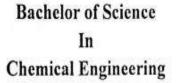
PRODUCTION OF 13,500 TPD OF BIODIESEL FROM CHICKEN FAT

Session 2019-2023

Supervised by:

Engr. Usman Asghar


Group Members:

Nidarish Gohar	UW-19-CHE-BSc-005
Shehla Riasat	UW-19-CHE-BSc-009
Saqib Ali Malik	UW-19-CHE-BSc-014
Faiz ul Haq	UW-19-CHE-BSc-015

Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt.

Production of 13,500 tons per day of Biodiesel from Chicken Fat

This report is submitted to the Department of Chemical Engineering, Wah Engineering College, University of Wah for the partial fulfilments of the requirement for the

Internal Examiner

FYDP Evaluation Committee

Sign: Sign: 2023 Sign:

Sign: Sign:

Department of Chemical Engineering, Wah Engineering College, University of Wah Wah Cantt.

DEDICATED

TO OUR RESPECTED, ADMIRED, PROUD, PARENTS AND TEACHERS

&

ALL THOSE WHO GAVE THEIR YESTERDAY FOR OUR IMMACULATE PRESENT

ACKNOWLEDGEMENT

We are thankful to Almighty ALLAH who has blessed us with the courage, wisdom, and strength so that we have been able to complete this final year project report, with the help He has bestowed upon us. We are thankful to our parents who have assisted us financially, mentally and physically so that today we are proud to call ourselves as an educated and important part of the society and will be looking forward to make positive contribution to the society with the knowledge that we've required.

We are thankful to the Dean Engineering Dr. Adnan Tariq and Head of Department

Dr. Khurram Shahzad Baig for providing facilities and guidance. We are also thankful to project coordinator **Mr. Fazeel Ahmed** and other teachers for their keen and sincere efforts and suggestions that proved to be very helpful in achieving our goal.

We are especially thankful to our supervisor **Engr. Usman Asghar.** It was valuable experience for us and interesting for us and it was really delightful. The assistance and guidance provided by him throughout final year duration and especially for this final year project report has positioned us as a knowledgeable, hardworking, and flexible personality so that we can perform better in practical field life. We are thankful for injecting such knowledge in ours mind and for the guidance.

ABSTRACT

Next-generation biofuels, such as cellulosic bioethanol, biodiesel, synthetic biofuels obtained via thermochemical conversion of biomass are currently at the center of the attention of technologists and policy makers in search of the more sustainable biofuel for future. But the point of concern is that the production of biodiesel from biomass (crops) will jeopardize the food security in the future, so waste material (biomass waste or animal fat) would be the sustainable option for the future biofuels (especially biodiesel). To set realistic targets for future biofuel options, it is important to assess their sustainability according to technical, economical, and environmental measures. Biodiesel is an eco-friendly and efficient fuel, that is regarded nowadays as an alternate "directpour" fuel to petroleum-derived diesel. Chicken fat (also known as skin fat) is a waste which is usually disposed-off in Pakistan. In this work, the technical, economical, and environmental assessment of biodiesel from waste fat (chicken fat) was assessed. Biodiesel is produced from chicken fat through a transesterification reaction in which fats reacts with an alcohol to produce methyl ester (biodiesel) and glycerol. In the current work, the complete process was designed with optimization of all process conditions (temperature, pressure etc.) for each process stage to make this project technically feasible/sustainable project. Economic analysis of this process was also made, and all economic indicators show that this is an economically viable project. With positive Present worth value and 3.8-year payback period make this project the most suitable investment. In developing countries like Pakistan, biodiesel would be the alternate and sustainable source of cheap energy (as raw material which waste fat is available at very lower price) and of course it would also reduce GHG emissions.

TABLE OF CONTENTS

CHAPTER 01	
INTRODUCTION	
1.1 Introduction	
1.2 Biodiesel	
1.3 Chicken Fat	
1.4 Methanol	
1.5 Thermo-Physical Properties of Biodiesel	
1.6 Application of Biodiesel	
1.6.1 Power Generation	
1.6.2 Oil Spill Cleanups	
1.6.3 Heating of Oil	
1.6.4 Lubrication	
1.7 Motivation for this Project	
1.7.1 Optimum Engine Efficiency	
1.7.2 Environment Friendly	
1.7.3 Improved Safety	
1.8 Feasibility	
1.9 Shipping of the Biodiesel	
1.10 Storage and Handling of Biodiesel	
1.11 Market Assessment	
1.12 Bio-diesel Production and Consumption	
CHAPTER 02	
MANUFACTURING PROCESSES	
2.1 Introduction	

2.2. Transesterification using Homogenous Catalyst	29
2.3 Transesterification using Heterogeneous Catalyst	30
2.4 Transesterification using Enzyme Catalyst	30
2.5. Reaction Occurring	31
2.6. Block Flow Diagram of Transesterification Process	31
2.7. Process Comparison	32
2.8 Process Selection	32
2.9. Process Description	32
2.9.1 Pre-treatment	33
2.9.2 Transesterification	33
2.9.3 Purification	34
2.10 Capacity Selection	35
CHAPTER 03	37
MATERIAL BALANCE	37
3.1 Material Balance around Reactor (R-101)	40
3.2 Material Balance around Distillation Column (D-101)	42
3.3 Material Balance around Decanter (S-101)	44
3.4 Material balance around Reactor (R-102)	45
3.5 Material Balance around Distillation Column (D-102)	47
3.6 Material Balance around Decanter (S-102)	49
3.7 Material Balance around Decanter (S-103)	50
3.8 Material Balance around Washing Unit (C-101)	51
3.9 Material Balance around Evaporator (V-101)	53
CHAPTER 04	55
ENERGY BALANCE	55

4.1 Energy Balance around Heater (H-101)	57
4.2 Energy Balance around Waste Heat Boiler (WHB-101)	59
4.3 Energy Balance around Heat Exchanger (HX-102)	61
4.4 Energy Balance around Reactor (R-101)	62
4.5 Energy Balance around Heat Exchanger (HX-103)	66
4.6 Energy Balance around Distillation Column (D-101)	68
4.7 Energy Balance around Heat Exchanger (HX-104)	70
4.8 Energy Balance around Heat Exchanger (HX-105)	72
4.9 Energy Balance around Heat Exchanger (HX-106)	73
4.10 Energy Balance around Reactor (R-102)	75
4.11 Energy Balance around Heat Exchanger (HX-107)	78
4.12 Energy balance around Distillation Column (D-102)	80
4.13 Energy Balance around Heat Exchanger (HX-108)	82
4.14 Energy Balance around Evaporator (V-101)	84
CHAPTER 05	87
EQUIPMENT DESIGN	87
5.1 Design of CSTR (R-101)	89
5.2. Design of CSTR (R-102)	100
5.3 Design of Evaporator V-101	112
5.4. Design of Cyclone (CS-101)	119
5.5 Design of Distillation Column (D-102)	124
5.6. Waste Heat Boiler (WHB-101)	139
5.7. Design of Heat Exchanger (HX-102)	152
CHAPTER 06	164
MECHANICAL DESIGN	164

6.1 Introduction	
6.2 Mechanical Design of CSTR (R-101)	
CHAPTER 07	
PUMPS AND CONVEYER CALCULATIONS	
7.2 Types of Pumps	
7.2.1 Positive Displacement Pumps	
7.2.2 Reciprocating Pump	
7.2.3 Dynamic Pump	176
7.2.4 Centrifugal Pump	176
7.2.5 Special Effect Pump	176
7.3 Selection Criteria of Pumps	176
7.4 Advantages	
7.5 Reciprocating Pump (P-101)	
7.6 Reciprocating Pump (P-102)	
7.7 Centrifugal Pump (P-103)	
7.8. Conveyers	
7.9 Types of Conveyers	
7.9.1 Chute Conveyers	
7.9.2 Screw Conveyers	
7.10. Screw Conveyer (CN-101)	
CHAPTER 08	
COST ESTIMATION	
8.1 Cost estimation	
8.2 Working Capital	
8.3 Fixed Capital Investment	

8.4 Depreciation	193
8.5 Cost Indexes	193
8.6 Assumptions	
8.7 Purchased Cost of Equipment 2003	
8.8 Total purchased cost 2022	206
8.9 Direct Cost	
8.10 Indirect Cost	209
8.11 Variable Cost	
8.12 Fixed Operating Cost	
8.13 Profitability analysis	
8.14 Discounted Cashflow	
8.15 Net Present Worth	
CHAPTER 09	
PROCESS DESIGN SIMULATION	
9.1 Introduction	
9.2. Simulation of Heat Exchanger (HX-102)	221
9.3 Simulation of CSTR (R-101)	
9.4. Simulation of CSTR (R-102)	
9.5. Simulation of Distillation Column	
9.6. Simulation of Evaporator (V-101)	
CHAPTER 10	
INSTUMENTATION AND PROCESS CONTROL	
10.1 Introduction	
10.2 Objectives	
10.3 Components of control system	

10.4 Process	
10.5 Measuring Element	
10.6 Process Variable	
10.6.1 Temperature Measurement and Control	
10.6.2 Pressure Measurement and Control	
10.6.3 Flow Measurement and Control	
10.7 Type of Controls	
10.7.1 Feed Forward Control	
10.7.2 Feed Backward Control	
10.8 Control on Distillation Column	
10.9 Control on CSTR	
CHAPTER 11	
HAZOP STUDY	
11.1 HAZOP Study	
11.2 Objectives of HAZOP	
11.3 Guide Words	
11.4 Advantages and Disadvantages	
11.5 HAZOP Study on Distillation Column (D-101)	
11.6 HAZOP Study of Heat Exchanger (HX-104)	
CHAPTER 12	
ENVIRONMENTAL IMPACT ASSESSMENT	
12.1 Environmental Impact Assessment	
12.2 Biodiesel	
12.3 Composition of Biodiesel Exhaust Emissions	
12.4 Respiratory Issues	

12.5 Storage	
12.6 Byproduct Handling	
12.7 Wash Water	
12.8 Handling of Chemicals Used in Biodiesel Production	
12.8.1 Methanol Handling	
12.8.2 KOH Handling	
REFERENCES	
APPENDICES	
Appendix-A	
Appendix-B	
ACHIEVEMENTS	

LIST OF TABLES

Table 1.1: Composition of Chicken Fat	
Table 1.2: Thermo-Physical Properties of Biodiesel	
Table 2.1: Process Comparison	
Table 3.1: Composition of Raw Material	
Table 3.2: Molecular Weights	
Table 3.3: Mass Flow Rates in Reactor	
Table 3.4: Mass Flow Rates in Distillation Column	
Table 3.5: Mass Flow Rates in Decanter	
Table 3.6: Mass Flow Rates in Reactor 2	
Table 3.7: Mass Flow Rates in Distillation Column 2	
Table 3.8: Mass Flow Rates in Decanter 2	
Table 3.9: Mass Flow Rates in Decanter 3	
Table 3.10: Mass Flow Rates in Washing Unit	53
Table 3.11: Mass Flow Rates in Evaporator	
Table 4.1: Energy Balance on Heater	59
Table 4.2: Energy Balance on Waste Heat Boiler 01	
Table 4.3: Energy Balance on HX-102	
Table 4.4: Energy Balance on Reactor R-101	64
Table 4.5: Heat Loads of Reactor 01	66
Table 4.6: Energy Balance on HX-103	67
Table 4.7: Energy Balance on Distillation Column 01	
Table 4.8: Energy Balance on HX-104	71
Table 4.9: Energy Balance on HX-105	
Table 4.10: Energy Balance on HX-106	74
Table 4.11: Specific Heat Capacities of Components	
Table 4.12: Energy Balance on Reactor 02	
Table 4.13: Energy Balance on HX-107	
Table 4.14: Energy Balance on Reactor 02.	
Table 4.15: Energy Balance on HX-108	
Table 4.16: Energy Balance on Evaporator	

Table 4.17: Energy Balance on WHB-109	
Table 5.1: Types of Impellers	
Table 5.2: Characteristics and Types of Impellers	
Table 5.3: Types of Trays	
Table 5.4: Relative Volatilities of Components	
Table 5.5: Top and Bottom Conditions	
Table 8.1: Purchased Cost 2022	
Table 8.2: Direct Cost	
Table 8.3: Indirect Cost	
Table 8.4: Fixed Operating Cost	
Table 8.5: General Expenses	
Table 8.6: Net Present Worth	
Table 10.1: Measuring Devices	
Table 11.1: Guided Words	
Table 11.2: Guide Words For Distillation Column	
Table 11.3: Guide Words For Heat Exchanger	

LIST OF FIGURES

Figure 1.1: Sources of Raw Materials	
Figure 1.2: Chemical Formula of Methanol	
Figure 1.3: Energy Generation by Biomass	
Figure 1.4: Market Assessment of Biodiesel	
Figure 1.5: Biodiesel Production and Consumption	
Figure 2.1: Types of Catalysts	
Figure 2.2: Block Flow Diagram of Transesterification of Biodiesel	
Figure 2.3: Process Flow Diagram	
Figure 3.1: Material Balance on R-101	
Figure 3.2: Material Balance on D-101	
Figure 3.3: Material Balance on S-101	44
Figure 3.4: Material Balance on R-102	
Figure 3.5: Material Balance on D-102	47
Figure 3.6: Material Balance on S-102	49
Figure 3.7: Material Balance on S-103	50
Figure 3.8: Material Balance on C-101	51
Figure 3.9: Material Balance on V-101	53
Figure 4.1: Heater (H-101)	57
Figure 4.2: Waste Heat Boiler (WHB-101)	59
Figure 4.3: Heat Exchanger (HX-102)	61
Figure 4.4: Reactor (R-101)	
Figure 4.5: Heat Exchanger (HX-103)	66
Figure 4.6: Distillation column (D-101)	68
Figure 4.7: Heat Exchanger (HX-104)	
Figure 4.8: Heat Exchanger (HX-105)	72
Figure 4.9: Heat exchanger (HX-106)	73
Figure 4.10: Reactor (R-102)	75
Figure 4.11: Distillation Column (D-102)	80
Figure 4.12: Heat Exchanger (HX-107)	80
Figure 4.13: Heat Exchanger (HX-108)	

Figure 4.14: Evaporator (V-101)	
Figure 4.15: Waste Heat Boiler (WHB-109)	
Figure 5.1: Design of Reactor (R-101)	
Figure 5.2: Reactor Dimensions	
Figure 5.3: Reynolds Number Graph	
Figure 5.4: Heat Transfer Coefficient Graph	
Figure 5.5: Design of Reactor (R-102)	
Figure 5.6: Dimensions of Reactor	
Figure 5.7: Power number and Reynolds number Graph	
Figure 5.8: Design of Evaporator (V-101)	
Figure 5.9: Design of Cyclone (CS-101)	
Figure 5.10: Design of Distillation Column (D-102)	
Figure 5.11: Graph Between F _{LV} and C _{sb}	
Figure 5.12: Graph Between F _{LV} and C _{sb}	
Figure 5.13: Relationship Between Down Comer Area and Weir Length	
Figure 5.14: Flooding Velocity Sieve Plate	
Figure 5.15: Entrainment Correlation for Sieve Plate	
Figure 5.16: Weep Point Correlation	
Figure 5.17: Discharge Coefficient Correlation	
Figure 5.18: Design of WHB-101	
Figure 5.19: Tube Sheet Layout	
Figure 5.20: Equation Constants	
Figure 5.21: Design of Heat Exchanger (HX-102)	
Figure 6.1: Mechanical Design of R-101	
Figure 6.2: Design Stress	
Figure 6.3: Maximum Allowable Stress	
Figure 6.4: Tori spherical Head	
Figure 6.5: Vertical Vessel	
Figure 7.1: Types of Pumps	
Figure 7.2: Pump (P-101)	
Figure 7.3: Pump (P-102)	

Figure 7.4: Pump (P-103)	
Figure 7.5: Conveyer	
Figure 7.6 Types of Conveyer	
Figure 7.7: Screw Conveyer (CN-101)	
Figure 8.1: Cumulative Cash Flow Chart	
Figure 10.1: Control on Distillation Column	
Figure 10.2: Control on Reactor	
Figure 11.1: HAZOP Study Process	
Figure 11.2: HAZOP Study on Distillation Column	
Figure 11.3: HAZOP Study on Distillation Column	
Figure 12.1: Handling of Chemicals	

CHAPTER 01 INTRODUCTION

INTRODUCTION

1.1 Introduction

One of the most crucial resources for humanity's sustainable progress is energy. The energy crisis is one of the problems facing the world nowadays. Because they can be burned to create a considerable amount of energy, fuels are very important. Fuels are essential to many facets of daily life, particularly the movement of people and things. The primary energy sources related with fossil fuels are petrol, coal, and natural gas. Fossil fuels provide 80% of the energy needed by the world. [1]

Fossil fuels are a type of non-renewable energy. And as they are depleting, therefore the price of fossil fuel-based fuels is increasing. In addition, emissions from burning fossil fuels contribute to air pollution and global warming. As a result, the use of clean, renewable alternative fuels has gained attention both now and in the future.

Due to the negative environmental effects of fossil fuel-powered diesel engines and the depleting supply of petroleum, biodiesel has gained importance as a possible substitute. [1]

1.2 Biodiesel

With the aid of an enzyme, base, or acid catalyst, long-chain fatty acid mono-alkyl esters of biodiesel are created from oil. The main advantages of biodiesel are highlighted, including lower carbon to hydrogen ratio and increased oxygen content compared to traditional fuel. The emissions of particulate matter are low and there is a decrease in the amounts of Sulphur, hydrocarbons, and carbon monoxide. Biodiesel offers sustainable fuel to replace diesel and has been successfully used as blends. Biodiesel performance in cold weather depends on the blend of biodiesel, the feedstock, and the petroleum diesel characteristics. Biodiesel is rapidly biodegradable and completely non-toxic, meaning spillages represent far less of a risk than fossil diesel spillages. [2]

Oils, both edible and not, can be used to make biodiesel. Corn oil, sunflower oil, and other edible oils. Non-edible oils animal fat oil, jatropha oil. Because biodiesel has a higher cetane number (45–65 as opposed to 40–55) than regular fossil diesel, it generally has better combustion quality. However, compared to petroleum-derived diesel (2-3.5 cSt at 40°C), biodiesel has a higher viscosity (3.5-5.5 centistokes at 40°C), which makes it challenging to utilize directly in a traditional diesel engine. Alcohol (mostly methanol) use in the transesterification process has been found to be a successful method for reducing oil viscosity. [3]

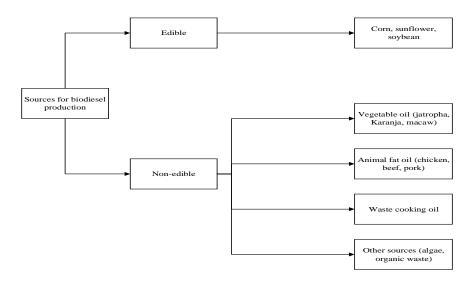


Figure 1.1: Sources of Raw Materials

1.3 Chicken Fat

By rendering chicken feathers or poultry waste, chicken fat is produced. A feather meal can yield between 2% and 12% fat. The three main fatty acids present in chicken fat are linoleic acid (20.5 wt%), palmitic acid (20.9 wt%), and oleic acid (40.9 wt%). Due to the high amount of unsaturated fatty acids in chicken fat, its corresponding methyl esters have a low level of oxidative stability. [4]

The main composition of chicken fat as follows [13]

Table 1.1: Composition of Chicken Fat

Components	Percentage (%)		
Free fatty acids	15		
Triglycerides	80		
Water	3		
Impurities	2		

1.4 Methanol

The simplest aliphatic alcohol, methanol is an organic compound having the chemical formula CH₃OH (a methyl group connected to a hydroxyl group, commonly written as MeOH).

It is also known as methyl alcohol and wood spirit. It has a pronounced alcoholic fragrance resembling that of ethanol (potable alcohol), and it is a colourless, flammable liquid that is light,

CHAPTER 01

volatile, and volatile. Methanol was previously primarily created by the destructive distillation of wood, hence the name "wood alcohol." [5]

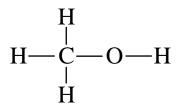


Figure 1.2: Chemical Formula of Methanol

1.5 Thermo-Physical Properties of Biodiesel

PROPERTY	VALUE		
Density Range (kg/m ³ , at 288 K)	860–894		
Cetane Number	48 - 65		
Flash Point (°C)	100 - 170		
Pour point (°C)	-15		
Calorific Value (MJ/kg)	38.71		
Kinematic Viscosity Range (mm ² /s, at 313 K)	3.3-5.2		
Boiling Point Range (K)	>475		

Table 1.2: Thermo-Physical Properties of Biodiesel

1.6 Application of Biodiesel

1.6.1 Power Generation

Power generation systems have been built to use bio diesel as a fuel and use it in power generators with varied capacities. This generator uses just pure biodiesel, 100 percent. Such a power generator was utilized for the burning of biodiesel. [6]

We used bio diesel as a fuel to run the power generation plant.

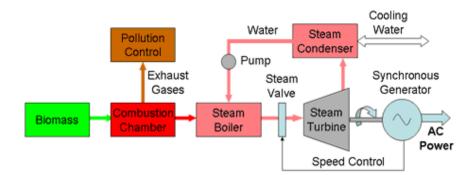


Figure 1.3: Energy Generation by Biomass

1.6.2 Oil Spill Cleanups

Cleaning up oil spills after a liquid petroleum discharge into the environment, particularly on marine ecosystems, is a labor-intensive and expensive task. Depending on the fatty acid, crude oil is soluble in biodiesel. Because bio diesel has a higher tendency than crude oil, we used it as a solvent to clean up oil spills on seashores. [6]

1.6.3 Heating of Oil

When used as a fuel to heat residential and commercial boilers, biodiesel can be based on heating oil in a variety of proportions. It is dependent on different heat application ratios. Biodiesel has a somewhat different heating system and is used in transportation. The government of some nations has enacted laws and regulations to ensure that heating oil contains a minimum of two percent (2%) biodiesel. [6]

1.6.4 Lubrication

We utilized biodiesel and Sulphur provided the lubricity to fuel, which is important when we keep the engine in good working order and to prevent from infection failure. Lubricant is used to minimize friction and allow for smooth movement. [6]

1.7 Motivation for this Project

These are some reasons from which we selected this project

- Environment friendly
- Optimize engine efficiency
- Improved safety

CHAPTER 01

INTRODUCTION

1.7.1 Optimum Engine Efficiency

The cetane number for that fuel mixture is increased by biodiesel, which also enhances the lubricity of the petrol. Improved fuel lubricity improves engine performance and lengthens the lifespan of its moving parts by eliminating early wear. [6]

1.7.2 Environment Friendly

Regardless of the fuel type used, engines constructed after 2010 must adhere to the same pollution standards. By default, engines driven by biodiesel emit similar emissions, however selective catalytic reduction permits conventional diesel engines to keep up with air pollution laws.

Since the gas emitted during combustion is balanced by the gas absorbed during the growth of its substrates, such as soybean, for example, biodiesel has a lower longevity rating for carbon dioxide emissions. Lower overall emissions have resulted in a significant improvement in air quality. [6]

1.7.3 Improved Safety

Freshly synthesised biodiesel has less of an environmental impact than ordinary petroleum gasoline if it is accidentally spilled. Biodiesel is less flammable and has a higher flash point than normal diesel, making it safer to handle, store, and transport. [6]

1.8 Feasibility

Chicken fat, a waste product from slaughterhouses, is the raw material needed for this method. For the manufacturing of biodiesel, low-cost and readily available feedstock's like chicken fat are also employed, along with inexpensive alcohols like methanol. Pakistan, the 11th-largest producer of poultry, will produce 1.08 billion chickens in 2020, and that number will keep rising. The biodiesel created from chicken fat has a 97% efficiency. Carbon dioxide, carbon monoxide, and NOx and SOx emissions are quite low. Without requiring any engine changes, it may be used in engines with ease. It extends the life of engines because of its lubricity and good chemical and physical qualities. [7]

1.9 Shipping of the Biodiesel

The transportation tank needs to be made to accommodate biodiesel's tendency to reach greater temperatures than petroleum-based fuel, which is an issue. We must confirm that the shipping container has been thoroughly cleaned and that the tank is empty. Because biodiesel can be permitted to freeze in the tank before being heated at the destination, if the fuel can be delivered in cold weather, the tank may need insulation or heating. [8]

1.10 Storage and Handling of Biodiesel

Before transferring biodiesel, make sure the tank is dry and the transportation container has been cleaned (unless it has already transported Petro-diesel or biodiesel). If transporting biodiesel in cold weather, the tank might need insulation or heating. Alternatively, you may freeze the biodiesel in the tank and then thaw it out when you arrive there. Make sure the tank is dry and the transportation container has been cleaned (unless it has already transported Petro-diesel or biodiesel) before transferring biodiesel. [9]

1.11 Market Assessment

Over the past ten years, the biodiesel and renewable diesel industries have steadily expanded, and there are now industrial production facilities from coast to coast. When industry production

for the first time surpassed one billion gallons in 2011, it marked an important turning point. The market increased in size to more than two billion gallons by 2015. According to EPA data, the market has 2.8 billion gallons in 2019. The industry's overall output has consistently exceeded the Federal Renewable Fuel Standard's biodiesel requirement and has been sufficient to meet the majority of the Advanced Biofuel requirement. [10]

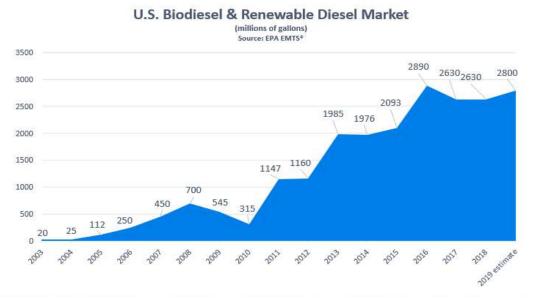
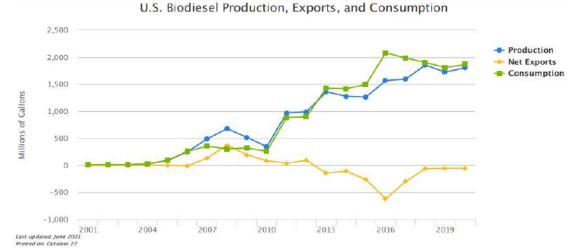
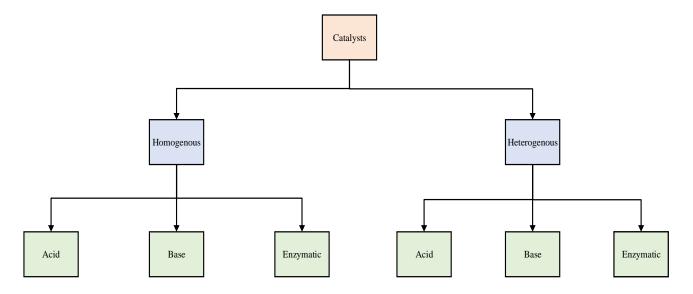



Figure 1.4: Market Assessment of Biodiesel

1.12 Bio-diesel Production and Consumption

Figure 1.5: Biodiesel Production and Consumption

From 2001 to 2020, this graph displays the production, exports, and consumption trends for biodiesel in the United States. The European Union's biodiesel tax credit had an unforeseen consequence that led to the peak in biodiesel exports in 2008. After the effect was reversed, exports decreased. Beginning in 2011, the Renewable Fuel Standard is mostly to blame for the rising production and consumption. A greater amount of biodiesel was imported than was exported in 2013, as seen by the net export of biodiesel turning negative. Due to tighter regulation and ongoing attempts to minimise greenhouse gas emissions, there has likely been an increase in net exports since 2013. [10]


CHAPTER 02 MANUFACTURING PROCESSES

2.1 Introduction

Biodiesel is commercially produced by using only one technique known as transesterification. For the creation of biodiesel, the transesterification process involves the reaction of alcohol with free fatty acids (TAG) in the presence of a catalyst. They difference in process occurs depending on the type of catalyst employed

The commercially available process for the manufacturing of biodiesel comes in the two categories

- Transesterification using homogenous catalyst
- Transesterification using heterogeneous catalyst

Figure 2.1: Types of Catalysts

2.2. Transesterification using Homogenous Catalyst

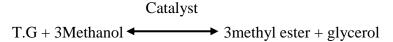
The main benefit of homogeneous catalysts is that they operate in the same phase of the reaction mixture, which reduces the mass transfer resistance. Catalysts are basic, acidic, or enzymatic, depending on their nature. Compared to the heterogeneous catalyst, these types of catalysts take less time for higher yields and conversion. [11]

The homogeneous basic catalysts that are easily soluble in methanol, such as NaOH and KOH, are currently utilized the most in the biodiesel industry. Homogeneous basic catalysts have an advantage over homogeneous acid catalysts in that they may produce a high yield of biodiesel quickly and under generally tame operating conditions. Such catalytic systems should not be employed with low grade fat feedstock, which has a high concentration of FFA and moisture, since high purity feedstocks are necessary. The FFA interacts with the basic catalyst to create soaps, reducing the yields of biodiesel and causing catalyst losses.

