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ABSTRACT 

Fly ash (FA) based geopolymer concrete has lately gained popularity as a low-carbon 

and sustainable alternative to Portland cement concrete. However, accurate prediction 

of its compressive strength is still challenging due to the many chemical and physical 

interactions involved in the geopolymerization process. In this study, three machine 

learning models backpropagation neural network (BPNN), random forest regression 

(RFR), and k-nearest neighbors (KNN) were used to estimate the compressive strength 

of FA-based geopolymer concrete. The models were trained, validated, and tested using 

a dataset that considered the chemical composition, mix proportions, and pre-curing 

conditions of the concrete. The coefficient of determination (R2), mean square error 

(MSE), root mean square error (RMSE), and mean absolute error (MAE) were among 

the metrics used to evaluate each model's performance. The findings showed that, in 

comparison to RFR and KNN, which had R2 values of 0.927 and 0.911, respectively, 

the BPNN model produced the best results with an R2 value of 0.948. The coarse 

aggregate content, SiO2 content in FA, and NaOH concentration were shown to have 

the highest influence on the compressive strength of the FA-based geopolymer concrete, 

according to the permutation feature important (PFI) index. 
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1. INTRODUCTION 

 

 

Concrete is a widely used construction material known for its durability. However, its 

production contributes significantly to carbon dioxide emissions, exacerbating global 

warming. As environmental concerns grow, the construction industry is seeking 

alternatives that conserve natural resources and minimize environmental impacts. One 

such promising option is geopolymer concrete (GPC), a sustainable material that 

effectively utilizes industrial waste, particularly fly ash, and serves as a greener 

alternative to ordinary Portland cement (OPC) concrete. 

Globally, Portland cement is the most widely utilized cementing material in concrete 

production and is associated with considerable energy utilization and elevated carbon 

dioxide emissions. (Peng & Unluer, 2022). Annually, the world produces 1.6 billion 

tons of cement, which results in 7% of global carbon emissions, equivalent to 4 billion 

tons of CO2. The generation of emissions in production stems from the utilization of 

fossil fuels for calcination, production of minerals and transportation, which results in 

indirect emissions, as well as the direct release of CO2 during the transformation of 

calcium carbonate (CaCO3) to calcium oxide (CaO). The proportion of indirect and 

direct CO2 emissions depends on the production techniques and location, however they 

both roughly contribute equally (V. M. Malhotra, 2010). The concrete sector consumes 
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substantial quantities of freshwater, with the yearly requirement for mixing water alone 

reaching roughly 1 trillion litres. The slower setting and curing speed of concrete that 

contains a high volume of a mineral admixture can be partially compensated by reducing 

the water-cement ratio with the assistance of a superplasticizer (V. Malhotra, 1999). A 

growing trend in the use of Portland cement blends that include cementitious or 

pozzolanic by-products, such as ground granulated blast-furnace slag and fly ash, is 

being observed. (Kumar Mehta, n.d.). Fly ash is a byproduct generated from the burning 

of coal to produce electricity. In 1984, the U.S. produced around 70 million tons of fly 

ash, of which approximately 7 million tons were utilized in Portland Cement Concrete 

(PCC) (Gadja & Vangeem, 2001). The usage of supplementary cementitious materials 

(SCMs) as a replacement for Portland cement (PC) is often limited by proportions. For 

instance, while fly ash (FA) exhibits pozzolanic effects during various stages of cement 

hydration, it doesn't play a significant role in early-stage strength development. (V. 

Malhotra, 1999). The inclusion of FA leads to a decrease in the early rate of hydration 

and extends the setting time of composite paste. However, this can restrict its utilization 

in substantial amounts (X. Han et al., 2019). 

1.1.BACKGROUND  

The production of OPC, the main component of traditional concrete, is expected to 

increase substantially in the coming years due to global infrastructure development. This 

surge in OPC production poses serious environmental and health hazards, as cement 

production accounts for about 7% of total greenhouse gas emissions. The excessive 

release of carbon dioxide into the atmosphere may lead to a significant rise in Earth's 

temperature. Furthermore, the disposal of industrial wastes like fly ash and other by-

products creates challenges in terms of land usage and environmental impact. 
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In response to these challenges, researchers have explored the potential of geopolymer 

concrete as an eco-friendly alternative to OPC. Geopolymer concrete is a novel material 

that utilizes alkali activation of aluminosilicate-rich materials, including fly ash, 

metakaolin, red mud, and ground granulated blast furnace slag. Among these materials, 

fly ash stands out due to its abundance, low cost, and high potential for making 

geopolymers. 

1.2.SIGNIFICANCE 

This research brings significant benefits to both the construction industry and the 

research community. It introduces a novel method to address challenges in civil 

engineering, offering a fresh approach to problem-solving. By embracing these 

innovative methods, the construction industry stands to gain in terms of time and cost 

savings, which would otherwise be expended using conventional approaches. Moreover, 

the research community can expand their knowledge and expertise by exploring and 

refining these new methods, fostering advancements in the field of civil engineering. 

The use of geopolymer concrete can significantly reduce CO2 emissions compared to 

OPC concrete. In fact, studies suggest that GPC contributes about 20–50% lower CO2 

gas emissions. Notably, the carbon footprint of geopolymer concrete has garnered 

attention in sustainable construction practices. Geopolymer concrete's capability to 

reduce CO2 emissions by approximately 80% compared to conventional cement 

industries makes it a compelling choice for reducing the environmental impact of 

construction activities. 

The use of fly ash and blast furnace slag in the production of other construction materials 

would both solve an environmental issue and lead to the creation of new, high-

performing materials. The search for more environmentally friendly cement-based 
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binders through the process of alkali activation is a commonly studied method for 

completely replacing Portland cement (Puertas et al., n.d.). Fly ash has been utilized as 

a substitute material for the creation of geopolymer, a novel binding agent with similar 

appearance, reactivity, and characteristics as hydrated cement. 

1.3.SCOPE AND LIMITATION 

Geopolymer concrete exhibits high early compressive strength, low shrinkage, 

significant resistance to creep, and good performance in acidic environments. However, 

its long-term durability remains an area requiring further research. The service life and 

durability of concrete structures largely depend on material transport properties, such as 

permeability, sorptivity, and diffusivity, which require in-depth investigation for 

geopolymer concrete. 

As the world becomes more conscious of the need for sustainable practices in civil 

engineering, geopolymer concrete has emerged as a promising solution. Its utilization 

of waste materials and reduced CO2 emissions make it a sustainable alternative to 

traditional concrete. However, further research and development are necessary to fully 

understand its long-term durability and to overcome any challenges associated with its 

application. 

1.4.THESIS ORGANIZATION 

The thesis comprises five comprehensive chapters, each delving into distinct aspects of 

the subject matter, thereby providing a thorough and insightful examination of the topic. 

1.4.1. CHAPTER 1 – INTRODUCTION 

This pivotal chapter presents the readers with essential background information 

pertaining to the theme, followed by a clear statement of the problem at hand. 

Additionally, it highlights the significance of the problem in the context of the 
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construction industry. The scope and limitations of the study are carefully delineated to 

provide a concise framework. Lastly, the chapter outlines the organization of the thesis, 

guiding readers through the subsequent chapters. 

1.4.2. CHAPTER 2 - LITERATURE REVIEW 

In this chapter, an extensive review of relevant literature on various aspects is provided, 

including the classification of concrete, factors influencing compressive strength 

development at different ages, and predictive methods for compressive strength. An in-

depth exploration of Artificial Neural System (ANN) and Regression Models, its 

training procedure is presented, along with a discussion of the ANN model and 

experimental results, and the compatibility and achievements derived from this research. 

1.4.3. CHAPTER 3 - RESEARCH METHODOLOGY 

This chapter offers valuable insights into the research approach adopted, the sources and 

nature of data used, and the utilization of Artificial Neural Network (ANN) and 

Regression Models as a vital tool in the analysis. Detailed information is provided 

regarding data processing and analyzing techniques, as well as the step-by-step process 

of modeling an ANN and Regression for the research. 

1.4.4. CHAPTER 4 - RESULTS AND DISCUSSION 

Within this chapter, a detailed discussion is provided, primarily focusing on the 

experimental results acquired from 11 references, alongside the predictions generated 

by the ANN model for concrete compressive strength. An in-depth analysis of these 

findings serves to shed light on their implications for the field of civil engineering. 
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1.4.5. CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS 

As the final chapter, this section offers a comprehensive conclusion, summarizing the 

research outcomes gained through ANN modeling. Based on these results, informed and 

practical recommendations are provided, adding to the existing body of knowledge and 

offering valuable insights for future research and application. 

