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Abstract 

DC microgrids have attracted considerable attention in recent years due to their higher 

efficiency, increased integration of renewables, and improved islanding capability over 

traditional AC power networks. However, ensuring effective protection for DC microgrids 

remains a challenge, as the failure to detect and isolate faults promptly can lead to widespread 

grid failure. This thesis proposes a machine learning-based fault detection and isolation 

algorithm to address this issue. The algorithm integrates mathematical and physical modeling 

of the DC microgrid using SIMULINK and incorporates a hysteresis band controller to 

maintain stable operation. By extracting fault-related data from the microgrid, a supervised 

machine learning algorithm based on neural networks is trained. The algorithm utilizes the 

cross-entropy loss function for effective classification and the scaled conjugate 

backpropagation algorithm to optimize the neural network's parameters. These choices enable 

the algorithm to achieve accurate fault detection and classification, making significant 

contributions to the field of fault detection and isolation in DC microgrids. The algorithm 

demonstrates remarkable fault detection capabilities, achieving detection within an impressive 

0.2ms and a fault classification accuracy of 99.9%. This research contributes to enhancing the 

reliability and stability of DC microgrid systems. Future work can focus on expanding the 

algorithm's capabilities by integrating advanced machine learning techniques and validating its 

performance in real-world implementations.  

Keywords:  fault detection and isolation; machine learning; DC microgrids; neural networks 
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Chapter 1 

In this chapter we discuss the basic concepts of microgrids, especially the need 

for DC microgrids. Moreover, we will provide a brief discussion about fault-detection 

and isolation for the DC grids. 

1.1 Introduction 

The present power system is rapidly growing. This rapid growth is making the 

system more complicated and contributing to several issues, including an increase in 

reactive power loss and a decrease in the system's stability and power quality. A DC 

system was developed as a viable solution to many of the problems an AC power system 

is now experiencing. In addition to being naturally simple, DC systems are also devoid 

of concerns like reactive power loss and power quality problems. Therefore, DC 

systems are widely used for bulk power transmission. DC systems are now becoming 

more commonplace at distribution levels as well [1]. By 2050, carbon emissions are 

expected to be decreased to between 80% and 90%, achieving the exceptional carbon 

reduction target set by the EU. This is expected to be accomplished by using renewable 

energy sources and smart electricity utilization. To promote future energy sustainability 

and reduce dependency on the usage of fossil fuels, recent research focused on 

substituting conventional resources with RES and effective power management by 

constructing micro-grids [2]. 

1.1.1 Power Grid 

Power grids are today regarded as one of the crucial parts of the infrastructure 

that supports modern society. The uninterrupted delivery of power to clients is the main 

goal of power system operation. However, both small- and large-scale defects and 

disruptions in the grid frequently result in power outages, which have an impact on the 

dependability of the system and consumer satisfaction [3].  There are two types of 

power distribution systems. 

1.1.1.1 AC Power Grid 

Due to its evolution since the 19th century, the AC electrical grid has subsequently 

become a well-developed and tested idea. Through substations, it is feasible to transmit 
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electric power from a power plant to homes. It also provides a straightforward and 

trustworthy concept of power distribution as shown in Figure 1, which has been the 

norm during the past century. The power transformer, which can change the amplitude 

of the voltage inside the grid system to make the grid system more flexible while 

supplying electricity to the home, is the fundamental benefit of the AC grid [4]. 

 

Figure 1: A generic model of the AC Power Grid 

1.1.1.2 DC Power Grid 

A DC power system is an electrical circuit that consists of resistors and constant 

current sources. The voltages and currents in the circuit are unaffected by time. The 

current or voltage in an electrical circuit is independent of its preceding value. 

Following are some of the main advantages of DC Power System [4] 

o Fewer sources of failure and simpler power electronic connections. 

o Using DC electricity promotes grid dependability and improves stability. 

o Improved integration of dispersed renewable generation. 

o Compared to AC, DC distribution has lower overall losses. Since many 

household appliances run on DC, generating electricity from solar energy 

avoids the losses associated with changing to AC. 

o There are fewer conductors needed, and the skin effect is not present 

(compared to HVDC transmission system). 

o Due to its lower cost than AC, DC is employed in high-voltage long-distance 

transmission in current technologies. 
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1.1.1.3 Concept of Micro-Grid 

A micro-grid is a network of interrelated loads and distributed energy sources 

that, in relation to the grid, functions as a single, managed entity and is restricted within 

specific electrical parameters. A micro-grid may connect to and disconnect from the 

grid to operate in both grid-connected and island mode [5]. 

1.1.2 DC Micro-Grid (DCMG) 

A collection of scattered generators, loads, and energy storage systems that are 

situated near to one another is referred to as a DC micro-grid Fig. 1-2. It presents an 

opportunity to utilize renewable energy sources to produce a clean, green environment. 

Since the DERs are located near to the load, power transmission losses are reduced to 

a minimum. DERs like fuel cells and solar panels create DC Power. Power electronics 

devices can be used to harvest wind energy and generate DC electricity. By coupling 

the DC terminals to electronic loads, electric cars, and batteries, a direct current micro-

grid is produced. DCMG must be correctly operated and regulated to boost 

dependability, generate revenue, and improve performance [6]. Some of the advantages 

in the implementation of DC micro-grid are as follows. 

o Decreased losses and improved efficiency because of using fewer converters for 

DC loads. 

o Simpler interfaces make it easier to integrate various DC DERs such as solar 

PV cells, energy storage devices, and fuel cells, to the same bus. 

o It provides a more effective supply to DC loads, including LED lights and 

electric cars. 

1.1.2.1 Structure of a DC Micro-Grid 

A generic grid connected DCMG configuration with solar panels, wind turbine 

batteries, and a load is shown in Figure 2 below.  
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Figure 2: A typical DCMG construction 

The following are the DCMG's constituent parts: 

1. Generation Unit 

Solar and wind energy are used as DERs in this system. While PV is joined to the 

DC bus using a DC-DC converter, wind power sources are connected using an AC-DC 

converter. Both generating sources operate in the MPPT mode, or maximum power 

point tracking. To capture as much wind and solar energy as possible, this is done. The 

network conditions may allow for the usage of the DERs in derated mode [6]. 

2. Battery 

Using a bi-directional converter, the power storing battery is linked to the DC bus 

regardless of its technology (lead acid, li-ion, etc.). If the demand in the grid-connected 

mode is lower than the generation, the battery gets charged. In isolated mode, a battery 

can be used to power the load [6]. 

3. Load 

The appropriate rated voltage load is connected to the DC bus with the help of 

converters, depending on whether the load is of AC or DC type. The loads with the 

appropriate rated voltage ratings can be connected appropriately in the case of a 

multilevel DC system [6]. 

 

4. Grid Linking Converter 

Grid linking converters are crucial components in modern power systems that 

enable the seamless integration of renewable energy sources into the electrical grid [6]. 

These converters serve as the vital interface between different types of power systems, 

such as AC and DC, allowing for efficient power transmission and distribution. By 
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converting the electricity from one form to another, grid linking converters facilitate 

the stable and reliable transfer of power across diverse networks, bridging the gap 

between conventional power generation and renewable energy generation [7]. Their 

ability to control and regulate power flow ensures grid stability, enhances grid 

resilience, and maximizes the utilization of renewable resources. Grid linking 

converters play a pivotal role in shaping a sustainable and environmentally friendly 

energy landscape, empowering the transition towards a cleaner and greener future. 

1.1.2.2 DC-DC Step-Up and Step-Down Transformer 

1. DC-DC Buck Converter 

A buck converter is a type of DC-DC converter (Step-Down Transformer) widely 

used in power electronics for voltage step-down applications. Its primary function is to 

efficiently reduce a higher DC voltage input to a lower DC voltage output [8]. The 

working principle of a buck converter involves the use of a switch (typically a 

transistor) that operates in a switching mode, along with an inductor, a diode, and a 

capacitor. Through the cyclical switching of the transistor, the buck converter regulates 

the output voltage by controlling the duty cycle, which determines the amount of time 

the switch is ON or OFF. This control mechanism enables the buck converter to 

efficiently step down the voltage while minimizing power losses [8]. Following is the 

schematic diagram of a buck converter shown in Figure 3. 

 
Figure 3: Circuit Diagram of Two-State Buck Converter 

The circuit working dynamics can be explained by the following equations. 
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𝑑

𝑑𝑡
𝐼𝐿 = −

1

𝐿
𝑉𝐶 +

𝑉𝐼𝑁

𝐿
𝐷

𝑑

𝑑𝑡
𝑉𝐶 =

1

𝐶
𝐼𝐿 −

1

𝑅𝐶
𝑉𝐶

 (1) 

Where 𝐿 is inductor and  𝐼𝐿 the current through it. 𝐶 is capacitor and 𝑉𝐶 is the 

voltage across it. 𝑉𝐼𝑁 is the input voltage. 𝑅 is the load resistance in Ohms, and 𝐷 is the 

duty cycle of the switch. 

The possible occurrences of faults are also depicted in the figure. In the first 

case, switch failure might occur, causing a change in duty cycle of the buck converter, 

similarly in second case load component fault can occur resulting in short-circuit fault. 

2. DC-DC Boost Converter 

A boost converter, also known as a step-up converter, is a type of DC-DC converter 

that is widely used in power electronics for voltage step-up applications. Its main 

purpose is to increase a lower DC voltage input to a higher DC voltage output [8]. The 

working principle of a boost converter involves a switch (usually a transistor), an 

inductor, a diode, and a capacitor. Through the control of the duty cycle, which 

determines the ratio of ON and OFF times for the switch, the boost converter regulates 

the output voltage [8]. Following is the schematic diagram of a boost converter shown 

in Figure 4. 

 
Figure 4: Circuit Diagram of Two-State Boost Converter 

The circuit working dynamics can be explained by the following equations. 
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1

𝐿
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Where 𝐼𝐿 and 𝐿 is the current through inductor and inductance in 𝐻 respectively. 

𝑉𝐶  and 𝐶 are the voltage across the capacitor and capacitance in Farads respectively. 

𝑉𝐼𝑁 is the input voltage, 𝑅 is the load resistance in ohm. 𝐷 is the duty cycle of the switch. 

The possible occurrences of faults are also depicted in the figure. In the first 

case, switch failure might occur, causing a change in duty cycle of the boost converter, 

similarly in second case load component fault can occur resulting in short-circuit fault. 

1.2 Statement of the problem 

The electricity sector of the world is witnessing a major shift towards DC 

microgrids, driven by their enhanced efficiency, reliability, flexibility, and cost-

effectiveness compared to traditional AC grids [9], [10]. This innovative shift is fueled 

by factors [11], [12] like decreasing power electronics costs, surging renewable energy 

integration, increased energy efficiency demands, and the vital need for grid resilience. 

As these driving forces accelerate, DC microgrids stand poised to transform the future 

of power distribution. However, despite their immense potential, DC microgrids are 

insecure because of their vulnerability to faults. High voltage, low impedance, and a 

lack of natural zero crossings in DCMGs make FDI challenging [13], [14], demanding 

advanced strategies and robust mechanisms to ensure safe, reliable operation. 

1.3 Goals/Aims & Objectives 

This research proposes a machine-learning-based algorithm to address the fault 

protection issue of the DCMG. Below are the main objectives of this study: 

o Model and generate training data for the DC Microgrid. 

o Train a machine-learning algorithm for fault detection. 

o Test and evaluate the algorithm. 

o Implement the algorithm on the DC microgrid. 
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1.4 Motivation 

As technology advances, the need for a reliable, uninterruptible electric power 

supply becomes more common for everyone, from industry to homes. As a result, the 

global electricity sector is shifting dramatically toward DC microgrids, which 

outperform traditional AC grids in terms of efficiency, reliability, flexibility, and cost-

effectiveness. This innovative shift is being driven by factors such as falling power 

electronics costs, increased renewable energy integration, rising energy efficiency 

demands, and the critical need for grid resilience. Despite their enormous potential, DC 

microgrids are insecure due to their vulnerability to faults. High voltage, low 

impedance, and a lack of natural zero crossings in DCMGs make fault detection and 

isolation difficult, necessitating advanced strategies and robust mechanisms to ensure 

safe, dependable operation, which is the primary motivation for undertaking this 

project. 

1.5 FDI Methods 

Equipment failure and malfunctioning are caused by faults in any system. There 

are many FDI techniques that have been proposed to identify the type, size, location, 

and time of fault. Any FDI method's primary goals are to identify the magnitude, 

location, and timing of the occurrence of faults and to sound an alarm if there is any 

change in the process. Fault isolation and fault detection are two tasks carried out by 

FDI. Finding a defect involves figuring out if it has already happened or not. [15]. The 

following are some of the basic FDI techniques. 

1.5.1 Model-Based FDI 

Model-based FDI approaches utilize a model of the system to determine if a 

failure may occur. The system model might be based on knowledge or on mathematics. 

There are two primary model-based FDI methods that exist [15]. 

1.5.1.1 Kalman Filter 

The Kalman filter encompasses various algorithms and types, including the 

standard Kalman filter for linear systems with Gaussian noise and the EKF for nonlinear 

systems by linearizing models. It also includes other types such as the UKF, which 
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approximates system behavior using selected points, and the IEKF [15], which 

iteratively refines EKF estimates. This versatile filter finds applications in aerospace, 

robotics, finance, and more, as it enables accurate state estimation and fault detection 

in dynamic systems. A Kalman filter based FDI system integrates Kalman filter 

principles with fault detection techniques to identify abnormal behavior and faults in 

real-time. By analyzing sensor measurements and comparing them with expected 

values, the FDI system detects deviations indicating faults, while the Kalman filter's 

state estimation aids in fault isolation and localization, enhancing system reliability 

through timely maintenance [15]. 

1.5.1.2 Observer 

A state observer or state estimator is a system that utilizes measurements of 

input and output from a real system to estimate its internal state [15]. It is commonly 

implemented using computer-based algorithms and serves as a fundamental tool in 

various applications. Models play a crucial role in fault detection and diagnostics within 

the observer approach. However, these methods face challenges such as disturbances, 

mismatches, noise, and uncertainties. To mitigate the impact of significant 

disturbances, researchers have developed techniques such as the DOB and MDOB. In 

the context of FDI, UIO and NUIO are frequently employed. These techniques provide 

operators with early warnings of any changes in the process, aiding in fault detection. 

