 return np.argmax(q_values)

38

39 def train(self):

40

41 # Sample a mini-batch from the replay buffer

42 mini_batch = random.sample(self.replay_buffer, self.batch_size)

43

44 # Prepare the mini-batch

45 states, actions, rewards, next_states, dones = zip(*mini_batch)

46 states = torch.FloatTensor(np.array(states))

47 actions = torch.LongTensor(np.array(actions))

48 rewards = torch.FloatTensor(np.array(rewards))

49 next_states = torch.FloatTensor(np.array(next_states))

50 dones = torch.FloatTensor(np.array(dones))

51

52 # Compute targets for the mini-batch

53 q_values = self.model(states)

54 next_q_values = self.target_model(states)

55 q_values = q_values.gather(1, actions.unsqueeze(1))

56 expected_q_values = rewards + self.gamma * (1 - dones) *

next_q_values.detach().max(1)[0]↪→

57 expected_q_values = expected_q_values.unsqueeze(1)

58 # Perform a single training step on the mini-batch

59 loss = self.loss_fn(q_values, expected_q_values) # Ensure shapes match

60 self.optimizer.zero_grad()

61 loss.backward()

62 self.optimizer.step()

63

64 # Store the loss in the list

65 self.losses.append(loss.item())

66

67 if self.epsilon > self.epsilon_min:

68 self.epsilon -= self.epsilon_decay

69

RESTRICTED 68

RESTRICTED

70 def update_target_model(self):

71 self.target_model.set_weights(self.model.get_weights())

72

73 def save_model(self, filename):

74 torch.save(self.model.state_dict(), filename)

75

76 def load_model(self, filename):

77 self.model.load_state_dict(torch.load(filename, map_location=torch.device('cpu')))

78 self.model.eval()

79

A.5 DQN AGENT: Training Procedure

1 def train(env, learning_rate, num_episodes=1500, gamma=0.99):

2 print(f'Training for learning rate: {learning_rate}')

3 # Create DQNAgent instances for each UAV

4 agent_0 = DQNAgent(state_size, num_actions, lr=learning_rate, gamma=gamma)

5 agent_1 = DQNAgent(state_size, num_actions, lr=learning_rate, gamma=gamma)

6

7 steps = 0

8 scores_0 = []

9 scores_1 = []

10 device_powers_0 = []

11 uav_bandwidths_0 = []

12 device_powers_1 = []

13 uav_bandwidths_1 = []

14 best_score_0 = 0

15 best_score_1 = 0

16

17 for episode in range(num_episodes):

18 state = env.reset()

19

20 done = {"__all__": False, "agent_0": False, "agent_1": False}

21

22 while not done["__all__"]:

23

24 action_0 = agent_0.act(state['agent_0'])

25 action_1 = agent_1.act(state['agent_1'])

RESTRICTED 69

RESTRICTED

26

27 next_state, rewards, done, _ = env.step({'agent_0': action_0, 'agent_1':

action_1})↪→

28

29 agent_0.replay_buffer.append((state['agent_0'], action_0,

rewards['agent_0'], next_state['agent_0'], done['agent_0']))↪→

30 agent_1.replay_buffer.append((state['agent_1'], action_1,

rewards['agent_1'], next_state['agent_1'], done['agent_1']))↪→

31

32 state = next_state

33 steps += 1

34

35 if steps % 100 and len(agent_0.replay_buffer) >= 64 and

len(agent_1.replay_buffer) >= 64:↪→

36 agent_0.train()

37 agent_1.train()

38

39 print("Episode number: {}, Sum_rate(bps): {}".format(episode,

round(sum(rewards.values()), 2)))↪→

40

41 scores_0.append(rewards['agent_0'])

42 scores_1.append(rewards['agent_1'])

43 device_powers_0.append(env.device_powers[0])

44 device_powers_1.append(env.device_powers[1])

45 uav_bandwidths_0.append(env.uav_bandwidths[0])