By adopting a meticulous and structured approach, this thesis contributes significantly 

to the construction industry and research community alike, paving the way for the 

advancement of knowledge and innovative problem-solving techniques in civil 

engineering
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2. LITERATURE REVIEW 

 

 

2.1.FLY ASH 

Fly ash is a fine, powdery substance that results from burning pulverized coal in electric 

power plants. When coal is burned, its mineral impurities, mainly silica, alumina, and 

iron, react with lime during combustion, forming small spherical particles known as fly 

ash. These particles are then captured from the flue gas by pollution control devices like 

electrostatic precipitators or baghouses. 

As a pozzolanic material, fly ash exhibits cementitious properties when combined with 

water and an alkaline activator, such as sodium hydroxide or potassium hydroxide. This 

characteristic makes fly ash an essential component in the production of cement and 

concrete. By incorporating fly ash as a partial replacement for cement in concrete, the 

environmental impact of concrete manufacturing can be reduced. This reduction is 

achieved by lowering the demand for clinker production, a key ingredient in cement 

manufacturing and a major source of carbon dioxide emissions. Moreover, the addition 

of fly ash in concrete can enhance specific properties, including workability, durability, 

and resistance to certain chemical attacks. 

Due to its utilization of waste material from power generation and its contribution to 

minimizing the consumption of natural resources, fly ash is regarded as an 

environmentally sustainable material. Its versatility and positive environmental 
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attributes make it a valuable resource with widespread applications in the construction 

industry and other related fields. Fly ash has been utilized as a substitute material for 

the creation of geopolymer, a novel binding agent with similar appearance, reactivity, 

and characteristics as hydrated cement. Essentially, geopolymer is formed through the 

activation of aluminosilicate materials with alkalis. Alkali activation is achieved by 

adding sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium silicate 

(Na2SiO3) or potassium silicate (K2SiO3) individually or in combination with fly ash. 

This process, known as geopolymerization, can take place at room temperature or 

slightly elevated temperatures (typically below 100°C) and most importantly, with 

minimal CO2 emissions. Geopolymers possess advantageous mechanical and durability 

properties due to their distinct chemical structure, and are eco-friendly as they utilize 

industrial waste as a binding material in contrast to mixes based on Portland cement 

(PC). Fly ash geopolymer cement is a cost-effective, low-carbon, low-energy alternative 

to ordinary Portland cement.  

2.2.PROPERTIES OF FLY ASH 

Fly ash geopolymers have a better ability to adsorb and stabilize toxic metals compared 

to ordinary Portland cement (OPC) and can be utilized as a sealant for storing CO2, 

however with lower permeability when compared to typical sealants.(Zhuang et al., 

2016). Geopolymer mortar and concrete exhibit comparable strength, texture, and 

appearance, and offer similar mechanical characteristics (Chindaprasirt et al., 2011). 

The interlinked structure of geopolymers results in high compressive strengths. Due to 

the microstructure of their reaction products, geopolymers and Alkali-Activated Binders 

(AAB) exhibit good to excellent resistance to chemical degradation such as sulphate 

attack, acid attack, and seawater exposure (Soutsos et al., 2016). Fly ash also 
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demonstrates improved durability, including resistance to high temperatures(Kong & 

Sanjayan, 2010) and chloride penetration (Chindaprasirt & Chalee, 2014). 

2.3.FACTORS AFFECTING PROPERTIES OF FLY ASH 

In the geopolymerization process, fly ash plays a vital role as a raw material. However, 

several factors can influence its behaviour and properties during this process. 

2.3.1. CHEMICAL ACTIVATORS 

The presence of a chemical activator or alkali activator solution is crucial for initiating 

the geopolymerization of fly ash. A strong alkaline medium, typically containing NaOH, 

enhances the surface hydrolysis of the aluminosilicate particles in the fly ash, which is 

essential for the reaction to occur. 

2.3.2. CONCENTRATION OF CHEMICAL ACTIVATORS 

 The concentration of the chemical activator has a pronounced effect on the mechanical 

properties of the geopolymers formed. Increasing the concentration of chemical 

activators, especially NaOH, has been shown in research papers to lead to enhanced 

compressive strength in geopolymers. 

2.3.3. MULTI-COMPOUND CHEMICAL ACTIVATORS 

The most effective chemical activators for improving mechanical strength in 

geopolymers are those containing Na2-SiO3/NaOH. Incorporating these multi-

compound activators into the geopolymer matrix contributes to the desired strength 

enhancement. 

2.3.4. HEAT CURING 

Applying heat curing is crucial to expedite the initial strength growth of fly ash-based 

geopolymer concrete. Both the duration and temperature of this process play pivotal 
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roles. Generally, the recommended optimal heat curing conditions encompass a 

maximum period of 24 hours, coupled with a temperature span ranging from 50°C to 

90°C. These conditions have proven advantageous for fostering both short-term and 

long-term strength enhancement, as well as ensuring the durability and steadfastness of 

geopolymer concrete. 

Liquid Alkaline/Ash Ratio: The ratio of liquid alkaline to fly ash in the mixture holds 

sway over the workability of fresh geopolymer blends. Elevating the liquid alkaline/ash 

ratio typically yields improved workability. 

2.3.5. Na2-SiO3/NaOH RATIO 

The ratio of Na2-SiO3 to NaOH in the mixture affects the workability of fresh 

geopolymer mixtures. Higher Na2-SiO3/NaOH ratios can reduce workability due to the 

increased viscosity of Na2SiO3. 

2.3.6. NAOH CONCENTRATION 

Higher concentrations of NaOH in the geopolymer mixture can lead to longer setting 

times. It is crucial to consider the appropriate concentration to achieve the desired setting 

time and performance. 

2.3.7. SHRINKAGE 

The shrinkage of geopolymer concrete is closely related to its corresponding strength. 

Lower strength development in geopolymers is associated with increased shrinkage. 

Lastly, understanding the factors that affect fly ash during the geopolymerization 

process is vital for optimizing the properties and performance of geopolymers. Careful 

consideration of chemical activators, heat curing conditions, and mixing ratios can lead 

to geopolymers with enhanced mechanical strength, workability, and reduced shrinkage.  
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2.4.NEURAL NETWORKS 

Neural networks are a collection of strong machine learning algorithms that have been 

influenced by the structure and operation of the human brain. These artificial neural 

networks are made up of linked nodes, or neurons, that are arranged in layers. The input 

layer receives raw data, which is subsequently passed on to hidden layers, where each 

neuron conducts mathematical computations on the data. During training, the degree of 

interconnections between neurons, indicated by weights, is modified to learn patterns 

and correlations in the data. The last layer, known as the output layer, generates 

predictions or classification based on the previously acquired patterns. Neural networks 

have demonstrated extraordinary ability in tasks like as picture and audio identification, 

processing natural languages, and strategic game play. With advances in 

machine learning and an abundance of datasets and computational power, neural 

networks tend to transform different sectors and drive artificial intelligence forward. 

The most widely used ML methods can be grouped into four main categories: ANN, 

SVM, decision trees, and evolutionary algorithms. Artificial Neural Networks (ANN) 

operate by transmitting information through interconnected neurons, where each 

information is weighted based on its significance. 

2.5.ARTIFICIAL NEURAL NETWORK 

An Artificial neural Network (ANN) is an algorithmic framework that tries to imitate 

the structure and operation of biological brain networks. There are two types of ANN 

applications: classification models and regression models. Researchers have extensively 

investigated the application of ANN for forecasting concrete compressive strength. In 

terms of accuracy, they discovered that ANN models trump standard regression models. 

The multilayer perceptron (MLP) is the most widely utilized of the different ANN 

models. The MLP model is made up of an input layer with sensory input nodes, one or 
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more hidden layers for calculation, and an output layer with a single node representing 

the compressive strength of concrete. The most extensively used and successful learning 

strategy for training the MLP model is the back-propagation (BP) algorithm. Equations 

(1) and (2) mathematically explain the activation mechanism for each neuron in the 

MLP. 

     𝑛𝑒𝑡𝑘 = ∑ 𝑤𝑘𝑗𝑜𝑗                                                  (1) 

     𝑦𝑘 = 𝑓(𝑛𝑒𝑡𝑘)                                                       (2) 

The neurons in the preceding layer (denoted as j) impact the activity of neuron k 

(denoted as netk) in the context of the neural network model. The weight wkj represents 

the link between neurons k and j. Neuron j's output is indicated as oj, while neuron k's 

ultimate output is commonly computed using sigmoid or logistical transfer functions 

and is labeled as yk. The illustration of ANN is depicted in Fig.1. 

 

Fig 1: Structure of ANN with one hidden layer (Jin et al., 2016) 

2.6.NON-LINEAR REGRESSOR 

Non-linear regression is a type of regression analysis used in artificial intelligence 

methods to describe connections between variables when data does not follow a linear 

pattern. Non-linear regression, as opposed to linear regression, which assumes a linear 
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connection between the independent and dependent variables, allows for more 

complicated and flexible interactions. 