[15] 

1.5.2 Measurement-Based FDI 

Measurement-based FDI methods play a crucial role in ensuring the health and 

reliability of complex systems across diverse domains, from industrial processes to 

large-scale power grids. These methods rely on analyzing sensor data to identify 

deviations from normal operation, indicating the presence and location of potential 

faults. The core working principle revolves around comparing actual measurements 

with expected values derived from models or historical data. This comparison generates 

residuals, which are the differences between expected and observed behavior. 

Exceeding predefined thresholds or analyzing abnormal patterns in these residuals 

triggers the fault detection alarm. Several commonly employed techniques [24] – [33] 

illustrate this approach: 
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1.5.2.1 Voltage and Current Threshold Methods 

Simple but effective, setting predefined thresholds for critical parameters like 

voltage or current. Exceeding these thresholds indicates a potential fault, with the 

location narrowed down based on the affected sensor. 

1.5.2.2 Current Differential Method 

Compares currents at different points in a circuit. Significant disparities point 

to anomalies in specific sections, aiding in fault isolation. 

1.5.2.3 Signal Processing Methods 

Techniques like spectral analysis and time-frequency decomposition capture 

specific features of noisy or complex signals. Deviations from expected patterns due to 

faults can then be identified and localized. 

1.5.2.4 LC Circuit Method 

Utilizes the impedance characteristics of an LC circuit to selectively filter out 

background noise and amplify fault-related signals, enhancing their detection and 

differentiation. 

1.5.3 Data Driven FDI 

In this protection strategy, measurements are subjected to some mathematical 

or statistical computations, or a type of neural network is trained using some sort of 

algorithm to extract information about the fault. 

1.5.3.1 Fuzzy 

A mathematical model is not necessary with fuzzy approach. The modelling 

inaccuracy, uncertainty, and disruption are therefore not present in a fuzzy model. An 

issue with a complicated nonlinear system might be the lack of an adequate model. In 

this situation, fuzzy plays a significant role by utilizing human expertise to handle fault 

diagnostics more effectively. A fuzzy decision-making system is created based on fuzzy 

rules to determine where the error lies. Although fuzzy decision-making relies on 
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human expertise, it is incapable of effective learning. It is challenging to automatically 

tune functions of fuzzy control. Fuzzy bases decisions on data that is vague or 

ambiguous. The residual must first be fuzzified and evaluated using inference 

mechanisms like IF-THEN rules before being defuzzified to detect and isolate the fault 

using fuzzy [15]. 

1.5.3.2 Machine Learning Based FDI 

Machine learning-based FDI is an emerging approach that utilizes advanced 

algorithms and techniques from the field of machine learning to detect and diagnose 

faults in complex systems. Commonly employed algorithms in this context include 

SVM and ANN [16]. SVM is a supervised learning algorithm that can classify normal 

and faulty system behavior based on labeled training data. ANN, inspired by the human 

brain's neural structure, is a powerful tool for pattern recognition and fault detection. 

These algorithms, along with others such as Decision Trees, Random Forests, and Deep 

Learning architectures like CNN and RNN, enable the extraction of valuable insights 

from large datasets and the identification of abnormal behavior associated with faults 

[16]. The workflow of the general machine learning algorithm is depicted in Figure 5. 

 

Figure 5: Workflow of the machine learning process 
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The following are the main classification of machine learning types. 

1. Supervised Learning 

Supervised learning is a type of machine learning where the algorithm is 

trained on labeled examples, with input-output pairs, to learn a mapping 

function. The training data consists of input features and corresponding output 

labels. The algorithm learns to predict or classify new data based on the patterns 

it has observed during training. Examples of supervised learning algorithms 

include decision trees, SVM and ANN [17]. 

2. Unsupervised Learning 

Unsupervised learning, on the other hand, involves learning patterns and 

structures in unlabeled data without explicit feedback. It aims to discover hidden 

patterns, clusters, or relationships within the data. Unsupervised learning 

algorithms operate on raw data and seek to find inherent structures or groupings. 

Clustering algorithms, such as k-means clustering and hierarchical clustering, 

are commonly used in unsupervised learning [17]. 

3. Reinforcement Learning 

Reinforcement learning is a branch of machine learning where an agent 

learns to make sequential decisions through interactions with an environment, 

aiming to maximize cumulative rewards. Algorithms such as Q-learning, Deep 

Q-Networks and PPO are commonly used in reinforcement learning [17]. 

1.6 Report Overview 

We can highlight the report organization as follows: Section #2 includes a 

literature review of the project. Section #3 is mainly the body of the project, discussing 

the methodology of the machine learning algorithm. Section #4 is about the discussion 

of the results of the proposed protection scheme. Section #5 contains the summary of 

the project and future work, and Section #6 includes the conclusion and 

recommendations. 
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Chapter 2 

This chapter discusses the current trends and techniques applied for the FDC of 

DCMG. In a detailed literature review we provide the pros and cons of the existing 

methods. 

2.1 Literature Review/Related Work 

As discussed in Section 1.5, FDI methods can be broadly categorized into three 

main approaches: model-based, model-free, and data-driven. This section 

comprehensively explores all three FDI approaches, highlighting their respective 

advantages and disadvantages, to provide a comprehensive understanding of the 

available options for ensuring the safety and reliability of DC microgrids. 

Model-based FDI methods [18] – [23] utilize a mathematical model of the system 

to predict its normal behavior and flag any deviations as potential faults. These methods 

are well-suited for DC microgrids due to their well-defined physical relationships. The 

typical workflow involves developing a model, estimating its parameters, using an 

observer to detect faults, and then analyzing residuals to isolate the fault's location. In 

this category, observer-based FDI approaches have gained prominence due to their 

effectiveness and adaptability. Observer-based FDI methods employ state observers to 

estimate the internal states of the system, enabling the detection of faults through the 

comparison of estimated states to the actual system outputs. This comparison generates 

residuals, which serve as indicators of fault occurrence. By analyzing the patterns and 

characteristics of these residuals, the specific fault type (FT) can be identified. Several 

studies have successfully implemented observer-based FDI techniques for fault 

detection and isolation in DC microgrids. In [18], an FDI approach using state observers 

was developed for power electronic converters. Similarly, [19] presented an FDI 

method using reduced-order observers for DC microgrids. [20] proposed a Luenberger 

observer-based FDI method for bidirectional DC-DC converter interfaced microgrids. 

A similar, observer-based FDI has been proposed by [21] for a nonlinear DC microgrid. 

To overcome the nonlinearity, the researchers have proposed a LPV-based sliding mode 

observer. In addition to observer-based methods, other model-based FDI approaches 

have also been proposed. For instance, [22] introduced a Kalman filter-based method 

for detecting and locating series arc faults in DC microgrids. [23] presented a parameter 
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estimation-based method for local fault location in meshed DC microgrids. While 

model-based FDI is an effective approach for fault detection and isolation in DC 

microgrids, it is important to consider its potential drawbacks. As DC microgrids 

become more complex, the required analytical models become more intricate and 

computationally demanding. Additionally, model-based FDI methods are sensitive to 

model uncertainties. 

Measurement-based fault detection and isolation (FDI) is a technique used to 

detect and locate faults in power systems by measuring electrical quantities, such as 

voltage, current, and power. It works by comparing the measured values to pre-defined 

thresholds or to expected values based on a model of the power system. If the measured 

values exceed the thresholds or deviate from the expected values, a fault is detected. 

One important approach in this category is to monitor local current and voltage 

thresholds and measure the resistance, called local measurement-based FDI. This 

method has been applied in [24] and [25] with the current and voltage thresholds, 

respectively. Similarly, [26] presented an FDI method using the resistance 

measurement method for DC microgrids. Although local measurement-based FDI 

methods can be a viable option for FDI, they lack in several areas, including sensitivity 

to system parameters such as line impedance and false positives due to noise in the 

measurements. Another important technique of measurement-based FDI is through 

TWP. TWP utilizes the high-frequency electromagnetic disturbances generated by 

faults to detect and locate faults in power systems. By analyzing the characteristics of 

traveling waves, TWP delivers fast, precise, and dependable fault detection and location 

capabilities. This technique has been extensively studied and refined, as evidenced by 

[27], [28] which propose novel TWP approaches for MVDC microgrids and MRA-

based TWP schemes, respectively. TWP's benefits come with inherent trade-offs. 

Although powerful, it is vulnerable to noise and interference, and it may require 

complex signal processing algorithms to function effectively. Similarly, another crucial 

technique for measurement-based FDI in DC microgrids is TFA. TFA techniques 

provide a powerful means of analyzing and comprehending the non-stationary signals, 

revealing information about the signal's time and frequency content, TFA techniques 

can uncover hidden patterns and characteristics that may be obscured in traditional 

time-domain or frequency-domain analysis. Several TFA techniques have been 

successfully applied to FDI in DC microgrids. For instance, in [29] STFT has been 
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employed for fault detection, while WMRA has been used to decompose current signals 

and construct feature vectors for classification [30]. Additionally, a combination of 

EMD and HT has been proposed for local fault detection [31]. TFA techniques have 

certain limitations. such as its sensitivity to noise, and it loses effectiveness in some 

cases, for example, HIFs. Other approaches for FDI in DCMGs include fault detection 

based on line characteristics using an LC resonance circuit [32] and fault detection and 

location using differential current protection [33]. The LC resonance circuit method 

utilizes the resonant frequency of an LC circuit to measure the inductance and 

capacitance of the faulty line, enabling accurate fault detection. However, this method 

requires precise measurement of line parameters. Conversely, the differential current 

protection method compares the currents at both ends of a line to detect faults. This 

approach has precise fault detection and locating capabilities, but it is vulnerable to 

noise in differential currents. 

Data driven-based FDI techniques have emerged as a promising approach in the 

field of DCMGs, particularly those utilizing machine learning algorithms. These 

techniques have demonstrated effectiveness in identifying faults based on patterns and 

anomalies in system data, offering significant advantages over traditional FDI methods. 

In the machine learning category, reinforcement learning-based methods [34] 

demonstrate high accuracy and efficiency in fault detection. Additionally, RNN-based 

methods [35] enable fault detection and location with high accuracy for both grid-

connected and islanded modes. Furthermore, SVM-based methods [36] provide precise 

fault location even in the presence of high fault resistance. FIS-based methods, like the 

one in [37], facilitate rapid fault identification and isolation in low-voltage DCMGs. 

Data-driven FDI strategies, despite their potential, grapple with critical challenges. 

Notably, none of the solutions suggested in the literature have yet been designed to 

provide component-level protection. Furthermore, the computational complexity of 

these approaches may pose difficulties for real-time implementation. 
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Chapter 3 

In this chapter we provide the two aspects of our implementation. One, the 

modeling of the DCMG under study. The DCMG is first modeled mathematically and 

then MATLAB Simulink is used for implementation for the simulation purposes. Two, 

machine learning based FDI.  

3.1 Methodology 

Figure 6 below displays a selected model of a low-voltage DC microgrid with 

three terminals. This model was chosen for the purpose of designing a machine 

learning-based FDI system. This model retains the key characteristics of multiterminal 

DC grids, such as the ability for power to flow in multiple directions, rapid changes 

during faults, and the presence of multiple sources contributing to fault currents. 

 

Figure 6: The configuration of the DC microgrid in the case study [18] 

3.2 Single Line Diagram of the DCMG and Elaboration 

The system under investigation is a three-terminal DC microgrid, which depicts 

the working of a whole power system. It has three power converters for transforming 

voltage and current up to suitable levels for transmission and distribution, three 

transmission cables for power flow, and three busbars, making this grid a multi-terminal 

system. Since this system is isolated from the utility grid supply, it has its own power 

generation resources, such as solar PV systems, wind turbines, micro-hydro systems, 

fuel cells, combined heat, and power (CHP) units, biomass generators, geothermal 
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systems, reciprocating engines, gas turbines, and much more. On the generation side, a 

boost converter (DC step-up transformer) is used to regulate the voltage and current to 

provide better power quality and minimize transmission losses. The DC power from 

the generation sources and energy storage is then distributed within the microgrid using 

DC power lines or busbars. These distribution networks carry DC electricity to the 

various loads and devices connected to the microgrid. On the load side, by using a buck 

converter (DC step-down transformer), power is supplied to the load with the 

appropriate voltage and current level. The loads in a DC microgrid can include various 

electrical devices and appliances, such as lights, motors, electronics, and other 

equipment. These loads consume the power provided by the microgrid for their 

operation.  

A component-wise model of the DC microgrid is depicted in Figure 7 below. 

Inside the boost converter, there are multiple power electronics devices, namely series 

boost inductance 𝐿𝑏𝑜 and resistance 𝑅𝑏𝑜, a high-frequency controllable switch, a diode, 

and an output link capacitor 𝐶1. Similarly, in the buck converters, the components are 

series buck inductances 𝐿𝑏𝑢1 𝑎𝑛𝑑 𝐿𝑏𝑢2 and resistance𝑠 𝑅𝑏𝑢1 𝑎𝑛𝑑 𝑅𝑏𝑢2, a high-

frequency power switch, a high-frequency controllable switch, a diode, and an input 

and output link capacitors 𝐶𝑏𝑢1, 𝐶𝑏𝑢2, 𝐶2 𝑎𝑛𝑑 𝐶3. In transmission cable, due to the 

smaller length, terminal capacitance is negligible, and only series inductances and 

resistances 𝐿1, 𝐿2, 𝐿3, 𝑅1, 𝑅2 𝑎𝑛𝑑 𝑅3 are considered. In this microgrid, the research is 

focused on ten different types of faults. The failures encompassed converter switch 

malfunctions, short-circuit faults in DC lines and busbars, as well as a fault emerging 

in the load. For the illustration of busbar and line faults, this model also contains 

𝑅1𝑓𝑏 , 𝑅2𝑓𝑏 , 𝑅3𝑓𝑏 , 𝑅1𝑓 , 𝑅2𝑓 𝑎𝑛𝑑 𝑅3𝑓 fault resistances. The nominal values for the 

electronics components in the microgrid are provided in the table below. 
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Figure 7: The schematic representation of the DC microgrid in the case study [18] 

3.3 Modeling of the System 

Within the study case DCMG system, a total of ten distinct faults were 

investigated: faults (𝑓1 – 𝑓3) represent failures of switch in the converters, faults 

(𝑓4 – 𝑓6) corresponds to short-circuit faults in DC transmission cable, faults (𝑓7 – 𝑓9) 

pertain to short-circuit faults occurring in the common node busbars, and fault 𝑓10 

signifies a fault in the load component 𝑅𝐿. The comprehensive diagram of the dc 

microgrid, including these specific faults, is presented in Figure 8 below. 