The transesterification reaction can be carried out in two steps to get around this problem. Alkali transesterification is done after the feedstock has been pretreated with an acid catalyst to lower the level of FFAs and convert them into esters. [11]

2.3 Transesterification using Heterogeneous Catalyst

Heterogeneous or solid catalysts can be easily recovered, refurbished, and used once more. Depending on their makeup, they can be basic, like hydrotalcite and alkaline earth metal oxides (CaO, MgO), acidic, like zirconia and alumina-based catalysts, or enzymatic, like immobilized lipase. [11]


High FFA and water content have a comparable effect on solid basic catalyst performance to homogeneous basic catalysts. Solid acid catalysts are less demanding to operate under harsh conditions than solid basic catalysts, which are also more active. Since catalysts that are solid have lower conversions than homogeneous catalysts, they need more difficult reaction conditions to accomplish the same conversions.

The leaching of the active phase into the reaction mixture should also be taken into account. The contribution is homogeneous as a result of the catalyst leaching. The quality of the biodiesel as well as the catalysts' life expectancy are both impacted by how much leaching occurs. For these reasons, it is necessary to reuse the heterogeneous catalyst and prevent it from leaching. [11]

2.4 Transesterification using Enzyme Catalyst

As catalysts for the production of biodiesel when used in their free state, lipases fall into the heterogeneous category when they are immobilized. Compared to other catalysts, enzymes are more selective, yield purer end products (biodiesel and glycerin), and don't create soap. Enzymes can catalyze the esterification reaction for FFA and the transesterification reaction for triglycerides, which is similar to homogeneous or heterogeneous acid catalysis. Its main downsides are its high cost and possibility for enzyme inactivation by short chain alcohols and products. [11]

2.5. Reaction Occurring

2.6. Block Flow Diagram of Transesterification Process

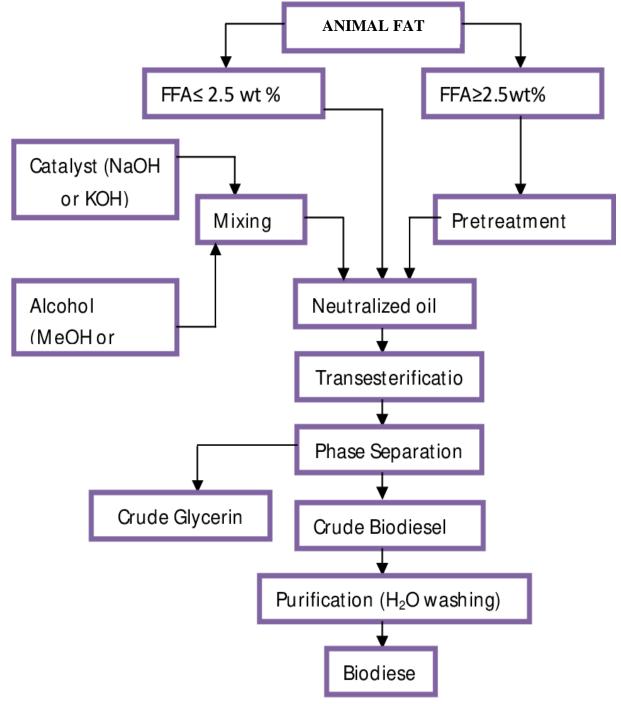


Figure 2.2: Block Flow Diagram of Transesterification of Biodiesel

2.7. Process Comparison

PARAMETERS	HOMOGENOUS CATALYST	HETEROGENOUS CATALYST	ENZYME CATALYST	
Catalyst	КОН	CaO	Lipase	
Residence time	1-2 hr	5 hr	8-70hr	
Operating Temperature (°C)	60	180-220	30-50	
Yield (%)	94.8	88.5	97	
Catalysts de-activation	No	No	Yes	
Operating Pressure	1 atm	1 atm	1 atm	
Glycerol recovery	Simple	Difficult	Simple	

Table 2.1: Process Comparison

2.8 Process Selection

We have selected "Transesterification with homogenous catalyst" due to following reasons:

- Inexpensive catalyst.
- Operating temperature and pressure conditions are quite reasonable
- Yield of the process is relatively high
- No soap formation due to pre-treatment

2.9. Process Description

The process is divided into 3 main parts:

- Pre-treatment
- Transesterification
- Purification

2.9.1 Pre-treatment

Physical Treatment

In this section, chicken fat is transported to the heater by means of a screw conveyer. On the screw conveyer a certain amount of water is sprayed on the chicken fat. This is done in order to remove any impurities or dirt from it and also it will reduce the size of chicken fat. This process will cause some of the water to go with the fat into the heater. So, the fat is heated at 110° C in order to remove the water and melts the fat into the oil. Here the heater which is used is a kettle type heat exchanger. After that the oil is filtered out by using a drum filter in order to remove collagen material from the oil.

Esterification

Esterification is used in the chemical process to minimize the free fatty acids in the chicken oil. Esterification is the process in which FFA reacts with alcohol to produce methyl ester and water This is done to reduce the amount of free fatty acids (15 w/w %) to less than 1%. Because higher amount of FFA can cause scaling, soap formation as well as decrease the yield. Here FFA reacts with methanol in the presence of H₂SO₄ as a catalyst to form methyl ester (biodiesel) and water at 60° C. The catalyst used is 5% of the FFA weight. The methanol to FFA ratio is 20:1. Here the conversion is 92%. The level of FFA is reduced to less than 0.5 wt.% after the esterification. The reaction is as follows [12]

 $FFA + Methanol \longrightarrow methyl ester + water$

Removal of Methanol

After that methanol is removed from the mixture using a distillation column so that it can be reused in the reaction.

H2SO4 Recovery and Water Removal

The catalyst H_2SO_4 also acts as a dehydrating agent so it dissolves in water that is formed in the reaction. Also, the water in the mixture is not suitable as it starts hydrolysis of the main product. So, by using a decanter we remove the H_2SO_4 and water mixture.

2.9.2 Transesterification

This is the main section of the process.

CHAPTER 02

MANUFACTURING PROCESS

In this process triglycerides (TG) reacts with methanol in the presence of the catalyst KOH and in result methyl ester and glycerol is produced. The feed will enter the reactor at 60° C and at 1 atm. As the reaction is reversible so excess methanol will be used so that the reaction will move forward. The ratio of methanol to oil used is 6:1. The conversion of the process is 99%. The catalyst is dissolved in methanol before adding in the oil, the reason is that it minimizes the chances of soap production. The retention time is 1 hour.

Overall Reaction

KOH

2.9.3 Purification

After the biodiesel is produced, it is taken for post treatment in order to remove the impurities. This is the last part in the process and it is also known as post treatment,

Methanol Removal

At first methanol is removed in the distillation column. Along with methanol some amount of water also comes. The methanol removed is 99% pure.

Recovery of KOH and Glycerol Removal

Then two decanters are used, the first one removed KOH and the second one will remove glycerol. The recovered methanol and KOH are again used in the reaction.

Washing of Biodiesel

Then the biodiesel is washed using hot water the temperature of which is 50° C. the amount of water used is 5 w/w % of biodiesel. This step will remove impurities from the biodiesel. After washing the extra water is removed using an evaporator. The steam given to the evaporator is at 110° C. the biodiesel obtained at the end of the process is 98.5% pure.

2.1

CHAPTER 02

2.10 Capacity Selection

Gross calorific value of biodiesel = $38.71 \text{ MJ/kg} = 38.71 \times 10^6 \text{ J/kg}$ [14]

Total power plants on imported fuel = 14

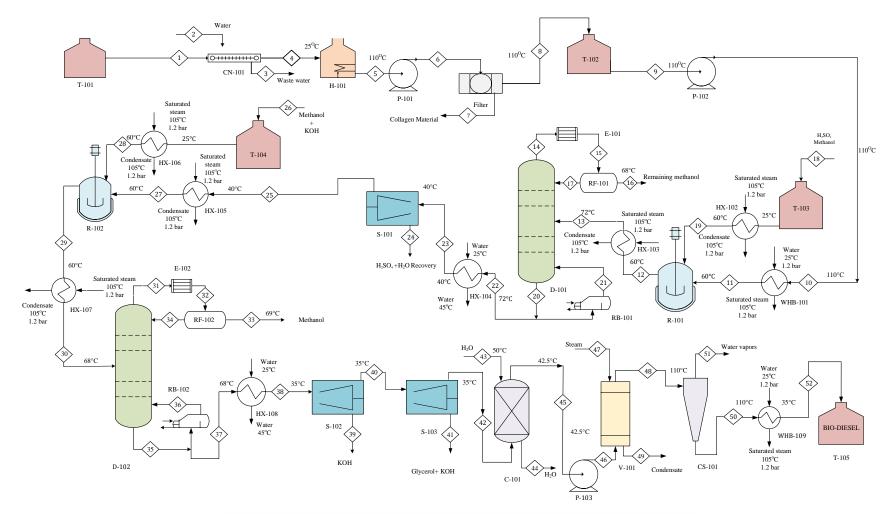
Capacity of power plants on imported fuel = $6000 \text{ MW} = 6000 \times 10^6 \text{ kg.m}^2 \text{ s}^{-3}$

Power = gross calorific value \times mass flow rate

Mass flow rate = $\frac{\text{power}}{\text{gross calorific value}}$

$$= \frac{6000 \times 10^6}{38.5 \times 10^6}$$

$$= 155 \text{ kg/s}$$


$$= \frac{155 \text{ kg}}{\text{s}} \times \frac{60 \text{ sec}}{1 \text{min}} \times \frac{60 \text{ min}}{\text{hr}} \times \frac{24 \text{ hr}}{1 \text{ day}} \times \frac{1 \text{ ton}}{1000 \text{ kg}}$$

 $= 13,392 \approx 13,500 \text{ tons/day}$

Biodiesel required to produce 6000 MW = 13,500 ton/day

CHAPTER 02

MANUFACTURING PROCESS

T-101105	WHB-101,109	H-101	RB-101,102	P-101103	R-101,102	D-101,102	HX-102107
Tank	Waste Heat	Heater	Reboiler	Pump	Reactor	Distillation	Heat
	Boiler					Column	Exchanger
S-101103	CN-101	C-101	V-101	CS-101	E-101,102	RF-101,102	
Decanter	Conveyor Belt	Column	Evaporator	Cyclone	Condenser	Reflux	
				Separator		Drum	

Figure 2.3: Process Flow Diagram

CHAPTER 03 MATERIAL BALANCE

Introduction

Mass of a chemical system is conserved. Mass entering the system will equal mass leaving the system for steady-state conditions. The terms in the material balance are those of the system mass and the streams entering and leaving the system. Material balances for the chemical processes studied were based on data from literature sources with the production scales assumed according to estimated market demand and economy of scale. Material balance simply compares the original volumes at initial reservoir pressure to the current volumes at a lower pressure.

Basic Equation of Material Balance

(Rate of mass input) - (Rate of mass output) \pm (Rate of mass generation/consumption) \pm (Rate of mass Accumulation/ Depletion) = 0

Basis

1hr of operation

Assumption

Plant is running at Steady state condition

Capacity of Plant

13,500 Tons Per Day

Production Rate

13,500 tons	1000 kg	1 day		
day	ton	24 hr.		
=562,500 kg/hr				

Yield = 94% [15]

Reactant Supplied

reactants flowrate =
$$\frac{\text{biodiesel produced}}{\text{yield}}$$
 3.1

= 598404.3 kg/hr

Composition of raw material	wt%	Mass flow rate (kg/hr)
FFA	15%	89760.6
TG	80%	478723.4
Water	3%	17952.1
Impurities	2%	11968.1

Table 3-1: Composition of Raw Material

Table 3.2: Molecular Weights

Components	Molecular weights (kg/kmol)
FFA	282.5
TG	885.5
Methanol	32
Methyl ester	296.5
Water	18
Glycerol	92
КОН	56
H ₂ SO ₄	98.1

3.1 Material Balance around Reactor (R-101)

In this reactor esterification of the free fatty acids is done to reduce the free fatty acids to less than 1%. This prevents the soap formation in the biodiesel and maintains the yield.

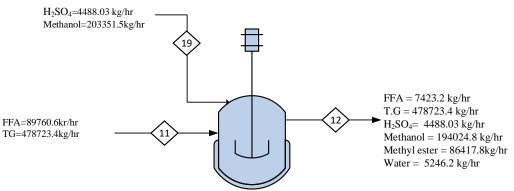


Figure 3.1: Material Balance on R-101

MATERIAL BALANCE

CHAPTER 03

Chemical Reaction				
	RCOOH -	+ CH ₃ OH _	$H_2SO_4 \rightarrow RCOOCH_3$	$+ H_2O$
	FFA	alcohol	biodiesel	water
Conversion				
Conversion			01 70/	
			91.7%	
H ₂ SO ₄ Required				
		= 5%	o of FFA [6]	
		= 89	760.6 x 0.5	
		=44	88.03 kg/hr	
Methanol Required				
		1 FFA: 2	0 methanol [16]	
		=	6354 x 32	
		= 194	4024.8 kg/hr	
FFA Converted			-	
		= 897	60.6 x 0.917	
			g/hr (291.4 kmol/hr))
FFA Unconverted		— 02337. - Қ	g/m (2)1.4 Km0i/m)
FFA Unconverted		007		
			0.6 - 82337.4	
		=74	423.2 kg/hr	
Methyl Ester Produc	ed			
		= 29	1.4 x 296.5	
		= 86	417.8 kg/hr	
Methanol Converted				
		= 2	291.4 x 32	
		= 93	326.7 kg/hr	
Methanol Unconvert	ed		_	
		= 2033	51.5 – 9326.7	

Water Produced

= 291.4 x 18

= 5246.2 kg/hr

Table 3.3:	Mass	Flow	Rates in	Reactor
-------------------	------	------	----------	---------

Components	Input (Output (kg/hr)	
	Stream 11	Stream 19	Stream 12
FFA	89760.6	0	7423.2
TG	478723.4	0	478723.4
H ₂ SO ₄	0	4488.03	4488.03
Methanol	0	203351.5	194024.8
Methyl ester	0	0	86417.8
Water	0	0	5246.2
Total	776323.6		776323.6

3.2 Material Balance around Distillation Column (D-101)

It recovers 99% of methanol for reuse

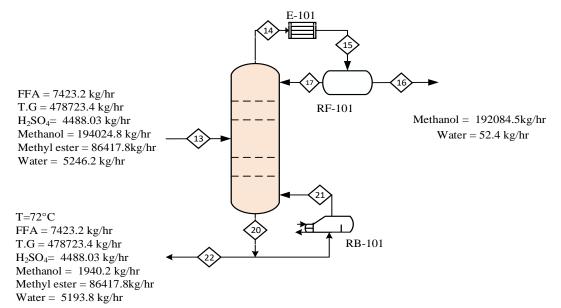


Figure 3.2: Material Balance on D-101

Applying Overall Material Balance

$$F = D + W$$
 3.2

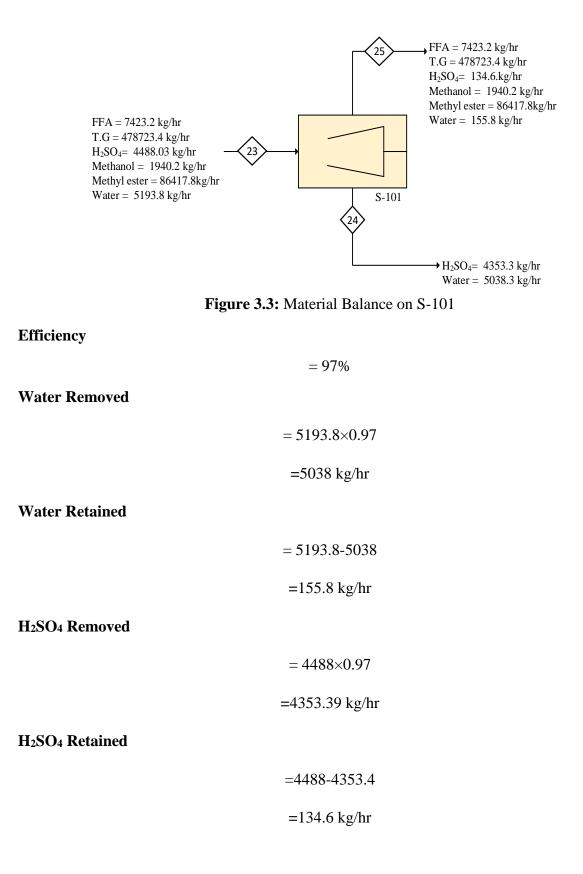
Methanol in Distillate (99%)

Methanol in Bottom (1%)

Water in Distillate (1%)

$$= 5246.2 \times 0.01$$

=52.4kg/hr


Water in Bottom (99%)

=5246.2-52.4 =5193.8kg/hr

Table 3.4: Mass Flow Rates in Distillation Column

Components	Input (kg/hr)	Output (kg/hr)	
	Stream 13	Stream 16	Stream 22
FFA	7423.2	0	7423.2
TG	478723.4	0	478723.4
H ₂ SO ₄	4488.03	0	4488.03
Methanol	194024.8	192084.5	1940.2
Methyl ester	86417.8	0	86417.8
Water	5246.2	52.4	5193.8
		192137.03	584186.5
Total	776323.6	776323.6	

3.3 Material Balance around Decanter (S-101)

Components	Input (kg/hr)	Output (kg/hr)	
	Stream 23	Stream 25	Stream 24
FFA	7423.2	7423.2	0
TG	478723.4	478723.4	0
H ₂ SO ₄	4488.03	134.6	4353.3
Methanol	1940.2	1940.2	0
Methyl ester	86417.8	86417.8	0
Water	5193.8	155.8	5038.0
		574795.1	9391.3
Total	584186.5	584186.5	

Table 3.5: Mass Flow Rates in Decanter

3.4 Material balance around Reactor (R-102)

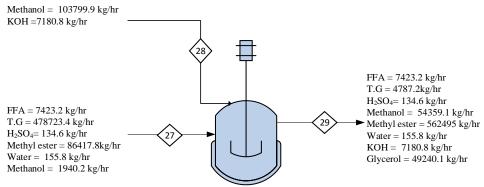
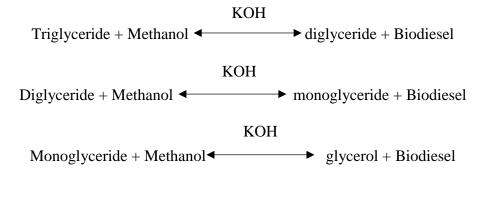
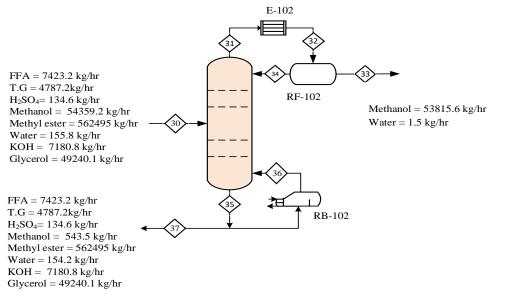
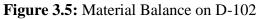



Figure 3.4: Material Balance on R-102

Reactions




Overall Reaction KOH
Triglyceride + 3 Methanol \leftarrow 3 Biodiesel + Glycerol
As diglyceride and monoglyceride are completely converted, therefore we will consider the overall
reaction
Conversion
= 99%
KOH Required
1.5 wt% of T.G [17]
= 478723.4 x 1.5/100
= 7180.8 kg/hr
TG Required
1TG: 6 Methanol [17]
540.6 TG: 3243.6 Methanol
TG Converted
= 478723.4 x 0.99
= 473936.2 kg/hr
= 535.2 kmol/hr
TG Unconverted
=4788723.4 - 473936.2
= 4787.2 kg/hr
Methyl Ester Produced
1 TG: 3 Methyl esters
= 1605.7 x 296.5
= 4706077 kg/hr
Glycerol Produced
1 TG: 1 Glycerol
= 535.2 x 92
=49240.1 kg/hr

Components	Input (kg/hr)		Output (kg/hr)
	Stream 27	Stream 28	Stream 29
FFA	7423.2	0	7423.2
TG	478723.4	0	4787.2
H ₂ SO ₄	134.6	0	134.6
Methanol	1940.2	103799.9	1940.2 + 52418.9
Methyl ester	86417.8	0	86417.8 + 476077
Water	155.8	0	155.8
КОН	0	7180.8	7180.8
Glycerol	0	0	49240.1
	574795.2	110980.8	88358.1+ 597417.9
Total	68577	6.03	685776.03

Table 3.6: Mass Flow Rates in Reactor 2

3.5 Material Balance around Distillation Column (D-102)

Applying Overall Material Balance

As methanol recovery from distillation column is 99% (from literature) So, there will be 1% of water in distillate as water has the least boiling point in the mixture

Methanol in Distillate (99%)

Methanol in Bottom (1%)

= 54359.1-53815.6 =543.6 kg/hr

Water in Distillate (1%)

 $= 155.8 \times 0.01$ =1.5 kg/hr

Water in Bottom (99%)

= 155.8-1.5 =154.2 kg/hr

Table 3.7: Mass Flow Rates in Distillation Column 2

Components	Input (kg/hr)	Output (kg/hr)
	Stream 30	Stream 33	Stream 37
FFA	7423.2	0	7423.2
TG	4787.2	0	4787.2
H ₂ SO ₄	134.6	0	134.6
Methanol	54359.2	53815.6	543.5
Methyl ester	562494.9	0	562494.9
Water	155.8	1.5	154.2
КОН	7180.8	0	7180.8
Glycerol	49240.1	0	49240.1
		53817.2	631958.8
Total	685776.03	685776.03	

3.6 Material Balance around Decanter (S-102)

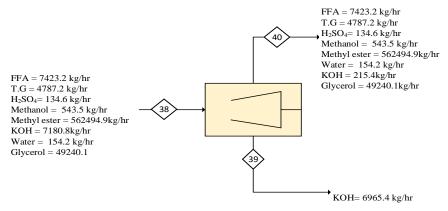


Figure 3.6: Material Balance on S-102

Efficiency

=97%

KOH Removed

= 7180.8×0.97 =6965.4 kg/hr

KOH Retained

= 7180.8-6965.4 = 215.4 kg/hr

Table 3.8: Mass Flow Rates in Decanter 2

Components	Input (kg/hr)	Output	(kg/hr)
	Stream 38	Stream 40	Stream 39
FFA	7423.2	7423.2	0
TG	4787.2	4787.2	0
H ₂ SO ₄	134.6	134.6	0
Methanol	543.5	543.5	0
Methyl ester	562494.9	562494.9	0
Water	154.2	154.2	0
КОН	7180.8	215.4	6965.4
Glycerol	49240.1	49240.1	0
		624993.3	6965.4
Total	631958.8	631958.8	

3.7 Material Balance around Decanter (S-103)

Components	Input (kg/hr)	Output (l	kg/hr)	
	Stream 40	Stream 42	Stream 41	
FFA	7423.2	7423.2	0	
TG	4787.2	4787.2	0	
H ₂ SO ₄	134.6	134.6	0	
Methanol	543.5	543.5	0	
Methyl ester	562494.9	562494.9	0	
Water	154.2	154.2		
КОН	215.4	6.5	208.9	
Glycerol	49240.1	1477.2	47762.9	
		577021.5	47971.8	
Total	624993.3	624993.3		

Table 3.9: Mass Flow Rates in Decanter 3

3.8 Material Balance around Washing Unit (C-101)

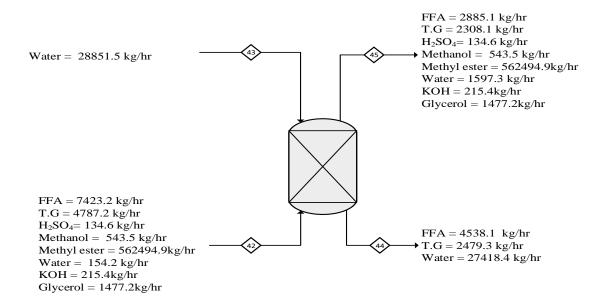


Figure 3.8: Material Balance on C-101

FFA Desired (0.5%) [18]
= 577021.3×0.005
=2885.1 kg/hr
FFA Removed
= 7423.2-2885.1
=4538.1 kg/hr
Water Required for Washing
= 5wt% of biodiesel mixture [16]
= 577021.3×0.05
= 28851.5 kg/hr
Water Dissolved
= 5% of total water
= 28851.5×0.05
=1442.5 kg/hr
Water That Went Out
= 28851.5-1442.5
=27409 kg/hr
T.G Desired (0.4%)
= 577021.3×0.004
=2308.1 kg/hr
T.G Undesired
= 4787.2-2308.1
=2479.14 kg/hr

MATERIAL BALANCE

Components	Mass fraction	Input (kg/hr)		Output	t (kg/hr)
	(%)	Stream 42	Stream 43	Stream 45	Stream 44
FFA	1.28	7423.2	0	2885.1	4538.1
TG	0.8	4787.2	0	2308.1	2479.3
H ₂ SO ₄	0.02	134.6	0	134.6	0
Methanol	0.09	543.5	0	543.5	0
Methyl ester	97.5	562494.9	0	562494.9	0
Water	0.026	154.2	28851.5	1597.3	27418.4
КОН	0.001	6.5	0	6.5	0
Glycerol	0.3	1477.2	0	1477.2	0
	100	577021.3	28851.5	571447	34435.8
Total		605883		605	5883

Table 3.10: Mass Flow Rates in Washing Unit

3.9 Material Balance around Evaporator (V-101)

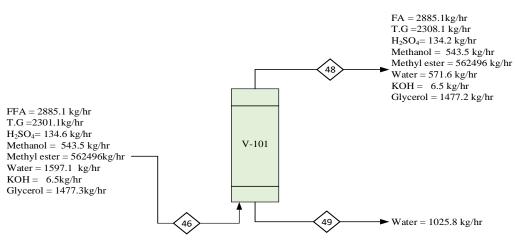


Figure 3.9: Material Balance on V-101

Water Acceptable for Biodiesel

Water Removed

= 1597.3-571.5

=1025.8 kg/hr

Table 3.11: Mass Flow Rates in Evaporator

Components	Mass fraction	Input (kg/hr)	Output (kg/hr)		Mass fraction
	(%)	Stream 46	Stream 49	Stream 48	(%)
FFA	0.5	2885.1	0	2885.1	0.5
TG	0.4	2308.1	0	2308.1	0.4
H ₂ SO ₄	0.02	134.6	0	134.6	0.02
Methanol	0.095	543.5	0	543.5	0.095
Methyl ester	98.4	562494.9	0	562494.9	98.6
Water	0.28	1597.3	1025.8	571.6	0.1
КОН	0.001	6.5	0	6.5	0.001
Glycerol	0.26	1477.2	0	1477.2	0.2
			1025.8	570421.4	
Total	100	571497	571497		100

CHAPTER 04 ENERGY BALANCE

Introduction

The terms in the energy balance are those of the internal energy, the potential and kinetic energy of the system that is equal to the summation of the enthalpy, potential and kinetic energy of each stream entering and leaving the system along with heat and work terms. In the energy balance, it is important to define the system clearly and to label all streams to correspond with those in the material balance. For systems at steady-state conditions, the time variation of the system energy is equal to zero.