A non-linear function represents the connection between the independent factors and 

the dependent variable in non-linear regression. The function's shape might change 

based on the task and the type of the data. Polynomial functions, exponential functions, 

logarithmic functions, and trigonometric functions are common examples of non-linear 

functions used in regression. Non-linear regression is especially beneficial when 

working with data that contains complex patterns and connections, or where a linear 

model is unable to fully reflect the underlying trends. It is extensively used in AI systems 

for jobs like as demographic prediction. 

𝑦 =  𝑓(𝑥, 𝛽)  +  𝜀                                                   (3) 

Where: 

• y is the dependent variable (the predicted output). 

• x is the independent variable (the input or predictor variable). 

• f (x, β) is the non-linear function with parameters β that captures the relationship 

between x and y. 

• ε represents the error term, accounting for the difference between the predicted 

value and the actual value in the data. 

2.7.SUPPORT VECTOR MACHINE 

SVM is an algorithm that is used for supervised learning problems. It is most commonly 

used for classification issues in which the aim is to categorize data into multiple classes 

or groups. SVM determines the appropriate hyperplane (a decision boundary) for 

separating data points into their respective classes with the greatest margin. It seeks to 
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minimize the distance between the closest data points of distinct classes, allowing for 

greater generalization and performance on fresh data. 

The k-nearest neighbour (kNN) algorithm is a traditional non-parametric technique 

(Cover & Hart, 1967). The kNN algorithm is designed to find k-nearest neighbours of a 

query and assign a class label to the query through the majority voting rule. Due to its 

simplicity, effectiveness, and intuitiveness, it is one of the most commonly used 

algorithms in computer programming today (Jiang et al., 2012; Wu et al., 2007). The 

kNN algorithm is a non-parametric classification method that does not need a training 

process. Particularly, it does not require prior knowledge about the statistical properties 

of the training instances (Li et al., 2008; Pan et al., 2020). The illustration of SVM is 

depicted in Fig.2. 

 

Fig 2: Depiction of SVM Model (Dener et al., 2022) 

The functional relationship between one or more independent variables and the response 

variable is explained by the following model: 

𝑦(x) = wT ϕ(x)+b                                                   (4) 

where x Є R, y Є R, and ϕ(x): Rn is the process of mapping to higher dimensional feature 

space. 
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2.8.APPLICATION OF NEURAL NETWORKS IN CIVIL ENGINEERING 

Over the last five years, there has been a boom in interest among academics in the 

application of artificial neural networks (ANN) in the subject of Civil Engineering. 

Because of its ability to handle many issues and complexity in the area, the application 

of ANN in Civil Engineering has piqued the interest of several academics. ANNs have 

been investigated for a variety of applications, including structural analysis, material 

characteristics prediction, construction process optimization, and predictive decision-

making in civil engineering projects. The capacity of artificial neural networks (ANNs) 

to learn from data as well as adapt to complicated patterns has proven useful in tackling 

real-world engineering challenges. This increased interest in ANN in Civil Engineering 

is likely to fuel more developments and improvements in the industry, resulting in more 

efficient solutions. 

A number of researchers have applied neural networks to forecast compressive 

strengths, shear strength of RC Deep Beams, and investigate the impact of various 

parameters on the outcomes. As a result, this approach has proven to be time-efficient 

and cost-effective. (H. Zhang et al., 2020) employed two models to forecast the residual 

compressive strength of geopolymer concrete after being subjected to varying 

temperatures. These two models were created utilizing a Gaussian-centered 

mathematical framework, with the coefficients established by analyzing experimental 

outcomes using MATLAB software. Notably, it was noticed that the actual compressive 

strengths tended to surpass the predicted strengths(H. Zhang et al., 2020). 

The utilization of machine learning models has gained extensive adoption as a potent 

means to forecast the mechanical characteristics of concrete. These models typically 

work with sizable datasets, which are commonly partitioned into distinct training, 

validation, and testing segments. The training subset facilitates model training, whereas 
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the validation dataset ensures impartial assessment of the model's alignment with the 

training data. It also safeguards against overfitting by stopping the training process if 

errors start to rise. Finally, the model is applied to the testing data to evaluate its 

predictive performance. 

In the study by Naderpour et al. (Naderpour et al., 2018), the backpropagation artificial 

neural network was utilized. The study was conducted to develop an Artificial Neural 

Network (ANN) for evaluating the strength properties of recycled aggregate concrete. 

The ANN was based on predetermined input variables that were considered key in 

determining the strength properties. Later a study conducted by Asteris et al. (Asteris & 

Kolovos, 2019)  used Artificial Neural Network (ANN) to predict the compressive 

strength of self-compacting concrete (SCC). The model was trained using the 

Levenberg-Marquardt algorithm and the results showed that Backpropagation Artificial 

Neural Network (BPNN) was effective in accurately predicting the compressive 

strength of SCC. The sensitivity analysis conducted further revealed that viscosity-

modifying admixtures had the greatest impact on the compressive strength of SCC. 

Random Forest has been adopted as a forecasting tool in several studies. The technique 

entails combining multiple decision trees, each generated from a different training set 

through the bagging method (ben Chaabene et al., 2020). The bagging method, 

commonly referred to as bootstrap aggregation, is a machine learning technique that 

involves generating new datasets from the original data by randomly resampling it, and 

using these datasets to train individual base predictors independently. In the final step, 

the predictions from each base predictor are averaged to produce the final prediction. 

This method has been applied by various researchers in predicting the mechanical 

properties of concrete. In the study by Han et al. (Han et al., 2019), Random Forest (RF) 

was used to predict the compressive strength of High-Performance Concrete (HPC). 
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Another study by Mangalathu et al. (Mangalathu & Jeon, 2018) utilized the same RF 

method to forecast the shear strength of Reinforced Concrete (RC) beam-column joints 

and obtained good agreement in results. Zhang et al. (J. Zhang et al., 2019a) also used 

RF, but combined it with a beetle antennae search (BAS) algorithm, to evaluate the 

uniaxial compressive strength of Self-Compacting Concrete (SCC). The BAS algorithm 

was based on the behavior of beetles as they search for a location with a higher 

concentration of odor using their antennae. These studies demonstrate that RF can 

produce accurate predictions for the mechanical strength of concrete. These approaches 

make things economic in terms of both cost and time.  

As Neural Networks in civil engineering provide efficient solutions for predicting 

material properties, structural behaviour, and complex interactions. Their adaptability 

to diverse data sets saves time and costs while enhancing decision-making and 

improving the overall performance of civil engineering projects. 
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3. RESEARCH METHODOLOGY 

 

 

3.1.PREDICTION OF COMPRESSION STRENGTH 

The study focuses on predicting the compressive strength of geopolymer concrete using 

three machine-learning algorithms. It will analyse the chemical composition, mix 

proportions, and pre-curing conditions of geopolymer concrete to determine the most 

accurate algorithm for predicting its 28-day compressive strength. The study aims to fill 

a research gap and provide insights into using machine learning algorithms to predict 

geopolymer concrete strength.  

3.2.MACHINE LEARNING APPROACHES 

3.2.1. MACHINE LEARNING MODELS 

3.2.1.1. BPNN 

Backpropagation Neural Network (BPNN) has gained extensive use as a learning 

algorithm within multilayer neural networks. Initially introduced by Paul Werbos in 

1974 and subsequently rediscovered by Rumelhart and Parker, BPNN stands as the 

favoured, efficient, and accessible model for intricate, layered networks. 

Backpropagation is a form of supervised learning rooted in the gradient descent 

approach. It aims to minimize network errors by descending along the gradient of the 

error curve. (Hamid et al., 2011; Khalil et al., n.d.). Because of the weight error correct 
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rules, the supervised learning model is the most popular. BPNN only needs one hidden 

layer to meet the requirement of prediction accuracy(Peng & Unluer, 2022). The 

structure of this neural network consists of input sets and one or more layers of neurons. 

Neurons are connected via layers of parallel neurons except for the special input Xo 

partially represents each neuron. Each neuron in one layer is linked to all neurons in the 

following layer. Hidden layers are the last layer that creates the model's output and any 

layers that come before it. The only role of inputs is to feed input patterns into the rest 

of the network; they do no computing (Sapna, 2012). 

 

Fig 3: Illustration of BPNN (Yeresime et al., 2014) 

3.2.1.2. RFR 

RFR was proposed by Breiman. Random forests suggest adding an extra layer of 

randomization to bagging. Random forests are a useful method for making predictions, 

and they are less likely to overfit due to the Law of Large Numbers. By incorporating 

appropriate forms of randomness, they can accurately classify and predict regression 

outcomes. RFR creates By employing distinct bootstrap data samples for each tree, 

random forests alter the construction process of classification or regression trees. While 
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conventional trees divide nodes using the optimal split across all variables, random 

forests introduce a unique approach. At each node, the division is executed using the 

superior choice from a subset of predictors selected randomly. This seemingly 

unconventional technique yields impressive performance, surpassing several other 

classifiers like discriminant analysis, support vector machines, and neural networks. 

Furthermore, it exhibits resilience against overfitting as outlined by Breiman in 2001. 