 

Figure 8: DCMG under the influence of different faults [18] 

To comprehensively analyze the behavior and performance of the microgrid 

circuit, two distinct approaches were employed: mathematical modeling and physical 

circuit modeling on software. The mathematical modeling approach involved the 

development of a set of mathematical equations based on the fundamental principles 
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and characteristics of microgrid components. This enabled a theoretical understanding 

of the system's behavior and facilitated the derivation of key performance metrics. 

Additionally, a physical model of the circuit was utilized to simulate the microgrid 

circuit and validate the mathematical model. By inputting the circuit parameters and 

component characteristics into the software, a detailed representation of the circuit's 

electrical behavior was obtained. This approach offered a practical perspective, 

allowing for the observation of real-time responses and the analysis of system 

dynamics. By combining both approaches, a comprehensive understanding of the 

microgrid circuit was achieved, encompassing both theoretical and practical aspects. 

3.3.1 Mathematical Modeling of the System 

The multiterminal DC microgrid system has been mathematically modelled using 

a state-space approach, combining the individual models of the components, and 

including fault parameters. This approach allows for a comprehensive analysis of 

complex systems by considering the interdependencies between components and the 

influence of faults. State space modeling is a mathematical framework used to describe 

the behavior of dynamic systems. It involves two equations: the state equation and the 

observation equation. 

o State equation: 

 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (3) 

o Observation equation: 

 𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (4) 

In these equations, 𝑥(𝑡) represents the state vector at time 𝑡, 𝑢(𝑡) represents the 

input vector at time 𝑡, and 𝑦(𝑡) represents the observation vector at time 𝑡. The matrices 

𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷 capture the dynamics and relationships between the state, input, and 

observation variables. The component-wise derivation of the differential equation 

model is provided in the introduction section 1.2.2.  Following is the sub-system 

dynamic state space system model of the DC microgrid.  

The system matrix 𝐴 is given as following. 

 𝐴 = [𝐴11 𝐴12 𝐴13 𝐴14 𝐴15 𝐴16 ]
𝑇 (5) 

Where 𝑨𝟏𝟏 is the system matrix of the Boost Converter, written as: 
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 𝐴11 =

[
 
 
 
 −

𝑅𝑏𝑜

𝐿𝑏𝑜
−

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
01𝑥6 0 01𝑥3 0 0

1 − 𝐷𝑏𝑜

𝐶1
−

1

𝑅1𝑓𝑏𝐶1
01𝑥6 −

1

𝐶1
01𝑥3 −

1

𝐶1
0
]
 
 
 
 

 (6) 

𝐴12 is the system matrix of Buck Converter 1, written as: 

 𝐴12 =

[
 
 
 
 
 
 01𝑥2 −

𝑅𝑏𝑢1

𝐿𝑏𝑢1
−

1

𝐿𝑏𝑢1

𝐷𝑏𝑢1

𝐿𝑏𝑢1
01𝑥4 0 0 01𝑥3

01𝑥2

1

𝐶𝑏𝑢1
−

1

𝑅𝐿𝐶𝑏𝑢1
0 01𝑥4 0 0 01𝑥3

01𝑥2 −
𝐷𝑏𝑢1

𝐶2
0 −

1

𝑅2𝑓𝑏𝐶2
01𝑥4

1

𝐶2
−

1

𝐶2
01𝑥3

]
 
 
 
 
 
 

  (7) 

𝐴13 is the system matrix of Buck Converter 2, written as: 

 𝐴13 =

[
 
 
 
 
 
 01𝑥5 −

𝑅𝑏𝑢2

𝐿𝑏𝑢2
−

1

𝐿𝑏𝑢2

𝐷𝑏𝑢2

𝐿𝑏𝑢2
01𝑥3 0 0 0

01𝑥5

1

𝐶𝑏𝑢2
0 0 01𝑥3 0 0 0

01𝑥5 −
𝐷𝑏𝑢2

𝐶3
0 −

1

𝑅3𝑓𝑏𝐶3
01𝑥3

1

𝐶3
0

1

𝐶3]
 
 
 
 
 
 

 (8) 

𝐴14 is the system matrix of Cable 1, written as: 

 𝐴14 =

[
 
 
 
 0

𝑝

𝐿1𝑎
01𝑥2 0 01𝑥3 −

𝑅1𝑎 + 𝑝𝑅1𝑓

𝐿1𝑎

𝑝𝑅1𝑓

𝐿1𝑎
01𝑥4

0 0 01𝑥2 −
𝑝

𝐿1𝑏
01𝑥3

𝑝𝑅1𝑓

𝐿1𝑏
−

𝑅1𝑏 + 𝑝𝑅1𝑓

𝐿1𝑏
01𝑥4]

 
 
 
 

 (9) 

𝐴15 is the system matrix of Cable 2, written as: 

 𝐴15 =

[
 
 
 
 01𝑥4

𝑝

𝐿2𝑎
01𝑥2 0 01𝑥2 −

𝑅2𝑎 + 𝑝𝑅2𝑓

𝐿2𝑎

𝑝𝑅2𝑓

𝐿2𝑎
01𝑥2

01𝑥4 0 01𝑥2

−𝑝

𝐿2𝑏
01𝑥2

𝑝𝑅2𝑓

𝐿2𝑏
−

𝑅2𝑏 + 𝑝𝑅2𝑓

𝐿2𝑏
01𝑥2]

 
 
 
 

  (10) 

𝐴16 is the system matrix of Cable 3, written as: 

 
𝐴16 =

[
 
 
 0

𝑝

𝐿3𝑎
01𝑥5 0 01𝑥4 −

𝑅3𝑎 + 𝑝𝑅1𝑓

𝐿1𝑎

𝑝𝑅3𝑓

𝐿1𝑎

0 0 01𝑥5 −
𝑝

𝐿3𝑏
01𝑥4

𝑝𝑅3𝑓

𝐿3𝑏
−

𝑅3𝑏 + 𝑝𝑅3𝑓

𝐿3𝑏 ]
 
 
 

 

 

(11) 
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Collectively, the whole system state-space model (𝑨,𝑩, 𝑪,𝑫, 𝒙, 𝒚 𝑎𝑛𝑑 𝒖  

𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠) is as follows [18]: 

 𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝑅𝑏𝑜

𝐿𝑏𝑜

−
1 − 𝐷𝑏𝑜

𝐿𝑏𝑜

0 0 0 0 0 0 0 0 0 0 0 0

1 − 𝐷𝑏𝑜

𝐶1

−
1

𝑅1𝑓𝑏𝐶1

0 0 0 0 0 0 −
1

𝐶1

0 0 0 −
1

𝐶1

0

0 0
−𝑅𝑏𝑢1

𝐿𝑏𝑢1

−1

𝐿𝑏𝑢1

𝐷𝑏𝑢1

𝐿𝑏𝑢1

0 0 0 0 0 0 0 0 0

0 0
1

𝐶𝑏𝑢1

−1

𝑅𝐿𝐶𝑏𝑢1

0 0 0 0 0 0 0 0 0 0

0 0
−𝐷𝑏𝑢1

𝐶2

0
−1

𝑅2𝑓𝑏𝐶2

0 0 0 0
1

𝐶2

−
1

𝐶2

0 0 0

0 0 0 0 0
−𝑅𝑏𝑢2

𝐿𝑏𝑢2

−1

𝐿𝑏𝑢2

𝐷𝑏𝑢2

𝐿𝑏𝑢2

0 0 0 0 0 0

0 0 0 0 0
1

𝐶𝑏𝑢2

0 0 0 0 0 0 0 0

0 0 0 0 0
−𝐷𝑏𝑢2

𝐶3

0
−1

𝑅3𝑓𝑏𝐶3

0 0 0
1

𝐶3

0
1

𝐶3

0
𝑝

𝐿1𝑎

0 0 0 0 0 0 −
𝑅1𝑎 + 𝑝𝑅1𝑓

𝐿1𝑎

𝑝𝑅1𝑓

𝐿1𝑎

0 0 0 0

0 0 0 0
−𝑝

𝐿1𝑏

0 0 0
𝑝𝑅1𝑓

𝐿1𝑏

−
𝑅1𝑏 + 𝑝𝑅1𝑓

𝐿1𝑏

0 0 0 0

0 0 0 0
𝑝

𝐿2𝑎

0 0 0 0 0 −
𝑅2𝑎 + 𝑝𝑅2𝑓

𝐿2𝑎

𝑝𝑅2𝑓

𝐿2𝑎

0 0

0 0 0 0 0 0 0
−𝑝

𝐿2𝑏

0 0
𝑝𝑅2𝑓

𝐿2𝑏

−
𝑅2𝑏 + 𝑝𝑅2𝑓

𝐿2𝑏

0 0

0
𝑝

𝐿3𝑎

0 0 0 0 0 0 0 0 0 0 −
𝑅3𝑎 + 𝑝𝑅3𝑓

𝐿3𝑎

𝑝𝑅3𝑓

𝐿3𝑎

0 0 0 0 0 0 0
−𝑝

𝐿3𝑏

0 0 0 0
𝑝𝑅3𝑓

𝐿3𝑏

−
𝑅3𝑏 + 𝑝𝑅3𝑓

𝐿3𝑏 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

… (12) 

 

 𝐵 =

[
 
 
 

1

𝐿𝑏𝑜
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
1

𝐶𝑏𝑢2
0 0 0 0 0 0 0

]
 
 
 
𝑇

 (13) 

 

 𝐶 = 𝐼14𝑥14 (14) 

 

 𝐷 = [014𝑥2] (15) 
 

 𝑥 = [𝑖𝐿𝑏𝑜 𝑉𝐶𝑏𝑜 𝑖1𝑎 𝑖1𝑏 𝑖2𝑎 𝑖2𝑏 𝑖3𝑎 𝑖3𝑏 𝑖𝑖𝑛𝑏𝑢1 𝑉𝑖𝑛𝑏𝑢1 𝑉𝑜𝑢𝑡𝑏𝑢1 𝑖𝑖𝑛𝑏𝑢2 𝑉𝑖𝑛𝑏𝑢2 𝑉𝑜𝑢𝑡𝑏𝑢2] (16) 
 

 𝑦 = 𝐶 × 𝑥 (17) 
 

 
𝑢 = [𝑣𝑖𝑛 𝑖𝐿]

𝑇 

 
(18) 

Where the states under observation are current and voltage through boost 

converter 𝒊𝑳𝒃𝒐 𝑎𝑛𝑑 𝑽𝑪𝒃𝒐, DC cables input and output current 

𝒊𝟏𝒃, 𝒊𝟏𝒃, 𝒊𝟐𝒂, 𝒊𝟐𝒃, 𝒊𝟑𝒂 𝑎𝑛𝑑 𝒊𝟑𝒃 and current and voltages through the buck converters 

𝒊𝒊𝒏𝒃𝒖𝟏, 𝑽𝒊𝒏𝒃𝒖𝟏, 𝑽𝒐𝒖𝒕𝒃𝒖𝟏, 𝒊𝒊𝒏𝒃𝒖𝟐, 𝑽𝒊𝒏𝒃𝒖𝟐 𝑎𝑛𝑑 𝑽𝒐𝒖𝒕𝒃𝒖𝟐. The inputs to the model are buck 

source voltage and buck 2 load current 𝑽𝒊𝒏 𝑎𝑛𝑑 𝒊𝑳. 
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3.3.2 Implementation of the DC Microgrid System (Physical Modeling of the 

DCMG) 

The circuit modeling aspect of the study involved the utilization of SIMULINK, 

a specialized software tool within the MATLAB environment, to simulate the behavior 

and performance of the microgrid circuit. This powerful software provided a 

comprehensive platform for modeling and analyzing complex electrical systems. The 

microgrid circuit was first modeled on an individual component basis, with each 

component represented by its respective physical circuit model. These individual 

component models were then integrated into a comprehensive circuit model within the 

SIMULINK environment. This allowed for the simulation of normal operating 

conditions as well as the modeling of fault disturbances such as short circuits and 

voltage sags. By leveraging the capabilities of SIMULINK, the interactions, 

coordination, and dynamics of the various components were accurately captured, 

facilitating a comprehensive analysis of the microgrid circuit's behavior. The use of 

SIMULINK in this research provided a robust and efficient platform for performance 

evaluation, identification of potential issues, and assessment of control strategies and 

protective measures within the microgrid system. Following is the whole physical 

circuit model of the DCMG shown in Figure 9. 

 

Figure 9: Physical circuit model of the DCMG 

The following are the subsystem physical circuit models of the DCMG: 

1) The boost circuit subsystem model comprises several key electronic components 

that facilitate its operation. These components include an inductor, a diode, a 
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capacitor, and a power switch. An additional switch is also connected to simulate 

fault behavior inside the boost circuit. A feedback hysteresis control strategy is 

implemented to regulate the output voltage. This control strategy dynamically 

adjusts the duty cycle of the switching elements based on the difference between 

the desired output voltage and the actual measured voltage. By employing 

hysteresis, a range or band around the desired output voltage is defined, within 

which the switching elements maintain their current state. Once the measured 

voltage crosses the upper or lower threshold of the hysteresis band, the control 

strategy triggers a change in the duty cycle to restore the voltage within the desired 

range. Component physical model of the Boost circuit is depicted below. Physical 

circuit model of the boost converter is shown in Figure 10. 