46 uav_bandwidths_1.append(env.uav_bandwidths[1])

47 avg_score_0 = np.mean(scores_0[-min(100, len(scores_0)):])

48 avg_score_1 = np.mean(scores_1[-min(100, len(scores_1)):])

49

50 if avg_score_0 > best_score_0:

51 agent_0.save_model(f'the_best_agent0_{learning_rate}.pth')

52 best_score_0 = avg_score_0

53

54 if avg_score_1 > best_score_1:

55 agent_1.save_model(f'the_best_agent1_{learning_rate}.pth')

56 best_score_1 = avg_score_1

57

58 if episode % target_update_interval == 0:

59 agent_0.soft_update()

60 agent_1.soft_update()

RESTRICTED 70

RESTRICTED

61

62 # Save rewards to files

63 np.save(f'rewards_agent_0_{learning_rate}.npy', np.array(scores_0))

64 np.save(f'rewards_agent_1_{learning_rate}.npy', np.array(scores_1))

65 np.save(f"agent_0_losses_lr_{learning_rate}.npy", np.array(agent_0.losses))

66 np.save(f"agent_1_losses_lr_{learning_rate}.npy", np.array(agent_1.losses))

67 np.save(f'device_powers_0_{learning_rate}.npy', np.array(device_powers_0))

68 np.save(f'device_powers_1_{learning_rate}.npy', np.array(device_powers_1))

69 np.save(f"uav_bandwidths_0_{learning_rate}.npy", np.array(uav_bandwidths_0))

70 np.save(f"uav_bandwidths_1_{learning_rate}.npy", np.array(uav_bandwidths_1))

71

72

73 def start_training(lr1=0.1,lr2=0.01,lr3=0.001, episodes=1500, gamma=0.99):

74 if env is None or num_actions is None or state_size is None:

75 initialize_globals()

76 for lr in [lr1, lr2, lr3]:

77 # Train

78 train(env, lr, episodes, gamma)

79

A.6 Plotting Reward Curves

1

2 def load_rewards(agent_id, learning_rate):

3 rewards= np.load(f'rewards_agent_{agent_id}_{learning_rate}.npy')

4 device_power = np.load(f'device_powers_{agent_id}_{learning_rate}.npy')

5 bandwidth = np.load(f'uav_bandwidths_{agent_id}_{learning_rate}.npy')

6 return rewards, device_power, bandwidth

7

8

9 def moving_average(data, window_size): # Calculate the average of the sum-rate on each

100 episodes to verify if the agents learn (increasing curve) or not (fluctuations)↪→

10 return np.convolve(data, np.ones(window_size)/window_size, mode='valid')

11

12

13 def plot_sum_rate(window_size, lr1, lr2, lr3):

14

15 plt.figure(figsize=(15, 7))

RESTRICTED 71

RESTRICTED

16 for learning_rate in [lr1, lr2, lr3]:

17 rewards0, _, _ = load_rewards(agent_id=0, learning_rate=learning_rate)

18 rewards1, _, _ = load_rewards(agent_id=1, learning_rate=learning_rate)

19

20 moving_avg = moving_average(rewards0 + rewards1, window_size)

21

22 plt.plot(moving_avg, label=f'sum_rate for learning_rate={learning_rate}',

linewidth=2)↪→

23

24 # Adding labels and title

25 plt.xlabel('Episodes')

26 plt.ylabel(' Avg. Sum_rate (bps)')

27 plt.legend()

28

29 svg_file = 'sum_rate.svg'

30 plt.savefig(svg_file, format='svg')

31

32 plt.show()

33

A.7 Plotting Loss Function (for Agent-0 for example)

1

2

3 def load_loss(agent_id, learning_rate):

4 return np.load(f'agent_{agent_id}_losses_lr_{learning_rate}.npy')

5

6 def plot_loss(loss, learning_rate):

7 plt.plot(loss, label=f'Loss for learning_rate={learning_rate}', linewidth=2)

8

9 # Load loss from files (of the agent_0)