Assumption

Plant is at Steady state operation

Basic Equation of Energy Balance

(Rate of heat input) - (Rate of heat output) \pm (Rate of heat generation/consumption) = 0

4.1 Energy Balance around Heater (H-101)

This will melt the fats into fat oil at 110°C

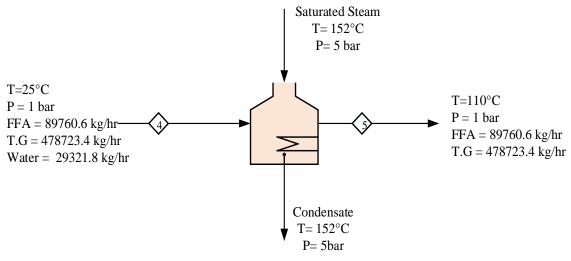


Figure 4.1: Heater (H-101)

Temperatures

```
T_{in} = 25^{\circ}C = 298K

T_{out} = 110^{\circ}C = 383 K

T_{avg} = 67.5^{\circ}C = 340.5 K
```

Latent Heat of Fusion

$$\lambda_{(FFA)} = 163 \text{KJ/kg} [19]$$

 $\lambda_{(TG)} = 191 \text{KJ/kg} [19]$

Latent Heat of Vaporization

$$\lambda_{\rm (H2O)} = 2250.8 \text{KJ/kg}$$

Heat Capacities

Cp of Water

• Cp of FFA

$$Cp = 1.9842 + 1.4733 \times 10^{-3}T - 4.8008 \times 10^{-6}T^2$$

$$Cp = 1.9842 + 1.4733 \times 10^{-3}(340.5) - 4.8008 \times 10^{-6}(340.5)^2$$

$$Cp = 1.93KJ/kg. K$$

Cp of T.G

Cp = 2.17KJ/kg. K [20]

Heat Load

 $\Delta T = 383 - 298$ = 85 K

 $Q = (\Sigma mCp) \times \Delta T + (m\lambda_{fusion})_{FFA+TG} + (m\lambda_{vap})_{water}$ 4.1

58 |

$$Q = \{ [89760.64 \times 163] + [478723.4 \times 191] + [29321.8 \times 2250.8] + [(89760.64 \times 1.93) + (478723.4 \times 2.1) + (29321.8 \times 4.18)] \} [383 - 298]$$

$$Q = 288.4 \times 10^3 \, MJ/hr$$

Saturated Steam Required

$$P = 5$$
 bar, $T = 150^{\circ}C$, $\lambda = 2107.4$ kJ/kg

$$Q = m\lambda$$
 4.2

$$m = 136.8 \times 10^3 \text{ kg/hr}$$

 Table 4.1: Energy Balance on Heater

Components	Specific heat capacity at T _{avg} = 67.5°C	Heat load
	Cp (KJ/kg.K)	(MJ/hr)
FFA	1.97	
TG	2.1	288.4×10 ³
water	4.18	

4.2 Energy Balance around Waste Heat Boiler (WHB-101)

This will decrease the temperature from 110 to 60°C of FFA and TG

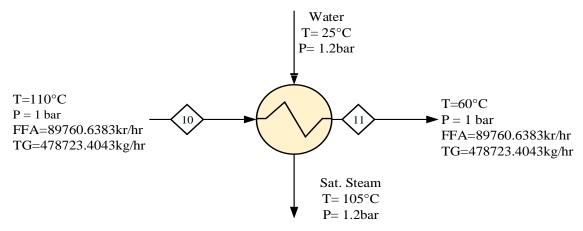


Figure 4.2: Waste Heat Boiler (WHB-101)

Temperatures

$$T_{in} = 110^{\circ}C = 383K$$

 $T_{out} = 60^{\circ}C = 333 K$

Cooling Load

$$\Delta T = T_{out} - T_{in}$$

= (333 - 383) K
= - 50 K
Q = (\Sigmambda m Cp)\Delta T
4.3
Q = -57.6×10³ MJ/hr

Mass flow rate of Steam Produced

$$Q = mCp\Delta T + m \lambda$$

Cp at T_{avg} (88.5°C)
= 4.2 kJ/kg. K

Saturated Steam Produced

P = 1.2 bar, $T= 105^{\circ}C$, $\lambda = 2244.1$ kJ/kg

 $m = 22.3 \times 10^3 kg/hr$

Table 4.2: Energy Balance on Waste Heat Boiler 01

Components	Specific heat capacity at Tavg= 85°C	Heat load
	Cp (KJ/kg.K)	(MJ/hr)
FFA	1.896	57.6×10 ³
T.G	2.05	

4.3 Energy Balance around Heat Exchanger (HX-102)

This will increase the temperature from 25 to $60^\circ C$ of Methanol and H_2SO_4

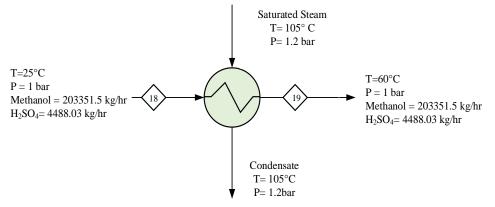


Figure 4.3: Heat Exchanger (HX-102)

Temperatures

 $T_{in} = 25^{\circ}C = 298 \text{ K}$ $T_{out} = 60^{\circ}C = 333 \text{ K}$ $T_{avg} = 42.5^{\circ}C = 315.5 \text{ K}$

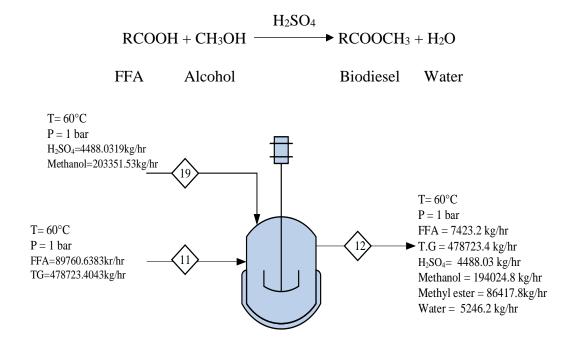
Saturated Steam Conditions

P= 1.2bar T= 105°C, λ = 2244.1kJ/kg

Heat Load

 $\Delta T = (333 - 298) \text{ K}$ = 35K $Q = (\Sigma \text{mCp})\Delta T$ $Q = 18.8 \times 10^6 \text{ kJ/hr}$ = 18.8×10³ MJ/hr

Saturated Steam Required


$$Q = m\lambda$$

$$m = 8920.9 \text{ kg/hr}$$

	Specific heat capacity at	
Components	T_{avg} = 42.5°C	Heat load
	Cp (KJ/kg.K)	(MJ/hr)
H ₂ SO ₄	1.917	18.8×10 ³
Methanol	2.6	

 Table 4.3: Energy Balance on HX-102

4.4 Energy Balance around Reactor (R-101)

Figure 4.4: Reactor (R-101)

 $\Delta H_{r, 333K} = 15.06 \times 10^3 \text{ MJ/hr}$

Temperatures

$$T_{in} = 60^{\circ}C = 333 \text{ K}$$

 $T_{out} = 60^{\circ}C = 333 \text{ K}$
 $T_{ref} = 25^{\circ}C = 298 \text{ K}$

Heat Capacities

• H₂SO₄

$$a=1.391\times10^{-1}, b=1.559\times10^{-4}$$

 $Cp = 1.391\times10^{-1} + 1.559\times10^{-4}$ T
 $Cp = 1.391\times10^{-1} + 1.559\times10^{-4}$ (315.5)
 $Cp=0.188$ KJ/kmol. K
 $Cp=1.92$ KJ/kg. K

Methanol

a= 105,800, b= -362.23, c= 0.9379

$$Cp = 105800 - 362.23(T) + 0.9379(T)^2$$

 $Cp = 105800 - 362.23(315.5) + 0.9379(315.5)^2$
 $Cp = 2652.35 \text{ J/kg. K}$
 $Cp = 2.6\text{KJ/kg. K}$

• Water

$$Cp = 75236.6J/kmol.K. = 4.18KJ/kg.K$$

• FFA

• T.G

= 2.1 KJ/kg. K (from graph)

Methyl ester

Total Heat at inlet

$$\label{eq:Qin} \begin{split} Q_{in} &= (\Sigma m C p) \Delta T \\ &= 60.2{\times}10^6\,kJ/hr = 60.2{\times}10^3\,MJ/hr \end{split}$$

Heat of Formation

Heat of Formation of FFA = -822.8×10^3 KJ/kmol [22]

Heat of Formation of methanol = -238.1×10^3 KJ/kmol [23]

Heat of Formation of methyl ester = -728.8×10^3 KJ/kmol [22]

Heat of Formation of water = -285.6×10^3 KJ/kmol

$$\Delta H_{r, 298K} = n\Sigma H_{\rm f}({\rm product}) - n\Sigma H_{\rm f}({\rm reactants})$$
4.4

= [-285.6 - 728.8] - [238.1 - 822.8]

 $= 46.63 \times 10^3 \text{ KJ/kmol}$

Table 4.4: Energy Balance on Reactor R-101

Specific heat capacity	kJ/kg.K	kJ/kmol.K
FFA	1.97	557.65
Methanol	2.6	83.2
Methyl ester	2.99	886.5
Water	4.2	75.24

$$\Delta H_{r, 333K} = \Delta H_{r, 298K} + \int_{T_o}^{T1} (\nabla Cp) dT$$

$$\Delta H_{r, 333K} = \Delta H_{r, 298K} + \int_{298}^{333} (\nabla Cp) dT$$

$$= 46.63 \times 10^3 + \int_{298}^{333} (\nabla Cp) dT$$
4.5

64 |

$$= 46.63 \times 10^{3} [(886.5 + 75.24) - (557.65 + 83.2)] (333-298)$$
$$= 57.83 \times 10^{3} \text{ KJ/kmol}$$
$$= 16.85 \times 10^{6} \text{ KJ/hr}$$
$$= 16.85 \times 10^{3} \text{ MJ/hr}$$

This shows that the reaction is endothermic.

Total Heat at Outlet

 $Q_{out} = (\Sigma mCp)\Delta T$ $= 63.5 \times 10^{6} \text{ kJ/hr}$ $= 63.5 \times 10^{3} \text{ MJ/hr}$

Overall Energy Equation

$$0 = \text{rate of heat out} - \text{rate of heat in} + (+\Delta H_r)$$
4.6

$$0 = 63.5 \times 10^3 \text{ MJ/hr} - 60.2 \times 10^3 \text{ MJ/hr} + 16.85 \times 10^3 \text{ MJ/hr}$$

 $0 \neq 20.15 {\times} 10^3 \, \text{MJ/hr}$

Rate of heat in + heat added = rate of heat out + heat of reaction 4.7

 $60.2 \times 10^3 \text{ MJ/hr} + 20.15 \times 10^3 \text{ MJ/hr} = 63.5 \times 10^3 \text{ MJ/hr} + 16.85 \times 10^3 \text{ MJ/hr}$

Saturated Steam Required

$$Q = m\lambda$$

$$(P=1.2bar T=105^{\circ}C, \lambda = 2244.2kJ/kg)$$

Components	Cp (T _{avg} =42.5°C)	In	put	Heat added	Out	put	Heat of reaction
	(KJ/kg.K)	Mass flow rate (kg/hr)	Q (MJ/hr)	(MJ/hr)	Mass flow rate (kg/hr)	Q (MJ/hr)	(MJ/hr)
FFA	1.97	89760.6	6.2×10 ³		7423.2	512.8	
TG	2.1	478723.4	35.2×10 ³		478723.4	35.2×10 ³	
H ₂ SO ₄	1.919	4488.03	301.4		4488.03	301.4	
methanol	2.6	203351.5	18.5×10 ³	20.15×10 ³	194024.8	17.6×10 ³	16.85×10^{3}
methyl ester	2.99	0	0		86417.9	9×10 ³	
water	4.18	0	0		5246.3	767.5	
Total	-		60.2×10 ³			63.5×10 ³	

Table 4.5: Heat Loads of Reactor 01

4.5 Energy Balance around Heat Exchanger (HX-103)

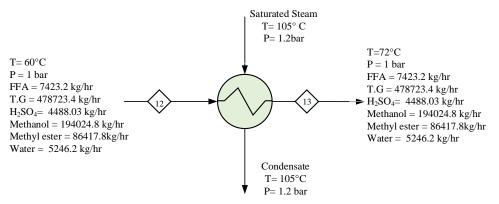


Figure 4.5: Heat Exchanger (HX-103)

Temperatures

$$T_{in} = 60^{\circ}C = 333 \text{ K}$$

 $T_{out} = 72^{\circ}C = 345 \text{ K}$
 $T_{avg} = 66^{\circ}C = 339 \text{ K}$

Saturated Steam Conditions

P= 1.2 bar T=
$$105^{\circ}$$
C, $\lambda = 2244.1$ kJ/kg

Heat Load

$$Q = (\Sigma mCp)\Delta T$$
$$Q = 21.03 \times 10^{6} \text{ kJ/hr}$$
$$= 21.03 \times 10^{3} \text{ MJ/hr}$$

Saturated Steam Required

 $\boldsymbol{Q}=\boldsymbol{m}\boldsymbol{\lambda}$

m = 9371.2 kg/hr

Table 4.6:	Energy	Balance on	HX-103
------------	--------	------------	--------

Components	Specific heat capacity at T _{avg} = 66 °C	Heat load
	Cp(KJ/kg.K)	(MJ/hr)
FFA	1.93	
T.G	2.05	
H2SO4	1.937	
Methanol	2.8	21.03×10^{3}
Methyl ester	2.117	
Water	4.19	

4.6 Energy Balance around Distillation Column (D-101)

It is used to recover methanol for reuse

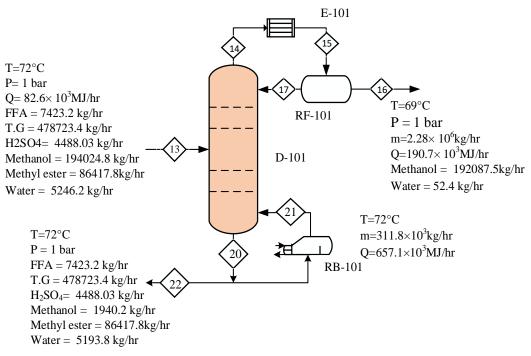


Figure 4.6: Distillation column (D-101)

Temperatures

 $T_{in} = 72^{\circ}C = 345 \text{ K}$ $T_{ref} = 25^{\circ}C = 298 \text{ K}$ $\Delta T = (345-298) \text{ K}$ = 47 K

Heat Rate at Inlet

$$Q = (\Sigma m C p) \Delta T$$

 $Q = [(7423.2 \times 1.96) + (478723.40 \times 2.12) + (4488 \times 1.93) + (1940.2 \times 2.7) + (86417.87 \times 4.18) + (5193.8 \times 2.068)] (47)$

 $= 82.6 \times 10^{6} \text{ kJ/hr}$

Reboiler Heat Duty

$$\Lambda$$
 weighted = 846.4 kJ/hr
 $Q = m\lambda$
= 776323.6 × 846.4
= 657.1×10⁶ kJ/hr
= 657.1×10³ MJ/hr

Saturated Steam Required

P= 1.2 bar T= 105°C, δ = 2244kJ/kg Q = m λ m = 293×10³ kg/hr

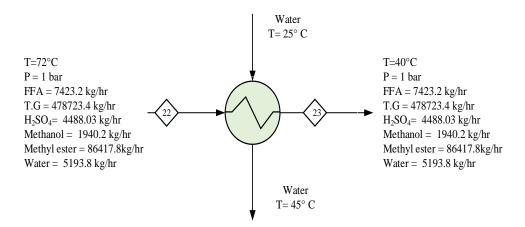
Condenser Heat Duty

 $\lambda_{\text{weighted}} = 992.8 \text{ kJ/kg}$ $Q = m\lambda$ $= -190.7 \times 10^6 \text{ KJ/hr}$ $= -190.7 \times 10^3 \text{ MJ/hr}$

Cooling Water Required

 T_{in} = 25°C, T_{out} = 45°C Q = mCp ΔT m = 2.28×10⁶ kg/hr

ENERGY BALANCE


CHAPTER 04

Components	Specific heat capacity at T _{avg} = 48.5°C	Mass flow rate (bottom)	Reboiler heat duty	Mass flow rate (distillate)	Condenser heat duty
	Cp (kJ/kg.K)	(kg/hr)	(MJ/hr)	(kg/hr)	(MJ/hr)
FFA	1.96	7423.20		0	
T.G	2.12	478723.40		0	
H2SO4	1.93	4488	657.1×10 ³	0	190.7×10 ³
Methanol	2.7	1940.2		192084.5	
Methyl ester	4.18	86417.87		0	
water	2068	5193.8		52.5	

 Table 4.7: Energy Balance on Distillation Column 01

4.7 Energy Balance around Heat Exchanger (HX-104)

This will decrease the temperature from 72 to $40^{\circ}C$

Figure 4.7: Heat Exchanger (HX-104)

Temperatures

$$T_{in} = 72^{\circ}C = 345 \text{ K}$$

 $T_{out} = 40^{\circ}C = 313 \text{ K}$
 $T_{avg} = 56^{\circ}C = 329 \text{ K}$

Cooling Load

```
\Delta T = 313 - 345= -32 \text{ K}Q = \Sigma (\text{mCp}\Delta T)Q = -39.9 \times 10^3 \text{ MJ/hr}
```

Water Required

 $\boldsymbol{Q} = \boldsymbol{m}\boldsymbol{C}\boldsymbol{p}\boldsymbol{\Delta}\boldsymbol{T}$

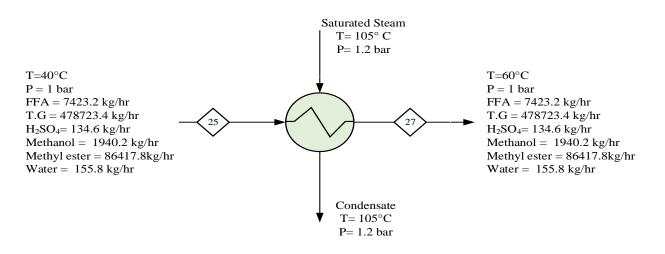

$$m = 475 \times 10^3 \, \text{kg/hr}$$

Table 4.8: Energy Balance on HX-104

Components	Specific heat capacity at T _{avg} = 56°C	Cooling load
	Cp (KJ/kg.K)	(MJ/hr)
FFA	1.96	
T.G	2.12	
H2SO4	1.93	
Methanol	2.7	39.9×10 ³
Methyl ester	2.06	
Water	4.19	

4.8 Energy Balance around Heat Exchanger (HX-105)

This will increase the temperature from 40 to 60°C

Figure 4.8: Heat Exchanger (HX-105)

Temperatures

$T_{in} = 40^{\circ}C = 313 \text{ K}$
$T_{out} = 60^{\circ}C = 333 \text{ K}$
$T_{avg} = 50^{\circ}C = 323 \text{ K}$

Saturated Steam Conditions

P= 1.2 bar
T= 105°C,
$\lambda = 2244.1 \text{kJ/kg}$

Heat Load

$Q=(\Sigma m C p)\Delta T$
$Q = 24.6 \times 10^6 \text{ kJ/hr}$
$= 24.2 \times 10^3 \text{ MJ/hr}$

Saturated Steam Required

 $\boldsymbol{Q}=\boldsymbol{m}\boldsymbol{\lambda}$

 $m = 10.8 \times 10^{3} kg/hr$

Components	Specific heat capacity at T _{avg} = 42.5°C	Heat load
	Cp (KJ/kg.K)	(MJ/hr)
FFA	1.97	
T.G	1.9	
H2SO4	1.91	
Methanol	2.6	24.2×10^3
Methyl ester	2.05	
Water	4.18	

4.9 Energy Balance around Heat Exchanger (HX-106)

This will in the temperature from 25 to 60°C of Methanol and KOH

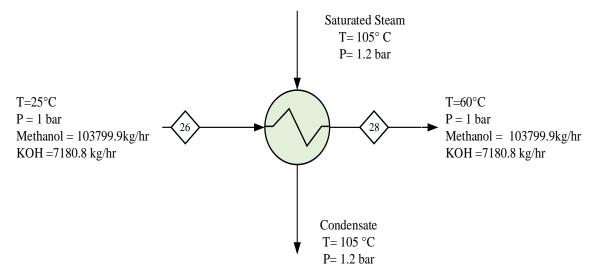


Figure 4.9: Heat exchanger (HX-106)

Temperatures

$$T_{in} = 25^{\circ}C = 298 \text{ K}$$

 $T_{out} = 60^{\circ}C = 333 \text{ K}$
 $T_{avg} = 42.5^{\circ}C = 315.5 \text{ K}$

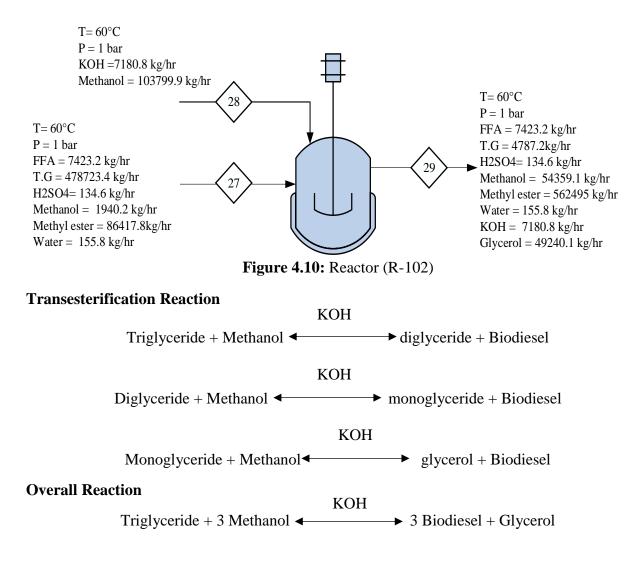
Saturated Steam Conditions

P= 1.2 bar T= 105° C $\lambda = 2244.1$ kJ/kg

Heat Load

 $Q = (\Sigma mCp)\Delta T$ $Q = 9.817 \times 10^{6} \text{ kJ/hr}$ $= 9.8 \times 10^{3} \text{ MJ/hr}$

Saturated Steam Required


 $Q=m\lambda$

m=4367 kg/hr

Table 4.10: Energy Balance on HX-106

Components	Specific heat capacity at T _{avg} = 67.5°C	Heat load
	Cp (KJ/kg.K)	(MJ/hr)
КОН	1.48	9.8×10 ³
Methanol	2.6	

4.10 Energy Balance around Reactor (R-102)

$$\Delta H_{r, 333K} = -274.4 \times 10^3 \, \text{MJ/hr}$$

Temperatures

$$T_{in} = 60^{\circ}C = 333 \text{ K}$$

 $T_{out} = 60^{\circ}C = 333 \text{ K}$
 $T_{ref} = 25^{\circ}C = 298 \text{ K}$

Heat of Reaction

Heat of Formation of T.G

 $= -1601 \times 10^3 \text{ KJ/kmol}$

Heat of Formation of Methanol

 $= -238 \times 10^3 \text{ KJ/kmol}$

Heat of Formation of Biodiesel

 $= -728.8 \times 10^3 \text{ KJ/kmol}$

Heat of Formation of Glycerol

 $= -669.6 \times 10^3 \text{ KJ/kmol} [23]$

Specific heat capacity	kJ/kg.K	kJ/kmol.K
TG	2.1	1859.6
Methanol	2.6	83.2
Methyl ester	2.99	886.5
Glycerol	2.5	230

Table 4.11: Specific Heat Capacities of Components

 $\Delta H_{r, 298K} = n\Sigma \ H_f(products) - n\Sigma H_f(reactants)$

 $= [-669.6 \times 10^3 + 3(-728.8 \times 10^3)] - [-1601 \times 10^3 + 3(-238 \times 10^3)]$

 $= -555 \times 10^3 \text{ KJ/kmol}$

$$\Delta H_{r, 333K} = \Delta H_{r, 298K} + \int_{T_0}^{T_1} (\nabla Cp) dT$$

$$\Delta H_{r, 333K} = \Delta H_{r, 298K} + \int_{298}^{333} (\nabla Cp) dT$$

$$= -555 \times 10^3 + \int_{298}^{333} [(230 + 3 * 886.5) - (1859.6 + 3 * 83.2)] Dt$$

$$= -528 \times 10^3 \text{ KJ/kmol}$$

$$= -282.4 \times 10^6 \text{ KJ/hr}$$

This shows that the reaction is exothermic

Total Heat at Outlet

$$Q_{out} = (\Sigma mCp)\Delta T$$
$$= 69.4 \times 10^{6} \text{ kJ/hr}$$
$$= 69.4 \times 10^{3} \text{ MJ/hr}$$

Overall Energy Equation

 $0 = rate of heat out - rate of heat in - (-\Delta H_r)$

 $0 = 69.4 \times 10^3 \text{ MJ/hr} - 54.8 \times 10^3 \text{ MJ/hr} - 282.4 \times 10^3 \text{ MJ/hr}$

 $0 \neq$ - 267.8×10³ MJ/hr

Rate of heat in - rate of heat out + heat of reaction - heat removed = 0

 $54.8 \times 10^3 \, \text{MJ/hr} - 69.4 \times 10^3 \, \text{MJ/hr} + 274.4 \times 10^3 \, \text{MJ/hr} - 259.8 \times 10^3 \, \text{MJ/hr} = 0$

Cooling Water Required

$$Q = mCp\Delta T$$
$$m = 3.2 \times 10^{6} \text{ kg/hr}$$

Components	Cp (T _{avg} =42.5°C)	Input		Heat added	Output		Heat of reaction
	Cp (KJ/kg.K)	Mass flow rate (kg/hr)	Q (MJ/hr)	(MJ/hr)	Mass flow rate (kg/hr)	Q (MJ/hr)	(MJ/hr)
FFA	1.97	7423.2	512		7423.2	512	
TG	2.1	478723.4	35.19×10 ³		4787.2	351.8	
H ₂ SO ₄	1.919	134.64	9.043		134.64	9.043	
methanol	2.6	105740.1	9.6×10 ³		52418.9	4.9×10 ³	
methyl ester	2.99	86417.87	9.04×10 ³		562494.8	58.8×10 ³	
water	4.18	155.8	22.7		155.8	22.7	
КОН	1.48	7180.85	371.9		7180.8	371.9	
Glycerol	2.5	0	0		49240.12	4.3×10 ³	
Total	-		54.8×10 ³	259.8×10 ³		69.4×10 ³	274.4×10 ³

 Table 4.12: Energy Balance on Reactor 02

4.11 Energy Balance around Heat Exchanger (HX-107)

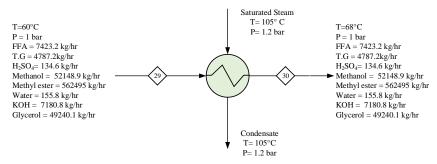


Figure 4.11: Heat Exchanger (HX-107)