 

Figure 10: Physical circuit model of the Boost Converter Circuit 

2) Similarly, the other main component of the DCMG is the buck converter. The buck 

circuit subsystem model consists of several essential electronic components that 

enable its functionality. These components include an inductor, a diode, a capacitor, 

and a power switch. The inductor stores energy during the on-time of the power 

switch and releases it during the off-time, resulting in a reduced output voltage. The 

diode prevents reverse current flow, ensuring proper current direction within the 

circuit. The capacitor aids in smoothing voltage variations, providing a more stable 
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output voltage. The power switch controls the flow of current through the circuit. 

To regulate the output voltage, a feedback hysteresis control strategy is 

implemented. This control strategy adjusts the duty cycle of the power switch based 

on the measured output voltage compared to the desired voltage. By employing 

hysteresis, a range or band around the desired output voltage is defined, within 

which the switching elements maintain their current state. This feedback hysteresis 

control strategy helps maintain a stable and regulated output voltage for the buck 

circuit subsystem. The component physical model of the Buck circuit is depicted 

below. The physical circuit model of the buck converter is shown in Figure 11. 

 

Figure 11: Physical circuit model of the Buck Converter Circuit 

3) The DC cable component of the DCMG is simply modeled with series inductance 

and resistance; for the introduction of short-circuit fault in DC transmission cable, 

half of the total inductance and resistance is modeled on the input side and half on 

the output side. For this research, the line capacitance is ignored due to the shorter 

length of the cable. Component physical model of the DC Cable is depicted below. 

The physical circuit model of the DC cable is shown in Figure 12. 
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Figure 12: Physical circuit model of the DC Cable 

4) The busbar section of the microgrid is simply modeled with a common node and 

incoming and outgoing lines. Fault disturbance is also included in this model. 

Component physical model of the Busbar is depicted below. A physical circuit 

model of the DC busbar is shown in Figure 13. 

 

Figure 13: Physical circuit model of the Busbar 
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3.4 Parameters of DC Microgrid Model 

Table 1 provides key parameters of the subsystem of the DC microgrid, including 

rated voltage, rated current, resistance, inductance, capacitance, and switching 

frequency. These parameters are crucial for understanding the operational 

characteristics, efficiency, and stability of the microgrid system. 

S. 

No 
Component Parameter Value 

1 Boost 

Rated value of 𝑣𝑖𝑛 190V 

Rated value of 𝑣𝐶−𝑏𝑜 380V 

Resistance 𝑅𝑏𝑜 0.1Ω 

Inductance 𝐿𝑏𝑜 5mH 

DC-link Capacitance 𝐶1 35mF 

Switching Frequency 50kHz 

2 Buck 1 & 2 

Rated value of 𝑣𝑖𝑛−𝑏𝑢1 & 𝑣𝑖𝑛−𝑏𝑢2    380V 

Rated value of 𝑣𝐶−𝑏𝑢1 & 𝑣𝐶−𝑏𝑢2  190V 

Resistances 𝑅𝑏𝑢1 & 𝑅𝑏𝑢2 0.1Ω 

Inductances 𝐿𝑏𝑢1 & 𝐿𝑏𝑢2 50mH 

DC-link Capacitances 𝐶2 & 𝐶3 25uF 

Load Resistance 𝑅𝐿 10Ω 

Switching Frequency 50kHz 

3 Cable 1, 2 & 3 

Line Resistance per unit length 8Ω/km 

Line Inductance per unit length 0.45mH/km 

Line Capacitance per unit length 0.1uF/km 

Length of the Cable 0.5km 

Table 1: DCMG component-wise parameters. 



Machine Learning based Fault Detection and Isolation in DC Microgrids 

27 

 

3.5 Fault Modeling 

Fault modeling is a crucial aspect of analyzing complex systems. In state space 

modeling, faults are integrated as additional variables or inputs in the system's state 

equations. This incorporation allows for the simulation and analysis of different fault 

scenarios and their impact on system performance. Fault vectors define the 

characteristics and magnitudes of specific faults, enabling the quantification and study 

of fault effects. The state-space representation of a discrete-time linear time-invariant 

system is typically expressed in a standard form using equations 3 and 4. 

 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑖) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
 (19) 

In the given equation, the system state, input, and output variables are 

represented by 𝑥(𝑖), 𝑢(𝑖), 𝑎𝑛𝑑 𝑦(𝑖) respectively. The parameters 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷 are 

matrices that define the characteristics and relationships of the system. In real-world 

scenarios, processes are often affected by disturbances that introduce unexpected noise. 

To account for component faults, such as malfunctions within the sub-system, which 

can result in variations in the model parameters, Equation (19) can be modified to 

incorporate both faults and disturbances in the system representation [18]. 

 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑𝑑(𝑡) + 𝐵𝑓𝑓(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝐷𝑑𝑑(𝑡) + 𝐷𝑓𝑓(𝑡)
 (20) 

In the extended representation, 𝐵𝑑 𝑎𝑛𝑑 𝐷𝑑 are constant matrices, representing 

the impact of disturbances, while 𝑑(𝑡) is an unknown input vector that captures 

disturbances. Similarly, the fault vector 𝑓(𝑡) is time-dependent vector that represents 

the presence of faults within the system. The matrices, 𝐵𝑓 𝑎𝑛𝑑 𝐷𝑓 are constant matrices 

that describe the effects of the fault on the system. The effect of disturbances is not 

considered in this research, so only the derivation of fault vectors and fault matrices for 

different types of faults is done. The following section provides a comprehensive 

description and derivation of various types of faults that can occur in the DC microgrid. 

It outlines the characteristics, causes, and implications of each fault, presenting a 

detailed analysis of their effects on the microgrid system. 
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3.5.1 Failure of Switch in Power Converter 

In power converters, the occurrence of short circuits in the switch can lead to the 

blowing of protective fuses, causing open-circuit failures [18]. In this analysis, the 

specific focus is on the open-circuit failure that affects the switch. When an open-circuit 

failure happens, the switch remains permanently in the OFF state, resulting in a duty 

cycle of zero. Consequently, the impact of the switch failure can be represented by the 

deviation in the duty cycle, denoted as ∆𝐷. This deviation is defined as the difference 

between the actual duty cycle and the expected duty cycle in the absence of the failure 

[18] 

 ∆𝐷 = 𝐷′ − 𝐷 (21) 

In this context, 𝐷 represents the duty cycle before the occurrence of the switch 

failure, while 𝐷’ represents the equivalent duty cycle after the fault. In the case of switch 

failures resulting in open-circuit conditions, the equivalent duty cycle (∆𝐷) becomes 

zero. 

3.5.1.1 Switch Failure in Boost Converter 

The state-space model of boost converter before the occurrence of the fault is 

given as [12]: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶𝑏𝑜
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶𝑏𝑜
𝑉𝐶𝑏𝑜

 (22) 

After the switch failure, the systems state-space model becomes: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − (𝐷𝑏𝑜 + ∆𝐷𝑏𝑜)

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − (𝐷𝑏𝑜 + ∆𝐷𝑏𝑜)

𝐶𝑏𝑜
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶𝑏𝑜
𝑉𝐶𝑏𝑜

 (23) 

Which can be expressed as: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

𝟏

𝑳𝒃𝒐
∆𝑫𝒃𝒐𝑽𝑪𝒃𝒐 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶1
𝐼𝐿𝑏𝑜 −

𝟏

𝑪𝟏
∆𝑫𝒃𝒐𝑰𝑳𝒃𝒐 −

1

𝑅𝐿𝐶1
𝑉𝐶𝑏𝑜

 (24) 
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Where 
1

𝐿𝑏𝑜
 and 

1

𝐶1
 are part of fault matrix and ∆𝐷𝑏𝑜𝑉𝐶𝑏𝑜 and ∆𝐷𝑏𝑜𝐼𝐿𝑏𝑜 are the 

fault vectors. 

3.5.1.2 Switch Failure in Buck Converter 

The dynamic model of buck converter before the occurrence of the fault is given 

as [18]: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢

 (25) 

After the switch failure, the systems state-space model becomes: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

(𝐷𝑏𝑢 + ∆𝐷𝑏𝑢)

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢

 (26) 

Which can be expressed as: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢 +

𝟏

𝑳𝒃𝒖
∆𝑫𝒃𝒖𝑽𝑰𝑵𝒃𝒖

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢

 (27) 

Where 
1

𝐿𝑏𝑢
 is the part of fault matrix and ∆𝐷𝑏𝑢𝑉𝐼𝑁𝑏𝑢 is the fault vector. 

3.5.2 DC transmission Cable Short-Circuit Fault 

DC microgrids typically have a transmission range that extends from a few 

hundred meters to several kilometers. Given the relatively short distances involved, the 

capacitance of the transmission lines can be considered negligible in comparison to the 

capacitance of the DC-link, as outlined in Table 1. Consequently, the models for the 

DC cables can be simplified as RL series branches. Figure 14 illustrates the DC cable 

model incorporating fault resistance. 



Machine Learning based Fault Detection and Isolation in DC Microgrids 

30 

 

 
Figure 14: Equivalent model of a DC cable incorporating a short-circuit faults. 

(a) PG fault. (b) PP fault. 

Mathematically the system dynamic equation under short-circuit fault is as 

follows [18]: 

 

𝑑

𝑑𝑡
𝐼𝑎 = −

𝑅𝑎 + 𝑝𝑅𝑓

𝐿𝑎
𝐼𝑎 +

𝑝𝑅𝑓

𝐿𝑎
𝐼𝑏 +

𝑝

𝐿𝑎
𝑉𝑎

𝑑

𝑑𝑡
𝐼𝑏 =

𝑝𝑅𝑓

𝐿𝑏
𝐼𝑎 −

𝑅𝑏 + 𝑝𝑅𝑓

𝐿𝑏
𝐼𝑏 +

𝑝

𝐿𝑏
𝑉𝑏

 (28) 

For PG faults, the parameter 𝑝 is assigned a value of 1. On the other hand, for 

PP faults, the parameter 𝑝 takes a value of 0.5. The derived equivalent models of the 

DC line for PG and PP short-circuit faults are depicted above. These models include a 

grounding branch with resistance 𝑅𝑓, dividing the DC line into 𝑅𝑎 − 𝐿𝑎 and 𝑅𝑏 − 𝐿𝑏 

branches. Insulation breakdown resulting from the short-circuit fault in the DC cable is 

represented by a sudden decrease in resistance, denoted as 𝑅𝑓
′  (where 𝑅𝑓

′  is considerably 

smaller than 𝑅𝑓). In the case of PG faults, the DC line is connected to the ground via 

the short-circuit branch. Similarly, for PP faults, the short-circuit branch establishes a 

connection between both poles of the DC line. The state-space model of DC Cable 

before the occurrence of the fault is given from equation 29 as: 

 

𝑑

𝑑𝑡
𝐼𝑎 = −

𝑅𝑎 + 𝑝𝑅𝑓

𝐿𝑎
𝐼𝑎 +

𝑝𝑅𝑓

𝐿𝑎
𝐼𝑏 +

𝑝

𝐿𝑎
𝑉𝑎

𝑑

𝑑𝑡
𝐼𝑏 =

𝑝𝑅𝑓

𝐿𝑏
𝐼𝑎 −

𝑅𝑏 + 𝑝𝑅𝑓

𝐿𝑏
𝐼𝑏 +

𝑝

𝐿𝑏
𝑉𝑏

 (29) 

 

Rewriting the equation, we get: 



Machine Learning based Fault Detection and Isolation in DC Microgrids 

31 

 

 

𝑑

𝑑𝑡
𝐼𝑎 = −

𝑅𝑎

𝐿𝑎
𝐼𝑎 −

𝑝𝑅𝑓

𝐿𝑎
𝐼𝑎 +

𝑝𝑅𝑓

𝐿𝑎
𝐼𝑏 +

𝑝

𝐿𝑎
𝑉𝑎

𝑑

𝑑𝑡
𝐼𝑏 =

𝑝𝑅𝑓

𝐿𝑏
𝐼𝑎 −

𝑅𝑏

𝐿𝑏
𝐼𝑏 −

𝑝𝑅𝑓

𝐿𝑏
𝐼𝑏 +

𝑝

𝐿𝑏
𝑉𝑏

 (30) 

When the line short-circuit fault occurs, the systems state-space model 

becomes: 

 

𝑑

𝑑𝑡
𝐼𝑎 = −

𝑅𝑎

𝐿𝑎
𝐼𝑎 −

𝑝𝑅𝑓
′

𝐿𝑎
𝐼𝑎 +

𝑝𝑅𝑓
′

𝐿𝑎
𝐼𝑏 +

𝑝

𝐿𝑎
𝑉𝑎

𝑑

𝑑𝑡
𝐼𝑏 =

𝑝𝑅𝑓
′

𝐿𝑏
𝐼𝑎 −

𝑅𝑏

𝐿𝑏
𝐼𝑏 −

𝑝𝑅𝑓
′

𝐿𝑏
𝐼𝑏 +

𝑝

𝐿𝑏
𝑉𝑏

 (31) 

Which can be expressed as 

 

𝑑

𝑑𝑡
𝐼𝑎 = −

𝑅𝑎

𝐿𝑎
𝐼𝑎 −

𝑝𝑅𝑓
′

𝐿𝑎
(𝐼𝑎 − 𝐼𝑏) +

𝑝

𝐿𝑎
𝑉𝑎

𝑑

𝑑𝑡
𝐼𝑏 = −

𝑅𝑏

𝐿𝑏
𝐼𝑏 +

𝑝𝑅𝑓
′

𝐿𝑏
(𝐼𝑎 − 𝐼𝑏) +

𝑝

𝐿𝑏
𝑉𝑏

 (32) 

OR 

 

𝑑

𝑑𝑡
𝐼𝑎 = −

𝑅𝑎

𝐿𝑎
𝐼𝑎 −

𝑝𝑅𝑓

𝐿𝑎
𝐼𝑓 −

𝒑𝑹𝒇
′

𝑳𝒂
(∆𝑰𝒇) +

𝑝

𝐿𝑎
𝑉𝑎

𝑑

𝑑𝑡
𝐼𝑏 = −

𝑅𝑏

𝐿𝑏
𝐼𝑏 +

𝑝𝑅𝑓

𝐿𝑏
𝐼𝑓 +

𝒑𝑹𝒇
′

𝑳𝒃
(∆𝑰𝒇) +

𝑝

𝐿𝑎
𝑉𝑏

 (33) 

Where −
𝑝𝑅𝑓

′

𝐿𝑎
 and 

𝑝𝑅𝑓
′

𝐿𝑏
 are part of the fault matrix and ∆𝐼𝑓 is the fault vector. 