Moreover, its simplicity shines through, as it only necessitates two parameters (the count 

of variables in the random subset at each node and the number of trees in the forest) and 

generally showcases robustness to their values (Liaw & Wiener, 2002). The data are 

split into several points for each input variable, and the Sum of Square Error (SSE) is 

computed for both the predicted and actual values at each point. Subsequently, this 

node's least SSE value is obtained (J. Zhang et al., 2019b). 

 

 

Fig 4: Illustration of RFR (Raja & Fokoué, 2019) 
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3.2.1.3. KNN 

The k-nearest neighbor (kNN) algorithm is a traditional non-parametric technique 

(Cover & Hart, 1967). The kNN algorithm is formulated to identify the k-closest 

neighbors of a given query and designate a class label to the query using the principle 

of majority voting. Its straightforwardness, efficiency, and natural approach contribute 

to its effectiveness. It is one of the most commonly used algorithms in computer 

programming today (Jiang et al., 2012; Wu et al., 2007). The kNN algorithm is a non-

parametric classification technique that operates without the need for a training phase. 

Specifically, it doesn't necessitate prior understanding of the statistical characteristics of 

the training examples (Li et al., 2008; Pan et al., 2020).  

 

Fig 5:  Illustration of KNN (Shivam Sharma, 2021) 

3.2.2. TRAINING AND EVALUATING MACHINE LEARNING MODELS 

Fig.6 shows the combined calculation process of all three machine learning algorithms. 

Firstly, the collected data were arranged in random order. BPNN parameters were 
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established as they control the balance between gradient descent and the LM algorithm. 

The Levenberg-Marquardt algorithm is a method specifically designed for minimizing 

functions that consist of sums of squares of nonlinear functions. It is particularly suitable 

for training neural networks. It is well-suited for training neural networks, and despite 

requiring many computations, it appears to be the quickest training algorithm for neural 

networks with moderate numbers of parameters. 

 

Fig 6: Process of Machine Learning Process 

In particular, when it comes to multilayer networks used for function approximation that 

have up to a few hundred weights and biases, the Levenberg-Marquardt algorithm is 

generally the fastest training method (Demuth & De Jesús, n.d.). BPNN was trained on 

MATLAB 2021a while the other two models RFR and KNN were trained on PYTHON. 

The hyperparameters that were used in training the models are presented in Table I. For 

each of the models, different hyperparameters were used. Each of the models has its 

parameters. To make sure that the data was effectively divided and analysed, all the 

algorithms were used to divide the data into three different sets: a training set, a 

validation set, and a testing set. These sets were made up of 70%, 15%, and 15% of the 

total data, respectively. This division was carried out to ensure that the data was 

thoroughly evaluated and that all the models were properly trained and tested.  The LM 

algorithm is a commonly used optimization method for training Backpropagation 

Neural Networks (BPNN). It is widely used in various fields and is considered a 

standard technique for non-linear least-squares problems. The LM algorithm can be 

perceived as a fusion of the steepest descent and Gauss-Newton techniques. It mimics 

the behavior of a steepest descent method when the current solution is considerably 
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distant from the correct solution. Conversely, it emulates the Gauss-Newton approach 

when the current solution is in proximity to the accurate solution. This algorithm has 

several advantages over other BPNN algorithms, including good convergence, training 

precision, and efficiency. Additionally, it is the fastest method for training moderate 

sized feedforward neural networks (Demuth & Beale, 1992; Hagan & Menhaj, 1994; 

Yue, 2010). Maximum validation failures were set to 6 to make it stop early as early 

stopping is a well-established technique in machine learning that can save computational 

resources and time while still achieving optimal performance (Orr & Müller, 1998). The 

training stopped when the validation error has increased more than maximum validation 

failures, at that time the number of iterations were 15 and the value of gradient was 1.37. 

In T The neural network's number of hidden layers was established as 19, based on the 

fact that it attained the highest degree of goodness of fit and the lowest calculation error. 

The goodness of fit reached the maximum and the calculation error was the least. The 

sigmoid function was used as the activation function of BPNN. The sigmoid function is 

a popular activation function utilized in neural networks because of its key attributes 

such as differentiability and smoothness, which play a crucial role in facilitating the 

back-propagation algorithm (Kros et al., 2006). The sigmoid function is shown in Eq.5. 

𝑠(𝑥) =
1

1+𝑒−𝑥                                                              (5) 

The data was scaled using the scikit-learn library in Python for the machine-learning 

models RFR and KNN. Standard Scaler Standardize features by removing the mean and 

scaling to unit variance. The standard score of a sample x is calculated as: 

 𝑧 =
(𝑥−𝑢)

𝑠
                                                                    (6) 

where u is the mean of the training samples or zero. Centring and scaling happen 

independently on each feature by computing the relevant statistics on the samples in 
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the training set. In KNN, the weights were set to default as uniform showing all points 

were weighted equally in the neighborhood. In RFR, Bootstrap is set to True because it 

is a useful technique for improving performance. Bootstrapping can improve the 

performance of the model by reducing the variance and overfitting. and robustness of 

the model, and for making efficient use of the available data (Breiman, 2001; Geurts et 

al., 2006). To assess the inconsistency between the predicted value and the measured 

value for a particular sample, error, and error percentage were used as shown in equation 

Equ.7 and Equ.8, where yi’ is the predicted value and yi is the actual value. 

Error= 𝑦′𝑖 −  𝑦𝑖                                                        (7) 

Error Percentage= 
 𝑦′𝑖− 𝑦𝑖

𝑦𝑖
                                        (8) 

As the above equation was limited to just one simple sample, to evaluate the entire 

prediction results, several analytical approaches were used which led to the evaluation 

of the models. In this evaluation, the coefficient of determination (R2), mean square error 

(MSE), root mean square error (RMSE) and mean absolute error (MAE). These 

parameters can compare the performance of various models, quantify the prediction 

accuracy of a single algorithm, and determine which model is best suited and most 

applicable to the given database. The expressions for these parameters are shown in 

equations Equ.9, 10, 11 and 12. 

𝑅2 = 1 −
∑ (𝑦𝑖̂− 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦− 𝑦𝑖)2𝑛
𝑖=1

                                                 (9) 

MSE = 
1

𝑛
∑ (𝑦𝑖̂ −  𝑦𝑖)2𝑛

𝑖=1                                            (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖̂ −  𝑦𝑖)2𝑛

𝑖=1

2
                                    (11) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖̂ −  𝑦𝑖|𝑛

𝑖=1                                           (12) 
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3.2.2.1. HYPERPARAMETERS OF MACHINE LEARNING MODELS 

Table I: Hyperparameters of machine learning models 

KNN 

N_Neighours 2 

Weights Uniform 

Metric Minkowski 

BPNN 

Max no of epox 1000 

Max validation failures 6 

Min performance gradient 1e -7 

Hidden layer numbers 19 

Algorithm Levenberg-Marquardt 

RFR 

Number of trees 100 

Minimum samples split 2 

Minimum sample leaf 1 

Bootstrap True 

 

3.2.3. PLATOFRMS USED IN TRAINING MACHINE LEARNING 

MODELS 

3.2.3.1. MATLAB 

MATLAB is a proprietary multi-paradigm programming language and numeric 

computing environment developed by MathWorks. MATLAB allows matrix 

manipulations, plotting of functions and data, implementation of algorithms, creation of 

user interfaces, and interfacing with programs written in other MATLAB is a closed-

source programming language and numeric computation platform created by 

MathWorks. It supports multiple programming styles and offers tools for working with 

matrices, visualizing functions and data, executing algorithms, building user interfaces, 

and integrating with software written in different programming languages.  
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Fig 7: MATLAB LOADING INTERFACE 

 

 

 

Fig 8: Interface 
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Fig 9: First Step after Interface 

 

 

Fig 10: Selection of Inputs & Targets 
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Fig 11: Neural Network Fitting Interface 

3.2.3.2. VS CODE 

Visual Studio Code, often called VS Code, is a code editor created by Microsoft using 

the Electron Framework. It is available on Windows, Linux, and macOS. It provides 

various functionalities such as debugging assistance, syntax highlighting, smart code 

suggestions, code shortcuts, code restructuring tools, and integrated Git support. Visual 

Studio Code (VS Code) is a versatile and widely-used code editor, especially favored 

by Python developers. It offers a powerful development environment that streamlines 

Python programming tasks. The editor's clean and user-friendly interface allows easy 

navigation and efficient project management. One of its standout features is the 

integrated terminal, which allows developers to run Python scripts and execute 

commands without leaving the editor. The code IntelliSense feature provides intelligent 

code completion, offering suggestions for Python functions, variable names, and 

available modules as you type, speeding up coding and reducing errors. Additionally, 

VS Code provides real-time linting and error checking, which helps identify syntax 

errors, style issues, and potential bugs in Python code. Its debugging support is another 
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significant advantage, enabling developers to set breakpoints, inspect variables, and step 

through code for effective troubleshooting. VS Code's extensibility is a major asset, 

boasting a vast collection of extensions, including many Python-specific ones, allowing 

developers to customize and enhance the editor's functionality according to their needs. 