Temperatures

$$T_{in} = 60^{\circ}C = 333 \text{ K}$$

 $T_{out} = 68^{\circ}C = 341 \text{ K}$

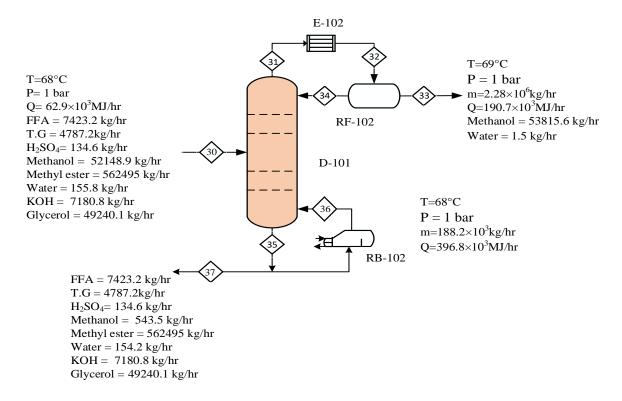
Saturated Steam Conditions

P= 1.2 bar T= 105°C,
$$\lambda$$
 = 2244.1kJ/kg

Heat Load

 $Q = (\Sigma mCp)\Delta T$ $Q = 12 \times 10^{6} \text{ kJ/hr}$ $= 12 \times 10^{3} \text{ MJ/hr}$

Saturated Steam Required


 $\boldsymbol{Q}=\boldsymbol{m}\boldsymbol{\lambda}$

m = 5347 kg/hr

Components	Specific heat capacity at T _{avg} = 64 °C	Heat load	
	Cp (KJ/kg.K)	(MJ/hr)	
FFA	1.935		
T.G	2.11		
H2SO4	1.95		
Methanol	2.8		
Methyl ester	2.117	12×10 ³	
Water	4.18		
КОН	1.48		
Glycerol	2.5		

4.12 Energy balance around Distillation Column (D-102)

The feed is saturated liquid at its boiling point

Temperatures

$$T_{in} = 68^{\circ}C$$

$$T_{ref} = 25^{\circ}C$$

Heat Rate of Feed

 $Q = (\Sigma mCp)\Delta T$ $= 62.9 \times 10^{6} \text{ kJ/hr}$ $= 62.9 \times 10^{3} \text{ MJ/hr}$

Reboiler Heat Duty

$$\lambda_{\text{weighted}} = (0.0061 \times 163) + (0.0013 \times 191) + (0.00032 \times 571) + (0.39 \times 878.2) + (0.4 \times 250) + (0.002 \times 2250) + (0.03 \times 1980) + (0.12 \times 989.1)$$

$$\lambda_{\text{weighted}} = 628.07 \text{ kJ/kg}$$
$$Q = m\lambda$$
$$= 631958.8 \times 628$$
$$= 396.8 \times 10^6 \text{ kJ/hr}$$
$$= 396.8 \times 10^3 \text{ MJ/hr}$$

Saturated Steam Required

P=1.2bar
$T = 105^{\circ}C$,
$\lambda = 2244 kJ/kg$
$Q=m\lambda$
$m = 177 \times 10^3 \text{ kg/hr}$

Condenser Heat Duty

 $\lambda_{\text{weighted}} = 992.8 \text{ kJ/kg}$ $Q = m\lambda$ $= -190.7 \times 10^6 \text{ kJ/hr}$ $= 190.7 \times 10^3 \text{ MJ/hr}$

Cooling Water Required

$$T_{in}=25^{\circ}C,$$

 $T_{out}=45^{\circ}C$
 $Q=mCp\Delta T$

$$m = 2.28 \times 10^{6} \text{ kg/hr}$$

Components	Specific heat capacity at T _{avg} = 48.5°C	Mass flow rate (bottom)	Reboiler heat duty	Mass flow rate (distillate)	Condenser heat duty
	Cp (kJ/kg.K)	(kg/hr)	(MJ/hr)	(kg/hr)	(MJ/hr)
FFA	1.96	7423.20		0	
T.G	2.11	4787.23		0	
H2SO4	1.927	134.64		0	
Methanol	2.68	543.59		53815.65	
Methyl ester	2.068	562494.9	206.9103	0	190.7×10 ³
Water	4.18	154.25	- 396.8×10 ³	1.55	190.7×10°
КОН	1.48	7180.85		0	
Glycerol	2.47	49240.12		0	

 Table 4.14: Energy Balance on Reactor 02

4.13 Energy Balance around Heat Exchanger (HX-108)

This will decrease the temperature from 68 to 35°C

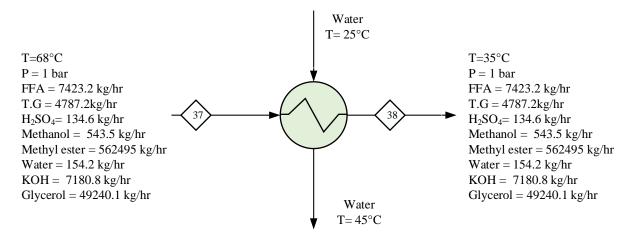


Figure 4.13: Heat Exchanger (HX-108)

Temperatures

$$T_{in} = 68^{\circ}C = 341 \text{ K}$$

 $T_{out} = 35^{\circ}C = 308 \text{ K}$

Cooling Load

$$\Delta T = (308 - 341) \text{ K}$$

= - 33 K
 $Q = \text{mCp}\Delta T$
 $Q = -43.4 \times 10^6 \text{ kJ/hr}$
= -43.4 ×10³ MJ/hr

Cooling Water Required

 $Q = mCp\Delta T$

 $M=517\times10^3$ kg/hr

Table 4.15: Energy Balance on HX-108

Components	Specific heat capacity at T _{avg} = 51.5°C	Heat load
	Cp(KJ/kg.K)	(MJ/hr)
FFA	1.96	
T.G	2.12	
H2SO4	1.93	43.4×10^{3}
Methanol	2.7	
Methyl ester	2.06	
Water	4.19	

4.14 Energy Balance around Evaporator (V-101)

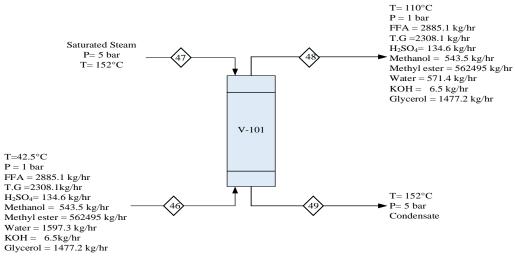


Figure 4.14: Evaporator (V-101)

Temperatures

$$T_{in} = 50^{\circ}C = 323 \text{ K}$$

 $T_{out} = 110^{\circ}C = 383 \text{ K}$
 $T_{avg} = 85^{\circ}C = 358 \text{ K}$

Saturated Steam Conditions

 $P= 1.2 \text{ bar } T= 105^{\circ}\text{C}, \Lambda = 2244.1 \text{kJ/kg}$

Total Heat at Inlet and Outlet

 $Q_{in} = 109.2 \times 10^6 \, kJ/hr = 109.2 \times 10^3 \, MJ/hr$

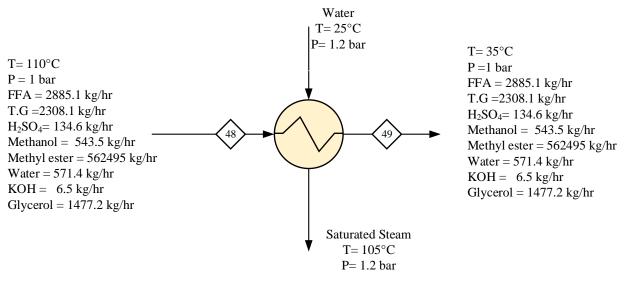
 $Q_{T(out)} = Q_{out} + m\lambda$

= $121.8 \times 10^{6} \text{ kJ/hr} = 121.8 \times 10^{3} \text{ MJ/hr}$

 $Q_{Total} = Q_{out} - Q_{in}$

$$= 12.6 \times 10^{6} \, kJ/hr = 12.6 \times 10^{3} \, MJ/hr$$

Saturated Steam Required


 $\boldsymbol{Q}=\boldsymbol{m}\boldsymbol{\lambda}$

m = 5978.9 kg/hr

	Ср	Mass flow	Qin	Mass flow	Qout	Cp KJ/kg.K
Components	KJ/kg.K	rate (kg/hr)	(MJ/hr)	rate (kg/hr)	(MJ/hr)	
FFA	1.95	2885.1	337.5	337.5×10 ⁶	334	1.93
TG	2	2308.1	276.9	2308.1	318.5	2.3
H ₂ SO ₄	1.94	134.64	15.67	134.64	15.8	1.96
methanol	2.7	543.6	88	543.6	107.6	3.3
methyl ester	2.058	562494.9	69.45×10 ³	562494.9	71.45×10 ³	2.117
water	4.18	1596.8	400.49	571.4	143.3	4.18
КОН	1.48	6.5	0.577	6.5	0.577	1.48
Glycerol	2.5	1477	221.5	1477	230.4	2.6
Total	-		109.2×10 ³		121.8×10 ³	

Table 4.16: Energy Balance on Evaporator

4.15 Energy Balance around Waste Heat Boiler (WHB-109)

Temperatures

$$T_{out}=35^{o}C=308\ K$$

Cooling Load

$$\Delta T = (308 - 383) \text{ K}$$

= - 75 K
 $Q = mCp\Delta T$

$$Q = 90.8 \times 10^6 \text{ kJ/hr} = 90.8 \times 10^3 \text{ MJ/hr}$$

Saturated Steam Conditions

P = 1.2bar, T= 105°C, λ = 2244.1 kJ/kg

Saturated Steam Produced

$$Q = mCp\Delta T + m\lambda$$
 Cp at T_{avg} (88.5°C) = 4.2 kJ/kg. K
$$m = 35.2 \times 10^3 \text{ kg/hr}$$

	Specific heat capacity at	
Components	$T_{avg} = 67.5^{\circ}C$	Heat load
	Cp (KJ/kg.K)	(MJ/hr)
FFA	1.98	
T.G	2.2	
H2SO4	1.9	
Methanol	2.8	90.8×10^{3}
Methyl ester	2.06	
Water	4.2	
КОН	1.47	
Glycerol	2.5	

CHAPTER 05 EQUIPMENT DESIGN

5.1 Design of CSTR (R-101)

Reactors are vessels used in chemical processing plants to create desired products through chemical reactions.

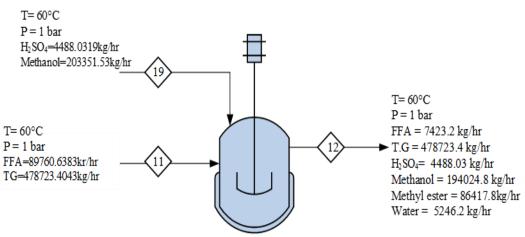


Figure 5.1: Design of Reactor (R-101)

Types of Reactors

There are two main types of reactors.

- 1. Tubular reactors
- 2. Stirred tank reactor

The ideal reactor is one in which the attiring is so effective that the inside is uniformly heated and composed. The simple reactors may be operated in numerous models i.e.

- Batch reactors
- Semi batch reactors
- Continuous flow

Reactant elements flow through tubes in a tubular reactor as plugs that are moving parallel to the axis. The flow pattern is also known as a piston or plug flow. It is assumed that there is no axial diffusion or back mixing of the fluid components, and that the velocity profile at a given cross section is flat.

Why I Choose CSTR

We have selected MFR because

The above reaction is

- Moderately endothermic
- Homogenous (liquid)

EQUIPMENT DESIGN

Design Steps

- Calculating the Volume of the reactor.
- Calculating the length & Diameter of reactor
- Calculating the Power of Impeller.
- Calculating the Cooling jacket Design

Reaction

$$FFA + methanol \longrightarrow methyl ester + water$$

Order = n = 1

Heat of Reaction

$$\Delta H_{\rm r} = \frac{16.85 \times 10^6 \text{KJ}}{\text{hr}} \times \frac{0.239 \text{ kcal}}{\text{KJ}} \times \frac{\text{hr}}{317.7 \text{ kmol}} \times \frac{\text{kmol}}{1000 \text{ mol}}$$

= 13 kcal/mol (endothermic)

Temperature and Pressure

- Operating temperature = $60 \, {}^{\circ}\text{C}$
- Operating pressure = 1 bar

Conversion of Reaction

$$X_{FFA} = 92 \%$$

Design Equation of CSTR

$$\frac{V}{F_{AO}} = \frac{X_A}{-r_A}$$
 5.1

Rate Equation for the Reaction

$$-r_A = k_1 \times C_{FFA} \quad [24] \tag{5.2}$$

$$= k_1 \times C_{FFAO} \times (1 - X_{FFA})$$

Volume of Reactor

$$\frac{V}{F_{AO}} = \frac{X_A}{k_1 \times C_{FFAO} \times (1 - X_{FFA})}$$
5.3

 F_{FFAO} = molar feed rate of key component

$$F_{FFAo} = \frac{89760.6 \text{ kg/hr}}{282.5 \text{ kg/kmol}}$$

Converting mass to molar flow rate.

$$F_{FFAo} = 317.7 \text{ kmol/hr}$$

Now we will find C_{FFAo}

$$F_{FFAo} = v_o \times C_{FFAo}$$
 5.4

To find volumetric flowrate

$$v_o = \frac{m}{\rho}$$

$$=\frac{89760.6 \, kg/hr}{867.4 \, kg/m^3}$$

 $= 103.5 \text{ m}^{3}/\text{hr}$

Now,

$$C_{FFAo} = \frac{F_{FFAo}}{v_o}$$
$$= \frac{317.7 \ kmol/hr}{103.5 \ m^3/hr}$$
$$= 3.1 \ kmol/m^3$$

From literature kinetic constant is

$$k = 1.81 \text{ min}^{-1}$$

= $\frac{1.81}{min} \times \frac{60 \text{ min}}{hr}$
= 108.6 hr⁻¹

Now finding the volume of the reactor

$$\frac{V}{F_{AO}} = \frac{X_A}{k_1 \times C_{FFAO} \times (1 - X_{FFA})}$$
91 |

EQUIPMENT DESIGN

CHAPTER 05

$$\frac{V}{317.7 \frac{kmol}{hr}} = \frac{0.92}{\frac{108.6}{hr} \times 3.1 \frac{kmol}{hr} \times (1 - 0..92)}$$
$$V = 11 \text{ m}^{3}$$

For ease of operation we will divide it into two reactors of equal volume

 $V = 5.5 m^3$

Adding safety allowance 5%

 $V = 5.8 \text{ m}^3$

Length and Diameter of Reactor

$$\frac{L}{D} = 1.15$$
$$L = 1.15D$$

Also,

$$V = \frac{\pi D^2 L}{4}$$
$$D = 1.9 m$$
$$L = 2.2 m$$

Space Time

Space time =
$$\tau = \frac{volume \ of \ reactor}{volume tric \ flow \ rate}$$
 5.5
= $\frac{5.8m^3}{103.5 \ m^3/hr}$

= 0.06 hr

Impeller Selection

Factors/Types	Propellers	Paddles	Turbine
	For Low to	For Moderate	For Low to High
Viscosity	Moderate Viscous	Viscous Liquids	Viscous Liquids
	Liquids		
			For Radial and
Flow Pattern	For Axial Flow	For Tangential	Tangential Flow,
		Flow	sometimes Axial
			Flow also.
	Square Pitched	Flat Paddle,	Vertical Flat
Types	Marine Propellers	Anchor Agitator	Curved, and
			Pitched Blade
No. of Blades	3-blade,4-Blade	2 and 4 bladed	2-8 Blades
	Toothed	Paddles	
RPM Ranges	400-800,	20-150	50-250
	1150-1750		

- One can notice that there are no axial flow impellers in the reactors.
- The selected impeller is disk style flat blade turbine which is commonly referred to the as Rushton impeller, which is a radial flow impeller.
- At reaction temperature, the mixture's weighted viscosity is 5.9 cp, which is within the impeller range.
- It can be operated at reasonable speed
- Wide range of applications.
- Maximum radial flow no back mixing.
- Less power requirement.
- Promote heat transfer between the liquid and a coil or jacket
- High mass transfer between phases

Impeller Design

$$\frac{Da}{Dt} = 1/3$$

$$H = 1.9 m$$

$$\frac{J}{Dt} = 1/12$$
 J=0.16 m

$$\frac{E}{Dt} = 1/3$$
 E =0.63 m

$$\frac{W}{Da} = 1/5 \qquad \qquad W = 0.13 \text{ m}$$

L = 0.16 m

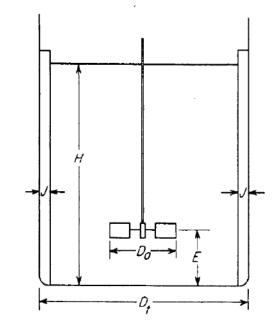


Figure 5.2: Reactor Dimensions

Where,

Da=Diameter of impeller

Dt=Tank diameter

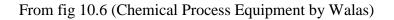
H=Depth of liquid in tank

J =Width of baffles

E =Hight of impeller above vessel flow

W = impeller width

L =length of impeller blade


Reynolds Number

Taking revolutions of impeller

$$n = 80 \text{ rev/min}$$

$$Re = \frac{Da^2 \times n \times \rho}{\mu}$$

$$= 6920.1$$
5.6

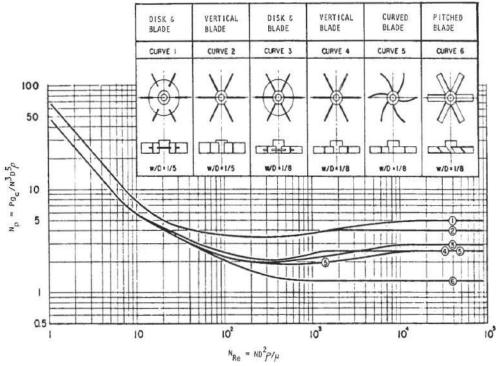


Figure 5.3: Reynolds Number Graph

From Reynolds number

Np = 3.5

Power Calculations

$$Np = \frac{P}{N^3 \rho D^5}$$

$$P = 473$$
 watt = 0.6 hp

Jacket Selection Criteria

We have selected dimple jacket because

- Suitable for low to moderate heat transfer rates
- Used for circulating steam and hot oil
- It has low pressure drop

Design of Heating Jacket

Following are the cooling arrangements for continuous stirred tank reactors:

- Jackets
- Internal coils
- External coils

Selection of Jacket

In terms of control, effectiveness, and product quality, Jacket offers the best way to heat and cool a process vessel.

There are now three primary categories of jackets.

- Spiral baffle Jacket
- Half pipe coil Jacket
- Dimple jacket

Jacket Selection

The following factors should be taken into account while choosing the sort of jacket to wear:

1. Cost-wise, the design can be graded from least expensive to most expensive.

- Simple no baffles
- Agitation nozzles
- Dimple Jacket

EQUIPMENT DESIGN

CHAPTER 05

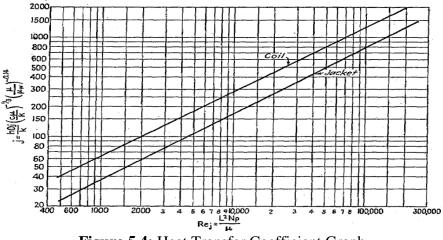
- Half-pipe jacket
- 2. If a high rate of heat transfer is necessary, choose a spirally baffled or half-pipe jacket.
- 3. The pressure rating of the designs can be used as a general guide and is as follows:
 - Jackets, up to 10bar.
 - Half-pipe up to 40bar.
 - Dimple jacket up to 70bar.

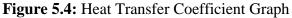
So, for high pressure, dimple jackets would be employed.

Area of Jacket

Assuming that 95% of area of reactor is covered with jacket

$$A_j = \frac{\pi \times D^2}{2} + \pi \times D \times L \times (0.95) = 15.3 \text{ m}^2$$


Tank Side Calculations


Reynolds Number

$$Re = \frac{\rho \times n \times L^2}{\mu} = 84387$$

J_H Factor

From figure 20.2 (Process Heat Transfer by Kern)

J = 700

$$J = \frac{h_i \times D}{k} \times (\frac{C_p \times \mu}{k})^{-0.3} \times (\frac{\mu}{\mu_w})^{-0.14}$$

97 |

EQUIPMENT DESIGN

$$h_i = 240 \text{ W/m}^2.\text{K}$$

 $(\frac{\mu}{\mu_w})^{-0.14} = 1 \text{ (for water)}$

Jacket Side Calculations

Steam Heat Transfer Coefficient

$$h_0 = 7315.3 \text{ W/m}^2.\text{K}$$

Overall Heat Transfer Coefficient

$$Uc = \frac{h_i \times h_0}{h_i + h_o}$$

$$= 232.4 \text{ W/m}^2.\text{K}$$

$$\frac{1}{U_D} = \frac{1}{U_c} + R_d$$

$$U_D = 120 \text{ W/m}^2.\text{K}$$
5.7

SPECIFICATION SHEET							
	Identification						
	Item		Reactor				
	Item no.		R-101				
	No. required		2				
	Operation		Continuous				
	Туре		Mixed flow reactor				
Function							
		Esterification	of Fatty acids				
$FFA + methanol \longrightarrow methyl ester + water$							
Reactor Impeller		Jacket					
Length	2.2m	Length	0.6m	Area	15.3 m ²		
Diameter	1.9m	Height	1.9 m	Heat transfer coefficient	7315.3 W/m ² .K		
Volume	5.8 m ²	Power	0.65 hp	Overall transfer coefficient	120 W/m ² .K		

5.2. Design of CSTR (R-102)

Reactors are vessels used in chemical processing plants to create desired products through chemical reactions.

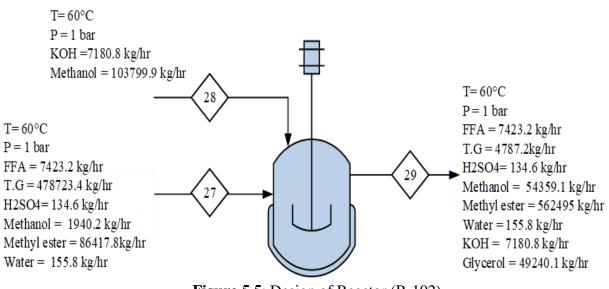


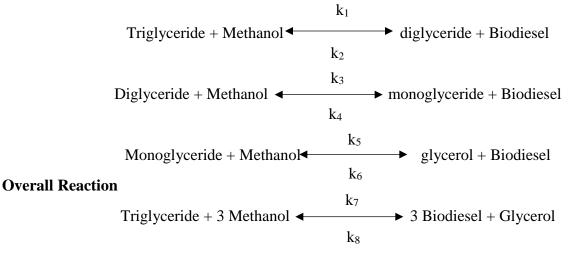
Figure 5.5: Design of Reactor (R-102)

Selection of Appropriate Type

We have selected MFR, because

As the reaction is

- Highly exothermic
- Homogenous (liquid)
- Series reaction (production distribution is to be controlled)


Design Steps

- Calculating the Volume of the reactor.
- Calculating the length & Diameter of reactor
- Calculating the Power of Impeller.
- Calculating the Cooling jacket Design

Reactions

Order = n = 2

Conversion = X_{TG} = 99%

Heat of Reaction

$$\Delta H_{\rm r} = \frac{-290 \times 10^6 \text{KJ}}{\text{hr}} \times \frac{0.239 \text{ kcal}}{\text{KJ}} \times \frac{\text{hr}}{535 \text{ kmol}} \times \frac{\text{kmol}}{1000 \text{ mol}}$$

= -190 kcal/mol (exothermic)

Temperature and Pressure

- Operating temperature = $60 \, {}^{\circ}\text{C}$
- Operating pressure = 1 bar

Design Equation of CSTR

$$\frac{V}{F_{AO}} = \frac{X_A}{-r_A}$$

Rate Equation for the Reaction

From literature [25]

$$r_A = k_1 \times C_{TG} \times C_m + k_2 \times C_{DG} \times C_m - k_7 \times C_{TG} \times C_m^3 + k_8 \times C_m \times C_{GL}^3$$
5.8

 $C_{DG} = 0$ (100% conversion)

$$r_A = k_1 \times C_{TG} \times C_m - k_7 \times C_{TG} \times C_m^3 + k_8 \times C_m \times C_{GL}^3$$

Volume of Reactor

Concentration of Triglycerides

$$F_{TGo} = \frac{478723.4 \frac{kg}{hr}}{885.5 \frac{kg}{kmol}}$$

101 |

$$= 540.6 \text{ kmol/hr}$$

$$F_{TGo} = v_o \times C_{TGo}$$

$$v_o = \frac{m}{\rho}$$

$$v_o = \frac{478723.4 \frac{kg}{hr}}{1792 kg/m^3}$$

$$= 267.1 \text{ m}^3/\text{hr}$$

Now,

$$C_{TGo} = \frac{F_{TGo}}{v_o}$$
$$= \frac{540.6 \frac{kmol}{hr}}{267.1 \frac{m^3}{hr}}$$
$$= 2.02 \text{ kmol/m}^3$$
$$C_{TG} = C_{TGo}(1 - X_{TG})$$
$$= 0.02 \text{ kmol/m}^3$$

Concentration of Methanol

$$F_{Mo} = \frac{105740.1 \frac{kg}{hr}}{32 \frac{kg}{kmol}}$$
$$= 3304.4 \text{ kmol/hr}$$
$$F_{Mo} = v_o \times C_{Mo}$$

$$v_o = \frac{m}{\rho}$$

EQUIPMENT DESIGN

$$v_o = \frac{105740.1 \frac{kg}{hr}}{770 \frac{kg}{m^3}}$$

= 137.3 m³/hr

Now,

$$C_{Mo} = \frac{F_{Mo}}{v_o}$$
$$= \frac{3304.4 \frac{kmol}{hr}}{m^3}$$

$$= \frac{hr}{137.3\frac{m^3}{hr}}$$

$$= 24.1 \text{ kmol/m}^{3}$$

$$C_M = C_{mo} - C_{TG} X_{TG}$$
$$= 22.1 \text{ kmol/m3}$$

Concentration of Glycerol

$$C_{GI} = \frac{F_{GL}}{v_{GL}}$$
$$= 13.7 \text{ kmol/m}^3$$

• Values of Rate Constant, k

From literature

 $k_1 = 180 \text{ m}^3/\text{kmol.hr}$

 $k_7 = 0.28 \text{ m}^3/\text{kmol.hr}$

 $k_8 = 6.69 \times 10^{-4} \text{ m}^3/\text{kmol.hr}$

So, volume of reactor will be

$$V = 5 m^3$$

Safety allowance = 5%

$$V = 5.6 m^{3}$$

103 |

Length and Diameter of Reactor

$$\frac{L}{D} = 1.15$$
$$L = 1.15D$$

Also,

$$V = \frac{\pi D^2 L}{4}$$
$$D = 1.8 \text{ m}$$
$$L = 2 \text{ m}$$

Impeller Selection

Table 5.2: Characteristics and Types of Impellers

Factors/Types	Propellers	Paddles	Turbine
Viscosity	For Low to Moderate Viscous Liquids	For Moderate Viscous Liquids	For Low to High Viscous Liquids
Flow Pattern	For Axial Flow	For Tangential Flow	For Radial and Tangential Flow, sometimes Axial Flow also.
Types	Square Pitched Marine Propellers		
No. of Blades	3-blade,4-Blade Toothed	2 and 4 bladed Paddles	2-8 Blades
RPM Ranges	400-800, 1150-1750	20-150	

• One can notice that there are no axial flow impellers in the reactors.