3.5.3 Busbar Short-Circuit Fault 

Figure 3-10 represents the equivalent model of a DC busbar, comprising entering 

and leaving lines from common node as well as a short-circuit branch. When a short-

circuit fault occurs within this busbar, the fault can be represented by an abrupt decrease 

in the fault resistance, transitioning from 𝑹𝒇 to 𝑹𝒇
′  (where 𝑹𝒇

′  is substantially smaller 

than 𝑹𝒇). 
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Figure 15: Equivalent model of a DC busbar incorporating a short-circuit fault 

3.5.3.1 Short-Circuit Fault near Boost side Busbar 

The state-space model of boost converter before the occurrence of the fault is 

given as [18]: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶1
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶1
𝑉𝐶𝑏𝑜 −

1

𝑅𝑓𝑏𝐶1
𝑉𝐶𝑏𝑜

 (34) 

 

After the short-circuit fault in the dc cable, the system state-space model 

becomes: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶1
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶1
𝑉𝐶𝑏𝑜 −

1

(𝑅𝑓𝑏 + ∆𝑅𝑓𝑏)𝐶1
𝑉𝐶𝑏𝑜

 (35) 

OR 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶1
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶1
𝑉𝐶𝑏𝑜 −

1

𝐶1
𝑖𝑓𝑏

 (36) 

Which can be expressed as: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶1
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶1
𝑉𝐶𝑏𝑜 −

1

𝑅𝑓𝑏𝐶1
𝑉𝐶𝑏𝑜 −

𝟏

𝑪𝟏
(−

∆𝑹𝒇𝒃

𝑹𝒇𝒃 + ∆𝑹𝒇𝒃
)

𝑽𝑪𝒃𝒐

𝑹𝒇𝒃
 

 (37

) 
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OR 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑜 = −

1 − 𝐷𝑏𝑜

𝐿𝑏𝑜
𝑉𝐶𝑏𝑜 +

1

𝐿
𝑉𝐼𝑁𝑏𝑜

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑜 =

1 − 𝐷𝑏𝑜

𝐶1
𝐼𝐿𝑏𝑜 −

1

𝑅𝐿𝐶1
𝑉𝐶𝑏𝑜 −

1

𝑅𝑓𝑏𝐶1
𝑉𝐶𝑏𝑜 −

𝟏

𝑪𝟏
∆𝒊𝒇𝒃 

 (38) 

Where 
1

𝐶1
 is part of the fault matrix and ∆𝑖𝑓𝑏 is the fault vector. 

3.5.4 Load Component Fault 

When modeling direct current (DC) systems, the load component, which has 

predefined characteristics, can be depicted by its resistance. This resistance can be 

influenced by faults that arise within the load component. An instance of such a fault is 

the occurrence of short-circuits within the device, which leads to a decrease in the load 

resistance. Exploiting this characteristic, a fault in the load with a known equivalent 

resistance can be represented by the deviation of the load resistance from its initial 

value. The state-space model of buck converter before the occurrence of the fault is 

given as [18]: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢 −

1

𝑅𝐿𝐹𝐶𝑏𝑢
𝑉𝐶𝑏𝑢

 (39) 

After the short-circuit fault in the load component of the buck converter, the 

system’s state-space model becomes: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢 −

1

(𝑅𝐿𝐹 + ∆𝑅𝐿𝐹)𝐶𝑏𝑢
𝑉𝐶𝑏𝑢

 (40) 

OR 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢 −

1

𝐶𝑏𝑢
𝑖𝑅𝐿

 (41) 
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Which can be expressed as: 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢 −

𝟏

𝑪𝒃𝒖
(−

∆𝑹𝑳𝑭

𝑹𝑳𝑭 + ∆𝑹𝑳𝑭
)
𝑽𝑪𝒃𝒖

𝑹𝑳𝑭
 

 (42) 

OR 

 

𝑑

𝑑𝑡
𝐼𝐿𝑏𝑢 = −

1

𝐿𝑏𝑢
𝑉𝐶𝑏𝑜 +

𝐷𝑏𝑢

𝐿𝑏𝑢
𝑉𝐼𝑁𝑏𝑢

𝑑

𝑑𝑡
𝑉𝐶𝑏𝑢 =

1

𝐶𝑏𝑢
𝐼𝐿𝑏𝑢 −

1

𝑅𝐿𝐶𝑏𝑢
𝑉𝐶𝑏𝑢 −

𝟏

𝑪𝒃𝒖
∆𝒊𝑹𝑳

 (43) 

Where 
1

𝐶𝑏𝑢
 is part of the fault matrix and ∆𝑖𝑅𝐿 is the fault vector. 
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3.5.5 Modeling of the Component Faults of the DCMG 

Table 2 shows all the modeled component faults of the DCMG under the case 

study. 

Fault 

Number 
Component Fault type Fault Matrix 𝑩𝒇 

Fault Vector 

𝒇 

𝒇𝟏 Boost Switch Failure 

[
1

𝐿𝑏𝑜

01𝑥13]
𝑇

 

[0 −
1

𝐶1

01𝑥12]
𝑇

 

∆𝐷𝑏𝑜𝑉𝐶𝑏𝑜 

∆𝐷𝑏𝑜𝐼𝐿𝑏𝑜 

𝒇𝟐 Buck 1 Switch Failure 

[01𝑥2 −
1

𝐿𝑏𝑢1

01𝑥11]
𝑇

 

[01𝑥4 −
1

𝐶2

01𝑥9]
𝑇

 

∆𝐷𝑏𝑢1𝑉𝐼𝑁𝑏𝑢1 

∆𝐷𝑏𝑢1𝐼𝐿𝑏𝑢1 

𝒇𝟑 Buck 2 Switch Failure 

[01𝑥5 −
1

𝐿𝑏𝑢2

01𝑥8]
𝑇

 

[01𝑥7 −
1

𝐶3

01𝑥6]
𝑇

 

∆𝐷𝑏𝑢2𝑉𝐼𝑁𝑏𝑢2 

∆𝐷𝑏𝑢2𝐼𝐿𝑏𝑢2 

𝒇𝟒 Cable 1 
Short-Circuit 

Fault 
[01𝑥8 −

𝑝𝑅1𝑓
′

𝐿1𝑎

𝑝𝑅1𝑓
′

𝐿1𝑏

01𝑥4]

𝑇

 ∆𝑖1𝑓 

𝒇𝟓 Cable 2 
Short-Circuit 

Fault 
[01𝑥10 −

𝑝𝑅2𝑓
′

𝐿2𝑎

𝑝𝑅2𝑓
′

𝐿2𝑏

01𝑥2]

𝑇

 ∆𝑖2𝑓 

𝒇𝟔 Cable 3 
Short-Circuit 

Fault 
[01𝑥12 −

𝑝𝑅3𝑓
′

𝐿3𝑎

𝑝𝑅3𝑓
′

𝐿3𝑏

]

𝑇

 ∆𝑖3𝑓 

𝒇𝟕 Busbar 1 
Short-Circuit 

Fault 
[0 −

1

𝐶1

01𝑥12]
𝑇

 ∆𝑖1𝑓𝑏 

𝒇𝟖 Busbar 2 
Short-Circuit 

Fault 
[01𝑥4 −

1

𝐶2

01𝑥9]
𝑇

 ∆𝑖2𝑓𝑏 

𝒇𝟗 Busbar 3 
Short-Circuit 

Fault 
[01𝑥7 −

1

𝐶3

01𝑥6]
𝑇

 ∆𝑖3𝑓𝑏 

𝒇𝟏𝟎 Load 
Component 

Fault 
[01𝑥3 −

1

𝐶𝑏𝑢1

01𝑥10]
𝑇

 ∆𝑖𝑅𝐿 

Table 2: Component Fault Specifications of the DCMG 
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3.6 Machine Learning Algorithm for Fault Detection and 

Classification 

Detecting and classifying faults in DC microgrids is essential for maintaining 

their stability and ensuring uninterrupted power supply. Machine learning techniques 

have emerged as effective tools for automating the fault detection and classification 

process, offering advantages over traditional manual inspection methods [38]. Machine 

learning leverages the power of data analysis and pattern recognition to identify and 

categorize faults. By training models on historical data that includes both normal and 

faulty operating conditions, machine learning algorithms can learn to detect and classify 

faults based on patterns and features in the data. This automated approach reduces 

human intervention and enables faster fault detection, leading to improved system 

reliability [39]. 

One of the key advantages of applying machine learning to fault detection and 

classification is its ability to handle large and complex datasets. DC microgrids generate 

a vast amount of data, including measurements such as voltage, current, power, and 

environmental factors. Machine learning algorithms can effectively analyze this data to 

identify abnormal patterns associated with faults. Moreover, machine learning models 

can adapt and learn from new data, allowing for continuous improvement in fault 

detection accuracy over time [40]. However, applying machine learning in fault 

detection and classification also poses certain challenges. One such challenge is the 

availability of labeled training data. Building a comprehensive dataset with labeled fault 

data can be time-consuming and resource intensive. Additionally, the quality and 

representativeness of the dataset significantly impacts the performance and 

generalizability of the machine learning model. 

Despite these challenges, machine learning techniques have shown promising 

results in fault detection and classification in DC microgrids. Researchers have 

explored various machine learning algorithms, including neural networks, decision 

trees, support vector machines, and ensemble methods, to improve fault detection 

accuracy and robustness [41]. 
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3.6.1 Supervised Learning for Fault Classification 

Supervised learning is a machine learning technique that has gained significant 

attention in fault classification due to its ability to learn patterns and make accurate 

predictions based on labeled data [42]. This type of learning involves training a model 

on a labeled dataset, where each data instance is associated with a known class or 

outcome. The model learns from this labeled data to make predictions or classify new, 

unseen instances. In the case of fault classification in DC microgrids, the labeled dataset 

contains historical records of different fault types, along with their corresponding 

features and characteristics [43]. 

There are several reasons why supervised learning a suitable approach for fault 

classification in DC microgrids is. Firstly, it can handle both binary (e.g., normal vs. 

faulty) and multiclass (e.g., short circuit, overvoltage, undervoltage) classification 

problems, allowing for the identification of various fault types. Supervised learning 

models can be trained to differentiate between different fault classes based on the 

patterns and features extracted from the data [44]. Secondly, supervised learning 

provides the ability to generalize from the training data to classify unseen instances 

accurately. By learning the underlying patterns and relationships in the labeled data, the 

model can make predictions on new data instances and classify them into the 

appropriate fault class. This generalization capability is crucial for fault classification 

in real-world scenarios where the occurrence of faults may vary. 

Supervised learning algorithms commonly used for fault classification include 

decision trees, SVM, KNN, and ANNs. These algorithms differ in their underlying 

principles and approaches to classification but share the common goal of learning from 

labeled data to make accurate predictions [45]. 

The selection of supervised learning as the chosen technique for fault 

classification in DC microgrids was based on its ability to handle both binary and 

multiclass classification problems and its generalization capabilities. By utilizing a 

labeled dataset comprising historical fault records, we can train a supervised learning 

model to accurately classify different fault types based on their distinguishing features. 
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3.6.2 Neural Networks for Fault Detection and Classification in Power Systems 

Neural networks are a class of machine learning models that have gained 

significant popularity due to their ability to learn complex patterns and relationships in 

data. Inspired by the structure and functioning of the human brain, neural networks 

consist of interconnected nodes, known as neurons, organized into layers. In this 

section, we will delve deeper into the architecture, working principles, and the 

utilization of pattern recognition in neural networks for fault detection in DC 

microgrids. 

3.6.2.1 Architecture of Neural Networks 

The architecture of a neural network plays a critical role in its ability to learn 

and make predictions. A neural network typically consists of three types of layers, as 

shown in Figure 16, the input layer, hidden layers, and the output layer [46]. 

 

Figure 16: Architecture of Neural Networks 

o The input layer is responsible for receiving the data, which could include various 

measurements from DC microgrid components, such as voltage, current, power, and 

environmental factors. Each neuron in the input layer represents a specific input 

feature, and its value corresponds to the value of that feature in the input data. 

o The hidden layers, located between the input and output layers, perform 

computations on the input data and progressively learn more abstract 

representations of the data as information flows through the network. Hidden layers 

can vary in number, and each layer consists of multiple neurons. The more hidden 
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layers a neural network has, the more complex patterns it can learn. Each neuron in 

the hidden layers receives inputs from the neurons in the previous layer. It computes 

a weighted sum of the inputs and applies an activation function to introduce non-

linearity. Mathematically, the output of a neuron in a hidden layer can be 

represented as follows [30]: 

 𝑦 = 𝑓(∑(𝑤𝑖 ∙ 𝑥𝑖 + 𝑏)

𝑛

𝑖=1

 (44) 

In this equation, 𝑦 represents the output of the neuron, 𝑥𝑖  represents the inputs from 

the previous layer or the input layer, 𝑤𝑖 represents the corresponding weights 

associated with each input. The weights determine the importance or influence of 

each input on the neuron's output, 𝑏 represents the bias term, which is an additional 

parameter that allows the neuron to shift the decision boundary or introduce a 

certain level of activation. 

The equation calculates a weighted sum of the inputs, represented by ∑ (𝑤𝑖 ∙ 𝑥𝑖)
𝑛
𝑖=1 , 

where 𝑛 is the number of inputs. Each input is multiplied by its corresponding 

weight, and the resulting products are summed together. This weighted sum 

represents the total influence of the inputs on the neuron's activation. 

The bias term 𝑏 is then added to the weighted sum. The bias allows the neuron to 

have a non-zero output even when all the inputs are zero. It can be seen as a 

threshold that determines the neuron's activation level. 