10 loss0_001, loss0_01, loss0_1 = load_loss(0, lr3), load_loss(0, lr2), load_loss(0,

lr1)↪→

11

12 plt.figure(figsize=(10, 5))

13

14 # Plotting the Loss

15 #plot_loss(loss0_001, 0.001)

RESTRICTED 72

RESTRICTED

16 #plot_loss(loss0_01, 0.01)

17 plot_loss(loss0_1, lr1)

18

19 # Adding labels and title

20 plt.xlabel('Training steps')

21 plt.ylabel('Loss')

22 plt.legend()

23

24 # Save the plot as an SVG file

25 plt.savefig('Loss_plot.svg', format='svg')

26 # Display the plot

27 plt.show()

28

29 def load_loss(agent_id, learning_rate):

30 return np.load(f'agent_{agent_id}_losses_lr_{learning_rate}.npy')

31

32 def plot_loss(loss, learning_rate):

33 plt.plot(loss, label=f'Loss for learning_rate={learning_rate}', linewidth=2)

34

35 # Load loss from files (of the agent_0)

36 loss0_001, loss0_01, loss0_1 = load_loss(0, lr3), load_loss(0, lr2), load_loss(0,

lr1)↪→

37

38 plt.figure(figsize=(10, 5))

39

40 # Plotting the Loss

41 #plot_loss(loss0_001, 0.001)

42 plot_loss(loss0_01, lr2)

43 #plot_loss(loss0_1, 0.1)

44

45 # Adding labels and title

46 plt.xlabel('Training steps')

47 plt.ylabel('Loss')

48 plt.legend()

49

50 # Save the plot as an SVG file

51 plt.savefig('Loss_plot.svg', format='svg')

52 # Display the plot

53 plt.show()

54

RESTRICTED 73

RESTRICTED

55 def load_loss(agent_id, learning_rate):

56 return np.load(f'agent_{agent_id}_losses_lr_{learning_rate}.npy')

57

58 def plot_loss(loss, learning_rate):

59 plt.plot(loss, label=f'Loss for learning_rate={learning_rate}', linewidth=2)

60

61 # Load loss from files (of the agent_0)

62 loss0_001, loss0_01, loss0_1 = load_loss(0, lr3), load_loss(0, lr2), load_loss(0,

lr1)↪→

63

64 plt.figure(figsize=(10, 5))

65

66 # Plotting the Loss

67 plot_loss(loss0_001, lr3)

68 #plot_loss(loss0_01, 0.01)

69 #plot_loss(loss0_1, 0.1)

70

71 # Adding labels and title

72 plt.xlabel('Training steps')

73 plt.ylabel('Loss')

74 plt.legend()

75

76 # Save the plot as an SVG file

77 plt.savefig('Loss_plot.svg', format='svg')

78 # Display the plot

79 plt.show()

80

81 """**ALL PLOTS OF LOSSES**"""

82

83 def load_loss(agent_id, learning_rate):

84 return np.load(f'agent_{agent_id}_losses_lr_{learning_rate}.npy')

85

86 def plot_loss(loss, learning_rate):

87 plt.plot(loss, label=f'Loss for learning_rate={learning_rate}', linewidth=2)

88

89 # Load loss from files (of the agent_0)

90 loss0_001, loss0_01, loss0_1 = load_loss(0, lr3), load_loss(0, lr2), load_loss(0,

lr1)↪→

91

92 plt.figure(figsize=(10, 5))

RESTRICTED 74

RESTRICTED

93

94 # Plotting the Loss

95 plot_loss(loss0_001, lr3)

96 plot_loss(loss0_01, lr2)

97 plot_loss(loss0_1, lr1)

98

99 # Adding labels and title

100 plt.xlabel('Training steps')

101 plt.ylabel('Loss')

102 plt.legend()

103

104 # Save the plot as an SVG file

105 plt.savefig('Loss_plot.svg', format='svg')

106 # Display the plot

107 plt.show()