- The selected impeller is disk style flat blade turbine which is commonly referred to the as Rushton impeller, which is a radial flow impeller.
- The weighted viscosity of mixture at reaction temperature is 6.5 cp which lies in the range of impeller.
- It can be operated at reasonable speed
- Wide range of applications.
- Maximum radial flow no back mixing.
- Less power requirement.
- Promote heat transfer between the liquid and a coil or jacket
- High mass transfer between phases

Impeller Design

$$\frac{Da}{Dt} = 1/3$$
 Da=0.6 m

$$\frac{H}{Dt} = 1 \qquad \qquad \text{H} = 1.8 \ m$$

$$\frac{J}{Dt} = 1/12$$
 J=0.15 m

$$\frac{E}{Dt} = 1/3 \qquad \qquad \text{E} = 0.6 \text{ m}$$

$$\frac{W}{Da} = 1/5 \qquad \qquad W = 0.12 \text{ m}$$

$$\frac{L}{Da} = 1/4 \qquad \qquad L = 0.15 \text{ m}$$

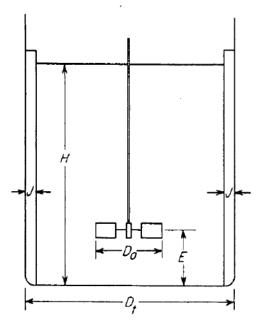


Figure 6.6: Dimensions of Reactor

Where,

Da=Diameter of impeller

Dt=Tank diameter

H=Depth of liquid in tank

J =Width of baffles

E =Hight of impeller above vessel flow

W = impeller width

L =length of impeller blade

Reynolds Number

Taking revolutions of impeller

n = 80 rev/min

$$Re = \frac{Da^2 \times n \times \rho}{\mu}$$
$$= 129024$$

From fig 10.6 (Chemical Process Equipment by Walas)

From Reynolds number

$$Np = 3.5$$

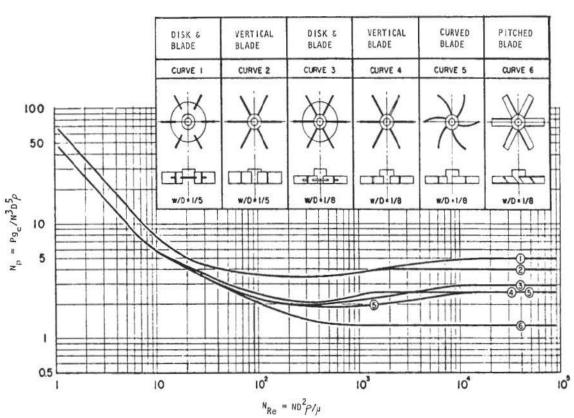


Figure 5.7: Power number and Reynolds number Graph

Power Calculations

$$P = N_p \times n^3 \times \rho \times D_a^5$$

$$P = 473 \text{ watt} = 0.6 \text{ hp}$$
5.9

Design of Cooling Jacket

The cooling configurations for continuous stirred tank reactors are as follows:

- Jackets
- Internal coils
- External coils

In terms of control, effectiveness, and product quality, a jacket offers the best way to heat and cool a process vessel.

There have been three primary categories of jackets.

- Spiral baffle Jacket
- Half pipe coil Jacket
- Dimple jacket

The following factors should be taken into account while choosing the sort of jacket to wear:

1. Cost-wise, the design can be graded from least expensive to most expensive.

- Simple no baffles
- Agitation nozzles
- Dimple Jacket
- Half-pipe jacket

2. If a significant amount of transfer of heat is necessary, consider a spirally baffled or half-pipe jacket.

3. As a general rule, the pressure rating of the designs can be interpreted as:

- Jackets, up to 10bar.
- Half-pipe up to 40bar.
- Dimple jacket up to 70bar.

So, for high-pressure applications, dimple jackets would be employed.

Jacket Selection

We have selected spiral Jacket because,

- Here high heat transfer rate is required
- The other reason is that it is less costly than other types of jacket
- Suitable for pressure range of 1-10 bar

Jacket Side Calculation

Spacing between jacket and vessel = 50 - 300 mm

We have selected 175 mm

Pitch between spirals = 200 mm

Height of jacket = 95% of reactor height

$$= 1.8 \text{ m} = 1800 \text{ mm}$$
number of spirals = $\frac{\text{height of jacket}}{\text{pitch}}$

$$= \frac{1800 \text{ mm}}{200 \text{ mm}} = 9$$

Cross Sectional Area of Channel

= spacing between jacket and vessel \times pitch

$$= 175 \text{ mm} \times 200 \text{ mm}$$
$$= 35 \times 10^3 \text{ mm}^2 = 35 \times 10^{-3} \text{ m}^2$$

Hydraulic Mean Dia

$$d_{e} = \frac{4 \times cross \ sectional \ area}{wetted \ parameter}$$
$$= \frac{4 \times (35 \times 10^{3})}{2 \times (175 + 200)}$$
$$= 187 \ mm$$

Velocity through Channels

$$= \frac{flow rate}{density \times cross \ sectional \ area}$$
$$= \frac{8979 \frac{kg}{hr}}{3600} \times \frac{1}{983 \frac{kg}{m^3}} \times \frac{1}{35 \times 10^{-3} m^2}$$
$$= 0.1 \text{ m/s}$$

Reynolds Number

$$Re = \frac{\rho \times v \times D}{\mu}$$
$$= 39110$$

Prandtl Number

$$\Pr = \frac{C_p \times \mu}{k} = 3$$

Nusselt Number

$$Nu = C \times R_e^{0.8} \times P_r^{0.33}$$

For non-viscous fluids

$$C = 0.023$$

Nu = 156

Heat Transfer Coefficient Jacket Side

$$h_j = \frac{N_u \times k}{de} = 534 \text{ W/m}^2.\text{K}$$

Tank Side Calculations

Reynolds Number

$$Re = \frac{\rho \times D2}{\mu} = 89324$$

Prandtl Number

$$Pr = \frac{C_p \times \mu}{k} = 3.7$$

$$h_t D/\lambda = 0.73 (\rho D^2 / \mu)^{0.33} (C_p \mu / k)^{0.66} (\mu / \mu_s)^{0.1}$$

$$h_t = 574 \text{ W/m}^2.\text{K}$$

Overall Heat Transfer Coefficient

$$U_d = \frac{h_j \times h_t}{h_j + h_t} = 197 \text{ W/m}^2.\text{K}$$

Area of Jacket

Assuming that 95% of area of reactor is covered with jacket

$$A_j = \frac{\pi \times D^2}{2} + \pi \times D \times L \times (0.95)$$
 5.10
= 13.3 m²

		SPECIFICAT	TION SHEET		
		Identif	ication		
	Item			Reactor	
	Item no.			R-102	
	No. required			1	
	Operation			Continuous	
	Туре		Ν	Mixed flow reactor	
		Fune	ction		
	Transest	terification for th	e production of	biodiesel	
		Chemical	reactions		
Tı	riglyceride + Metl	nanol	→ digl	yceride + Biodiesel	
Dig	glyceride + Metha	nol	→ mono	glyceride + Biodiese	el
	Ionoglyceride + N			lycerol + Biodiesel	
14.			₽ 8	ryceror + Diodieser	
Rea	ctor	Imp	eller	Jack	et
Length	2m	Length	0.6m	Area	13.3 m ²
Diameter	1.8m	Height	1.8 m	Heat transfer coefficient	574 W/m ² .K
				coefficient	
Volume	5.6 m ²	Power	0.6 hp	Overall transfer coefficient	197 W/m ² .K

5.3 Design of Evaporator V-101

Falling Film Evaporator

A falling-film evaporator, which lowers its liquid film, operates on similar principles. The most fundamental and popular kind of film evaporator is the falling-film evaporator. In this apparatus, a thin layer of liquid moves through heated, vertical tubes that are gravity-driven, and the produced vapour normally moves with the liquid in the tubes' centers. The evaporator, a separator to separate the vapors from the leftover liquid, and a condenser make up an entire evaporator stage. A portion of the concentrated liquid is recycled back to the evaporator take in when high evaporation ratios are required to make sure the tubes are adequately moistened.

Advantages of Falling Film Evaporator

- high coefficients of heat transfer
- pressure drops are low
- suitability for vacuum operation
- high ratios of evaporation
- wide range of operating
- poor sensitivity to fouling
- minimum cost of operation

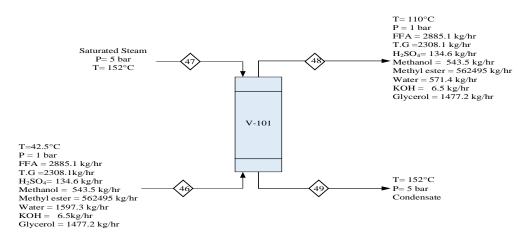


Figure 5.8: Design of Evaporator (V-101)

Heat Load

$$\Delta T = 383^{\circ}K - 315.6^{\circ}K$$

 $\Delta T = 323^{\circ}K$
 $C_p = 2.15 \text{KJ/kg. K}$
 $m = 0.0004 \text{ kg/s}$
 $Q = 0.001 \text{kg/s}$

$$LMTD = \frac{\Delta t_2 - \Delta t_1}{\ln \Delta t_2 / \Delta t_1}$$
5.11
$$\Delta t_2 = T_2 - t_1 = 365^{\circ}K$$

$$\Delta t_1 = T_1 - t_2 = 297^{\circ}K$$

$$LMTD = \frac{197 - 75.6}{\ln(197/75.6)}$$

$$LMTD = 325.7^{\circ}K$$

Correction Factor

 $F_T = 1$

Corrected LMTD = LMTD \times F_T

 $\Delta t = 325.7^{\circ}K$

Calculate Area

Assume U_D

$$U_D = 14306 \text{ KJ/hr.m}^2 \text{. K}$$

 $A = Q/U_D \Delta t$
 $A = \frac{7.1 \times 10^7}{700 \times 126.7}$

$$A = 74.7m^2$$

Tube Specifications

$$L = 4.8m$$
$$OD = 0.019 m$$
$$BWG = 16$$
$$a_t = 0.03m^2$$

т

No. of Tubes

$$N_t = A/L \times a_t$$
 5.12
 $N_t = 153$

We have selected 1 $^{1/4}$ in OD, 1 in triangular spacing, 1 tube passes

Corrected $N_t = 170$ Area = $N_t L \times a_t$ Area = 170×16×0.3271 $Area = 82.6m^2$

Flow Area

• Shell Side (Hot Fluid)

As = (area of shell) - (area of tube)	5.13

$$a_{s} = \frac{1}{144} \left[\pi \frac{\text{ID2}}{4} - N_{t} \pi \frac{\text{OD2}}{4} \right]$$
$$a_{s} = 0.18 \text{m}^{2}$$

• Tube Side (Cold Fluid)

$$a_{t} = \frac{Nt \times at'}{144 \times n}$$

$$a_{t} = \frac{170 \times 0.985}{144 \times 1}$$

$$a_{t} = 0.09m$$

$$a_{t} = 0.107m^{2}$$
5.14

Mass Velocity

• Shell Side (Hot Fluid)

$$G_{s} = W/a_{s}$$

$$W = 4.63 \text{kg/s}$$

$$G_{s} = 2.55 \frac{\text{kg}}{\text{m2.s}}$$

$$5.15$$

• Tube side (Cold fluid)

 $G_t = W/a_t$ W = 0.0001 kg/s $G_t = 1334 \frac{\text{kg}}{\text{m2.s}}$

Reynolds Number

• Shell side (Hot Fluid)

Re_s = DeGs/
$$\mu$$
 5.16
 $\mu = 0.0004$ Pa. s
De = $\frac{4 \times as}{Nt \pi OD/12}$
De = 0.04m
Re_s = $\frac{0.14 \times 1886}{0.104}$
Re_s = 2538

For Steam

 h_{io} = 8517 W/m². K

• Tube Side (Cold Fluid)

$$Re_t = DGt/\mu$$
$$\mu = 0.0013 \text{ Pa. s}$$

EQUIPMENT DESIGN

CHAPTER 05

$$D = 0.028m$$

$$Re_{s} = \frac{0.093 \times 983823}{3.41}$$

$$Re_{t} = 25966$$

$$j_{H} = 80$$

$$C_{p} = 2.15KJ/kg. K$$

$$k = 0.56 W/m^{2}. K$$

$$(C_{p}\mu/k)^{1/3} = 2.6$$

$$h_{o} = j_{H}(K/D) (C_{p}\mu/k)^{1/3}\Phi s$$

$$h_{o} = 1254 W/m^{2}. K$$

Clean Overall Coefficient Uc

$$U_{c} = \frac{h_{io} \times ho}{h_{io} + ho}$$
$$U_{c} = \frac{1500 \times 221}{1500 + 221}$$

$$U_c = 1095 \text{ W/m}^2$$
. K

Design Overall Coefficient U_D

$$1/U_D = 1/Uc + Rd$$

 $R_d = 0.003$ (Assume)
 $U_D = 692$ W/m². K

Dirt Factor R_d

$$R_{d} = \frac{Uc - UD}{Uc \times UD}$$

$$R_{d} = \frac{193 - 122}{193 \times 122}$$
5.17

 $R_d = 0.017 \text{ W/m}^2$. K

Pressure Drop

• Shell Side (Hot Fluid)

$De'=4 \times \frac{Flow area}{Wetted Parameter}$	5.18
De´=0.036m	
$Re'_{s} = 2176$	
f = 0.0004	
s = 0.0931	
$\Delta P_{s} = \frac{fGs^{2}DeLn}{5.22 \times 10^{10}De's\Phi s}$	5.19
$\Delta P_s = 0.0003 \text{ Psi}$	

• Tube Side (Cold Fluid)

 $Re_t = 25966$ f = 0.00021s = 0.143

 $\Delta P_t = \frac{fG_t^2Ln}{5.22 \times 10^{\wedge} 10 Ds \Phi_t}$

 $\Delta P_t = 4.7 Psi$

	SPECIFICATION SHEET					
	Identif	ication				
Ite	em	Evapor	rator			
Iten	n no.	V-10	01			
No. re	quired	1				
Ту	ype	Falling Film	Evaporator			
Oper	ration	Continuous				
	Fune	ction				
	Evapora	te Water				
	Heat Duty =	= 7.56KJ/hr				
	Heat transfer	$area = 74.7m^2$				
Shel	l side	Tube	side			
Operating pressure	1 bar	Operating pressure	1 bar			
Temperature in/out	151°C	Temperature in/out	42 - 110°C			
Shell inner dia	0.63m	Tube inner dia	0.02m			
Passes	1	No. of tubes	170			
Pressure Drop	0.0003Psi	Pressure Drop	4.7 Psi			

5.4. Design of Cyclone (CS-101)

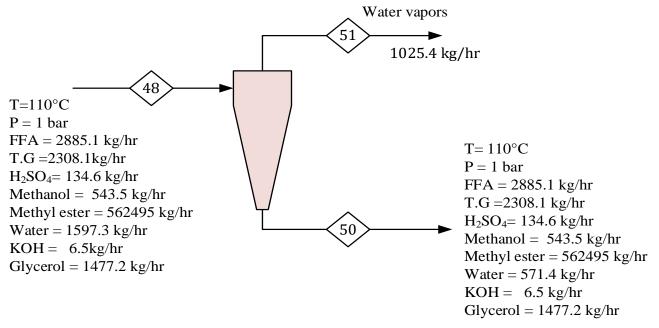


Figure 5.9: Design of Cyclone (CS-101)

Mass flow rate = m = 571446.6 kg/hr

Q(volumetric flowrate) = $\frac{571446.8 \frac{\text{kg}}{\text{hr}}}{910 \frac{\text{kg}}{\text{m}^3} \times 3600}$

 $Q = 0.17 \text{ m}^3/\text{sec}$

Standard velocity taken as

$$v = 9 - 27 m/s$$

we are taking average velocity as

v= 18 m/s

inlet duct area =
$$\frac{\text{volumetric flowrate}}{\text{velocity}}$$

0.17 $\frac{m^3}{m^3}$

$$=\frac{0.17\frac{m}{s}}{18\frac{m}{s}}$$

= 0.009 m²
$$\approx$$
 0.01 m²
Duct area = 0.5Dc \times 0.2Dc
0.01 = 0.1 Dc²

$$Dc = \sqrt{\frac{0.01}{0.1}}$$

$$Dc = 0.32 m$$
 (proposed)

 $no \ of \ cyclones = \frac{Dc \ proposed}{Dc \ standard}$ 5.20

2

No of cyclones =
$$\frac{0.32}{0.203}$$
 =

Calculation for Single Cyclone

flowrate of liquid =
$$\frac{571446.8 \frac{kg}{hr}}{2}$$
$$= 285723.4 \frac{kg}{hr}$$

Volumetric flowrate = $0.13 \text{ m}^3/\text{s}$

inlet duct area = $\frac{volumetric flowrate}{velocity}$ = $\frac{0.13}{18} = 0.0072 m^2$ Duct area = $0.5Dc \times 0.2Dc$ Dc = 0.27 mTotal height = 1.5Dc + 2.5 Dc

= 1.1 m

• Outlet Duct Area

 $D_o = 0.5 Dc$

120 |

5.21

$$D_0 = 0.14 \text{ m}$$

Area

$$A = \frac{\pi \times D_o^2}{4} = 0.02 \mathrm{m}^2$$

• Exit Duct Diameter

$$D_e = 0.375 D_c$$

= 0.1 m

Calculation of Scaling Factor

$$\frac{d_2}{d_1} = \left[\left(\frac{D_{C2}}{D_{C1}} \right)^3 \times \frac{Q_1}{Q_2} \times \frac{\Delta \rho_1}{\Delta \rho_2} \times \frac{\mu_2}{\mu_1} \right]^{0.5}$$
 5.22

Where

- $D_{C2} = Diametter of cyclone = 0.27m$
- $D_{C_1} = Diametter of standard cyclone = 0.203m$
- Q_1 = Standard flowrate = 223 m^3/hr
- Q_2 = volumetric flowrate per cyclone = 314 m^3/hr
- $\Delta \rho_1 = Standard$ liquid *fluid* = 1000 kg/m³
- $\Delta \rho_2$ = particle density = 525 kg/m³
- μ_2 = Gas velocity = 0.03312 mNs /m³
- μ 1 = *Standard viscosity* = 0.018 mNs/m³

$$\frac{d_2}{d_1} = 2.4$$

Number of Effective Turns

$$N = \frac{1}{4} \times \left(\frac{L_B + L_C}{2}\right)$$

$$L_B = 1.5D_c = 0.41m$$

$$L_C = 2.5 D_C = 0.675 m$$
121

$$H = 0.5 D_c = 0.135 m$$

 $N = 7$

Residence Time

$$T = \frac{\text{Path length}}{\text{speed}} = \frac{\pi \times N \times D_c}{v} = \frac{3.14 \times 0.27 \times 7}{18} = 0.33 \text{ sec}$$

Drift Velocity

$$V_t = \frac{W}{T} = \frac{0.2D_c}{T} = 0.16\frac{m}{s}$$

Pressure Drop Calculations

$$\Delta P = \frac{\rho_f}{203} \times \left[u_1^2 \times \left(1 + 2\emptyset^2 \left(\frac{2r_1}{r_e} - 1 \right) \right) + 2u_2^2 \right]$$

Where

 ΔP = cyclone pressure drop = millibar

 ρ_f = Gas density at outlet = 4.69 kg/m3

 $u_1 = Inlet duct velocity = 18 m/s$

$$u_2 = Exit \ duct \ velocity = \frac{volumetric \ flow rate}{area \ of \ exit \ pipe} = \frac{0.13}{0.02} = 6.5 \frac{m}{s}$$

$$\frac{r_1}{r_e} = 2.1$$

 $\Delta P = 0.02$ bar

SPECIFICA	TON SHEET
Identif	ication
Item	Cyclone separator
Item no.	CS-101
No. required	1
Item no. CS-101	Continuous
To remove water vapo	ors from liquid mixture
Operating pressure	1 bar
Operating temperature	110 °C
Inlet duct area	0.0072m ²
Diameter	0.27m
Total height	1.1m
Outlet duct area	$0.02 \mathrm{m}^2$
Outlet duct diameter	0.14m

EQUIPMENT DESIGN

5.5 Design of Distillation Column (D-102)

Distillation

"Process in which a liquid or vapor mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat".

The column could be packed or trayed. The column is divided into two sections: the striping section is below the feed, and the rectification (or refining) section is above the feed. The feed enters the column at a plate that is halfway up the structure.

The distillate is extracted from the column's top, and the purity is gauged by the tray count and column quality, or the reflux ratio, or R=L/D, of the condensate that is returned to the column.

Plate Selection

The mass transfer of vapors and liquids can be done in a packed column or on a plate. Both of these procedures are very different from one another. Following are the benefits of plate over packed column:

Wide ranges of liquid flow rates can be handled by plate columns without flooding.

When the flow rate of the liquid is lower compared to the flow rate of the gases, dispersion issues are handled in the plate column.

The packed column weighs higher than the plate column with tall columns. In the event that routine cleaning is necessary, manholes will be offered. Before cleaning packed columns, packaging must be removed out.

- The plate column is recommended for non-foaming systems.
- Compared to packed columns, design information for plates columns is more accessible and trustworthy.
- Inter-stage cooling can be offered to remove reaction or solution heat from the plate column.
- When there is a temperature change, packaging may be harmed.

Our processing mixture is "Non-Condensable Gases, Petrol, Diesel." I decided on the plate column because

- The system doesn't foam.
- The temperature fluctuates a much, by 370oC.
- Non-corrosive.

Types of Trays

The trays that are most frequently utilized in commercial distillation columns are

- Bubble cap tray
- Sieve tray
- Valve tray

Selection Criteria of Trays

Parameter	Sieve tray	Valve tray	Bubble cap tray
Capacity	High	High to very high	Moderately high
Efficiency	High	High	Moderately high
Entrainment	Moderate	Moderate	High
Pressure drop	Moderate	Moderate	High
Cost	Low	20% higher than sieve	2-3 times higher than sieve
		tray	tray
Maintenance	Low	Moderate	High
Fouling	Low	Low to moderate	High
Effect of	Low	Moderate	High
corrosion			

Table 5.3: Types of Trays

Selection of Tray

We decided to use a sieve plate because:

- They are less expensive and lighter in weight. Installing it is simpler and less expensive.
- When compared to bubble cap trays, pressure decrease is less.
- Peak productivity is often high.
- Because cleaning is so simple, maintenance costs are decreased.

Design Steps for Distillation Column and Design Calculations

- Calculation of Bubble point and dew point
- Number of stage calculation.
- Minimum Reflux Ratio Rm Calculation
- Actual Reflux Ratio R Calculation
- Determination of Physical properties of top and bottom product.
- Diameter of the column calculation.
- Weeping point, entrainment etc. calculation
- Pressure drop calculation
- Height of the column calculation
- Iterate the value of temperature till the value of ΣY become 1.

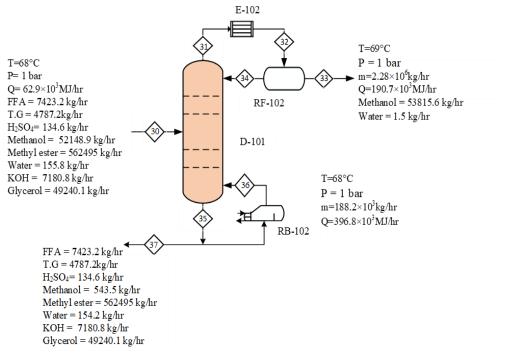


Figure 5.10: Design of Distillation Column (D-102)

Components	Xf	Relative Volatility	Xd	Xw
FFA	0.006	1	0.99	0.0117
T.G	0.0012	5.61699E+21	0.01	0.0075
H2SO4	0.0003	0.0315		0.00021
Methanol	0.394	2.76		0.00086
Methyl Ester	0.441	0.0345		0.8900
Water	0.0020	1268.02		0.00024
КОН	0.0298	1267.9		0.0113
Glycerol	0.12	0.00342		0.0779

 Table 5-4: Relative Volatilities of Components

Using equation of minimum reflux ratio

$$\Sigma \frac{\alpha i x i, f}{\alpha i - \theta} = 1 - q$$
, by trial $\theta = 1.3$

where q = 1, putting all values

$$\Sigma \frac{\alpha i x i, d}{\alpha i - \theta} = R_m + 1,$$

$$R_m = 0.8$$
5.24

Actual Reflux Ratio

The rule of thumb is:

R =
$$(1.2 - 1.5) R_{min}$$

R = $1.5 R_{min}$
R = 1.2

Light Key Component

Methanol

Heavy Key Component

FFA

The minimum no. of stages N_{min} is obtained from Fenske relation which is

$$N_{\min} = \frac{\log\left[\frac{xLK}{xLK}\right] d\left[\frac{xHK}{xLK}\right] b}{\log \alpha_{LK}}$$

$$S.25$$

$$N_{\min} = 5$$

Gilliland correlated the minimal reflux ratio, the amount of equilibrium stages, and the number of equilibrium stages with a scheme that Eduljee turned into a relationship;

$$\frac{N - N_{\min}}{N + 1} = 0.75 \left[1 - \left(\left(\frac{R - R_{\min}}{R + 1} \right)^{0.566} \right) \right]$$

From which the theoretical number of stages to be, N = 13

One plate is removed for reboiler, so, N = 13-1 = 12

Table 5.5: Top and Bottom Conditions

TOP CONDITIONS	BOTTOM CONDITIONS
$L_n = D \times R_{min}$	$L_m = L_n + F$
$L_n = 1046 \text{ kgmol/hr}$	$L_m = 5981 \text{ kgmol/hr}$
$V_n = L_n + D$	$\mathbf{V}_{m} = \mathbf{L}_{m} - \mathbf{B}$
V _n =1046 kgmol/hr	=3069kgmol/hr
Average molecular wt. = 25 Kg/Kgmol	Average molecular wt. = 138.92Kg/Kmol
$T = 69^{\circ} C$	$T = 68^{\circ} C$
$\rho_V=~1.25Kg/m^3$	$\rho_V = 10.72 \text{ Kg/m}^3$
$\rho_L = 754.33 \ Kg/m^3$	$\rho_L=959.39~Kg/m^3$

Maximum Volumetric Flow Rate of Vapour

Top

$$\frac{Ln \times \operatorname{Avg \ mol.wt}}{3600 \times \rho v} = 7.47 \ m^3 s^{-1}$$

Bottom

$$\frac{Vn \times \text{Avg mol.wt}}{3600 \times \rho v} = 10.97 \text{ m}^3 \text{s}^{-1}$$

Maximum Volumetric Flowrate of Liquid

Top

$$\frac{Lm \times \operatorname{Avg mol.wt}}{3600 \times \rho l} = 0.012 m^3 s^{-1}$$

Bottom

$$\frac{Vm \times \text{Avg mol.wt}}{3600 \times \rho l} = 0.122 \text{m}^3 \text{s}^{-1}$$

Diameter of Rectifying Section

$$FLV = \frac{Ln}{Vn} \sqrt{\frac{\rho v}{\rho l}} = 0.017$$

Assume tray Spacing = 0.6m

 $C_{sb} = 0.12 m s^{-1}$ from Graph between F_{LV} and C_{sb}

Flooding velocity is found by formula as follows,

Surface Tension = 22dynecm⁻¹

As a rule of thumb, 80 - 85% of flooding velocity is mostly used so we choose 80%

$$V_{nf} = C_{sb} \times \left(\frac{\sigma}{20}\right)^{0.2} \times \left(\frac{\rho L - \rho v}{\rho v}\right)^{0.5} = 3.18$$

$$U_a = V_n = 0.80 \times 3.50 = 2.54 \text{ms}^{-1}$$

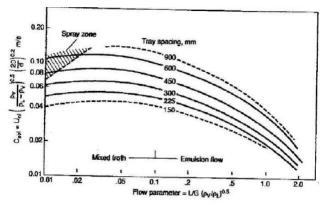


Figure 5.11: Graph Between F_{LV} and C_{sb}

EQUIPMENT DESIGN

For Tower Dia

Assume that down comer dia is 12% of cross-sectional area

$$A_n = 0.12 A_c$$

$$A_n = A_{d-} 0.12 A_d$$

$$A_c = V_n / U_a = 5.11 m^2$$

$$A_c = 2.94 m^2$$

$$A_c = \frac{\pi D_c^2}{4}$$

$$D_c = 1.9 m$$

Diameter of Stripping Section

$$F_{\rm LV} = \frac{Ln}{Vn} \sqrt{\frac{\rho v}{\rho l}} = 0.204$$

Assume tray Spacing = 0.6m

 C_{sb} = 0.08ms $^{-1}$ from Graph between F_{LV} and C_{sb}

Flooding velocity is found by formula as follows,

Surface Tension = 39.16 dynecm⁻¹

As a rule of thumb, 80 - 85% of flooding velocity is mostly used so we choose 80%

$$V_{nf} = C_{sb} \times \left(\frac{\sigma}{20}\right)^{0.2} \times \left(\frac{\rho L - \rho v}{\rho v}\right)^{0.5} = 0.86 \text{ms}^{-1} \text{U}_{a} = 0.80 \times 1.28 = 1.02 \text{ms}^{-1}$$