Finally, the activation function 𝑓 is applied to the sum of the weighted inputs and 

the bias. The activation function introduces non-linearity into the computation. It 

determines whether the neuron should fire or be activated based on the result of the 

weighted sum and bias. Different activation functions have different characteristics, 

such as being sigmoidal, piecewise linear, or rectified. They enable the neural 

network to model complex relationships between inputs and outputs. 

The output of the activation function 𝑦, represents the neuron's output. It serves as 

input to the neurons in the subsequent layers of the neural network. 

By adjusting the weights and biases in the neural network during the training 

process, the network learns to find the optimal values that minimize the difference 

between the predicted outputs and the true outputs. This optimization process, often 

using techniques like backpropagation and gradient descent, allows the neural 
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network to learn the patterns and relationships in the data, enabling it to make 

accurate predictions or classifications. 

o The output layer is the final layer of the neural network. It produces the network's 

predictions or classifications based on the computations performed in the hidden 

layers. The number of neurons in the output layer depends on the nature of the 

problem. For fault detection in a DC microgrid, the output layer could consist of 

neurons representing different fault types, with each neuron providing the 

probability or confidence score of a particular fault class. 

3.6.2.2 Working Principles of Neural Networks 

The power of neural networks lies in their ability to learn from labeled data and 

generalize to unseen instances. During the training phase, the network adjusts the 

weights and biases associated with the connections between neurons to minimize the 

difference between the predicted output and the actual output. This adjustment process, 

known as backpropagation, utilizes optimization algorithms to iteratively update the 

parameters of the network. 

1. Training Parameters 

One commonly used optimization algorithm is Scaled Conjugate 

Backpropagation. It combines the conjugate gradient method with scaling techniques 

to efficiently train neural networks [47]. This technique adjusts the weights and biases 

in the network by calculating the gradients of the loss function with respect to these 

parameters and updating them in a way that minimizes the loss. 

The key equations involved in scaled conjugate backpropagation are as follows 

[48]. 

a) Weight Update 

For each weight 𝑤 in the network, the update is performed using the following 

equation: 

 𝑤𝑛𝑒𝑤 = 𝑤 − 𝛼 ∙ 𝑝 ∙ 𝑠𝑖𝑔𝑛(𝑔) ∙
Δ𝑤

Δ𝑔
 (45) 
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where 𝑤𝑛𝑒𝑤 is the updated weight, 𝛼 is a scaling factor, 𝑝 is the step size 

adjustment factor, 𝑔 is the gradient of the weight, and 
Δ𝑤

Δ𝑔
 is the ratio of the weight 

change to the gradient change. 

b) Bias Update 

Like weight updates, the bias 𝑏 in the network is updated using the following 

equation: 

 𝑏𝑛𝑒𝑤 = 𝑏 − 𝛼 ∙ 𝑝 ∙ 𝑠𝑖𝑔𝑛(𝑔) ∙
Δ𝑏

Δ𝑔
 (46) 

Where 𝑏𝑛𝑒𝑤 is the updated bias, 
Δ𝑏

Δ𝑔
 is the ratio of the bias change to the gradient 

change. 

c) Error Update 

The error 𝐸  in the network is updated using the following equation: 

 𝐸𝑛𝑒𝑤 = 𝐸 − 𝛼 ∙ 𝑝 ∙ 𝑠𝑖𝑔𝑛(𝑔) ∙
Δ𝐸

Δ𝑔
 (47) 

Where 𝐸𝑛𝑒𝑤 is the updated error,  
Δ𝐸

Δ𝑔
 is the ratio of the error change to the gradient 

change. 

The scaling factor 𝛼 and the step size adjustment factor 𝑝 are dynamically 

adjusted during the training process to ensure efficient convergence. 

Scaled conjugate backpropagation algorithm offers several advantages, such as 

faster convergence, improved stability, and better handling of ill-conditioned problems. 

It enables neural networks to effectively learn the underlying patterns and relationships 

in the data, leading to improved fault detection and classification performance. By 

leveraging the principles of scaled conjugate backpropagation, neural networks can 

efficiently adjust their parameters and optimize their performance during the training 

process. 

2. Hyperparameters 

In addition to the trainable parameters, neural networks also have 

hyperparameters, which are set manually before training and control the behavior and 
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performance of the network [49]. Following are some of the important hyperparameters 

commonly used in neural networks: 

a) Learning Rate 

The learning rate determines the step size at which the network's parameters are 

updated during backpropagation. A high learning rate may cause the network to 

converge quickly but risk overshooting the optimal solution, while a low learning rate 

may lead to slow convergence. It is important to find an optimal learning rate that 

balances convergence speed and accuracy. 

b) Number of Hidden Layers and Neurons 

The choice of the number of hidden layers and the number of neurons in each 

layer is crucial. Adding more layers or neurons can increase the network's capacity to 

learn complex patterns but may also lead to overfitting. On the other hand, using too 

few layers or neurons may result in underfitting, where the network fails to capture 

important patterns in the data. Finding an optimal architecture requires experimentation 

and validation. 

c) Activation Functions 

Activation functions introduce non-linearity to the network, enabling it to learn 

complex relationships between inputs and outputs. Common activation functions 

include the sigmoid, tanh, and ReLU (Rectified Linear Unit) functions. The choice of 

activation functions can impact the network's ability to model non-linear relationships 

and affect training stability. 

d) Regularization Techniques 

Regularization techniques help prevent overfitting by adding penalty terms to the 

loss function. L1 and L2 regularization are commonly used methods that control the 

complexity of the network by discouraging large weights and encouraging sparsity in 

the learned parameters. The regularization strength or coefficients are hyperparameters 

that need to be set based on the specific problem and dataset. 
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e) Batch Size 

During training, the data is divided into batches, and the network's parameters are 

updated based on the average gradient computed over each batch. The batch size 

determines how many instances are processed before updating the weights. Choosing 

an appropriate batch size can affect the training time, memory usage, and the 

generalization ability of the network. 

f) Dropout Rate 

Dropout is a regularization technique that randomly drops out a fraction of 

neurons during training to prevent overfitting. The dropout rate determines the 

probability of a neuron being dropped out at each training iteration. It helps the network 

to learn more robust and generalized representations by reducing interdependencies 

between neurons. 

g) Initialization Scheme 

The initial values of the weights and biases in the network can influence the 

training process and convergence. There are different initialization schemes, such as 

random initialization, Xavier initialization, or He initialization, that can be used to set 

the initial parameter values [50]. 

3.6.2.3 Pattern Recognition in Neural Networks for Fault Detection 

Neural networks excel in pattern recognition, making them well-suited for fault 

detection in DC microgrids [51]. Through the training process, neural networks learn 

to recognize patterns associated with different fault types, allowing them to accurately 

classify faults based on the input data. 

Pattern recognition in neural networks involves two main aspects: feature 

extraction and decision-making.  

Feature extraction refers to the process of identifying relevant patterns or 

features in the input data that are indicative of different fault types. Neural networks 

can automatically extract relevant features from raw data, eliminating the need for 

manual feature engineering [52]. This ability is particularly valuable in fault detection, 

as fault patterns may not always have explicit definitions or be easily discernible. By 
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learning the underlying representations of the data through the hidden layers, neural 

networks can capture intricate patterns and relationships that might not be apparent in 

the original measurements. 

Once relevant features are extracted, the neural network utilizes its learned 

parameters to make decisions about the presence or absence of faults [53]. The network 

assigns input instances to different fault classes based on the patterns and features it has 

learned during training. By comparing the extracted features of the input data with the 

learned patterns, the neural network can accurately identify and classify different types 

of faults. 

The ability of neural networks to recognize complex patterns and extract 

meaningful features from raw data contributes to their effectiveness in fault detection. 

Through extensive training on labeled fault data, neural networks can learn to 

generalize and accurately detect faults in DC microgrids. 

3.6.3 Workflow: Fault Detection and Classification in DC Microgrid using Neural 

Networks 

The flowchart, shown in Figure 17, illustrates the comprehensive workflow for 

fault detection and classification in DC microgrid systems using neural networks. The 

workflow begins with data collection, where relevant parameters such as voltage and 

current are gathered from the DC microgrid. The collected data is then preprocessed to 

remove noise and outliers, followed by feature extraction to identify informative 

patterns. Subsequently, the data is divided into training, validation, and testing datasets 

to prepare for model development. A suitable neural network architecture is selected, 

and the model is trained using the training dataset, employing techniques such as scaled 

conjugate backpropagation for optimization. The hyperparameters of the neural 

network, including the learning rate, batch size, and number of hidden layers, are 

carefully tuned using the validation dataset to improve the model's performance and 

generalization capabilities. The training process involves iterative forward and 

backward passes, where the model learns to minimize the loss function and adjust the 

weights and biases. Once the training is complete, the model's performance is evaluated 

using the testing dataset, measuring metrics such as accuracy, precision, recall, and F1 

score. In the next step, the trained model is applied to real-time data from the DC 

microgrid, enabling the detection and classification of faults. The output of the model 
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provides valuable insights into the presence and types of faults in the microgrid, aiding 

in timely decision-making and maintenance. Throughout the workflow, performance 

analysis and improvement techniques are employed to refine the model, considering 

both the training and validation results. This iterative process ensures that the neural 

network model is optimized and reliable for accurate fault detection and classification 

in DC microgrid systems. Finally, the results and conclusions of the entire workflow 

are summarized, providing a comprehensive understanding of the effectiveness and 

practical implications of utilizing neural networks for fault detection and classification 

in DC microgrid systems. 

3.7 Fault Classification Module 

For fault identification, classification type supervised learning technique is 

employed, utilizing this type of algorithm to categorize input data into their respective 

classes based on distinct features. In our research work, we studied 11 different types 

of faults, each associated with a specific output class within the machine learning 

algorithm. Once trained using the fault samples dataset, the algorithm can effectively 

classify faults into their appropriate classes using feature detection techniques, as 

demonstrated by the equation below. This approach enhances the efficiency and 

accuracy of fault classification, enabling timely identification and appropriate response 

to ensure the reliable operation of the DCMG system. 

 𝑦𝑗 = {
1 𝑖𝑓 𝑎𝑛𝑦 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡 𝑗 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (48) 

Below is a detailed description of the fault classes associated with the different 

types of faults studied in this research. Each fault class represents a specific fault 

scenario and plays a crucial role in accurately identifying and classifying faults within 

the DCMG system. The comprehensive understanding of these fault classes enables 

effective fault detection and response strategies, contributing to the overall reliability 

and performance of the microgrid system. 

3.7.1 No-Fault Condition (Nof): 

The first fault signature corresponds to the No-fault condition (Nof), indicating 

that the DCMG is operating in its normal condition without any faults. This fault class 

is assigned the output class vector y, which is defined as: 
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 𝑦1  = [1 01𝑥11] (49) 

This output class vector serves as a representation of the fault-free state of the 

system and plays a crucial role in accurately identifying and classifying this specific 

condition during fault detection and classification processes. 

3.7.2 Fault Signature for the Switch Failure type Fault: 

The next fault signature corresponds to the switch failure type fault in the DCMG, 

which can occur in both the Boost converter and the Buck converters. This fault class 

represents the malfunction or failure of the switches in these converters. The output 

class vector y for this fault signature is defined as: 

 𝑦𝑗  = {

[0 1 01𝑥10] 𝑤ℎ𝑒𝑛 𝑗 = 2

[01𝑥2 1 01𝑥9] 𝑤ℎ𝑒𝑛 𝑗 = 3

[01𝑥3 1 01𝑥8] 𝑤ℎ𝑒𝑛 𝑗 = 4
…(50) (50) 

Here, the output class vector is denoted as 𝑦𝑗  , where 𝑗 = 2 represents the Boost 

converter switch fault, 𝑗 = 3 represents the Buck converter 1 switch fault, and 𝑗 = 4 

represents the Buck converter 2 switch fault. By assigning this specific output class 

vector, the fault classification module can accurately identify and classify instances of 

switch failure in the Boost converter and the Buck converters. With the help of feature 

detection and the defined output class vector, the machine learning algorithm can 

effectively detect and classify switch failure faults within the DCMG system. 

3.7.3 Fault Signature for the Short-Circuit Fault in the Transmission Cable: 

In the fault classification module, the fault signature for the transmission cable 

short circuit fault is given special consideration. This fault class specifically refers to 

the occurrence of a short circuit fault in one of the transmission cables within the 

DCMG system. The output class vector y, associated with this fault signature, is defined 

as: 

 𝑦𝑗  = {

[01𝑥4 1 01𝑥7] 𝑤ℎ𝑒𝑛 𝑗 = 5

[01𝑥5 1 01𝑥6] 𝑤ℎ𝑒𝑛 𝑗 = 6

[01𝑥6 1 01𝑥5] 𝑤ℎ𝑒𝑛 𝑗 = 7
…(51) (51) 

Since the DCMG system consists of three cables, each corresponding to a 

specific fault scenario, the fault classification algorithm assigns a unique output class 

vector for accurate identification and classification. Specifically, the output class vector 
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is denoted as 𝑦𝑗, where 𝑗 = 5 corresponds to cable 1 short circuit fault, 𝑗 = 6 

corresponds to cable 2 short circuit fault, and 𝑗 = 7 corresponds to cable 3 short circuit 

fault. By utilizing feature detection techniques and the defined output class vector, the 

machine learning algorithm demonstrates its capability to effectively detect and classify 

short circuit faults occurring in the transmission cables of the DCMG system. 

3.7.4 Fault Signature for the Short-Circuit Fault in the Busbar: 

In a similar manner, the fault signature related to the short circuit fault in the 

busbars of the DCMG is considered within the fault classification module. This fault 

class refers to the occurrence of a short circuit fault in one of the busbars of the DCMG 

system. The corresponding output class vector y for this fault signature is defined as: 

 𝑦𝑗  = {

[01𝑥7 1 01𝑥4] 𝑤ℎ𝑒𝑛 𝑗 = 8

[01𝑥8 1 01𝑥3] 𝑤ℎ𝑒𝑛 𝑗 = 9

[01𝑥9 1 01𝑥2] 𝑤ℎ𝑒𝑛 𝑗 = 10
 (52) 

The output class vector is denoted as 𝑦𝑗, where 𝑗 = 8 corresponds to busbar 1 

short circuit fault, 𝑗 = 9 corresponds to busbar 2 short circuit fault, and 𝑗 = 10 

corresponds to busbar 3 short circuit fault. By utilizing feature detection techniques and 

considering the defined output class vector, the fault classification algorithm becomes 

capable of effectively detecting and classifying short circuit faults in the busbars of the 

DCMG system. 