108

A.8 Plotting Cumulative Sum Rate

1

2

3 import matplotlib.pyplot as plt

4 import numpy as np

5

6 plt.figure(figsize=(12, 7))

7

8 for learning_rate in [lr1,lr2,lr3]:

9 rewards0, _, _ = load_rewards(agent_id=0, learning_rate=learning_rate)

10 rewards1, _, _ = load_rewards(agent_id=1, learning_rate=learning_rate)

11

12 sum_rates = rewards0 + rewards1

13 max_sum_rate = np.max(sum_rates)

14

15 plt.bar(str(learning_rate), max_sum_rate, label=f'Max Sum Rate for Learning Rate

= {learning_rate}')↪→

16

17 # Adding labels and title<

18 plt.xlabel('Episodes')

RESTRICTED 75

RESTRICTED

19 plt.ylabel('Max Sum Rate (bps)')

20 plt.legend()

21

22 # Set y-axis limit to start from 500,000

23 plt.ylim(500000, plt.ylim()[1])

24

25 # Save the plot as an SVG file

26 plt.savefig('max_sum_rate.svg', format='svg')

27 # Display the plot

28 plt.show()

29

A.9 Plotting Energy Eficiency

1

2 plt.figure(figsize=(15, 7))

3 for learning_rate in [lr1,lr2,lr3]:

4 rewards0, device_power0, _ = load_rewards(agent_id=0,

learning_rate=learning_rate)↪→

5 rewards1, device_power1, _ = load_rewards(agent_id=1,

learning_rate=learning_rate)↪→

6

7 # Calculate the ratio of rewards to device_power

8 ratio0 = rewards0 / device_power0

9 ratio1 = rewards1 / device_power1

10

11 moving_avg0 = moving_average(ratio0, window_size)

12 moving_avg1 = moving_average(ratio1, window_size)

13

14 plt.plot(moving_avg0 + moving_avg1, label=f'Energy efficiency for

learning_rate={learning_rate}', linewidth=2)↪→

15

16 # Adding labels and title

17 plt.xlabel('Episodes')

18 plt.ylabel('Energy efficiency')

19 plt.legend()

20

21 # Save the plot as an SVG file

RESTRICTED 76

RESTRICTED

22 plt.savefig('Energy_efficiency.svg', format='svg')

23 # Display the plot

24 plt.show()

25

A.10 Plotting Spectrum Eficiency

1

2 #Spectrum efficinecy = (sum_rate in each episode) / (total bandwidth of UAVs)

3 plt.figure(figsize=(15, 7))

4 for learning_rate in [lr1,lr2,lr3]:

5 rewards0, _, bandwidth0 = load_rewards(agent_id=0, learning_rate=learning_rate)

6 rewards1, _, bandwidth1 = load_rewards(agent_id=1, learning_rate=learning_rate)

7

8 # Calculate the ratio of rewards to bandwidth

9 ratio0 = rewards0 / bandwidth0

10 ratio1 = rewards1 / bandwidth1

11

12 moving_avg = moving_average(ratio0 + ratio1, window_size)

13

14 plt.plot(moving_avg, label=f'Spectrum efficinecy for

learning_rate={learning_rate}', linewidth=2)↪→

15

16 # Adding labels and title

17 plt.xlabel('Episodes')

18 plt.ylabel('Spectrum efficinecy')

19 plt.legend()

20

21 # Save the plot as an SVG file

22 plt.savefig('Spectrum_efficinecy.svg', format='svg')

23 # Display the plot

24 plt.show()

25

RESTRICTED 77

RESTRICTED

A.11 Plotting Collision Rate

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 plt.figure(figsize=(15, 7))

6

7 for learning_rate in [lr1,lr2,lr3]:

8 rewards0, _, _ = load_rewards(agent_id=0, learning_rate=learning_rate)

9 rewards1, _, _ = load_rewards(agent_id=1, learning_rate=learning_rate)