Furthermore, with built-in Git integration, Python developers can easily manage version 

control and collaborate seamlessly. The editor also simplifies package management 

through an integrated terminal, facilitating the installation and management of Python 

packages. For those working with Jupyter Notebooks, VS Code provides native support, 

allowing Python developers to execute, edit, and visualize notebook files with ease.  

 

 

Fig 12: VS CODE Interface 
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3.3.DATA COLLECTION 

The study collected data from 11 references (Aliabdo et al., 2016; Deb, 2013; Deb et 

al., 2014; Ghafoor et al., 2021a; Gunasekara et al., 2017, 2021; Joseph & Mathew, 2012; 

Kusbiantoro et al., 2012; Nath & Sarker, 2015; Sarker et al., 2013; Topark-Ngarm et al., 

2015) with a total of 149 different mix proportions which consider the influence of Fly 

Ash, Coarse and Fine Aggregates, Alkaline Activators (NaOH & Na2SiO3), and Water 

is shown in Table II.  

Table II: Proportion of geopolymer concrete using Fly Ash 

The molarity of the Sodium Hydroxide (NaOH) solution used was considered as one of 

the input parameters, with molarities ranging from 8 to 20. The mass of water was 

calculated for each mix proportion and added uniformly. The contents of Fly Ash were 

also considered as input parameters, specifically, the SiO2 and Al2O3 content. The 

AA/FA ratio and molarity of the alkaline solution were also used as input parameters. 

Coarse and fine aggregates were also taken as input parameters, with the raw material 

of each mix proportion and its size range mentioned in Table III. However, the fineness 

modulus of the fine aggregate and size range were not used due to difficulty in 

quantification. The temperature, which plays an important role in hydration, was also 

considered. Out of 149 mixes, 70 had high-temperature pre-curing (up to 100°C) and 

the pre-curing duration varied for each mix. The remaining 79 mixes did not have any 

pre-curing. A total of 13 inputs were used in the analysis, as listed in Table IV. The 

impact of each input parameter on the output was considered, and every single input 

from Table V was used to determine the applicability of the prediction model.  

FA 

(kg/m3) 

Coarse 

aggregate 

(kg/m3) 

Fine 

aggregate 

(kg/m3) 

NaOH 

solution 

(kg/m3) 

NaOH 

(M) 

Na2SiO3 

solution 

(kg/m3) 

Na2Sio3/

NaOH 

AA/

FA 

Water 

(kg/m3) 

400 1222 658 40 14 100 2.5 0.35 76.1 
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Table III: Particle size characteristics of aggregates 

Reference 

Coarse aggregate Fineness modulus 

Raw material 
Size range 

(mm) 
Raw material 

Size range 

(mm) 

Fineness 

modulus 

(Gunasekara et 

al., 2017) 
Crushed basalt 7.0-10.0 River sand  3 

(Deb, 2013) Crushed granite 7.0-20.0 
Natural river 

sand 
- 2.67 

(Ghafoor et al., 

2021a) 
- 9.5-12.5 River sand - 2.35 

(Nath & Sarker, 

2015) 
Crushed granite 7.0-20.0 Natural sand - 2.64 

(Sarker et al., 

2013) 
Crushed stone 7.0-10.0 River sand - - 

(Gunasekara et 

al., 2021) 
Crushed granite 10 River sand  2.8 

(Aliabdo et al., 

2016) 

Crushed bluestone 

gravel 
7 Graded sand <0.4 - 

(Deb et al., 

2014) 

Crushed basalt 

aggregate 
7.0-10.0 

Uncrushed river 

sand 
- 3 

(Topark-Ngarm 

et al., 2015) 
Limestone 20 River sand - 2.9 

(Joseph & 

Mathew, 2012) 

Crushed granite 

rock 
20 

Natural river 

sand 
- 2.64 

 

Table IV: Composition of FA 

Reference SiO2 Al2O3 CaO SO3 Fe2O3 MgO LOI 

(Gunasekara et al., 

2017) 

Pt. Augusta 49.37 31.25 4.8 0.24 4.47 1.28 0.51 

Collie 53.82 29.95 1.03 0.34 9.24 0.58 0.63 

Tarong 75.66 19 0.3 0.03 1.38 0 1.16 

(Deb, 2013)  53.71 27.2 1.9 0.3 11.17 - 0.68 

(Ghafoor et al., 

2021a) 
 71.5 9.2 6.72 2.4 2.37 0.6 3.67 

(Nath & Sarker, 

2015) 
 53.71 27.2 1.9 0.3 11.17 - 0.68 

(Kusbiantoro et 

al., 2012) 
 51.7 29.1 8.84 1.5 4.76 - - 

(Sarker et al., 

2013) 
 50.5 26.57 2.13 0.41 13.77 1.54 0.6 

(Gunasekara et al., 

2021) 
 38.7 20.8 26.6 2.1 5.3 1.5 0.1 

(Aliabdo et al., 

2016) 
 49 31 5 - 3 3 - 

(Deb et al., 2014) 

Type-I 47.87 28 3.81 0.27 14.09 0.93 0.43 

Type-II 49.37 31.25 4.8 0.24 4.47 1.28 0.51 

Type-III 53.82 29.95 1.03 0.34 9.24 0.58 0.63 

(Topark-Ngarm et 

al., 2015) 
 45.23 19.95 15.51 - 13.15 - - 

(Joseph & 

Mathew, 2012) 
 59.7 28.36 2.1 0.4 4.57 0.83 1.06 

LOI: Loss of ignition 
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Table V: Statistics of input/output parameters 

 

In the collected data from various studies, the mixing methods for water and alkaline 

activators differed, with some combining them before mixing with the other components 

and others calculating the water content separately. To standardize the water content 

across all mix proportions, the total amount of water was determined by adding the mass 

of water in the NaOH and Na2SiO3 solutions and any additional water utilized. 

Additionally, the variations in the chemical composition of Fly Ash (FA) used in the 

different studies were also taken into account in the analysis. 

The analysis of the collected data considered the role of Fly Ash (FA) in the mix and 

incorporated the SiO2 and Al2O3 contents in FA as input parameters. This was in line 

with previous findings that reported the influence of Si and Al contents in FA on the 

strength development of FA-based mixes. The compressive strength of fly ash-based 

geopolymer mixes is influenced by several factors including the type and concentration 

of alkali solutions used, the Si/Al ratio in the fly ash, the calcium content, the curing 

conditions (such as temperature and duration), and the presence of any additional 

Notation Input parameter Mean 
Standard 

deviation 

Range/categories 

Minimum Maximum Range 

X1 FA (kg/m3) 443.99 92.70 254.50 600 345.50 

X2 SiO2 (%) 50.99 14.57 36.20 75.66 39.46 

X3 Al2O3 (%) 18.23 6.60 9.20 31.25 22.05 

X4 
Coarse aggregate 

(kg/m3) 
1105.97 231.54 554 1684 1130 

X5 
Fine aggregate 

(kg/m3) 
594.33 45.56 500 706 206 

X6 NaOH (kg/m3) 74.89 29.43 11.78 198 186.22 

X7 NaOH (M) 11.88 3.01 8 20 12 

X8 Na2SiO3 (kg/m3) 165.18 67.31 29.51 342 312.46 

X9 Na2Sio3/NaOH 2.29 0.78 1 8.77 7.77 

X10 AA/FA 0.53 0.13 0.09 0.92 0.83 

X11 Water (kg/m3) 143.24 44.41 37.45 206.78 169.33 

X12 Temperature ( ͦC) 29.02 32.16 0 100 100 

X13 Duration (h) 13.69 17.26 0 72 72 
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additives. A higher Si/Al ratio leads to the formation of more -Si-O-Si- bonds, resulting 

in a stronger, fully condensed structural matrix of the geopolymer. This is because the -

Si-O-Si- bonds are stronger than both the -Si-O-Al- and -Al-O-Al- bonds (Zhuang et al., 

2016). In the preparation of fly ash-based geopolymer, the use of Na2SiO3 solution in 

conjunction with NaOH has been shown to enhance compressive strength.  The 

utilization of Na2SiO3, due to its high viscosity, promotes the formation of geopolymer 

gels which results in a compact microstructure of the final fly ash-based geopolymer. 

Additionally, the method used for activating the fly ash-based geopolymer also affects 

its compressive strength (Criado et al., 2005). Moreover, the curing duration and 

temperature play a significant role in determining the compressive strength of fly ash-

based geopolymer. Prolonged curing, lasting from 6 hours to 28 days, results in fly ash-

based geopolymer with greater compressive strength.  