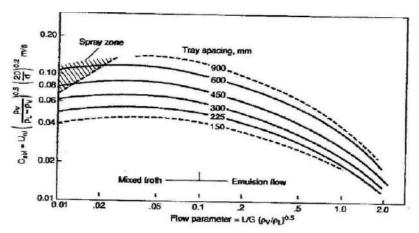


Figure 5.12: Graph Between F_{LV} and C_{sb}

EQUIPMENT DESIGN

For Tower Dia

Assume that down comer dia is 12% of cross-sectional area

$$A_n = 0.12 A_c = A_d - 0.12 A_d$$

 $A_c = V_n / U_a = 0.177 m^2$
 $A_c = 0.47 m^2$
 $A_c = \frac{\pi D_c^2}{4}$

 $D_c = 1.57 \mathrm{m}$

Number of Holes in Rectifying Section

 $A_a = A_c - 2 A_d = 2.24m^2$

Assume 10%-hole area in tray & 6mm hole dia

$$A_h = 0.1 A_a = 0.224 m^2$$

Area of hole = $2.83 \times 10^{-5} \text{ m}^2$

Number of holes = A_h /Area of hole = 7879

Number of Holes in Stripping section

 $A_a = A_c - 2 A_d = 0.134m^2$

Assume 10%-hole area in tray & 6mm hole dia

$$A_h = 0.1 A_a = 0.0134 m^2$$

Area of hole = $2.83 \times 10^{-5} \text{ m}^2$

Number of holes = A_h /Area of hole= 473

Provisional Plate Section

Column dia = 1.9 m

Column Area = $2.94m^2$

 $Down \ Comer \ Area = 0.12 A_c = 0.352 m^2$

Net area = $A_c - 2A_d = 2.23m^2$

Weir Length = $(A_d/A_c) \times 100 = 12$ %

 $L_w/D_c = 0.78$ by using graph

 $L_w = 2.09 \times 0.78 = 1.5 \text{ m}$

SEPARATION COLUMNS (DISTILLATION, ABSORPTION AND EXTRACTION)

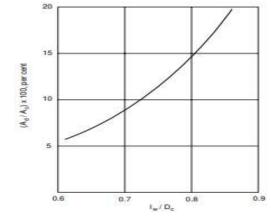


Figure 5.13: Relationship Between Down Comer Area and Weir Length

Number of Actual Stages

E = Number of Theoretical stages / No. Actual stages

We Take Colum Efficiency 70%

Actual Stages = 12/0.70 = 17 plates

Height of Column

 $((N-1) \times tray spacing) + \Delta H + Thickness of plate$

Tray spacing = 0.6m, $\Delta H = 1m$,

Total thickness = 0.102m

Height of column = 10.7 m

Location of Feed Plate

The Kirk bridge method determine the ratio of trays above and below the feed point. From which,

132 |

5.26

5.27

$$\log\left(\frac{N_{\rm D}}{NB}\right) = 0.206\log\left[\left(\frac{B}{D}\right)\left(\frac{xHK}{xLk}\right)\left(\frac{(xLK)B}{(xHK)D}\right)^2\right]$$
5.28

 $N_D\!/N_B=0.45$

Number of Plates above the feed tray = $N_D = 5$

Number of Plates below the feed tray = $N_B = 11$

Entrainment

Un=Maximum vapour flow/ Net Area = 7.47/2.23

$$= 3.3 \text{ ms}^{-1}$$

uf = K1 $\sqrt{\frac{\rho L - \rho v}{\rho v}}$
= 4.8 ms⁻¹

Percent flooding =70 %

Fractional Entrainment = 0.08ms⁻¹

Fractional Entrainment is 0.08,

below 0.1 is satisfactory

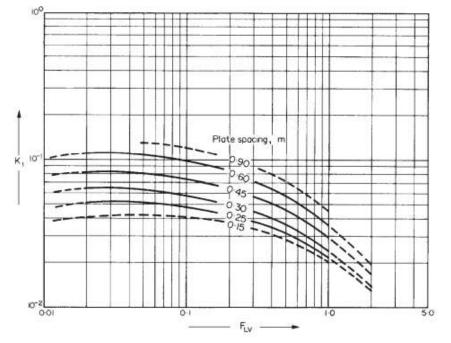


Figure 5.14: Flooding Velocity Sieve Plate

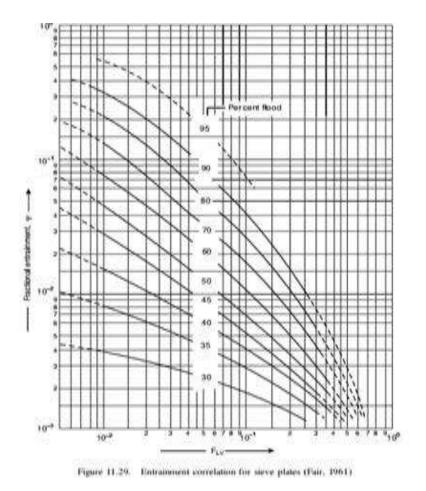


Figure 5.15: Entrainment Correlation for Sieve Plate

Weir Length

 $l_w = 1.5m$

Take weir height = 40 mm

Hole Dia = 6mm

Plate Thickness = 6mm

Weeping

Maximum Liquid Rate = 15.63kg/s

Minimum Liquid Rate at 70% turn down

$$0.7 \times 15.63 = 10.92 \text{ kg/s}$$

$$h_{ow}max = 750(\frac{Lw}{\rho L \times lw})^{2/3} = 43\text{mm liquid}$$

$$h_{ow}min = 750(\frac{Lw}{\rho L \times lw})^{2/3} = 34\text{mm liquid}$$

We take howmin

 $h_w + h_{ow}min = 74 mm liquid$

 $K_2 = 30.5$

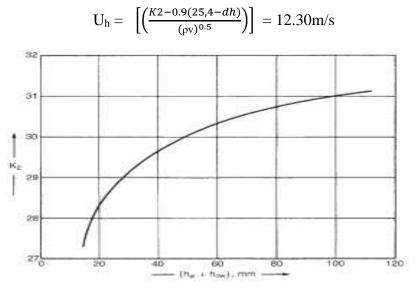


Figure 7.16: Weep Point Correlation

Plate Pressure Drop

 $U_h = Max$ vapor volumetric flow rate /Hole Area = 33m/s

$$(A_h/A_p) \times 100 = 12$$

$$Co = 0.85$$

hd =
$$51 \left[\frac{\text{Uh}}{\text{Co}} \right]^2 \frac{\rho \mathbf{v}}{\rho l}$$
 = 15.36 mm liquid

Residue Head

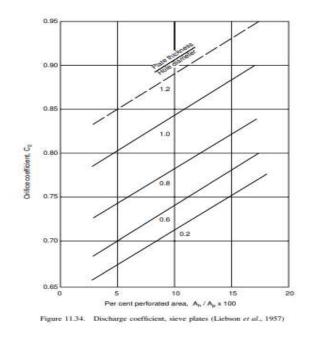
$$h_r = \frac{(12.5 \times 10^3)}{\rho l} = 13 \text{ mm liquid}$$

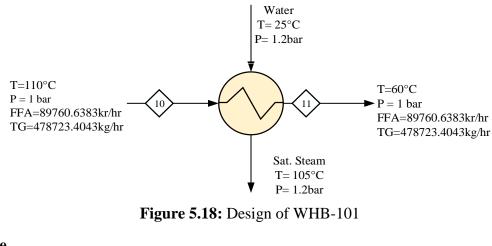
Total Pressure Drop

$$h_t = hd + (h_{ow} + h_w) + h_r$$
 5.29
= 102.4 mm liquid
 $P_t = 9.81 \times 10^{-3} ht.\rho L$

= 1952 Pa

$$P_t = 0.19 \text{ bar} = 0.28 \text{psi}$$




Figure 5.17: Discharge Coefficient Correlation

SPECIFICA	TION SHEET
Ident	ification
Item	Distillation Column (D-101)
Туре	Sieve Tray
No. of required	2
Operation	Continuous
Fu	nction
Recovery	of Methanol
Materia	al Balance
Feed In	776323.09 kg/hr
Top Product	192137.031 kg/hr
Bottom Product	584186.051kg/hr
Operatin	g Condition
No of Trays	18
Pressure	1 bar
Reflux Ratio	1.17
Tray Spacing	0.6 m
Height of Column	11.3 m
Diameter of Column	1.67 m
Tray Thickness	0.006 m
Hole Diameter	0.006 m
Weir Length	1.31 m
Active Area	4.34m
Number of Holes	16171
Percentage Flooding	80 %
Total Pressure drop	0.23psi

SPECIFICA	TION SHEET
Identi	fication
Item	Distillation Column (D-102)
Туре	Sieve Tray
No. of required	2
Operation	Continuous
Fur	nction
Recovery	of Methanol
Materia	ll Balance
Feed In	685776.0292 kg/hr
Top Product	53817.21022 kg/hr
Bottom Product	631958.819 kg/hr
Operating	g Condition
No of Trays	16
Pressure	1 bar
Reflux Ratio	1.2
Tray Spacing	0.6 m
Height of Column	10.7 m
Column Diamater	1.9 m
Tray Thickness	0.006 m
Hole Diameter	0.006 m
Weir Length	1.5 m
Active Area	2.23m
Number of Holes	8352
Percentage Flooding	70 %
Total Pressure drop	0.28psi

5.6. Waste Heat Boiler (WHB-101)

A waste heat boiler turns heat produced as a byproduct of another process into steam instead of wasting it. Energy-generating turbines can be run on steam. The boiler can also be used to simply heat fluids like water or other substances. By recycling some of the energy used, a waste heat boiler, often referred to as a waste heat recovery boiler, can reduce a system's consumption of fossil fuels and operational expenses. This also implies that less greenhouse gases enter the atmosphere. A waste heat boiler with a water-tube design is more difficult to construct and install, but it can manage substantially higher steam pressures than a boiler with a fire-tube design. Compared to a fire-tube boiler, this type of boiler has thinner tubes that hold water rather than hot gases. A fire-tube boiler reverses the arrangement so that waste heat surrounds the water-filled tubes in the form of hot gases or furnace flames. To prevent the boiler tubes from flame damage, insulating materials are utilized. A water-tube waste heat boiler can withstand high pressures while also responding swiftly to variations in heat input.

Heat Rate

$$Q_u = 57.6 \times 10^6 \, \text{KJ/hr}$$

Mass Flowrate

$$m = 22.3 \times 10^3 \text{ kg/hr}$$

$$Q_{\rm T} = Q_{\rm u} + 0.02 Q_{\rm T}$$
 5.30
 $0.98O_{\rm T} = O_{\rm u}$

$$Q_{\rm T} = 58.8 \times 10^6 \, {\rm KJ/hr}$$

Water Required

$$M_F = M_S + M_B$$
 5.31

Blowdown up to 10%

 $M_B = 0.1 \ M_F$

 $M_F = M_S + 0.1 \ M_F$

 $0.9\ M_F = M_S$

$$M_S = 20.1 \times 10^3 \text{ kg/hr}$$

Overall Heat Transfer Coefficient

$$U_D = 900 \text{ W/m}^2.\text{C}$$
$$U_D = \frac{900 \text{ J}}{\text{s} \times \text{m}^2 \times \text{K}} \times \frac{1 \text{ KJ}}{1000 \text{ J}} \times \frac{60 \text{ sec}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}}$$
$$U_D = 3240 \text{ KJ/hr.m}^2.\text{K}$$

Log Mean Temperature Difference (LMTD)

H.F(°C): 110
$$\longrightarrow$$
 60
C.F(°C): 105 \leftarrow 25
 $\Delta t_2 = 60 - 25 = 35^{\circ}C$
 $\Delta t_1 = 110 - 105 = 5^{\circ}C$
 $LMTD = \frac{\Delta t_2 - \Delta t_1}{\ln(\frac{\Delta t_2}{\Delta t_1})} = 15.4^{\circ}C$

Correction Factor

F = 0.9

Estimation of Surface Area

$$A = \frac{Q}{U_D \times LMTD \times F}$$

$$A = \frac{58.8 \times 10^6 \text{KJ/hr}}{3240 \frac{\text{KJ}}{\text{hr. m}^2 \text{. K}} \times 286.9 \text{ K}}$$

$$A = 63 \text{ m}^2$$
5.32

Tube Dimensions

Length = 16 ft = 4.87 m

Tube outer diameter = $d_0 = \frac{3}{4}$ in = 0.019 m

Tube inner diameter = $d_i = 0.652$ in = 0.017 m

Tube Side Calculations

Here we placed the fat oil because it causes more scaling and tubes can be replaced easily.

Number of Tubes

$$Nt = \frac{A}{\pi. \text{ do. L}}$$

$$Nt = 217$$
5.33

We have selected ³/₄ in OD, 1 inch triangular spacing, 2 tube passes, 1 shell pass. From here the number of tubes is:

Nt = 250

TABLE 9. TUBE-SHEET LAYOUTS (TUBE COUNTS).-(Continued) Triangular Pitch

34 in. OD tubes on 15%6-in. triangular pitch					¾ in.	OD tul	pitel		riangu	lar	
Shell ID, in.	1-P	2-P	4-P	6-P	8-P	Shell ID, in.	1-P	2-P	4-P	6-P	8-I
8	36	32	26	24	18	8	37	30	24	24	1
10	62	56	47	42	36	10	61	52	40	36	1.000
12	109	98	86	82	78	12	92	82	76	74	70
131/4	127	114	96	90	86	1314	109	106	86	82	74
1514	170	160	140	136	128	1514	151	138	122	118	110
1734	239	224	194	188	178	1712	203	196	178	172	160
1914	301	282	252	244	234	1932	262	250	226	216	210
2114	361	342	314	306	290	2114	316	302	278	272	260
2314	442	420	386	378	364	2314	384	376	352	342	328
25	532	506	468	446	434	25 27 29	470	452	422	394	383
25 27	637	602	550	536	524	27	559	534	488	474	464
29	721	692	640	620	594	29	630	604	556	538	508
31	847	822	766	722	720	31	745	728	678	666	640
33	974	938	878	852	826	33	856	830	774	760	733
35	1102	1068	1004	988	958	35	970	938	882	864	848
37	1240	1200	1144	1104	1072	35 37	1074	1044	1012	986	870
39	1377	1330	1258	1248	1212	39	1206	1176	1128	1100	1078

Figure 5.19: Tube Sheet Layout

Bundle Diameter

From table 12.4 (Coulson Richardson volume 06)

For triangular pitch and 2 tube passes

 $K_1 = 0.249 \qquad \quad n_1 = 2.207$

Triangular pitch, $p_t = 1.25 d_o$					
No. passes	1	2	4	6	8
$\frac{K_1}{n_1}$	0.319 2.142	0.249 2.207	0.175 2.285	0.0743 2.499	0.0365 2.675
Square pitch, p	$t = 1.25d_o$				
No. passes	1	2	4	6	8
$K_1 \\ n_1$	0.215 2.207	0.156 2.291	0.158 2.263	0.0402 2.617	0.0331 2.643

Figure 5.20: Equation Constants

=

$$D_{b} = d_{o} \times \left(\frac{N_{t}}{K_{1}}\right)^{\frac{1}{n_{1}}}$$
5.34
$$= 0.019 \times \left(\frac{250}{0.249}\right)^{\frac{1}{2.207}}$$

$$D_{b} = 0.44 \text{ m}$$

Tube Cross-Sectional Area

$$= 2.8 \times 10^{-4} \text{ m}^2$$

Area Per Pass

For 2 passes

Tube per pass
$$=\frac{250}{2}$$

= 125

Area per pass = tube per pass \times cross-sectional area

$$= 0.04 \text{ m}^2$$

Volumetric Flow Rate

$$v = \frac{\text{feed flow rate}}{\text{density}}$$

= 0.1 m³/sec

Tube Velocity

$$ut = \frac{volumetric flow rate}{area per pass} 5.35$$

$$= 2.5 \text{ m/s}$$

Reynolds Number

$$Re = \frac{\rho. v. do}{\mu}$$
 5.36

= 14186

Prandtl Number

$$Pr = \frac{Cp. \ \mu}{k}$$

$$= 139$$

$$\frac{L}{p} = 256$$
5.37

From figure 12.23 (Coulson Richardson volume 06)

 $J_{\rm H} = 3 \times 10^{-3}$

Tube Side Coefficient

$$h_{i} = \frac{k}{d_{o}} \times J_{H} \times Re \times Pr^{0.33} \times \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$
$$= 2800 \text{ W/m}^{2}. \text{ K}$$

Shell Side Calculations

Here we have placed water

Shell Diameter

From table 09 (Process Heat Transfer by Kern)

Shell dia =
$$D_s = 19.25$$
 in

= 0.48 m

Here we will find heat transfer coefficient by Bell's method

 $h_s = h_{oc} \times F_n \times F_w \times F_b \times F_L$

Ideal Cross Flow Coefficient. hoc

Tube pitch

$$p_t = 1.25d_o$$

= 0.024 m

Area of shell

$$A_s = \left(\frac{p_t - d_o}{p_t}\right) \times d_s \times L_B$$
 5.38

 L_B = baffle spacing or baffle pitch

$$L_B = ds = 0.48 m$$

 $A_s = 0.04 m^2$

Shell side mass velocity

$$Gs = \frac{flow rate}{area of shell} = 155 \frac{kg}{m2. s}$$

Prandtl number

$$\Pr = \frac{Cp \times \mu}{k} = 3.5$$

Reynolds number

$$Re = \frac{Gs \times do}{\mu} = 5890$$

From figure 12.31(Coulson Richardson volume 06)

$$J_{\rm H} = = 3.1 \times 10^{-2}$$
$$h_{oc} = \frac{k}{d_o} \times J_H \times Re \times Pr^{0.33} \times \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
$$\left(\frac{\mu}{\mu_w}\right)^{0.14} = 1$$

 $h_{oc} = 8720 \text{ W/m}^2.\text{K}$

• Tube Row Correction Factor, F_n

Tube vertical pitch = $p_t = 0.87 p_t = 0.02 m$

Baffle height $cut = H_c = baffle cut \times D_s$

= 0.12 m

Height between baffle cuts = shell inner dia - $2 \times H_c$

= 0.24 m

 $N_{cv} = \frac{\text{height between baffle cut}}{\text{pt'}}$

```
= 12
```

From figure 12.32(Coulson Richardson volume 06)

 $F_n = 1.02$

• Window Correction Factor, F_w

$$H_b = \frac{Db}{2} - Ds (0.5 - Bc)$$

$$Bc = baffle cut = 25\%$$

= 0.1 m

Bundle cut

$$B_b = \frac{Hb}{Db} = 0.23$$

145 |

From figure 12.41(Coulson Richardson volume 06)

$$Ra' = 0.18$$

Tubes in one window area

$$N_w = N_t \times Ra' = 45$$

Tubes in cross flow area

$$N_c = N_t - 2 N_w = 160$$
$$R_w = \frac{2 N w}{Nt} = 0.36$$

From figure 12.33(Coulson Richardson volume 06)

 $F_{w} = 1.02$

Bypass Correction Factor

$$A_{b} = L_{b} \times (D_{s} - D_{b})$$
$$= 0.0192 \text{ m}^{2}$$
$$F_{b} = \exp \left[-\alpha \times \frac{Ab}{As} \left(1 - \left(\frac{2Ns}{Ncv} \right) 0.33 \right) \right]$$
$$\propto = 1.35 \text{ for turbulent flow}$$

 $F_{b} = 0.85$

Leakage Correction Factor

Tube to baffle clearance $= c_t = 1/34$ in

Baffle to shell clearance $= c_s = 3/16$ in

$$A_{tb} = \frac{c_t \times \pi \times d_o \times (N_t - N_w)}{2}$$

$$= 4.9 \times 10^{-3} \text{ m}^2$$

$$Asb = \frac{cs \times Ds (2\pi - \emptyset b)}{2}$$
5.40

146 |

From figure 12.41(Coulson Richardson volume 06)

$$\emptyset_{b} = 2.1$$

$$A_{sb} = 4.7 \times 10^{-3} \text{ m}^{2}$$

$$A_{L} = A_{tb} + A_{sb}$$

$$= 9.6 \times 10^{-3} \text{ m}^{2}$$

$$\frac{AL}{As} = 0.24$$

From figure 12.35 (Coulson Richardson volume 06)

$$\beta_L = 0.22$$

$$F_L = \beta_L \times \left[\frac{A_{tb} + 2A_{sb}}{A_L}\right]$$

$$= 0.6$$
5.41

Shell Side Heat Transfer Coefficient

$$\begin{split} h_s = h_{oc} \times F_n \times F_w \times F_b \times F_L \\ = 4672 \ W/m^2.K \end{split}$$

Overall Heat Transfer Coefficient

$$\frac{1}{\text{UD}} = \frac{1}{\text{ho}} \times \frac{1}{\text{hod}} + \frac{\text{do} \times \ln(\frac{\text{do}}{\text{di}})}{2\text{kw}} + \frac{\text{do}}{\text{di}} \times \frac{1}{\text{hid}} + \frac{\text{do}}{\text{di}} \times \frac{1}{\text{hi}}$$
5.42

Where,

 $h_{\rm o}$ = outside film coefficient

 $h_{\rm od}$ = fouling factor

 k_w = thermal conductivity of tube wall material

$$h_{od} = 3000 \text{ W/m}^2.\text{K}$$

 k_w for stainless steel = 16 W/m².K

$$U_D = 810 W/m^2.K$$

Pressure Drop (Tube Side)

Tubes = 250, 2 tube passes, Inner dia of tube = 0.017 m, $u_t = 2.5$ m/s

Re = 14186

From figure 12.24(Coulson Richardson volume 06)

$$J_{f} = 2 \times 10^{-3}$$

$$\Delta Pt = Np \times \left[8 \times J_{f} \times \frac{L}{di} \times (\frac{\mu}{\mu_{w}})^{-0.14} + 2.5\right] \times \frac{\rho \times u_{t}^{2}}{2}$$

$$(\frac{\mu}{\mu_{w}})^{-0.14} = 0.7$$

$$\Delta Pt = 7 \text{ psi}$$
5.43

Pressure Drop (Shell Side)

$$\Delta Ps = 2\Delta Pe + \Delta Pc(Nb - 1) + Nb \times \Delta Pw$$
 5.44

Cross Flow Zone, ΔPc

From figure 12.36(Coulson Richardson volume 06)

$$J_{\rm f} = 1.5 \times 10^{-1}$$

Shell side velocity = $u_s = \frac{Gs}{\rho} = 0.2 \text{ m/s}$

$$\Delta Pi = 8Jf \times \rho \times u_s^2/2$$
$$= 283 \text{ N/m}^2$$
$$F_b' = \exp\left[-\propto \times \frac{Ab}{As} \left(1 - \left(\frac{2Ns}{Ncv}\right) 0.33\right)\right] = 0.68$$

From figure 12.38 (Coulson Richardson volume 06)

$$\beta_{\rm L} = 0.41$$

FL' = $\beta_{\rm L} \times \left[\frac{Atb+2Asb}{AL}\right] = 0.4$

148 |

$$\Delta P_c = \Delta P_i \times F'_b \times F'_L$$

$$= 77 \text{ N/m}^2$$
5.45

■ Window Zone, △Pw

From figure 12.41(Coulson Richardson volume 06)

baffle cut 25%

$$R_{a} = 0.15$$

$$Aw = \left(\frac{\pi \times Ds2 \times Ra}{4}\right) - \left(\frac{Nw \times \pi \times do2}{4}\right)$$

$$= 0.01m^{2}$$

$$uz = \sqrt{uw \times us}$$

$$= 0.1 \text{ m/s}$$

$$Nwv = \frac{Hb}{pt'} = 5$$

$$\Delta Pw = F'_{L} \times (2 + 0.6N_{wv}) \times \rho \times \frac{u_{z}^{2}}{2}$$

$$= 1.7 \text{ N/m}^{2}$$

• End Zone, $\triangle Pe$

$$\Delta Pe = \Delta Pi \times \left[\frac{Nwv + Ncv}{Ncv}\right] \times Fb'$$

$$= 273 \text{ N/m}^2$$
5.47

Total Pressure Drop

$$N_b = \frac{L}{L_B} - 1 = 8$$

$$\Delta Ps = 2\Delta Pe + \Delta Pc(Nb - 1) + Nb \times \Delta Pw$$

= 0.16 psi

149 |

	SPECIFICAT	FION SHEET					
	Identif	ïcation					
Item		Waste heat b	ooiler				
Item ne	0.	WHB-10)1				
No. requi	ired	1					
Туре		1-2 horizontal heat exchanger				1-2 horizontal heat exchang	
Operation		Continuous					
	Fun	ction					
	Recovery of excess he	at from process stream					
	Heat duty = 5	58.8×10 ⁶ KJ/hr					
	Heat transfer	$rarea = 63 m^2$					
Shell si	de	Tube sid	de				
Operating pressure	1 bar	Operating pressure	1 bar				
Temperatures in/out	25-105°C	Temperatures in/out	110-60°C				
Shell inner diameter	0.48m	Tube inner diameter 0.017m					
Passes	1	No of tubes	250				
Pressure drop	7 psi	Pressure drop	0.16 psi				

SPECIFICATION SHEET						
	Identif	ication				
Item		Waste heat	boiler			
Item n		WHB-1				
			07			
No. requ	ired	1				
Туре	9	1-2 horizontal heat exchanger				
Operati	ion	Continuous				
	Fune	ction				
	Recovery of excess he	at from process stream				
	Heat duty = 9	2.6×10 ⁶ KJ/hr				
	Heat transfer	r area = 56 m ²				
Shell si	ide	Tube s	ide			
Operating pressure	1 bar	Operating pressure	1 bar			
Temperatures in/out	25-105°C	Temperatures in/out	110-35°C			
Shell inner diameter	0.48m	Tube inner diameter	0.017m			
Passes	1	No of tubes	196			
Pressure drop	4 psi	Pressure drop	0.3 psi			

5.7. Design of Heat Exchanger (HX-102)

Because of the advantages that shell-and-tube heat exchangers have over other types, they are widely used in the chemical process industries, particularly in refineries. On their design and construction, a plethora of information is available. The notes that follow are only meant to serve as a rudimentary introduction. A hot fluid travelling over or around a cooler fluid distributes its heat (and therefore energy) in the direction of the colder fluid. This is how all heat exchangers operate. Think about how you feel on a chilly day when you first put your hands on the wheel.

Advantages

- The tubes or the shell, in either a horizontal or vertical arrangement, can support the heat transmission for condensation or boiling.
- The range of pressures and pressure decreases is very broad.
- Thermal strains can be handled affordably.
- Fins with extended heat transfer surfaces can improve heat transfer.