10 sum_rate = rewards0 + rewards1

11

12 # Count occurrences of -2 in the sum_rate array

13 collision_count = np.count_nonzero(sum_rate == -2)

14

15 plt.bar(str(learning_rate), collision_count, label=f'Collisions for Learning

Rate = {learning_rate}')↪→

16

17 # Adding labels and title

18 plt.xlabel('Episodes')

19 plt.ylabel(' Number of Collisions')

20 plt.legend()

21

22 # Save the plot as an SVG file

23 plt.savefig('collision.svg', format='svg')

24 # Display the plot

25 plt.show()

26

A.12 Analyzing Different Batch-Sizes With Best Learning Rate 0.001

1

2 import matplotlib.pyplot as plt

3

4 def load_rewards(agent_id, batch_size):

5 return np.load(f'rewards_agent_{agent_id}_{batch_size}.npy')

RESTRICTED 78

RESTRICTED

6

7 def moving_average(data, window_size):

8 return np.convolve(data, np.ones(window_size)/window_size, mode='valid')

9

10 def plot_rate_sum(moving_avg1, moving_avg2, batch_size):

11 plt.plot(moving_avg1 + moving_avg2, label=f'sum_rate for batch_size={batch_size}',

linewidth=2)↪→

12

13 # Load rewards from files

14 rewards0_32, rewards1_32 = load_rewards(0, 32), load_rewards(1, 32)

15 rewards0_64, rewards1_64 = load_rewards(0, 64), load_rewards(1, 64)

16 rewards0_128, rewards1_128 = load_rewards(0, 128), load_rewards(1, 128)

17

18 window_size = 100

19 moving_avg1_32, moving_avg2_32 = moving_average(rewards0_32, window_size),

moving_average(rewards1_32, window_size)↪→

20 moving_avg1_64, moving_avg2_64 = moving_average(rewards0_64, window_size),

moving_average(rewards1_64, window_size)↪→

21 moving_avg1_128, moving_avg2_128 = moving_average(rewards0_128, window_size),

moving_average(rewards1_128, window_size)↪→

22

23 plt.figure(figsize=(10, 5))

24

25 # Plotting the Rate Sum

26 plot_rate_sum(moving_avg1_32, moving_avg2_32, 32)

27 plot_rate_sum(moving_avg1_64, moving_avg2_64, 64)

28 plot_rate_sum(moving_avg1_128, moving_avg2_128, 128)

29

30 # Adding labels and title

31 plt.xlabel('Episodes')

32 plt.ylabel('Avg.sum_rate(bps)')

33 plt.legend()

34

35 # Save the plot as an SVG file

36 plt.savefig('sum_rate.svg', format='svg')

37 # Display the plot

38 plt.show()

39

RESTRICTED 79

RESTRICTED

B Bibliography

Bibliography

[1] Khurram Mahmud, Syed; Chen, Yue; Chai, Kok Keong (2022): Tandem RL

Framework for Sum Rate Enhancement in NOMAUAV Network. TechRxiv.

Preprint. Available at: https://doi.org/10.36227/techrxiv.20406972.v1

[2] W. Chen, J. Liu, H. Guo, and N. Kato, “Toward Robust and Intelligent Drone

Swarm: Challenges and Future Directions,” IEEE Network, vol. 34, no. 4, pp.

278–283, 2020.

[3] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre,

and H. V. Poor, “6G Internet of Things: A Comprehensive Survey,” IEEE Internet

of Things Journal, vol. 9, no. 1, pp. 359–383, 2022.

[4] B. Mao, F. Tang, Y. Kawamoto, and N. Kato, “AI Models for Green

Communications Towards 6G,” IEEE Communications Surveys and Tutorials, vol.

24, no. 1, pp. 210–247, 2022.

[5] P. McEnroe, S. Wang, and M. Liyanage, “A Survey on the Convergence of Edge

Computing and AI for UAVs: Opportunities and Challenges,” IEEE Internet of

Things Journal, 2022.