Elevated curing temperatures facilitate the removal of excess water from the fresh 

geopolymer, leading to the collapse of capillary pores and a denser structure, thus 

resulting in higher compressive strength (Leung & Pheeraphan, 1995). The higher 

NaOH concentration results in finer pore structures due to the polycondensation 

reaction, which leads to reduced chloride penetration. Additionally, geopolymer 

activated with NaOH has a more stable cross-linked structure, providing improved 

resistance to sulphates (Zhuang et al., 2016).  

In this study, a range of input parameters related to concrete mixtures in civil 

engineering applications was analysed using statistical analysis. The parameters, such 

as Fine Aggregate, SiO2 content, Al2O3 content, Coarse Aggregate, Fine Aggregate, 

NaOH, Na2SiO3, Na2SiO3/NaOH ratio, AA/FA ratio, water content, temperature, and 

duration, were examined for their mean, standard deviation, minimum, maximum, and 

range values. Table V shows range of input/output parameters. 
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Table VI: Data set 

 

Sr # FA SiO2 Al2O3
Coarse 

aggregate

Fine 

aggregate
NaOH

NaOH 

(M)

Na2Si

O3

Na2SiO

3/NaO

H

AA/FA Water
Temper

ature

Duratio

n
fcu

- kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 - - kg/m3 °C Days Mpa

1 394 71.5 9.2 1294 554 63 8 94.6 1.5 0.4 117.4 0 0 10.9

2 394 71.5 9.2 1294 554 52.5 8 105.1 2 0.4 115.3 0 0 9.2

3 394 71.5 9.2 1294 554 45 8 112.6 2.5 0.4 113.8 0 0 8

4 368 71.5 9.2 1294 554 73.6 8 110.4 1.5 0.5 132.48 0 0 7.6

5 368 71.5 9.2 1294 554 61.3 8 122.6 2 0.5 129.97 0 0 8.5

6 368 71.5 9.2 1294 554 52.5 8 131.4 2.5 0.5 128.21 0 0 8.5

7 345 71.5 9.2 1294 554 82.8 8 124.2 1.5 0.6 145.59 0 0 7.6

8 345 71.5 9.2 1294 554 69 8 138 2 0.6 142.83 0 0 8

9 345 71.5 9.2 1294 554 59.1 8 147.8 2.5 0.6 140.8 0 0 8

10 394 71.5 9.2 1294 554 63 10 94.6 1.5 0.4 114.25 0 0 14.4

11 394 71.5 9.2 1294 554 52.5 10 105.1 2 0.4 112.68 0 0 13.9

12 394 71.5 9.2 1294 554 45 10 112.6 2.5 0.4 111.55 0 0 13.1

13 368 71.5 9.2 1294 554 73.6 10 110.4 1.5 0.5 128.8 0 0 14.2

14 368 71.5 9.2 1294 554 61.3 10 122.6 2 0.5 126.9 0 0 12.9

15 368 71.5 9.2 1294 554 52.5 10 131.4 2.5 0.5 125.58 0 0 12.9

16 345 71.5 9.2 1294 554 82.8 10 124.2 1.5 0.6 141.45 0 0 13

17 345 71.5 9.2 1294 554 69 10 138 2 0.6 139.38 0 0 11.7

18 345 71.5 9.2 1294 554 59.1 10 147.8 2.5 0.6 137.84 0 0 11.8

19 394 71.5 9.2 1294 554 63 12 94.6 1.5 0.4 111.1 0 0 15

20 394 71.5 9.2 1294 554 52.5 12 105.1 2 0.4 110.05 0 0 14.5

21 394 71.5 9.2 1294 554 45 12 112.6 2.5 0.4 109.3 0 0 13

22 368 71.5 9.2 1294 554 73.6 12 110.4 1.5 0.5 125.12 0 0 17

23 368 71.5 9.2 1294 554 61.3 12 122.6 2 0.5 123.84 0 0 15

24 368 71.5 9.2 1294 554 52.5 12 131.4 2.5 0.5 122.96 0 0 12.9

25 345 71.5 9.2 1294 554 82.8 12 124.2 1.5 0.6 137.31 0 0 12.5

26 345 71.5 9.2 1294 554 69 12 138 2 0.6 135.93 0 0 13

27 345 71.5 9.2 1294 554 59.1 12 147.8 2.5 0.6 134.89 0 0 12.7

28 394 71.5 9.2 1294 554 63 14 94.6 1.5 0.4 108.58 0 0 18.1

29 394 71.5 9.2 1294 554 52.5 14 105.1 2 0.4 107.95 0 0 18

30 394 71.5 9.2 1294 554 45 14 112.6 2.5 0.4 107.5 0 0 17.5

31 368 71.5 9.2 1294 554 73.6 14 110.4 1.5 0.5 122.18 0 0 18.7

32 368 71.5 9.2 1294 554 61.3 14 122.6 2 0.5 121.38 0 0 20.9

33 368 71.5 9.2 1294 554 52.5 14 131.4 2.5 0.5 120.86 0 0 17.1

34 345 71.5 9.2 1294 554 82.8 14 124.2 1.5 0.6 134 0 0 21.5

35 345 71.5 9.2 1294 554 69 14 138 2 0.6 133.17 0 0 16

36 345 71.5 9.2 1294 554 59.1 14 147.8 2.5 0.6 132.52 0 0 12.7

37 394 71.5 9.2 1294 554 63 16 94.6 1.5 0.4 106.06 0 0 16.8

38 394 71.5 9.2 1294 554 52.5 16 105.1 2 0.4 105.85 0 0 17.6

39 394 71.5 9.2 1294 554 45 16 112.6 2.5 0.4 105.7 0 0 17

40 368 71.5 9.2 1294 554 73.6 16 110.4 1.5 0.5 119.23 0 0 21.5

41 368 71.5 9.2 1294 554 61.3 16 122.6 2 0.5 118.93 0 0 17.9

42 368 71.5 9.2 1294 554 52.5 16 131.4 2.5 0.5 118.76 0 0 15.8

43 345 71.5 9.2 1294 554 82.8 16 124.2 1.5 0.6 130.69 0 0 17

44 345 71.5 9.2 1294 554 69 16 138 2 0.6 130.41 0 0 15.5

45 345 71.5 9.2 1294 554 59.1 16 147.8 2.5 0.6 130.16 0 0 14.6

46 400 49 31 1280 547 19.8 14 49.6 2.5 0.17 130.6 0 0 18.8

47 400 49 31 1280 547 19.8 14 49.6 2.5 0.17 130.6 0 0 19.5

48 475 49 31 1253 539 11.781 14 29.512 2.5 0.09 77.71 0 0 30.4

49 475 49 31 1248 535 13.86 14 34.72 2.5 0.1 91.42 0 0 34.3

50 475 49 31 1235 529 16.434 14 41.168 2.5 0.12 108.4 0 0 27.2

51 416 47.87 28 927 699 65 15 292 4.5 0.86 197.23 80 24 48.7

52 416 49.37 31.25 927 699 65 15 292 4.5 0.86 197.23 80 24 42.9

53 420 53.82 29.95 936 706 92 15 241 2.6 0.79 186.52 80 24 24.3

54 414 45.23 19.95 1091 588 104 10 104 1 0.5 116.27 0 0 39.67

55 414 45.23 19.95 1091 588 104 15 104 1 0.5 95.47 0 0 45.34

56 414 45.23 19.95 1091 588 104 20 104 1 0.5 74.67 0 0 37.64

57 414 45.23 19.95 1091 588 69 10 138 2 0.5 112.88 0 0 33.8

58 414 45.23 19.95 1091 588 69 15 138 2 0.5 99.08 0 0 39.02

59 414 45.23 19.95 1091 588 69 20 138 2 0.5 85.28 0 0 46.69

60 414 45.23 19.95 1091 588 104 10 104 1 0.5 116.27 60 24 46.67

61 414 45.23 19.95 1091 588 104 15 104 1 0.5 95.47 60 24 54.4

62 414 45.23 19.95 1091 588 104 20 104 1 0.5 74.67 60 24 43.42

63 414 45.23 19.95 1091 588 69 10 138 2 0.5 112.88 60 24 40.09

64 414 45.23 19.95 1091 588 69 15 138 2 0.5 99.08 60 24 48.18

65 414 45.23 19.95 1091 588 69 20 138 2 0.5 85.28 60 24 49.5

66 408 50.5 26.57 554 647 62 14 93 1.5 0.379902 98.612 60 24 32

67 300 38.7 20.8 1684 681 51.4 14 129 2.50973 0.601333 94.727 60 24 25.8

68 300 38.7 20.8 1684 681 51.4 14 129 2.50973 0.601333 94.727 60 24 23.2

69 300 38.7 20.8 1684 681 51.4 14 129 2.50973 0.601333 94.727 60 24 21.5

70 300 38.7 20.8 1684 681 51.4 14 129 2.50973 0.601333 94.727 60 24 26.8

71 300 38.7 20.8 1684 681 51.4 14 129 2.50973 0.601333 94.727 60 24 20.5

72 300 38.7 20.8 1684 681 51.4 14 129 2.50973 0.601333 94.727 60 24 22

73 600 38.7 20.8 1087 572 89.1 14 223 2.50281 0.520167 163.861 60 24 26.5

74 600 38.7 20.8 1087 572 89.1 14 223 2.50281 0.520167 163.861 60 24 29

75 600 38.7 20.8 1087 572 89.1 8 223 2.50281 0.520167 185.245 60 24 27
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76 600 38.7 20.8 1087 572 89.1 8 223 2.50281 0.520167 185.245 60 24 25