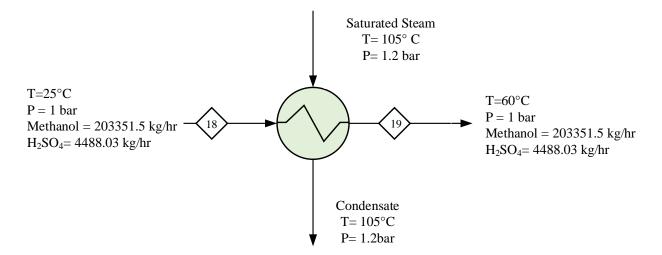


Figure 5.21: Design of Heat Exchanger (HX-102)

Heat Load

$$Q = mc_p \Delta T$$
 5.48
 $\Delta T = 333^{\circ} K - 289^{\circ} K$
 $\Delta T = 290^{\circ} K$
 $C_p = 1.92 KJ/kg. K$

$$m = 0.00056$$
kg/s
 $Q = 0.0001$ kg/s

Calculate LMTD

 $LMTD = \frac{\Delta t_2 - \Delta t_1}{\ln(\Delta t_2/\Delta t_1)}$ $\Delta t_2 = T_2 - t_1 = 335^{\circ}K$ $\Delta t_1 = T_1 - t_2 = 300^{\circ}K$ $LMTD = 317^{\circ}K$

Correction Factor

 $F_T = 1$

Corrected LMTD = LMTD × F_T

 $\Delta t = 317^{\circ}K$

Calculate Area

Assume U_D

 $U_D=4086~KJ/hr.m^2.~K$ $A=Q/U_d\Delta t$ $A=55m^2$

Tube Specifications

L = 4.8mOD = 0.03 mBWG = 16 $a_t = 0.036m^2$

$a_t = Surface per lin. ft.$

No. of Tubes

$$N_t = A/L \times at$$

 $N_t = 94$
Corrected $N_t = 95$

We have selected 1 $\frac{1}{2}$ in OD, $1^{7/8}$ triangular spacing, 1 tube passes

Shell ID = $23 \frac{1}{4}$ in

Flow Area

• Shell Side (Hot Fluid)

$$a_s = ID \times C \times B/144P_T$$
$$C = OD \times 1.25$$
$$B = Shell ID/5$$
$$a_s = 0.069m^2$$

• Tube Side (Cold Fluid)

$$a_t = (N_t \times at')/144 \times n$$
$$a_t' = 1.44m$$
$$a_t = 0.089m^2$$

Mass Velocity

• Shell Side (Hot Fluid)

$$G_s = W/a_s$$
$$W = 2.3 \text{kg/s}$$
$$G_s = 33.3 \text{ kg/s m}^2$$

• Tube Side (Cold Fluid)

$$G_t = W/a_t$$
$$W = 57.7 \text{kg/s}$$

$$G_t = 647 \text{ kg/s } \text{m}^2$$

Reynolds Number

• Tube Side Reynold Number

$$\begin{split} Re_t &= DeG_{s}/\mu \\ \mu &= 0.0005 \ Pa. \ s \\ D &= 0.03m \\ Re_t &= 46055 \\ j_H &= 150 \\ C_p &= 2.59 \ KJ/kg. \ K \\ K &= 0.653 \ W/m^{2*}K \\ (C_p \mu/k)^{1/3} &= 2.67 \\ h_o &= j_H(k/D) \ (C_p \mu/k)^{1/3} \Phi s \\ h_o &= 1902 \ W/m^{2*}K \end{split}$$

• Shell Side Reynold Number

$$Re_s = DG_t/\mu$$

 $\mu = 0.00003 Pa. s$
 $De= 0.027m$
 $Re_s = 30525$

For Steam

$h_{io}{=}\,8517W/m^{2*}K$

Clean Overall Coefficient Uc

$$U_c = \frac{h_{io} \times ho}{h_{io} + ho}$$

$U_c\,{=}\,155W/m^{2*}K$

Design Overall Coefficient UD

$$1/U_D = 1/U_c + R_d$$

 $R_d = 0.003$

$$U_D = 851 W/m^{2*}K$$

Dirt Factor Rd

 $R_d = \frac{Uc - UD}{Uc \times U_D}$

$$R_d = 0.017 W/m^{2*}K$$

Pressure Drop

• Shell Side

$$Re_{s} = 30525$$

$$f = 0.0019$$

$$s = 0.32$$

$$(N + 1) = 12L/B = 8$$

$$\Delta P_{s} = \frac{fGs^{2}De(N+1)}{5.22 \times 10^{5} 10Des\Phi s}$$

$$\Delta P_{s} = 0.0002 Psi$$

• Tube Side

 $Re_t = 46055, f = 0.00019, s = 0.042$

 $\Phi_t = 1.02$

 $\Delta P_t = \frac{fG_t^2Ln}{5.22 \times 10^{\wedge} 10 Ds \Phi_t}$

$$\Delta P_t = 2.7 Psi$$

SPECIFICATION SHEET						
	Identif	ication				
Ite	em	Heat Excl	nanger			
Item	n no.	HX-1	02			
No. ree	quired	1				
Ту	ре	Shell and Tube Heat Exchanger				
Oper	ation	Continuous				
	Fund	ction				
	Heating Pro	cess Stream				
	Heat Duty	= 1.44KJ/hr				
	Heat transfer	$rarea = 55m^2$				
Shel	l side	Tube	side			
Operating pressure	1 bar	Operating pressure	1 bar			
Temperature in/out	105°C	Temperature in/out	25 - 60°C			
Shell inner dia	0.027m	Tube inner dia	0.03m			
Passes	01	No. of tubes	95			
Pressure Drop	0.0002Psi	Pressure Drop	2.7 Psi			

SPECIFICATION SHEET							
Identification							
Ite	em	Heat Excl	hanger				
Item	n no.	HX-1	03				
No. re	quired	1					
Ту	ре	Shell and Tube H	eat Exchanger				
Oper	ation	Continuous					
	Fun	ction					
	Heating Pro	ocess Stream					
	Heat Duty =	21x10 ⁶ KJ/hr					
	Heat transfe	r area = 81m^2					
Shel	l side	Tube	side				
Operating pressure	1 bar	Operating pressure	1 bar				
Temperature in/out	105°C	Temperature in/out	60 - 72°C				
Shell inner dia	0.48m	Tube inner dia	0.0017m				
Passes	01	No. of tubes	250				
Pressure Drop	3.7Psi	Pressure Drop	0.12 Psi				

SPECIFICATION SHEET							
Identification							
Ite	em	Heat Exc	hanger				
Iten	1 no.	HX-1	04				
No. re	quired	1					
Ту	pe	Shell and Tube H	leat Exchanger				
Operation		Continuous					
	Fune	ction					
	Heating Pro	cess Stream					
	Heat Duty = 3	39.9x10 ⁶ KJ/hr					
	Heat transfer	r area = 76m ²					
Shel	l side	Tube	side				
Operating pressure	1 bar	Operating pressure	1 bar				
Temperature in/out	25-45°C	Temperature in/out 72-40°C					
Shell inner dia	0.48m	Tube inner dia	0.0017m				
Passes	01	No. of tubes	81				
Pressure Drop	3.1Psi	Pressure Drop	0.14 Psi				

SPECIFICATION SHEET							
Identification							
	em	Heat Exc	hanger				
Iten	n no.	HX-1	.05				
No. re	quired	1					
Ту	/pe	Shell and Tube H	leat Exchanger				
Operation		Continuous					
	Fund	ction					
	Heating Pro	cess Stream					
	Heat Duty = 2	24.2x10 ⁶ KJ/hr					
	Heat transfer	$rarea = 83m^2$					
Shel	l side	Tube	side				
Operating pressure	1 bar	Operating pressure	1 bar				
Temperature in/out	105°C	Temperature in/out	40-60°C				
Shell inner dia	0.48m	Tube inner dia	0.0017m				
Passes	01	No. of tubes	95				
Pressure Drop	5Psi	Pressure Drop	0.16 Psi				

SPECIFICATION SHEET							
Identification							
Ite	em	Heat Excl	hanger				
Iten	1 no.	HX-1	06				
No. re	quired	1					
Ту	ре	Shell and Tube H	leat Exchanger				
Oper	ation	Continuous					
	Func	ction					
	Heating Pro	cess Stream					
	Heat Duty :	= 9.98KJ/hr					
	Heat transfer	$rarea = 39m^2$					
Shel	l side	Tube	side				
Operating pressure	1 bar	Operating pressure	1 bar				
Temperature in/out	105°C	Temperature in/out	25 - 60°C				
Shell inner dia	0.5m	Tube inner dia	0.03m				
Passes	01	No. of tubes	76				
Pressure Drop	0.0017Psi	Pressure Drop	0.2 Psi				

SPECIFICATION SHEET					
	Identif	ication			
Ite	em	Heat Excl	hanger		
Iten	1 no.	HX-1	07		
No. re	quired	1			
Ту	pe	Shell and Tube H	leat Exchanger		
Oper	ation	Continuous			
	Fund	ction			
	Heating Pro	cess Stream			
	Heat Duty	= 1.74KJ/hr			
	Heat transfer	$area = 29.5 \mathrm{m}^2$			
Shel	l side	Tube	side		
Operating pressure	1 bar	Operating pressure	1 bar		
Temperature in/out	105°C	Temperature in/out	60 - 67°C		
Shell inner dia	0.48m	Tube inner dia	0.03m		
Passes	01	No. of tubes	61		
Pressure Drop	0.5Psi	Pressure Drop	0.005 Psi		

SPECIFICATION SHEET							
Identification							
Ite	em	Heat Exc	hanger				
Iten	1 no.	HX-1	08				
No. re	quired	1					
Ту	ре	Shell and Tube H	leat Exchanger				
Oper	Operation Continuous						
	Fun	ction					
	Heating Pro	cess Stream					
	Heat Duty	= 1.98KJ/hr					
	Heat transfer	area = $69.6m^2$					
Shel	l side	Tube	side				
Operating pressure	1 bar	Operating pressure	1 bar				
Temperature in/out	67-35°C	Temperature in/out	60 - 45°C				
Shell inner dia	0.67m	Tube inner dia	0.03m				
Passes	01	No. of tubes	136				
Pressure Drop	4.4Psi	Pressure Drop	0.3 Psi				

CHAPTER 06 MECHANICAL DESIGN

6.1 Introduction

The chemical engineer will be responsible for developing and specifying the basic design information for a particular vessel, and needs to have a general appreciation of pressure vessel design to work effectively with the specialist designer. The basic data needed by the specialist designer will be:

- 1. Vessel function.
- 2. Process materials and services.
- 3. Operating and design temperature and pressure.
- 4. Materials of construction.
- 5. Vessel dimensions and orientation.
- 6. Type of vessel heads to be used.
- 7. Openings and connections required.
- 8. Specification of heating and cooling jackets or coils.
- 9. Type of agitator.
- 10. Specification of internal fitting

There is no strict definition of what constitutes a pressure vessel, but it is generally accepted that any closed vessel over 150 mm diameter subject to a pressure difference of more than 0.5 bar should be designed as a pressure vessel.

For the purposes of design and analysis, pressure vessels are sub-divided into two classes depending on the ratio of the wall thickness to vessel diameter: thin-walled vessels, with a thickness ratio of less than 1: 10; and thick-walled above this ratio

A torispherical shape, which is often used as the end closure of cylindrical vessels, is formed from part of a torus and part of a sphere. The shape is close to that of an ellipse but is easier and cheaper to fabricate. Under internal pressure a vessel will expand slightly. The radial growth can be calculated from the elastic strain in the radial direction.

6.2 Mechanical Design of CSTR (R-101)

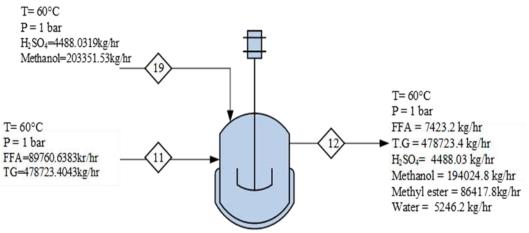


Figure 6.1: Mechanical Design of R-101

Diameter = d = 2.3 m

Operating Pressure = $1 \text{ bar} = 0.1 \text{ N/mm}^2$

Design Pressure

Design pressure is taken as 10% of operating Pressure

 $= 0.1 \times 1.1$

$$= 0.11 \text{ N/mm}^2$$

Material Selection

Stainless steel type 316

- Improve corrosion resistance.
- High strength and resistance to scaling at high temperature.

Cr = 16.5-18.5%, Ni = 10%, C = 0.08%, Mo = 2-3%

Baffle Spacing

4 baffles are used (equally spaced)

$$\pi.D_t/4 = \frac{3.14 \times 1.9}{4}$$
 6.1

= 1.5m

Width of Baffle

$$Dt/12 = \frac{1.9}{12}$$

= 0.16m

Distance from Bottom

$$Dt/2 = \frac{1.9}{2}$$

= 0.9m

Maximum Practical Thickness

As the vessel dia is between 1-2m, so minimum thickness is 7mm

Material = stainless steel 316

Dia = 1.9m = 1900 mm

Length = 2.2m = 2200 mm

Design Stress = f = 170 N/mm (From table 13.2 Coulson Richardson vol 06)

Material	Tensile strength	Design stress at temperature °C (N/mm ²)									
	(N/mm ²)	0 to 50	100	150	200	250	300	350	400	450	500
Carbon steel											
(semi-killed or											
silicon killed)	360	135	125	115	105	95	85	80	70		
Carbon-manganese steel											
(semi-killed or											
silicon killed)	460	180	170	150	140	130	115	105	100		
Carbon-molybdenum steel, 0.5											
per cent Mo	450	180	170	145	140	130	120	110	110		
Low alloy steel											
(Ni, Cr, Mo, V)	550	240	240	240	240	240	235	230	220	190	170
Stainless steel											
18Cr/8Ni											
unstabilised (304)	510	165	145	130	115	110	105	100	100	95	90
Stainless steel											
18Cr/8Ni											
Ti stabilised (321)	540	165	150	140	135	130	130	125	120	120	115
Stainless steel											
18Cr/8Ni											
Mo $2\frac{1}{2}$ per cent											
(316)	520	175	150	135	120	115	110	105	105	100	95

Figure 6.2: Design Stress

Joint efficiency = J = 1 (From table 13.3 Coulson Richardson vol 06)

Temperature = 60°C

Maximum Allowable Pressure

$$e = \frac{PD}{2fJ-P}$$
 6.2
= $\frac{0.11 \times 1900}{2 \times 130 \times 1 - 0.11}$
= 0.6mm+2mm
= 2.6mm

Outer Dia of Shell

$$= Di + 2e$$
 6.3

Table 13.3. Maximum allowable joint efficiency

= 1900 + 2(2.64)

Type of joint	Degree of radiography					
	100 per cent	spot	none			
Double-welded butt or equivalent	1.0	0.85	0.7			
Single-weld butt joint with bonding strips	0.9	0.80	0.65			

Figure 6.3: Maximum Allowable Stress

=1905mm

=1.91m

Heads and Closures

Tori-spherical head is also used because it is suitable for pressure range of 1-10 bar

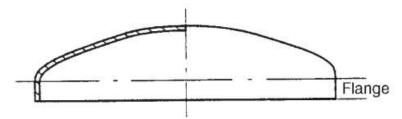


Figure 6.4: Tori Spherical Head

Tori Spherical Head

$$t = \frac{0.885PiRc}{SE - 0.1Pi}$$

$$t = \frac{0.885 \times 0.11 \times 1800}{130 \times 1 - 0.1 \times 0.11}$$

$$= 1 \text{mm} + 2 \text{mm}$$

$$= 3 \text{mm}$$

$$6.4$$

Vessel Support

For the reactor, we use bracket support

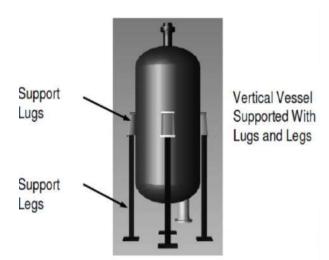


Figure 6.5: Vertical Vessel

Weight Load

 $w = 240 \times Cv \times Dm \times (Hv + 0.8 \times Dm) \times t$ 6.5

Dm = Di + t

$$= 1900 + 2.6$$

= 1903mm

 $W = 240 \times 1.08 \times 1.9 \times (2.2 + 0.8 \times 1.9) \times 2.6 \times 10^{-3}$

= 4.7kN

Wind Load

$$P_w = 1030 \text{N/m}^2$$

Total dia = Dt = Di + t
= 1900 + 2.74
= 1903mm
 $F = PD = 1030 \times 1.9$
= 2441N/m
= 2.4N/mm

Stress Calculations

Longitudinal Stress

$$\sigma_{\rm H} = \frac{PDi}{2t} = \frac{0.11 \times 1900}{2 \times 2.63}$$

$$= 35 \text{N/mm}^2$$
6.7

Circumferential Stress

$$\sigma_{L=} \frac{PDi}{4t} = \frac{0.11 \times 1900}{4 \times 3}$$
= 17N/mm²
6.8

Dead Weight Stress

$$\sigma_{w=} \frac{W}{\pi(Di+t) \times t}$$

$$= \frac{4700}{\pi(1903) \times 2.6}$$

$$= 0.3 \text{N/mm}^2$$
6.9

Radial Stress

$$\sigma_{L=}\frac{Pi}{2}=0.05N/mm$$

Bending Moment

$$M = F \times H = 2.4 \times 1109mm = 2640N$$

Bending Stress

$$\sigma_{b=} \frac{Mx}{lv} \left(\frac{Di}{2} + t \right)$$

$$Lv = (Do^4 - Di^4) / \pi (Di + t) \times t$$

$$= 975 \times 10^3$$
6.10

 $\sigma b = 2.3 \ N/mm^2$

PUMPS AND CONVEYER CALCULATIONS

7.1 Pumps

A pump is a mechanical device that is used to move fluids from one place to another. A hydraulic device transports fluid from low to high-pressure locations and elevates fluids from low to high levels. The pump converts the mechanical energy of the fluid into pressure energy (hydraulic energy). A compressor and a pump both work in the same way. The key distinction is that they employ different operating fluids.

7.2 Types of Pumps

Pumps come in a variety of shapes and sizes, but the two most common varieties are shown below:

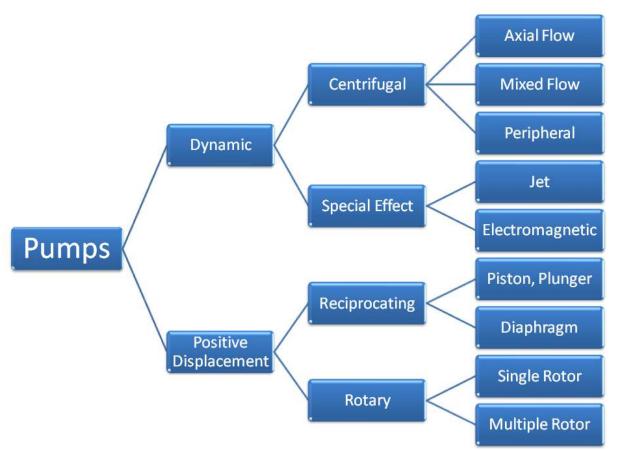


Figure 7.1: Types of Pumps

7.2.1 Positive Displacement Pumps

The liquid is moved through a positive displacement pump by reciprocating, rotational, or pneumatic action. In this case, instead of a steady liquid flow, the fluid is discharged in pulses. These pumps work by allowing a defined volume of fluid to enter the pump chamber through an

inlet valve and then releasing it through an output valve. These pumps are used because they can function in high viscosity fluids at high pressures.

7.2.2 Reciprocating Pump

The quantity of water gathered in an enclosed volume is transferred to discharge by providing pressure to reciprocating pumps. With low volume flow at high pressure, reciprocating pumps are employed. A piston rotates back and forth in a stationary cylinder to power this pump. A connecting rod connects the piston to the crankshaft. This piston moves in response to the movement of the connecting rod, which is caused by the crankshaft. This crankshaft is connected to a motor and aids in its rotation.

7.2.3 Dynamic Pump

The plunger or piston in these kinds of pumps travels both downward and upward. Fresh liquid is pumped into the cylinder during the suction stroke. The inlet valve closes and the discharge stroke begins when the cylinder has been filled. Pressurized liquid discharges from the outlet valve when the outlet opens during the discharge stroke. A check valve is present on the liquid's intake and outflow sides to stop the liquid from flowing backward.

7.2.4 Centrifugal Pump

Centrifugal pumps work by providing centrifugal force to fluids, which is often done with the use of impellers. These pumps are commonly used in chemical process industries for moderate to high flow applications with low pressure head. Radial, mixed, and axial flow centrifugal pumps are the three types of centrifugal pumps.

7.2.5 Special Effect Pump

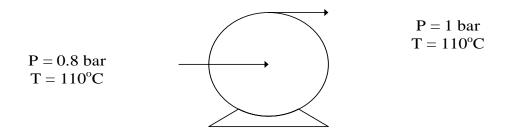
Special effects pumps are another name for kinetic pumps. This sort of pump still uses kinetic and velocity energy to provide energy, but it does it in a different way than centrifugal pumps.

7.3 Selection Criteria of Pumps

A variety of factors might impact the ultimate pump selection for a given operation. The following is a summary of the most important elements to consider while choosing a pump.

- The volume of liquid that needs to be pushed.
- The fluid's characteristics.

- The fluid concentration rises as a result of the pump's action.
- Different types of flow distributions
- Different types of power supplies.
- The pump's cost and mechanical efficiency. We chose centrifugal pumps for a procedure because of the advantages listed below.


7.4 Advantages

- They are easy to use and inexpensive.
- Fluid is given at a constant pressure with no pulsation or shocks.
- Pumping does not need the use of any valves.
- They run at a high speed (up to 4000 rpm), therefore they may be directly linked to an electric motor
- Without altering the pump, the discharge line can be partially or totally shut off.
- They are a lot smaller than other pumps with the same capacity.
- Maintenance is less expensive compared with other types of pumps.

7.5 Reciprocating Pump (P-101)

Due to pipe losses entry pressure is taken as

 $P_i = 0.8 \text{ bar}$

P-101

Figure 7.2: Pump (P-101)

$$\Delta P = P_f - P_i$$

= 1-0.8 = 0.2 bar

Calculating Head

$$\Delta H = \frac{\Delta P}{\rho g}$$

$$= \frac{20 \times \frac{10^3 kg}{m.s^2}}{910 \frac{kg}{m^3} \times \frac{9.8m}{s}}$$

$$\Delta H = 2.24 m$$

$$7.1$$

Water Horsepower

$$P_f = Q \times \gamma \times \Delta H \tag{7.2}$$

Where,

 $\gamma = \rho g$

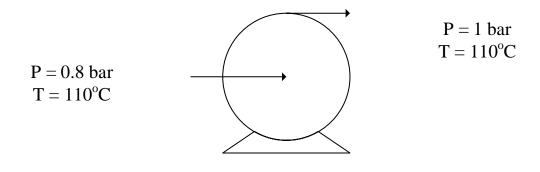
$$Q(volumetric flowrate) = \frac{568484 \frac{kg}{hr}}{910 \frac{kg}{m^3}}$$

$$= \frac{625 m^3}{hr} \times \frac{1 hr}{60 min} \times \frac{1 min}{60 sec}$$
$$= \frac{0.17m^3}{s}$$

$$P_f = \frac{0.17m^3}{s} \times \frac{910kg}{m^3} \times \frac{9.8m}{s^2} \times 2.2 m$$

Brake Horsepower

$$P_B = \frac{P_f}{\eta}$$


Efficiency is taken as

η= 72%

$$P_B = \frac{3532}{0.72}$$

= 4905 watts = 6.5 hp

7.6 Reciprocating Pump (P-102)

Figure 7.3: Pump (P-102)

Due to pipe losses entry pressure is taken as

 $P_i = 0.8 \text{ bar}$

$$\Delta P = P_f - P_i$$
 7.3
= 1-0.8 = 0.2 bar

Calculating Head

$$\Delta H = \frac{\Delta P}{\rho g}$$

$$=\frac{20\times\frac{10^3kg}{m.s^2}}{1123\frac{kg}{m^3}\times\frac{9.8m}{s}}$$

 $\Delta H = 1.8 m$

Water Horsepower

$$P_f = Q \times \gamma \times \Delta H$$

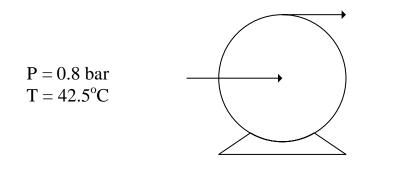
Where,

 $\gamma = \rho g$ $Q(\text{volumetric flowrate}) = \frac{605873 \frac{kg}{hr}}{1123 \frac{kg}{m^3}}$ $= \frac{539.5 \, m^3}{hr} \times \frac{1 \, hr}{60 \, min} \times \frac{1 \, min}{60 \, sec}$ $= \frac{0.15m^3}{s}$ $P_f = \frac{0.15m^3}{s} \times \frac{1123 \, kg}{m^3} \times \frac{9.8m}{s^2} \times 1.8 \, m$ = 2971 watt

= 2971 W

Brake Horsepower

$$P_B = \frac{P_f}{\eta}$$


Efficiency is taken as

 $\eta = 72\%$

$$P_B = \frac{2971}{0.72}$$

= 4127 watts = 5.5 hp

7.7 Centrifugal Pump (P-103)

P = 1 bar $T = 42.5^{\circ}C$

P-103

Figure 7.4: Pump (P-103)

Due to pipe losses entry pressure is taken as

 $P_i = 0.8 \text{ bar}$ $\Delta P = P_f - P_i$ = 1-0.8 = 0.2 bar

Calculating Head

$$\Delta H = \frac{\Delta P}{\rho g}$$
$$= \frac{20 \times \frac{10^3 kg}{m \cdot s^2}}{1051 \frac{kg}{m^3} \times \frac{9.8m}{s}}$$
$$\Delta H = 1.9 m$$

Water Horsepower

$$P_f = Q \times \gamma \times \Delta H$$

Where,

 $\gamma = \rho g$

$$Q(volumetric flowrate) = \frac{571446.8 \frac{kg}{hr}}{1051 \frac{kg}{m^3}}$$
$$= \frac{543.7 m^3}{hr} \times \frac{1 hr}{60 \min} \times \frac{1 \min}{60 \sec}$$
$$= \frac{0.15m^3}{s}$$
$$P_f = \frac{0.15m^3}{s} \times \frac{1051 kg}{m^3} \times \frac{9.8m}{s^2} \times 1.9m$$
$$= 2935 \text{ watt}$$

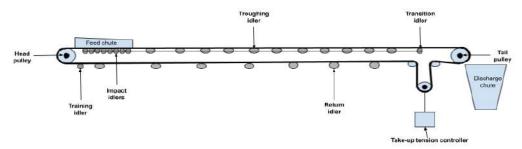
$$P_B = \frac{P_f}{\eta}$$
 7.4

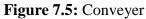
Efficiency is taken as

$$\eta = 72\%$$

 $P_B = \frac{2935}{0.72}$

= 4076 watts = 5.4 hp


SPECIFICAT	FION SHEET
Identif	ication
Item	Pump (P-101)
Туре	Reciprocating
head	1.24 m
Fun	ction
To increase pressure from 0.8 bar to 1 bar	
Mass flow rate	568484 kg/hr
density	910 kg/m ³
Pump work	6.5 hp


SPECIFICAT	FION SHEET
Identif	ïcation
Item	Pump (P-102)
Туре	Reciprocating
head	1.8 m
Fun	ction
To increase pressure from 0.8 bar to 1 bar	
Mass flow rate	605873 kg/hr
density	1123 kg/m ³
Pump work	5.5 hp

SPECIFICATION SHEET		
Identification		
Item	Pump (P-103)	
Туре	Centrifugal	
head	1.9 m	
Function		
To increase pressure from 0.8 bar to 1 bar		
Mass flow rate	571446.8 kg/hr	
density	1051 kg/m ³	
Pump work	5.4 hp	

7.8. Conveyers

A conveyor system is a mechanical handling device that moves loads and materials automatically within a place swiftly and efficiently. This method minimizes human error, reduces workplace dangers, and lowers labor costs, among other benefits. They are being handy when moving bulky or heavy goods from one location to another. A conveyor system may use a belt, wheels, rollers, or a chain to transfer objects.

7.9 Types of Conveyers

Following are the type of conveyers

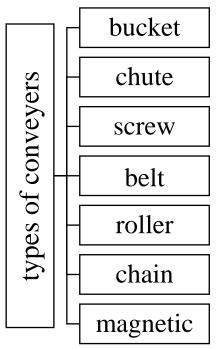


Figure 7.6: Types of Conveyer

7.9.1 Chute Conveyers

One of the least expensive means of material conveyance is the chute conveyor. The most straightforward gravity-operated conveyor is this one. A spiral chute can be utilized to move products between floors with the least amount of space needed, whereas a chute conveyor is used to supply accumulation in shipping areas. The lack of control over the material being delivered is the fundamental drawback of chute conveyors, notwithstanding its affordability. The packages may have a propensity to shift and turn, causing jams and blockages.