RESTRICTED 80

RESTRICTED

[6] M.-A. Lahmeri, M. A. Kishk, and M.-S. Alouini, “Artificial Intelligence for

UAV-Enabled Wireless Networks: A Survey,” IEEE Open Journal of the

Communications Society, vol. 2, pp. 1015–1040, 2021.

[7] Amir Hossein Zarif, May 20, 2021, ”AoI Minimization in Energy Harvesting

and Spectrum Sharing Enabled 6G Networks”, IEEE Dataport, doi:

https://dx.doi.org/10.21227/aynt-my59.

[8] Adnan Fayyaz, Imran Mir, Faiza Gul, Suleman Mir, Nasir Saeed, Turke Althobaiti,

Syed Manzar Abbas, and Laith Abualigah. 2022. ”Deep Reinforcement Learning

for Integrated Non- Linear Control of Autonomous UAVs” Processes 10, no. 7:

1307. https://doi.org/10.3390/pr1007130

[9] Bander Alzahrani, Omar Sami Oubbati, Ahmed Barnawi, Mohammed

Atiquzzaman, Daniyal Alghazzawi, UAV assistance paradigm: State-of-the-art

in applications and challenges, Journal of Network and Computer Applications,

Volume 166, 2020, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2020.102706

21

[10] Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore. S.; Kadel, R. A Review

of Applications and Communication Technologies for Internet of Things (IoT) and

Unmanned Aerial Vehicle (UAV) based Sustainable Smart Farming. Sustainability

2021, 13, 1821. Available at: https://doi.org/10.3390/su13041821

RESTRICTED 81

RESTRICTED

[11] F. Al-Turjman and H. Zahmatkesh, “A Comprehensive Review on the Use of AI in

UAV Communications: Enabling Technologies, Applications, and Challenges,”

Springer Unmanned Aerial Vehicles in Smart Cities, pp. 1–26, 2020.

[12] H. Zhou, C. She, Y. Deng, M. Dohler, and A. Nallanathan, “Machine learning for

massive industrial internet of things,” IEEE Wireless Communications, vol. 28, no.

4, pp. 81–87, 2021.

[13] Z. Wei, M. Zhu, N. Zhang, L. Wang, Y. Zou, Z. Meng, H. Wu, and Z. Feng,

“Uav-assisted data collection for internet of things: A survey,” IEEE Internet of

Things Journal, vol. 9, no. 17, pp. 15 460–15 483, 2022.

[14] P. Asghari, A. M. Rahmani, and H. Haj Seyyed Javadi, “A medical monitoring

scheme and health-medical service composition model in cloud-based iot platform,”

Transactions on Emerging Telecommunications Technologies, vol. 30, no. 6, p.

e3637, 2019.

[15] M. W. Woo, J. Lee, and K. Park, “A reliable iot system for personal healthcare

devices,” Future Generation Computer Systems, vol. 78, pp. 626–640, 2018.

RESTRICTED 82

RESTRICTED

[16] A. Ahmad, S. Ahmad, M. H. Rehmani, and N. U. Hassan, “A survey on radio

resource allocation in cognitive radio sensor networks,” IEEE Communications

Surveys Tutorials, vol. 17, no. 2, pp. 888–917, 2015.

[17] J. Sanchez-Gomez, R. Sanchez-Iborra, and A. Skarmeta, “Transmission

technologies comparison for iot communications in smart-cities,” in GLOBECOM

2017-2017 IEEE Global Communications Conference. IEEE, 2017, pp. 1–6.

[18] J.-S. Fu, Y. Liu, H.-C. Chao, B. K. Bhargava, and Z.-J. Zhang, “Secure data

storage and searching for industrial iot by integrating fog computing and cloud

computing,” vol. 14, no. 10, pp. 4519–4528, 2018.

[19] F. Liers, A. Martin, M. Merkert, N. Mertens, and D. Michaels, “Solving

mixed-integer nonlinear optimization problems using simultaneous convexification:

a case study for gas networks,” Journal of Global Optimization, vol. 80, no. 2, pp.