3.7.5 Fault Signature for the Short-Circuit Fault in the Load Component: 

Similarly, the fault signature related to the short circuit fault in the load 

components of the DCMG is considered within the fault classification module. This 

fault class represents the occurrence of a short circuit fault in one of the load 

components connected to the DCMG system. The corresponding output class vector y 

for this fault signature is defined as: 

 𝑦𝑗 = {
[01𝑥10 1 0] 𝑤ℎ𝑒𝑛 𝑗 = 11

[01𝑥11 1] 𝑤ℎ𝑒𝑛 𝑗 = 12
 (53) 

Where the output class vector is represented as 𝑦_𝑗, where 𝑗 = 11 corresponds 

to the buck converter 1 side load component fault, and 𝑗 = 12 corresponds to the buck 

converter 2 side load component fault. By incorporating feature detection techniques 

and considering the defined output class vector, the fault classification algorithm 
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effectively detects and classifies short circuit faults in the load components of the 

DCMG system. 

 

 
Figure 17:  Workflow depiction for Fault Detection and Classification in DC 

Microgrid Systems using Neural Networks 
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Chapter 4 

 In this section, the results and discussion of the developed machine learning 

based FDI for the DCMG under study is presented. 

4.1 Proposed Solution/Results & Discussion 

To address the component-level protection and model uncertainty limitations 

inherent in existing FDI algorithms for DCMGs, this research presents an ANN-based 

algorithm as a solution. The algorithm employs component-wise state-space modeling 

and physical modeling to obtain a comprehensive training dataset, trains the ANN using 

fault-related data extracted from the microgrid, and utilizes the cross-entropy loss 

function for classification and the scaled conjugate backpropagation algorithm for 

optimization. 

To begin with, we first provide simulation results for the DCMG under no-fault 

condition. We discuss this scenario by observing different plots of voltages and currents 

in the converters and transmission cables of the system, the simulation results of the 

DC microgrid under a no-fault condition are provided, including voltage and current 

plots of converters and transmission cables. This analysis establishes a baseline for 

comparison with subsequent fault scenarios. In addition to the first baseline comparison 

data, we also provide the generated fault data. This data is obtained by introducing 

various faults such as line, converter switch, and load to the DCMG. Moving on, the 

fault detection results are provided, accompanied by a detailed explanation of how the 

machine learning algorithm effectively identifies and classifies faults within the 

microgrid system. Moreover, the efficiency of the algorithm in isolating faults is 

discussed, elucidating the steps taken to pinpoint the precise location of the fault within 

the network. 

The DC microgrid under study and its characteristics are comprehensively 

discussed in Section 3.2 of this thesis. The SLD of the DCMG under study mentioning 

the faults is provided here as Figure 18. The system encompasses boost converters, 

buck converters, DC busbars, DC circuit breakers, and DC transmission cables. 
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Figure 18: The schematic representation of the DC microgrid in the case study 

4.1.1 DCMG under Normal Operation 

This subsection focuses on analyzing the response of the three-terminal DC 

microgrid during normal operation, i.e., devoid of any faults. Through simulation, we 

can observe the behavior and interaction of these components within the microgrid. 

This analysis establishes a baseline for evaluating the system's performance and 

provides valuable insights for subsequent comparison with fault scenarios. The 

behavior of the DCMG under normal condition is shown in Figure 19(a) and 19(b). For 

convenience we call this scenario Case 1. 

4.1.1.1 Data Generation Case 1: No-Fault Condition 

Figure 19(a) illustrates the voltage and current plots of the DC-DC converters 

within the DC microgrid (DCMG). In this scenario all initial conditions of the DCMG 

are kept zero. Therefore, we can see in Figure 19(a) that the Buck and Boost terminals 

go through a transient phase prior achieving their rated steady-state values. The 

system's steady-state is achieved via a local closed-loop controller at each converter. It 

is observed in Figure 19(a) that the local controllers achieve steady-state voltage and 

current within 0.04 sec.  
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(a) 

 

(b) 

Figure 19: Data Generation Case-1 No-fault 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 

The transient and steady-state response of the DCMG transmission cables is 

shown in Figure 19(b). In this figure, both input and output current of the transmission 

lines are provided. Like the converter states we find that the local controllers have 

achieved steady-state cable current within 0.04sec; moreover, by examining this plot 

we can observe that there is distinct behavior among the different cable branches. Cable 
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1 and Cable 2 exhibit a gradual increase in current until they reach their steady-state 

values. This increase is intuitive as it shows the supply of power to the load connected 

with the buck converter. Conversely, Cable 3 demonstrates no current flow during the 

normal operation of the DCMG. Its primary function is to serve as an alternative power 

source in the event of line two or line one failure. Thus, under normal conditions, Cable 

3 remains inactive, ensuring the system's reliability by providing a backup or 

contingency. 

These plots provide critical observations regarding the dynamic behavior and 

performance of the DC-DC converters and the DC transmission cables within the 

DCMG. By analyzing these visual representations, which are derived from the circuit 

model of the system, we obtain a comprehensive understanding of the system's 

operation. The simulation results shed light on the system's capability to maintain stable 

voltage and current levels, guaranteeing uninterrupted power supply to the connected 

load. This analysis validates the efficacy and reliability of the system's design, 

demonstrating its robust performance under normal operating conditions. 

4.1.2 DCMG Under Fault Condition 

In this section, a comprehensive description of the fault parameters, number of 

training data samples, and fault scenarios is presented. The primary objective of this 

phase is to generate a dataset which will be utilized for training the machine learning 

algorithm. Detailed information regarding the types of faults, their characteristics, and 

the corresponding fault scenarios are provided. Additionally, the simulation results of 

these faults are presented, which serve as the basis for extracting the fault data required 

for training the machine learning algorithm. Thus, a diverse dataset is generated, 

enabling the algorithm to learn and identify different fault conditions accurately. 

Fault Parameters and Dataset Description: 

As indicated in Section 3 of the thesis, an essential aspect of the research involves 

the modeling and simulation of various fault scenarios within the DCMG. By utilizing 

a circuit model implemented in MATLAB/SIMULINK, therefore, 11 different fault 

types are carefully created and simulated. Employing a supervised learning approach, 

the fault data samples are associated with their respective fault classes, enabling 

accurate fault classification as discussed in Section 3.6. A detailed description of the 
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different fault scenarios, along with the number of data samples, is provided in Table 3 

below.  

S.No Fault Description Scenarios Data Samples 

1 No-Fault Condition (Nof) 1 30,001 

2 Boost Converter Side Busbar Short-Circuit Fault 5 200,004 

3 Buck Converter 1 Side Busbar Short-Circuit Fault 2 40,002 

4 Buck Converter 2 Side Busbar Short-Circuit Fault 2 40,002 

5 Transmission Cable 1 Short-Circuit Fault 2 40,002 

6 Transmission Cable 2 Short-Circuit Fault 2 40,002 

7 Transmission Cable 3 Short-Circuit Fault 2 40,002 

8 Boost Converter Switch Fault 2 40,002 

9 Buck Converter 1 Switch Fault 2 40,002 

10 Buck Converter 2 Switch Fault 2 40,002 

11 Buck Converter 1 Load Fault 2 40,002 

12 Buck Converter 2 Load Fault 2 40,002 

Total fault Cases 26 630,025 

Table 3: Different Fault Scenarios and Data Sample Quantities in the DCMG 

As depicted in the table, a comprehensive dataset comprising a total of 630,025 

samples is generated to capture the various fault scenarios in the DCMG. This dataset 

is particularly significant considering the presence of 27 different simulation scenarios, 

ensuring a diverse range of fault scenarios. Moreover, the dataset is versatile due to the 

inclusion of 12 distinct features. These features encompass essential parameters such 

as boost converter output voltage and internal current, 𝑉𝑏𝑜 𝑎𝑛𝑑 𝐼𝑏𝑜, as well as the input 

and output currents of cables 1, 2, and 3, 𝐼𝑖𝑎 𝑎𝑛𝑑 𝐼𝑖𝑏 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2 𝑎𝑛𝑑 3. 

Additionally, the dataset includes the output voltage and current of buck converters 1 

and 2, 𝑉𝑏𝑢𝑖 𝑎𝑛𝑑 𝐼𝑏𝑢𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑎𝑛𝑑 2. The inclusion of these 12 distinct features 

provides a rich and comprehensive representation of DCMG’s behavior under different 

fault conditions. A detailed description of different fault scenarios along with the 

number of data samples in each category is provided below. 

To further enhance the efficiency of the machine learning fault detection system, 

an additional supervised machine learning algorithm is integrated in series with the 
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previously trained algorithm. This subsequent algorithm is trained using the output of 

the first algorithm, employing the same number of data samples, and utilizing the same 

target dataset. By cascading these algorithms, the fault detection system benefits from 

the combined capabilities and insights offered by both algorithms. This sequential 

approach strengthens the fault detection mechanism and improves its overall 

performance in accurately identifying and isolating faults within the DCMG. The 

integration of the second algorithm, trained on the output of the first, contributes to the 

system's robustness and enhances its fault detection capabilities. 

The division of the entire dataset into distinct subsets for each algorithm is 

illustrated below. This approach serves a crucial role in minimizing the risk of 

overfitting and facilitates effective training, testing, and validation of the machine 

learning models, ensuring their optimal performance. The division of the data samples 

in these subsets is completely random. 

Pre-Cascade Algorithm Post-Cascade Algorithm 

o Training Dataset: 70% of the dataset is 

dedicated to training the machine learning 

algorithm, enabling it to learn and optimize 

the weights and biases that govern its 

decision-making process. 

o Testing Dataset: 15% of the dataset is 

allocated for validation purposes during the 

learning process. This subset is used to 

assess the algorithm's performance, fine-

tune hyperparameters, and ensure 

generalization beyond the training data. 

o Validation Dataset: The remaining 15% of 

the dataset is reserved for testing the fully 

trained algorithm's performance. This 

independent evaluation allows for an 

objective assessment of the algorithm's 

accuracy, robustness, and effectiveness in 

real-world scenarios. 

o Most of the dataset, approximately 70%, is 

utilized for training the machine learning 

algorithm. This dedicated portion allows the 

algorithm to learn and optimize its weights 

and biases, which are essential for accurate 

decision-making. 

o Around 15% of the dataset is set aside for 

validation purposes during the learning 

process. This subset serves as an evaluative 

tool to gauge the algorithm's performance, 

fine-tune hyperparameters, and ensure that it 

can generalize well beyond the training data. 

o The remaining 15% of the dataset is 

exclusively reserved for testing the fully 

trained algorithm's performance. This 

independent evaluation provides an objective 

assessment of the algorithm's accuracy, 

robustness, and real-world effectiveness, as it 

operates on unseen data. 
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Fault Data Generation Cases: 

To obtain the necessary training data samples for the machine learning algorithm, 

the DCMG circuit model is simulated under various fault scenarios. This simulation-

based approach is highly effective in observing and analyzing the voltage and current 

characteristics of the system under different fault conditions. By introducing faults in 

the simulation, the behavior of the DCMG can be closely examined, and the changes in 

voltage and current patterns can be observed. This comprehensive analysis provides 

valuable insights into the distinct fault signatures that can later be used for fault 

detection and classification. The simulation results of these fault scenarios serve as a 

crucial foundation for extracting the training data required to train the machine learning 

algorithm. The following section presents the plots depicting the response of the DCMG 

under different fault scenarios, showcasing the dynamic behavior of the system and the 

characteristic voltage and current patterns associated with each fault. 

• Data Generation Case 2: Converters Switch failures 

• Data Generation Case 3: Busbar faults 

• Data Generation Case 4: Transmission Cable faults 

• Data Generation Case 5: Load Component faults 

Note that Case 1, the no-fault scenario has been discussed in previous section 4.1.1.1 

4.1.2.1 Data Generation Case 2: Converter Switch Failures 

Figure 20(a) shows the Switch failures in the DCMG. These faults have been 

introduced at 0.1 seconds. As we can see, before the commencement of the fault, 

DCMG is operating in steady state which changes at the inception of the fault. 

Therefore, the curves in the plot illustrate the changes in voltage and current 

characteristics, highlighting the impact of the fault on the system's behavior. 

Similarly, the Transmission cable current response of the DCMG under switch 

fault scenario can be observed in Figure 20(b). As observed, the current of Cable 1 & 

2 increases due to 𝐵𝑂𝑆𝐹 whereas Cable 3 current remains unchanged. In contrast to the 

𝐵𝑂𝑆𝐹, the Cable 1 & 2 current decreases when 𝐵𝑈1𝑆𝐹 𝑎𝑛𝑑 𝐵𝑈2𝑆𝐹 occurs. Moreover, 

Cable 3 also observes the effect of the Buck converters faults. 
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(a) 

 

(b) 

Figure 20: Data Generation Case-2 Switch Faults 

(a) Converters Voltage & Current, (b) Transmission Cables Current 

4.1.2.2 Data Generation Case 3 Busbar Faults 

This case discusses the Busbar short-circuit fault scenario (Figure 21) of 

DCMG. These fault scenarios have been simulated at 0.1 seconds. Prior to the fault 

occurrence, the DCMG operates in a steady state. However, the plot reveals the changes 
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in voltage and current characteristics that occur after the fault, showcasing the impact 

on the system's behavior. 

Figure 21(a) shows the three converters voltage and current due to the Busbar 

faults. As we can see that the most sever fault in this the DCMG is the BOBBF fault. 

Nonetheless, all faults are of equal importance for the protection of the grid.  

The behavior of the Transmission Cables upon the occurrence of Busbar faults 

are given ad Figure 21(b). Where we can observe that the cables output and input 

currents behave nearly the same in this scenario. 