77 600 38.7 20.8 1087 572 89.1 8 223 2.50281 0.520167 185.245 60 24 22.5

78 600 38.7 20.8 1087 572 89.1 8 223 2.50281 0.520167 185.245 60 24 28.5

79 600 38.7 20.8 1087 572 89.1 8 223 2.50281 0.520167 185.245 60 24 22

80 600 38.7 20.8 1087 572 89.1 8 223 2.50281 0.520167 185.245 60 24 30

81 494 38.7 20.8 858 691 198 14 198 1 0.801619 196.02 60 72 39.2

82 494 38.7 20.8 858 691 198 14 198 1 0.801619 196.02 60 72 36.5

83 494 38.7 20.8 858 691 198 14 198 1 0.801619 196.02 60 72 42.8

84 450 36.2 19.9 1150 500 108 12 162 1.5 0.6 149.148 60 48 35.2

85 450 36.2 19.9 1036 500 108 12 162 1.5 0.6 149.148 60 48 32.9

86 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 60 24 33.2

87 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 0 0 35.6

88 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 60 24 35.4

89 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 0 36.7

90 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 60 24 42.4

91 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 0 0 39.7

92 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 60 24 40.1

93 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 0 0 38.7

94 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 60 24 34.7

95 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 0 0 36.2

96 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 60 24 34.3

97 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 0 37.1

98 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 60 24 41.3

99 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 0 0 38.9

100 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 60 24 42.3

101 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 0 0 38.5

102 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 60 24 36.3

103 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 0 0 35.3

104 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 60 24 36.1

105 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 0 36.3

106 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 60 24 42.2

107 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 60 24 40.2

108 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 0 0 39.6

109 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 60 24 34.4

110 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 0 0 36.3

111 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 60 24 35.4

112 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 0 38.3

113 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 60 24 39.4

114 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 0 0 38.3

115 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 60 24 33.1

116 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 0 0 33.5

117 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 24 35.1

118 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 0 35.5

119 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 60 24 42.2

120 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 0 0 41.5

121 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 60 24 40.2

122 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 0 0 37.5

123 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 60 24 34.2

124 550 38.7 20.8 838 600 95 8 239 2.51579 0.607273 203.22 0 0 35.5

125 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 60 24 36.2

126 550 38.7 20.8 838 600 95 10 239 2.51579 0.607273 195.62 0 0 37.5

127 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 60 24 41.4

128 550 38.7 20.8 838 600 95 12 239 2.51579 0.607273 188.02 0 0 40.5

129 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 60 24 40.8

130 550 38.7 20.8 838 600 95 14 239 2.51579 0.607273 180.42 0 0 38.4

131 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 32.5

132 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 33.5

133 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 31

134 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 24.7

135 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 22

136 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 25

137 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 23.5

138 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 16

139 350 38.7 20.8 1250 650 41 8 103 2.5122 0.411429 85.045 60 24 15

140 400 53.71 27.2 1222 658 40 14 100 2.5 0.35 76.1 21.5 72 25

141 400 53.71 27.2 1222 658 56 14 84 1.5 0.35 74.76 21.5 72 27

142 365.2 59.7 28.36 1118 602 34.3 10 73 2.12828 0.293812 56.35 100 24 35.3

143 254.5 59.7 28.36 1290 694.7 22.8 10 48.5 2.12719 0.280157 37.445 100 24 36.8

144 309.9 59.7 28.36 1204 648.4 27.7 10 59 2.12996 0.279768 45.53 100 24 42

145 408 51.7 29.1 1294 554 41 14 103 2.5122 0.352941 121.0086 60 24 36

146 428.6 53.71 27.2 1177 623 68.6 14 102.9 1.5 0.40014 98.7154 21.5 72 28.6

147 416 49.37 31.25 927 699 65 15 292 4.49231 0.858173 197.228 80 24 36.9

148 420 53.82 29.95 936 706 92 15 241 2.61957 0.792857 171.919 80 24 24.9

149 412 75.66 19 918 693 39 15 342 8.76923 0.924757 206.778 80 24 29.6
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4. RESULTS AND DISCUSSION 

 

 

In this chapter the outcomes and results of the whole research are discussed such as 

machine learning predictions of 28 days compressive strength of fly ash-based 

geopolymer concrete mixtures using three algorithms BPNN, RFR, and KNN as shown 

in Fig.13-15. Red points indicate predicted values, whereas blue points reflect measured 

values. The gray histograms beneath each graphic show the difference between 

predicted and measured values. The models agree well with the training data, and their 

predictions for 28-day compressive strength are correct, with errors of less than 10 MPa. 

Overall, all three models worked admirably, precisely matching the measured 

compressive strength. Among them, BPNN demonstrated the highest level of accuracy. 
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Fig 13: Actual and predicted compressive strength by BPNN 
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Fig 14: Actual and predicted compressive strength by RFR 
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Fig 15: Actual and predicted compressive strength by KNN 
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4.1.COMPARISON OF NEURAL NETWORK MODELS 

Table VII present the evaluation results for three models: BPNN, RFR, and KNN, 

indicating similar performance trends. On average, T BPNN exhibited the highest 

accuracy, with an impressive R2 score of above 94% for the entire dataset. All three 

algorithms showed remarkable accuracy, with results in training, validation, and testing 

sets closely aligned. However, when comparing R2 values, BPNN had slightly lower 

validation R2 value of 0.897 compared to RFR R2 value of 0.932 and KNN 0.933. Yet, 

BPNN performed better in testing R2 value of 0.9174 compared to KNN 0.852 and RFR 

0.878. Overall, the models showed an efficiency of over 90%. 

Table VII: Accuracy comparison of three machine learning algorithms 

  

BPNN RFR KNN 

Training 

set 

Validation 

set 

Testing 

set 
All 

Trainin

g set 

Validation 

set 

Testing 

set 
All 

Trainin

g set 

Validation 

set 

Testing 

set 
All 

R2 0.970 0.897 0.917 0.948 0.971 0.932 0.878 0.927 0.947 0.933 0.852 0.911 

MSE 3.90 15.27 13.36 10.84 3.87 10.45 12.31 8.88 6.97 10.23 14.92 10.71 

RMSE 1.97 3.91 3.65 3.29 1.97 3.20 3.47 2.95 2.65 3.22 3.97 3.33 

MAE 1.01 2.60 2.65 2.09 1.24 1.95 2.61 1.93 1.72 2.05 2.96 2.25 

 

The superiority of BPNN over KNN and RFR, despite lower validation results, can be 

attributed to BPNN's capability to capture complex patterns in the data better than other 

models. Neural networks possess unique characteristics such as fault tolerance, non-

linearity, self-learning, self-organization, and self-adaptation, which give BPNN an 

advantage in handling complex relationships. 

BPNN is an optimization algorithm specifically designed to minimize the sum of 

squared errors, making it well-suited for modelling complex, nonlinear relationships 

between input features and output values. This flexibility allows it to capture the 

intricacies of the data better than other models like RFR, which rely on predefined 
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decision rules. As a result, BPNN can often find a better fit to the data and deliver 

improved predictive accuracy. 

Fig.16 illustrates the results of predicted and experimental compressive strength 

obtained from three models, BPNN, RFR, and KNN. The data points generated by these 

algorithms generally clustered around the centre line and fell within an error range of 

10%. Notably, most of the errors between actual and predicted values were below 10% 

across all the models. The close alignment of data points around the centre line signifies 

a high level of accuracy in the predictions made by BPNN, RFR, and KNN for the 

compressive strength of the geopolymer concrete.  