307–340, Feb. 2021. [Online]. Available: https://doi.org/10.1007/s10898-020-

00974-0.

[20] W. Ahsan, W. Yi, Z. Qin, Y. Liu, and A. Nallanathan, “Resource allocation in

uplink NOMA-IoT networks: A reinforcement-learning approach,” arXiv preprint

arXiv:2007.08350, 2020.

RESTRICTED 83

RESTRICTED

[21] R. Zhang, X. Pang, J. Tang, Y. Chen, N. Zhao, and X. Wang, “Joint location and

transmit power optimization for noma-uav networks via updating decoding order,”

IEEE Wireless Communications Letters, vol. 10, no. 1, pp. 136–140, 2021.

[22] S. K. Singh, K. Agrawal, K. Singh, C.-P. Li, and Z. Ding, “Noma enhanced hybrid

ris-uavassisted full-duplex communication system with imperfect sic and csi,”

IEEE Transactions on Communications, vol. 70, no. 11, pp. 7609–7627, 2022.

[23] J. Fu, Y. Xiao, H. Liu, P. Yang, and B. Zhang, “A novel intelligent sic detector for

noma systems based on deep learning,” in 2021 IEEE 93rd Vehicular Technology

Conference (VTC2021-Spring), 2021, pp. 1–6.

[24] Mahmud, S.K. (2022). Reinforcement Learning Empowered Unmanned Aerial

Vehicle Assisted Internet of Things Networks. Doctoral thesis, Queen Mary

University of London, School of Electronic Engineering and Computer Science,

United Kingdom.

[25] L. Ardon, “Reinforcement learning to solve np-hard problems: an application

to the CVRP,” CoRR, vol. abs/2201.05393, 2022. [Online]. Available: https:

//arxiv.org/abs/2201.05393

RESTRICTED 84

RESTRICTED

[26] S. Ray, “A quick review of machine learning algorithms,” in 2019 International

Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COMITCon), 2019, pp. 35–39.

[27] W. Ahsan, W. Yi, Z. Qin, Y. Liu, and A. Nallanathan, “Resource allocation in

uplink NOMA-IoT networks: A reinforcement-learning approach,” arXiv preprint

arXiv:2007.08350, 2020.

[28] M. Fayaz, W. Yi, Y. Liu, and A. Nallanathan, “Competitive ma-drl for

transmit power pool design in semi-grant-free noma systems,” arXiv preprint

arXiv:2106.11190, 2021.

[29] R. Zhong, X. Liu, Y. Liu, and Y. Chen, “Noma in uav-aided cellular offloading: A

machine learning approach,” in 2020 IEEE Globecom Workshops (GC Wkshps,

2020, pp. 1–6.

[30] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[31] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning-based

resource allocation for uav networks,” vol. 19, no. 2, pp. 729–743, 2019.

RESTRICTED 85

RESTRICTED

[32] Khurram Mahmud, Syed; Chen, Yue; Chai, Kok Keong (2022): Tandem RL

Framework for Sum Rate Enhancement in NOMA-UAV Network. TechRxiv.

Preprint. https://doi.org/10.36227/techrxiv.20406972.v1

[33] J. Zhang, H. Zhu, F. Wang, J. Zhao, Q. Xu, and H. Li, “Security and privacy

threats to federated learning: Issues, methods, and challenges,” Security and

Communication Networks, vol. 2022, pp. 1–24, Sep. 2022. [Online]. Available:

https://doi.org/10.1155/2022/2886795

[34] G. Xu, H. Li, H. Ren, K. Yang, and R. H. Deng, “Data security issues in deep

learning: attacks, countermeasures, and opportunities,” IEEE Communications

Magazine, vol. 57, no. 11, pp. 116–122, 2019.

[35] A. Alagil, M. Alotaibi, and Y. Liu, “Randomized positioning dsss for anti-jamming

wireless communications,” in 2016 International Conference on Computing,

Networking and Communications (ICNC), 2016, pp. 1–6.