 

(a) 

 

(b) 

Figure 21: Data Generation Case-3 Busbar Faults 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 
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4.1.2.3 Data Generation Case 4: Transmission Cable Faults 

Case 4 provides the results of the Short-Circuit Fault in Transmission cables 

(Figure 22) of the DCMG. These faults were simulated at 0.1 seconds. Prior to the fault 

occurrence, the DCMG operated in a stable state. However, the displayed curves in the 

plot demonstrate significant changes in voltage and current characteristics, clearly 

indicating the impact of the fault on the system's behavior. 

Voltage and current behavior of the converters under the influence of the 

transmission cable faults are provided in Figure 22(a). Similarly, the input and output 

current variation of the transmission cable is in Figure 22(b). We see that each converter 

and cable influenced differently under the introduction of the Transmission line faults. 

 
(a) 

 
(b) 

Figure 22: Data Generation Case-4 Cable Faults 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 
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4.1.2.4 Data Generation Case 5: Load Component Faults 

Shown below is the depiction of a Short-Circuit Faults in the Load Component 

(Figure 23) of the DCMG. These faults were simulated at 0.1 seconds. Prior to the fault, 

the DCMG was operating in a steady-state condition. However, after the fault 

occurrence, the plot demonstrates notable changes in voltage and current 

characteristics, revealing the effect of the fault on the system's behavior. 

Figure 23(a) shows the converters voltages and current for the load fault. We 

see that the load faults on the two Buck converters induce nearly similar responses in 

the Boost converter’s voltage and current. Similarly, the influence of the load faults of 

the two Buck converters are shown in Figure 23(b). The two load faults are propagated 

differently into the Transmission Cables.  

 

(a) 

 

(b) 

Figure 23: Data Generation Case-5 Load Faults 

(a) Converters Voltage & Current, (b) Transmission Cable Current. 



Machine Learning based Fault Detection and Isolation in DC Microgrids 

60 

 

4.1.3 Proposed FDI Training and Results 

This section presents the results obtained from the fault-type detection process 

using the trained machine learning algorithm. It encompasses the training outcomes of 

the algorithm, along with the simulation results that demonstrate the accurate detection 

and isolation of faults within the DCMG system. The effectiveness of the developed 

fault detection methodology is assessed by analyzing the performance metrics and 

evaluating the algorithm's ability to classify various fault types accurately. The 

following subsections provide an in-depth analysis of the training results and the 

simulation outcomes, highlighting the successful fault detection and isolation achieved 

through the implemented methodology. 

4.1.3.1 NN Training and Performance 

The training results of the neural network algorithm in this study demonstrate 

its effectiveness in fault detection and classification. The scaled conjugate 

backpropagation optimization technique, discussed in Section 3.6.2.2, ensures efficient 

training. The confusion matrix evaluation provides valuable insights into the 

algorithm's performance, allowing for accurate classification of fault types. The 

performance plot, based on cross-entropy as the performance measure, depicts the 

algorithm's convergence and provides a visual representation of its learning progress 

over training epochs. The depicted neural network structures for the pre-cascaded and 

post-cascaded algorithms illustrate their connectivity and organization within the fault 

classification module. The iterative process of determining the appropriate number of 

hidden layers contributes to achieving desired fault classification outcomes. The 

optimal number of hidden layers of the Pre-Cascaded and Post-Cascaded structures are 

130 and 40, respectively, which is shown as Figure 24 below. 

Moreover, the performance of the Neural Networks training shown in Figure 24 

is presented here in Figure 25 as cross-entropy error which exhibits a consistent 

decrease with an increasing number of iterations, highlighting the efficient learning 

process of the machine learning algorithm. 

Figure 25(a) shows the Pre-Cascaded Neural Network training performance 

plots. We find that the best validation of the training occurs on 159 epochs with a cross-

entropy value of 133.24 × 10−6 . Similarly, Figure 25(b) shows that the best Post-
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Cascaded Neural Network training performance results on 38th epoch with a 

performance value of 54.915 × 10−6. Notably, the pre-cascaded system requires a 

larger number of iterations, approximately 160, compared to the post-cascaded system, 

which converges around 40 iterations. This significant improvement in fault 

classification underscores the algorithm's effectiveness in accurately identifying and 

categorizing faults within the DCMG system. 

 
(a) 

 

 

(b) 

Figure 24: Structure of the neural network used in this FDI 

(a) Pre-Cascaded System (b) Post-Cascaded System 

The next performance criterion for the neural networks is the confusion matrix. 

And the results are shown as Figure 26, where we see that for both the pre-cascaded 

and post-cascaded systems demonstrate high classification accuracy. In the pre-

cascaded system, the classification accuracy ranges from 99.8% to 100%, indicating its 

efficiency in fault identification. The post-cascaded system exhibits even higher 

accuracy, amplifying the classification rate to between 99.9% and 100%. These 

impressive results highlight the effectiveness of both systems in accurately identifying 

and classifying faults within the DCMG.  
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(a) 

 

 

(b) 

Figure 25: Training Performance Plots 

(a) Pre-Cascaded System: Best validation at epoch 159 with value 133.24×10-6 (b) 

Post-Cascaded System: Best validation at epoch 38 with value 54.915×10-6. 
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(a) 

 

(b) 

Figure 26: Confusion Matrix Plots 

(a) Pre-Cascaded System (b) Post-Cascaded System. 
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4.1.4 Results of the Proposed ML Based FDI in DCMG 

After training both the pre-cascaded and post-cascaded systems, a fault detection 

module is established to detect and isolate faults in the DCMG system. This module 

considers the voltage and current parameters of the DCMG and generates fault signals 

of different types as outputs. These fault signals are represented as binary values, with 

"1" indicating the presence of a fault and "0" indicating a no-fault condition. The 

generated fault signals serve as triggers for the operation of circuit breakers within the 

microgrid. A value of "0" implies that the circuit breaker is closed, while a value of "1" 

indicates that the circuit breaker is opened in response to the fault signal. To enhance 

the reliability and selectivity of the fault detection process, the DCMG system is divided 

into zones, with separate circuit breakers assigned to each zone. This zoning approach, 

as discussed in Section 3.2 of the thesis, helps localize the effects of faults and facilitates 

prompt and targeted response to fault conditions, ensuring effective fault detection and 

isolation in the DCMG system. 

Below is a demonstration of the effective fault detection and isolation achieved 

through the Neural Network-based Fault Detector. To validate the system's 

effectiveness, the algorithm is tested with unknown fault samples as inputs. These fault 

samples include faults with varying resistances and different occurrence times. By 

subjecting the system to such diverse fault scenarios, its ability to accurately detect and 

isolate faults under different conditions is thoroughly assessed. This robust testing 

process serves as a testament to the fault detector's reliability and adaptability, 

highlighting its capability to handle a wide range of fault scenarios and ensure the 

overall stability and safety of the DCMG system. 

• FDI Case 1: Converter Switch failure in Boost Converter 

• FDI Case 2: Transmission Cable Short-Circuit fault in Cable 2 

• FDI Case 3: Busbar Short-Circuit fault at Bus 2 

• FDI Case 4: Load Component Fault at Load 1 
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4.1.4.1 FDI Case 1: Switch Failure 

As discussed previously, the DCMG under study has three power converters 

and the switches of these converters can face fault. The proposed NN has been trained 

to detect all these switch faults. However, in this study we perform FDI for the Switch 

failure scenario in the Boost Converter 𝐵𝑂𝑆𝐹. The converters voltage and current 

responses upon the Boost Converter’s switch fault is shown in Figure 27(a). The 

Transmission Cable current responses are shown in Figure 27(b). Comparing the 

response with the Non-FDI Data Generation Case 2, we find that the proposed FDI has 

successfully detected and isolated the BOSF. 

 
(a) 

 

(b) 

Figure 27: FDI Case-1 Boost Converter Switch Failure Responses 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 
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Figure 28(a) shows the fault detection for the 𝐵𝑂𝑆𝐹. We see that the status of 

𝐵𝑂𝑆𝐹 is “1” whereas all other fault statuses have not responded to this scenario i.e., 

their values are “0”. In response to the fault detection CB1 has been operated for the 

fault isolation purpose. 

 

(a) 

 

(b) 

Figure 28: FDI Case-1 Boost Converter Switch Failure Detection & Isolation 

(a) Detection- Fault Status, (b) Isolation- Circuit Breakers Response. 
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4.1.4.2 FDI Case 2: Transmission Cable Fault 

To check the performance of the proposed FDI for the Transmission Cable 

faults; a short circuit fault has been introduced on Cabe 2 called 𝐿𝑁2𝐹 at 0.2 seconds. 

The responses of DCMG states for this fault are shown in Figure 29. The plots 

demonstrate the algorithm's swift and precise fault detection. The FDI responded within 

0.2ms, it triggered the opening of CB1 and CB2 (Figure 30(b)), isolating the faulty 

boost converter and ensuring microgrid system protection. 

(a)

 

(b) 

Figure 29: FDI Case-2 Transmission Cable Fault Responses 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 
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(a) 

 

(b) 

Figure 30: FDI Case-2 Transmission Cable Fault Detection & Isolation 

(a) Detection- Fault Status, (b) Isolation- Circuit Breakers Response. 
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4.1.4.3 FDI Case 3: Busbar Fault 

For this scenario 𝐵𝑈2𝐵𝐵𝐹 i.e., Busbar 2 fault has been tested. The plots in 

Figure 31 showcase the algorithm's rapid and accurate fault detection capabilities. As 

can be observed in Figure 32 that the proposed FDI responded in just 0.2ms, the 

algorithm activates CB7 and CB8, successfully isolating the faulty transmission cable 

2 from the system and ensuring its stability. 

 

(a) 

 

(b) 

Figure 31: FDI Case-3 Busbar Fault Response 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 
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(a) 

 

(b) 

Figure 32: FDI Case-3 Busbar Fault Detection & Isolation 

(a) Detection- Fault Status, (b) Isolation- Circuit Breakers Response. 
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4.1.4.4 FDI Case 4: Load Component Fault 

The response of the DCMG upon the introduction of the BU1LF fault is shown 

in Figure 4-15. The trained NN FDI swiftly detects faults (Figure 33) and activates 

CB7, CB8, CB9, and CB10 (Figure 34(b)), effectively isolating the faulty components 

within 0.2ms. This ensures the stability of the microgrid system. 

 

(a)

 

(b) 

Figure 33: FDI Case-4 Load Component Fault Responses 

(a) Converters Voltage & Current, (b) Transmission Cables Current. 
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(a) 

 

(b) 

Figure 34: FDI Case-4 Load Component Fault Detection & Isolation 

(a) Detection- Fault Status, (b) Isolation- Circuit Breakers Response. 
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Chapter 5 

5.1 Summary and Future work 

This project was undertaken to propose a solution to one of DCMG's major issues, 

fault detection and isolation. DC microgrids are emerging as a dependable and effective 

phenomenon for the power distribution system as technology advances. But their 

protection system still lacks the means to meet the desired needs. In this study, a 

machine learning-based fault detection and isolation algorithm is developed to protect 

DC microgrid systems from the influence of different faults. The suggested method 

begins with building a thorough DC microgrid model, which produces the necessary 

data for training the machine learning algorithm. To guarantee steady system operation, 

a hysteresis band controller is used as the feedback control technique. Once fault-related 

data has been carefully extracted, it is then fed into the ML algorithm, which is 

rigorously trained and optimized using the cross-entropy loss function and scaled 

conjugate backpropagation algorithm. The experimental results demonstrate the 

exceptional efficacy of the proposed methodology. Fault detection speeds reach an 

impressive 1 millisecond, accompanied by an astonishing 99.9% accuracy in fault 

classification. This rapid and precise diagnosis facilitates swift isolation of faults, 

minimizing both damage and system downtime. Consequently, the deployment of this 

intelligent defense mechanism paves the way for a future of DC microgrids operating 

with enhanced resilience and reliability, delivering power with increased confidence. 

In terms of future work, there are a few areas that can be explored to make the 

fault detection and isolation algorithm for DC microgrids even better. One possibility 

is to make the algorithm capable of handling more complex fault situations by using 

techniques like ensemble learning or multi-label classification. Another idea is to 

incorporate advanced machine learning methods, such as deep learning, to improve the 

accuracy of fault detection and classification. To ensure that the algorithm is practical, 

it can be adapted for real-time implementation on specific hardware systems. It would 

also be valuable to test the algorithm in different operating conditions to see how well 

it performs in various situations. Lastly, integrating the algorithm with strategies to 

alleviate faults and conducting experiments on actual DC microgrid systems would be 

helpful in validating its effectiveness and real-world applicability. 
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Chapter 6 

6.1 Conclusion & Recommendation 

In this study, a machine learning-based fault detection and isolation algorithm is 

developed to protect DC microgrid systems from the influence of different faults. The 

goal was to design an effective approach that combines mathematical modeling, 

hysteresis band control, and supervised machine learning using neural networks. The 

workflow begins with the comprehensive modeling of the DC microgrid, encompassing 

both mathematical and physical aspects through the utilization of SIMULINK. A 

hysteresis band controller is employed as the feedback control strategy to ensure stable 

system operation. The algorithm extracts fault-related data from the DC microgrid, 

followed by the generation of a dataset for training the supervised machine learning 

algorithm. The neural network is trained using the cross-entropy loss function and 

optimized through the scaled conjugate backpropagation algorithm. 

The suggested method excels in its experimental results, demonstrating 

outstanding fault detection capabilities. It pinpoints faults within just 1 millisecond and 

boasts an outstanding fault classification accuracy of 99.9%. This remarkable 

performance solidifies the technique's effectiveness in tackling fault detection 

challenges, offering a reliable and swift solution for safeguarding systems against 

malfunction. Our groundbreaking algorithm results aren't just numbers; they're a 

revolutionary leap for energy infrastructure. From safeguarding remote communities to 

unlocking renewable energy, this research extends beyond academia, paving the way 

for a future of robust, reliable, and sustainable energy for all. As we refine and 

implement this technology, we are prepared to transform how we generate, distribute, 

and utilize energy, leaving a legacy of innovation and a brighter future powered by 

clean, dependable electricity. 
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