 

Fig 16: Comparison of coefficient of determination (R2) 

Fig.17 displays the error percentages and their frequency for different machine learning 

algorithms. To ensure precise measurements, we used error percentage instead of 

absolute error, and then fit the data to a normal distribution. This allowed us to eliminate 

the influence of sample size on deviation. The results showed that all three algorithms 

had an average error percentage close to zero. Among them, RFR had the steepest fitting 

curve, indicating a more concentrated distribution within the -20% to +20% error range. 
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However, BPNN produced predictions that were closer to the actual results, even though 

it had fewer samples in the -20% to +20% error range than RFR. These findings 

reinforce our earlier conclusion that BPNN showed superior prediction accuracy as 

illustrated in Fig.18. 
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Fig 17: Normal distribution fitting and error percentage distribution of models 
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Fig 18: Comparison of actual and predicted values of compressive strength 
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4.2.EFFECTS OF INPUT PARAMETERS 

The results of our study on the impact of various mix design parameters on the 

compressive strength of FA-based geopolymer concrete are presented in Fig.19. The 

findings showed that there was no significant correlation between any of the variables 

and compressive strength. This result may have been due to the use of a large number 

of variables with widely varying ranges in our study. This reduction of the impact of 

any one factor on the outcomes is a common challenge in multi-variable regression 

analysis. However, by examining the correlation between a few independent variables 

and several dependent variables, some potential trends might still be found. The results 

showed that an ideal SiO2/Al2O3 ratio was revealed by the findings of the SiO2 and 

Al2O3 contents, which improved the contribution of FA to compressive strength. This 

highlights the importance of considering the ratio of these two components in the mix 

design of FA-based geopolymer concrete. Further research on a smaller set of variables 

could lead to more definitive conclusions about the impact of specific parameters on 

compressive strength. The compressive strength of FA-based geopolymer concrete was 

found to be impacted by various factors such as the amount of NaOH and Na2SiO3 as 

well as their molar concentrations. Results showed that an increase in the molar 

concentration of NaOH solution increased the compressive strength, particularly when 

the concentration exceeded 12 M. Conversely, a rise in the water content above 100 

kg/m3 led to a decrease in strength. 

The proportions of coarse or fine particles, on the other hand, did not appear to have a 

significant effect on strength. This aligns with previous studies that have revealed that 

the aggregates' morphology, particle size distribution, and interface transition zone have 

a greater impact on strength growth compared to their contents. The effect of pre-curing 
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on compressive strength is detailed in Table VIII, which also shows the effect on the 

minimum, average, and maximum strength values across all data sets. 

Table VIII: Impact of pre-curing on the compressive strength 

Curing condition 
Compressive strength (MPa) 

Minimum Maximum Average 

No pre-curing 7.60 46.69 23.63 

Pre-curing (up to 100℃ and 72 h) 15 54.40 33.55 

 

Fig 19: Correlation of different input parameters with Compressive strength 
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“To comprehend the significance of each input parameter concerning prediction 

outcomes, evaluating the importance of individual parameters is crucial. This is often 

done through the utilization of permutation feature importance (PFI), a widely used 

metric for assessing the influence of various features on outcomes. PFI operates on the 

principle that when an input variable, let's call it Xi, significantly affects the outcome, 

shuffling Xi while maintaining the order of other variables will notably decrease 

predictive performance. This concept is expressed in Equation 13, which calculates the 

PFI value for a specific variable using mean absolute error (MAE) as the error 

measurement. Here, MAEperm represents the mean absolute error after randomly 

rearranging Xi, while MAEorig represents the original mean absolute error.” 

PFI=MAEperm - MAEorig                                         (13) 

“By applying this approach, a PFI value approaching zero indicates that modifying a 

particular feature has minimal impact on the output. Conversely, a substantial PFI value 

suggests that the feature significantly influences the output. In a recent study, this PFI 

method was employed to assess the impact of 13 input variables on the compressive 

strength of geopolymer concrete as shown in Table IX.” 

Table IX: PFI results for different input parameters 

 

 

 

 

 

 

Notation Input parameter MAEperm PFI 

X1 FA (kg/m3) 1.77 0.78 

X2 SiO2 (%) 3.24 2.25 

X3 Al2O3 (%) 2.32 1.33 

X4 Coarse Aggregate (kg/m3) 6.75 5.76 

X5 Fine Aggregate (kg/m3) 2.52 1.53 

X6 NaOH (kg/m3) 1.80 0.81 

X7 NaOH (M) 2.94 1.95 

X8 Na2SiO3 (kg/m3) 1.39 0.40 

X9 Na2Sio3/NaOH 1.38 0.39 

X10 AA/FA 1.24 0.25 

X11 Water (kg/m3) 2.05 1.06 

X12 Temperature ( Cͦ) 1.42 0.43 

X13 Duration (h) 1.31 0.32 
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“The study's findings highlighted that the concrete's compressive strength was notably 

affected by the quantity of coarse aggregate present in the mix. This is attributed to the 

substantial volume occupied by coarse aggregates, significantly influencing the overall 

packing density and void content. Similar observations regarding the influence of coarse 

aggregates on concrete's compressive strength have been reported in earlier studies 

(Olivia & Nikraz, 2012),(Malkawi, 2023). Alongside coarse aggregates, the SiO2 

percentage in the fly ash (FA) also demonstrated a high PFI value, indicating its 

significant effect on concrete's compressive strength. This stems from the fact that the 

mechanical properties of cement-based mixes depend on hydration pace and extent. The 

chemical composition of FA plays a crucial role in the strength's development due to its 

impact on hydration and the formation of strength-contributing products (Moon et al., 

2016), (Cho et al., 2019).” 

“Another influential input variable was the concentration of sodium hydroxide (NaOH) 

in molarity. This parameter significantly impacted the compressive strength of concrete 

as well. The NaOH concentration influences the dissolution of geopolymer precursor 

materials, consequently affecting the uniformity and strength of the geopolymer matrix. 

Higher NaOH concentrations lead to better dissolution, yielding a more uniform and 

stronger matrix. While fine aggregates, aluminium oxide (Al2O3), and water also 

influenced compressive strength, their impact was comparatively lower compared to 

other input variables.” 

“On the other hand, factors like fine aggregate, the ratio of aluminium oxide to fly ash 

(AA/FA), and pre-curing conditions exhibited relatively lower PFI values, suggesting 

their limited impact on compressive strength. Nevertheless, it's worth noting that the 

PFI index primarily indicates the individual influence of each variable and doesn't 

capture their combined effects (Naseri et al., 2020), (Asteris et al., 2021).”  



CHAPTER # 4                                                                                              RESULTS AND DISCUSSION 

48 

 

“To delve deeper into the impact of changing individual input variables on concrete's 

compressive strength, a sensitivity analysis was conducted. For instance, raising the 

SiO2 content in fly ash beyond a certain threshold negatively impacted compressive 

strength due to the production of unreacted particles. Similarly, within the studied range, 

increasing the coarse aggregate content, SiO2 in fly ash, and NaOH concentration 

contributed positively to improved compressive strength (Malkawi, 2023), (Moon et al., 

2016), (Ghafoor et al., 2021b).  ”  

 

Fig 20: Sensitivity analyses for featured parameters 
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5. CONCLUSIONS AND RECOMENDATIONS 

 

 

5.1.CONCLUSION 

“The objective of this study was to employ three distinct machine learning algorithms—

BPNN, RFR, and KNN—to predict the compressive strength of geopolymer concrete 

based on fly ash (FA). The dataset was compiled from an extensive literature review, 

comprising 149 sets of mixing proportions. These sets encompassed 13 variables, such 

as FA composition (SiO2 and Al2O3), coarse and fine aggregate quantities, NaOH and 

Na2SiO3 contents and ratio, AA/FA ratio, water content, and pre-curing temperature and 

duration. Model effectiveness was assessed using metrics like R2, MSE, RMSE, and 

MAE. The models were then compared, and the influence of input parameters on 

outcomes was analyzed. The conclusions drawn from the results are as follows: ” 

1. “The three machine learning algorithms—BPNN, RFR, and KNN—performed 

well in predicting the compressive strength of FA-based geopolymer concrete. 

The predictions closely aligned with actual values, with errors generally staying 

within 20%. 

2. The BPNN model exhibited the best performance, achieving an exceptional R2 

of 0.948, outperforming RFR and KNN with R2 values of 0.927 and 0.911, 

respectively. The success of BPNN can be attributed to its capacity to grasp 

intricate data patterns by approximating non-linear functions and adaptively 

learning from the data, setting it apart from RFR and KNN.
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3. Coarse aggregate content, SiO2 content in FA, and NaOH concentration emerged 

as the most influential factors with high PFI values, signifying their significant 

impact on compressive strength. Fine aggregates, Al2O3, and water had a 

comparatively smaller influence, whereas AA/FA, FA, and pre-curing 

conditions had lower PFI values, implying a limited effect. Sensitivity analysis 

indicated that excessive coarse aggregate, SiO2, and NaOH concentration had 

adverse effects on compressive strength, while moderate increases within the 

studied range improved it.” 

“ 

5.2.RECOMMMENDATIONS 

Incorporating machine learning techniques for predicting mechanical properties of FA-

based geopolymer concrete offers the potential to streamline and enhance conventional 

empirical methods. This approach presents a more efficient way to assess concrete 

strength with untested mixes, reducing the time, effort, and resources required for 

experimentation. Additionally, it offers a cost-effective and environmentally friendly 

means of optimizing concrete mixes. Integrating machine learning expedites the 

progress and adoption of environmentally friendly concrete formulations, such as 

geopolymers, while minimizing costs and environmental impact. This innovative 

approach paves the way for a more sustainable and efficient construction industry, 

promoting eco-friendly development and reducing its carbon footprint.” 
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