[36] Available at: https://intellabs.github.io/coach/

[37] Understanding Activations and Optimization- Neural networks. (2023, February

18). Higher Logic, LLC. https://community.ibm.com/community/user/ai-

datascience/blogs/pavan-saish naru/2023/01/27/optimization-hyperparameters

RESTRICTED 86

RESTRICTED

[38] Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore. S.; Kadel, R. A Review

of Applications and Communication Technologies for Internet of Things (IoT) and

Unmanned Aerial Vehicle (UAV) based Sustainable Smart Farming. Sustainability

2021, 13, 1821. Available at: https://doi.org/10.3390/su13041821

[39] Analytical Review on OMA vs. NOMA and Challenges Implementing NOMA,

Second International Conference on Smart Electronics and Communication

(ICOSEC), 2021. Available at: IEEE Xplore Part Number: CFP21V90-ART;

ISBN: 978-1-6654-3368-6

[40] Adnan Fayyaz, Imran Mir, Faiza Gul, Suleman Mir, Nasir Saeed, Turke Althobaiti,

Syed Manzar Abbas, and Laith Abualigah. 2022. ”Deep Reinforcement Learning

for Integrated Non- Linear Control of Autonomous UAVs” Processes 10, no. 7:

1307. https://doi.org/10.3390/pr1007130

RESTRICTED 87

	List of Figures
	List of Tables
	Introduction to the Project
	Project Title
	Project Motivation
	Project Description
	Scope of the Project
	Project Structure
	Summary

	Literature Review
	 Basic Overview
	Unfolding IoT: The evolution of connected devices
	OMA-UAV Regime
	Applications of OMA-UAV aided IoT networks
	Surveillance and Reconnaissance
	Communication and Connectivity Support
	Agriculture and Environmental Monitoring
	Target Tracking and Autonomous Swarm Operations

	Key Performance Indicators(KPIs)
	 Sum-rate
	 Energy efficiency
	 Spectrum efficiency

	Reinforcement Learning
	Agent in Reinforcement Learning
	Environment in Reinforcement Learning
	State Mechanism in Reinforcement Learning
	Action Mechanism in Reinforcement Learning
	Reward Mechanism in Reinforcement Learning
	Markov Decision Process in Reinforcement Learning
	 Q-Learning
	 Deep Q-Network (DQN)
	 Deep Deterministic Policy Gradient (DDPG)

	 Deep Learning
	Neural Network
	 Optimizers
	Adam

	Activation Function
	ReLU
	Sigmoid
	 Softmax

	Loss Function
	Loss function for regression
	Loss function for classification

	Deep Q-Network Architecture
	Chapter Summary

	System Model
	Methodology
	Problem Formulation
	Optimization Function

	Environment Modelling
	Introduction
	Environment Initialization
	Observation and Action Spaces
	UAV Movement
	Termination and Rewards
	Data Rate Calculation

	MARL Algorithm Framework
	Neural Network Architecture (Q-Network Class)
	DQN Agent Class
	Neural Networks
	Optimization
	Hyperparameters

	Training Procedure
	Plotting and Analysis

	Results And Discussion
	Average Sum-Rate Comparison
	Learning Rates: Navigating UAV Collisions
	Energy Efficiency Comparison
	Spectrum Efficiency Comparison
	Deciphering DQN Learning Rates: A Loss Perspective
	DQN Batch Size Analysis

	Conclusion and Future Direction
	Program Code
	Importing Libraries
	Environment Modelling
	DQN AGENT: Agent Network
	DQN AGENT: Network Code
	DQN AGENT: Training Procedure
	Plotting Reward Curves
	Plotting Loss Function (for Agent-0 for example)
	Plotting Cumulative Sum Rate
	Plotting Energy Eficiency
	Plotting Spectrum Eficiency
	Plotting Collision Rate
	Analyzing Different Batch-Sizes With Best Learning Rate 0.001

	Bibliography
	Bibliography