7.9.2 Screw Conveyers

By rotating a "fighting," or helical screw blade, usually inside of a tube, a screw conveyor, also known as an auger conveyor, conveys liquid or granular materials. They are used in many bulk handling industries. Screw conveyors are widely employed in modern industry to move semi-solid materials such as food waste, wood chips, aggregates, cereal grains, animal feed, boiler ash, meat and bone meal, municipal solid waste, and many others horizontally or at a little slope.

7.10. Screw Conveyer (CN-101)

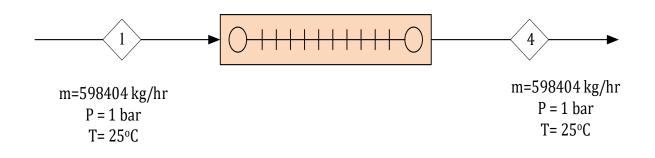


Figure 7.7: Screw Conveyer (CN-101)

Initial size of fat = 50.8 mm = 0.05 m

Final size of fat = 14.5 mm = 0.0145 m

Work Index

As fat is very soft material, therefore

Wi = 0.3 kWh/ton

Power

$$\frac{P}{m} = K_B \times \left[\frac{1}{\sqrt{D_2}} - \frac{1}{\sqrt{D_1}}\right]$$
7.5

 $K_B=0.3162Wi$

$$m = 598404 \frac{kg}{hr} \times \frac{1 \text{ ton}}{1000 \text{ kg}}$$

= 598.4 ton/hr

 $P = 598.4 \times 0.3162 \times 0.05 \times 0.12$

P = 6.8 kW = 9.1 hp

SPECIFICAT	FION SHEET	
Identification		
Item	Conveyer (CN-101)	
type	Screw conveyer	
Operation	Continuous	
Fune	ction	
To transport the fat to the heater and also reduce its size		
Mass flow rate	598404 kg/hr	
Work index	0.3 kWh/ton	
Power	9.1 hp	

CHAPTER 08 COST ESTIMATION

8.1 Cost estimation

Any industrial process necessitates a capital expenditure, and determining the required investment is an important aspect of the plant design project. Although there are many names for these estimations, the five categories listed below capture the classification and accuracy range that are frequently employed in design.

- Order of magnitude calculations
- Estimate from the study (factorial estimate)
- Budget authorization estimate for preliminary estimations
- Final cost estimation (project control cost estimation)
- Exact estimate (estimate from the contractor)

8.2 Working Capital

Working capital refers to the money needed to keep the plant running. The following items should be considered when calculating working capital:

- Stockpiles of raw materials and supplies
- Semi-finished items in the manufacturing process and final products in stock.
- Receivables (accounts receivable)
- Cash is maintained on hand to cover monthly operational costs including salaries, wages, and raw material purchases.
- Accounts receivable
- Taxes payable

8.3 Fixed Capital Investment

Long-term asset investments and upkeep are included in fixed capital investments. Investments in physical assets, such as property, plant, and equipment, are included (PP&E). The difference between capital expenditures on property, plant, and equipment (PP&E) and the sale of fixed assets is used to compute it. Fixed capital investment is a key component in calculating the firm's free cash flow (FCFF). Fixed capital investment for FCFF computation is computed using one of the following formulae if a firm's long-term assets are not sold during the financial year:

 FC_{INV} = closing gross value of PP&E – opening gross value of PP&E

 FC_{INV} = closing net value of PP&E – opening net value of PP&E + Depreciation

8.4 Depreciation

Depreciation is an accounting term that describes a method of dispersing the cost of a physical item over the course of its useful life. The term "depreciation" refers to the amount of an asset's value that has been used up. It enables companies to purchase assets over time and generate income from them. If depreciation is not taken into account, it could significantly affect a company's profitability. For tax and accounting reasons, long-term investments might also be written off as expenses.

8.5 Cost Indexes

A cost is similar to an index value for a particular moment in time that shows the cost at that point in time in relation to a base time. As a result, the current cost is approximated using the cost index as follows:

 $\frac{\text{Present cost}}{\text{Index at present time}} = \frac{\text{Original cost}}{\text{Index value at original cost}}$

Various forms of cost indices are released on a regular basis. Some may be used to estimate the cost of equipment, some are more pertinent to the labor, building, materials, or other specialized industries. These indicators' most popular measurements are

- Equipment for various industries and processes, Marshal-and-Swift
- Engineering news contraction cost index records

8.6 Assumptions

We have taken following assumptions

- Plant is 100% equity financed
- Plant initiates operation in 5-8 years
- Plant life is 20 years
- Plant availability is 330 days per year
- Zero salvage value for general plant

- MACRS depreciation method will be used
- Working capital is 15% of fixed capital investment

8.7 Purchased Cost of Equipment 2003

Agitator (A-101)

C = 1.218 exp
$$[a + b \ln HP + c(\ln HP)^2$$

Type SS-316
Speed : 2
HP = 0.6hp
C = 5986\$

Agitator (A-102)

 $C = 1.218 \exp \left[a + b \ln HP + c(\ln HP)^2\right]$

• Type: Carbon Steel

Speed : 2 HP = 1.6hp C = 5416\$

Conveyer (CN-101)

Screw Conveyer (SS)

$$C = 0.85 L^{0.78}$$
 $C = 18.9K$
8.2

Filter (F-101)

• Type: Rotary drum scraper discharge

$$C = 1.218 \exp \left[11.27 + 1.3408 (lnA) + 0.0709 (lnA)^2 \right]$$
8.3

C = 3024360\$

CHAPTER 08

Cooling Tower (CT-101)

$$C = 164 f Q^{0.61}$$
 8.4
 $Q = 37916.6 g a l/min$
 $C = 203958$

Pump (P-101)

Type: Reciprocating

$$C = 1407 F Q^{0.52}$$
 8.5
 $Q = 2463.4 gal/min$
 $C = 69827$ \$

Pump (P-102)

Type: Reciprocating

 $C = 1407 F Q^{0.52}$ Q = 2463.4 gal/minC = 9885\$

Pump (P-103)

• Type: Centrifugal

$$\mathbf{C} = \mathbf{F}_{\mathbf{M}} \cdot \mathbf{F}_{\mathbf{T}} \cdot \mathbf{C}_{\mathbf{b}}$$

 $F_T = \exp [b_1 + b_2 (\ln Q \sqrt{H}) + b_3 (\ln Q \sqrt{H})^2]$

Q = 2476 gal/min b_1 = 5.103 b_2 = -1.2217 b_3 = 0.0771 F_T = 1.75 Reactor (R-101)

$$C_b = 3 \exp \left[8.83 - 0.6019 \left(lnQ\sqrt{H} \right) + 0.0519 (lnQ\sqrt{H})^2 \right]$$
$$C_b = 7321.8$$
$$C = 17298\$$$

 $C = F_M C_b + C_a$ 8.7 $C_a = 480 \times D^{0.74} \times L^{0.7066}$ $C_a = 7522$

- $C_b = 1.672 \ exp[9.1 + 0.2889 \ (lnW) + 0.04576 \ (lnW)^2]$
 - $C_b = 918620$ C = 1936624\$

Reactor (R-102)

 $C = F_M C_b + C_a$ $C_a = 480 \text{ x } D^{0.74} \text{ x } L^{0.7066}$ $C_a = 6767.9$ $C_b = 1.672 \exp[9.1 + 0.2889 (\ln W) + 0.04576 (\ln W)^2]$ $C_b = 987393$

C = 994161\$

Evaporator (V-101)

$$C = 1.218 \exp[3.24 - 0.0126 (lnA) + 0.0244 (lnA)^2]$$
 8.8

$$C = 84700$$
\$

 $A = 805 ft^{2}$

Washing Unit (C-101)

Type: Packed Column

CHAPTER 08

Packing type = Ceramic rashing rings

$$\begin{split} C &= 1.218 \; [f_1 \; C_b + V_p \; C_p + C_{p1}) \\ C_b &= 1.218 \; exp[6.63 + 0.18 \; (lnW) + 0.023 \; (lnW)^2] \\ C_b &= 10272 \\ C_p &= 300 \; x \; D^{0.74} \; x \; L^{0.7068} \\ C_p &= 4231.5 \\ C &= 28687 \$ \end{split}$$

Kettle Type Heater(H-101)

$$C = 1.218 \text{ .fd.fm.fp.Cb}$$
8.10

$$A = 506 \text{ft}^2$$

$$C_b = \exp[8.821 \text{- } 0.3086 (\ln \text{A}) + 0.0681 (\ln \text{A})^2]$$

$$C_b = 5666$$

$$f_d = 1.35, f_p = 1$$

 $f_m = g_1 + g_2(lnA)$
 $f_m = 2.3$
 $C = 21428$

Waste Heat Boiler (WHB-101)

$$C = 1.218$$
 .fd.fm.fp.Cb

$$A = 678 ft^{2}$$

$$C_b = exp[8.821 - 0.3086 (lnA) + 0.0681 (lnA)^2]$$

$$C_b = 16317$$

 $f_d = 0.64, f_p = 1$
 $f_m = g_1 + g_2(lnA)$

 $f_m = 2.4$ C = 30527\$

Waste Heat Boiler (WHB-109)

$$C = 1.218 \text{ .fd.fm.fp.Cb}$$
$$A = 603 \text{ft}^2$$
$$C_b = \exp[8.821 \text{- } 0.3086 \text{ (lnA)} + 0.0681 \text{ (lnA)}^2]$$
$$C_b = 14765$$
$$f_d = 0.64, f_p = 1$$

$$\mathbf{f}_{\mathrm{m}} = \mathbf{g}_1 + \mathbf{g}_2(\mathbf{lnA})$$

 $f_m = 1.84$

C = 21177\$

Heat Exchanger (HX-102)

• Type: Shell and Tube

$$C = 1.218$$
 .fd.fm.fp.Cb

 $C_b = exp[8.821 \text{-} 0.3086 \ (lnA) + 0.0681 \ (lnA)^2]$

 $C_b = 15229.6$ $f_d = 0.58,$ $f_p = 1$ $f_m = g_1 + g_2(lnA)$ $f_m = 2.3$ C = 24745

Heat Exchanger (HX-103)

• Type: Shell and Tube

$$C=1.218.fd.fm.fp.Cb\\$$

 $A = 871.8 ft^2$

$$C_b = \exp[8.821 - 0.3086 (\ln A) + 0.0681 (\ln A)^2]$$

 $C_b = 19359.6$ $f_d = 0.66, f_p = 1$ $f_m = g_1 + g_2(lnA)$ $f_m = 1.9$ C = 29569

Heat Exchanger (HX-104)

• Type: shell and tube

C = 1.218. fd.fm.fp. Cb

 $A = 818 ft^{2}$

 $C_b = \exp[8.821 - 0.3086 (\ln A) + 0.0681 (\ln A)^2]$

 $C_{b} = 18108.7$ $f_{d} = 0.65, f_{p} = 1$ $f_{m} = g_{1} + g_{2}(lnA)$ $f_{m} = 1.819$ C = 27096\$

Heat Exchanger (HX-105)

C = 1.218 .fd.fm.fp.Cb

 $A = 893.4 ft^{2}$

 $C_b = \exp[8.821 - 0.3086 (lnA) + 0.0681 (lnA)^2]$

 $C_b = 19310.4$

$$f_{d} = 0.66,$$

$$f_{p} = 1$$

$$f_{m} = g_{1} + g_{2}(lnA)$$

$$f_{m} = 1.9$$

$$C = 29494\$$$

Heat Exchanger (HX-106)

• Type: shell and tube

 $A = 423 ft^2$

 $C_b = exp[8.821 - 0.3086 (lnA) + 0.0681 (lnA)^2]$

 $C_{b} = 12647.9$ $f_{d} = 0.62,$ $f_{p} = 1$ $f_{m} = g_{1} + g_{2}(lnA)$ $f_{m} = 1.78$ C = 17001

Heat Exchanger (HX-107)

$$C = 1.218$$
 .fd.fm.fp.C_b

$$A = 318 ft^2$$

- $C_b = exp[8.821 0.3086 (lnA) + 0.0681 (lnA)^2]$
 - $C_b = 10938$ $f_d = 0.6$,

 $f_p = 1$

```
f_m = g_1 + g_2(lnA)
f_m = 1.7
C = 25855$
```

Storage Tank (T-101)

$$C = 1.218.F_{M}exp[2.631+1.3673(lnV) + 0.0631 (lnV)^{2}]$$

$$F_{M} = 2.7$$

$$Q = 2593gal/min$$

$$C = 36095\$$$

Storage Tank (T-102)

 $F_M = 2.7$

V = 2463 gal/min

 $C = 1.218 \times F_M \times exp [2.631+1.367(lnv)-0.0631(lnv)^2]$

C=44087 \$

Storage Tank (T-103)

 $F_M = 2.7$

V = 901 gal/min

 $C = 1.218 \times F_M \times exp [2.631+1.367(lnv)-0.0631(lnv)^2]$

C=26740 \$

Storage Tank (T-104)

 $F_M\!=\!\!2.4$

V = 481 gal/min

 $C = 1.218 \times F_M \times exp [2.631+1.367(lnv)-0.0631(lnv)^2]$

C= 17924 \$

Storage Tank (T-105)

 $F_M = 2.4$

V =2472/min

 $C = 1.218 \times F_M \times exp [2.631+1.367(lnv)-0.0631(lnv)^2]$

Decanter (S-101)

 $C = F_M . C + C_a$ 8.12 $F_M = 2.1 (SS-316)$ $w)+0.043(lnw)^2 l$, w = 5300N = 1191.5lb

$$C_b = 1.672 \exp \left[8.571 - 0.233 (\ln w) + 0.043 (\ln w)^2 \right]$$
, $w = 5300N = 1191.510$

 $C_b = 15291$

- $C_a = 2291 \times D^{0.203} \qquad \qquad , D = 2.6m = 8.5 ft$
 - $C_a = 3537.5$ $C = F_M C_b + C_a$ C = 35649\$

Decenter(S-102)

 $C = F_M . C + C_a$ $F_M = 1.7$

 $C_b = 1.672 \exp \left[8.571 - 0.233 (\ln w) + 0.043 (\ln w)^2 \right]$

 $C_b = 15291$

 $C_a = 2291 \times D^{0.203} \qquad \ \ \, ^{,} D = 2.7m = 8.6ft$

 $C_a = 3545.9$

 $C = F_M \; C_b + C_a$

C = 29541 \$

,

CHAPTER 08

Decanter(S-103)

$$C = F_{M} \cdot C + C_{a}$$

$$F_{M} = 1.7$$

$$C_{b} = 1.672 \exp \left[8.571 \cdot 0.233(\ln w) + 0.043(\ln w)^{2}\right]$$

$$C_{b} = 14545$$

$$C_{a} = 2291 \times D^{0.203} \quad D = 2.5m = 8.2ft$$

$$C_{a} = 3511$$

$$C = F_{M} \cdot C_{b} + C_{a}$$

$$C = 28238 \$$$

Cyclone

• Standard duty

$$C = 1.05 Q^{0.91}$$
 , $Q = ft^3/min$

 $Q = 368.4 \text{ ft}^3/\text{min}$

$$C = 227k$$
\$

Distillation Column(D-101)

$$\begin{split} C &= [f_1 \ C_b + N f_2 f_3 f_4 C_b + C_{pt} \] &, SS-316 \ , \ f_1 = 2.2 \\ f_2 &= 1.401 + 0.0724 D = 1.54 \\ f_3 &= 0.95 \\ D &= 1.9 m = 6.2 ft \ , \\ L &= 11.3 m = 37.4 ft \\ f_4 &= \frac{2.25}{(10414)^N} = 1.08 \times 10^{-72} & . \ N = 18 \\ , \ wall \ thickness = T_p = 0.5 in \ , bottom \ thickness = T_b = 0.75 in \end{split}$$

$$C_{\text{pt}} = 249.6 \times D^{0.6332} \times L^{0.8016} = 14448$$

$$C_t = 457.7 \exp(0.1739 D) = 1345$$

W = 32129lb

 $C_b = 1.218 \exp \left[7.123 + 0.1478(\ln w) + 0.025(\ln w)^2 + 0.0158 L/D \times \ln T_b / T_p\right]$

= 98602

$$C = 1.218 \exp \left[2.1 \times 98602 + 18 \times 0.95 \times 1.1 \times 10 - {}^{72} \times 1345 + 14448\right]$$

= 253968\$

Distillation Column(D-102)

$$\begin{split} C &= [f_1 \, C_b + N f_2 f_3 f_4 C_b + C_{pt} \,] \qquad, SS-304 \ , \ f_1 &= 1.7 \\ f_2 &= 1.189 + 0.058 D = 1.5 \\ f_3 &= 0.95 \ \ (sieve) \\ D &= 1.67 m = 5.5 ft \ , \ L &= 10 m = 32.8 ft \\ f_4 &= \frac{2.25}{(10414)^N} = 1.2 \times 10^{-64} \ \ , \ N &= 16 \end{split}$$

, wall thickness = $T_p = 0.5$ in ,bottom thickness = T_b =0.75in

$$C_{pt} = 249.6 \times D^{0.63} \times L^{0.802} = 11878.6$$
$$C_t = 457.7 exp(0.1739D) = 1195$$
$$W = 32129lb$$

 $C_b = 1.218 \; exp \; [7.123 + 0.1478 (lnw) + 0.025 (lnw)^2 + 0.0158 \; L/D \; \times lnT_b \; /T_p]$

= 98440.7

$$C = [f_1 C_b + Nf_2 f_3 f_4 C_b + C_{pt}] = 218299\$$$

Reboiler (RB-101)

$$A = 51m^2 = 549ft^2$$

$$C = 1.218.f_{d}.f_{m}.C_{b}$$

$$f_{d} = 1.35$$

$$f_{p} = 1$$

$$f_{m} = g_{1} + g_{2}(\ln A) , (SS-316)$$

$$= 2.3$$

$$C_{b} = \exp [8.821 - 0.3086(\ln A) + 0.0681(\ln A)^{2}]$$

$$= 14764.7$$

$$C = 1.218.f_{d}.f_{m}.C_{b}$$

$$= 55840\$$$

$$A = 54m^{2} - 581ft^{2}$$

A = $54m^2 = 581ft^2$ C = $1.218.f_d.f_m.C_b$ $f_d = 1.35$ $f_p = 1$ $f_m = g_1 + g_2(\ln A) = 1.8$ (SS-304)

 $C_b = exp \ [8.821 - 0.3086(lnA) + 0.0681(lnA)^2 \]$

= 14058.7

 $C=1.218.f_d.f_m.C_b \\$

= 41610\$

Condenser (RF-101)

Reboiler (RB-102)

 $A = 49m^2 = 527.4ft^2$ 'u-tube

$$f_d = exp [-0.9816 + 0.83(lnA)] = 0.6$$

$$f_p = 1$$

$$f_m\!=\!g_1\!\!+\!g_2(lnA)$$
 , (SS-316)

= 2.3

 $C_b = \exp [8.821 - 0.309(\ln A) + 0.0681(\ln A)^2]$

= 14486.8

$$C = 1.218.f_{d}.f_{m}.C_{b}$$

=24350\$

Condenser (RF-102)

$$\begin{split} A &= 52m^2 = 559.7 ft^2 \ , \\ f_d &= exp \left[-0.9816 + 0.83(lnA) \right] \\ &= 0.6 \\ f_p &= 1 \\ f_m &= g_1 + g_2(lnA) \ , (SS-304) \\ &= 1.8 \\ C_b &= exp \left[8.821 - 0.309(lnA) + 0.0681(lnA)^2 \right] \\ &= 14342.7 \end{split}$$

 $C=1.218.f_d.f_m.C_b$

=18866.9\$

8.8 Total purchased cost 2022 Cost Index

Cost index 2003 = 402

Cost index 2022 = 808.7

Cost in 2020 = cost in 2003 × (*cost index* 2022)/(*cost index* 2003)

PURCHASED COST 2022			
EQUIPMENT	COST (\$)		
AGIT	ATORS		
A-101	1.2×10^4		
A-102	1×10 ⁴		
CON	VEYER		
CN-101	3.8×10^4		
FII	LTER		
F-101	6×10 ⁶		
COOLIN	G TOWER		
CT-101	4.1×10 ⁵		
PU	MPS		
P-101	1.4×10^{5}		
P-102	1.9×10^4		
P-103	3.4×10 ⁴		
REACTORS			
R-101	7.7×10 ⁶		
R-102	1.9×10^{6}		
EVAPO	DRATOR		
V-101	1.7×10 ⁵		
WASHI	NG UNIT		
C-101	5.7×10 ⁴		
KETTLE TYP	E EXCHANGER		
H-101	4.3×10 ⁴		
WASTE HI	EAT BOILER		
WBH-101	6.1×10^4		
WHB-102	4.2×10^4		
HEAT EX	CHANGERS		

Table 8.1: Purchased Cost 2022

HX-102	4.9×10^4
HX-103	5.9×10^4
HX-104	5.4×10^4
HX-105	5.9×10^4
HX-106	3.4×10^4
HX-107	2.7×10^4
HX-108	5.2×10^4
STORAG	E TANKS
T-101	7.2×10^4
T-102	8.8×10^4
T-103	5.3×10^4
T-104	3.6×10 ⁴
T-105	8×10^{4}
DECA	NTER
S-101	7.1×10^4
S-102	5.9×10^4
S-103	5.6×10^4
CYCI	LONE
CS-101	4.5×10^{5}
DISTILLATI	ON COLUMN
D-101	5.1×10 ⁵
D-102	4.3×10 ⁵
REBO	ILERS
RB-101	1.1×10 ⁵
RB-102	8.3×10 ⁴
CONDE	ENSORS
RF-101	4.8×10^4
RF-102	3.7×10 ⁴
TO	ΓAL
1.9>	×10 ⁷

8.9 Direct Cost

Items	% of Total purchased cost	%	Cost (\$)
Purchased equipment	-	100	19.4×10 ⁶
Installation	25-55	40	7.8×10 ⁶
Instrumentation and control	6-30	18	3.5×10 ⁶
Piping	40-80	60	11.7×10 ⁶
Electricity	10-15	12.5	2.4×10 ⁶
Building	15	15	2.9×10 ⁶
Land	4-8	6	1.1×10 ⁶
Service facility	30-80	55	10.7×10 ⁶
Yard Improvement	10-20	15	2.9×10 ⁶
Insulation Cost	8-9	8.5	1.6×10 ⁶
Total			64.2×10 ⁶

Table 8.2: Direct Cost

8.10 Indirect Cost

Table 8.3: Indirect Cost

Items	Range (%)	%	Cost (\$)
Engg and supervision	25% of Direct cost	25	16×10 ⁶
Contractor fees	2-8% of Direct cost	5	3.2×10^{6}
Construction expenses	10% of Direct cost	10	6.4×10 ⁶
Contingencies	8% of Direct cost	8	5.1×10 ⁶
Total			30.8×10 ⁶

Fixed Capital Investment		
	FCI = direct cost + indirect cost	8.13
	$=95 \times 10^{6}$ \$	
Working Capital		
	WCI = 15% of FCI	8.14
	$= 14.3 \times 10^{6}$ \$	
Total Capital Investment		
	TCI = FCI + WCI	8.15
	$= 1.1 \times 10^8$ \$	
8.11 Variable Cost		
Raw Material Cost		
 Chicken Fat 		
	Price per kg = $0.09 $ \$/kg	
	Flowrate = 4.7×10^9 kg/yr	
	Total price = 423×10^6 \$/yr	
 Methanol 		
	Price per kg = $0.25 $ \$/kg	
	Flowrate = $2.4 \times 10^9 \text{ kg/yr}$	
	Total price = 600×10^6 \$/yr	
 Sulphuric Acid 		
	Price per kg = $0.62 $ \$/kg	
	Flowrate = 35.5×10^6 kg/yr	
	Total price = 22×10^6 \$/yr	

• KOH

Price per kg = $0.52 $ \$/kg
Flowrate = $57 \times 10^6 \text{ kg/yr}$
Total price = 29×10^6 \$/yr

Total Raw Material Cost

 $= 1.1 \times 10^9$ \$/yr

Miscellaneous Cost

Maintenance cost = 7% of FCI 8.16
=
$$7.7 \times 10^6$$
 \$/yr

Miscellaneous material = 10% of maintenance cost 8.17

 $= 770 \times 10^3$ \$/yr

Utilities Cost

Steam Cost

Price per kg = 0.02 \$/kg Flowrate = 4.8×10^9 kg/yr Total price = 96×10^6 \$/yr

Water Cost

Price per kg = 1.8×10^{-5} \$/kg Flowrate = 6.9×10^{10} kg/yr Total price = 1.2×10^{6} \$/yr

I I I

Total Utility Cost

= steam cost + water cost

 $= 97.2 \times 10^6$ \$/yr

Variable cost = raw material cost + miscellaneous cost + utility cost = 1.2×10^9 \$/yr

8.12 Fixed Operating Cost

Туре	%FCI	Cost (\$)
Maintenance cost	7	6.65×10 ⁶
Operating cost of labor	10	9.5×10 ⁶
Laboratory cost	20	19×10 ⁶
Supervision cost	15	14.3×10 ⁶
Plant overhead	50	47.5×10 ⁶
Capital Charges	10	9.5×10^{6}
Insurance	1	950×10 ³
Local Taxes	2	1.9×10^{6}
Royalties	1	950×10 ³
Total		110.2×10 ⁶

Table 8.4: Fixed Operating Cost

Direct Production Cost

= variable cost + fixed operating cost	8.18
--	------

 $= 1.21 \times 10^9$ \$/yr

Overhead Charges

= 30% of direct production cost

 $= 390 \times 10^{6}$ \$/yr

Manufacturing Cost

= overhead cost + direct production cost

 $= 1.3 \times 10^9$ \$/yr

General Expenses

Function	% of manufacturing cost	Cost(\$)
Administration	2	33.8×10 ⁶
Distribution and marketing	2	33.8×10 ⁶
Research and development	5	84.5×10 ⁶
Total		152×10 ⁶

Table 8.5: General Expenses

Total Production Cost

= manufacturing cost + general expense

 $= 1.7 \times 10^9$ \$/yr

8.13 Profitability analysis

Production Cost

Total production rate = 4.5×10^9 kg/yr

 $Production \ cost = \frac{total \ production \ cost}{total \ production \ rate}$ 8.19

= 0.3\$/kg

Selling Price

Price of biodiese	l in Market =	0.8 \$/kg
-------------------	---------------	-----------

Selling price of product = 0.4 \$/kg

Profit

Profit = Selling price - production cost

= 0.1 \$/kg

Profit per year = 4.5×10^8 \$/yr

Total Income

Selling Price = 0.4 \$/kg

Total Production rate = 4.5×10^9 kg/yr

Total Income = 1.78×10^9 \$/yr

Gross Profit

= Total Income - Total Production Cost

 $= 80 \times 10^{6}$ \$/yr

Depreciation

Machinery and equipment = 20% of FCI

 $= 19 \times 10^{6}$ \$/yr

Building = 4% of Building cost

 $= 113 \times 10^{3}$ /yr

Total Depreciation = Machinery and equipment + Building

 $= 19.1 \times 10^{6}$ \$/yr

Taxes

Let the tax rate is 40%

Taxes = $0.4 \times \text{Gross Profit}$

COST ESTIMATION

 $= 32 \times 10^{6}$ \$/yr

Net Profit

 $= 60.9 \times 10^6$ \$/yr

Net Profit = Net Profit before Taxation – Taxes

 $= 28.9 \times 10^6$ \$/yr

Rate of Return

rate or return = $\frac{\text{net profit}}{\text{total capital investment}} \times 100$ 8.20

Payback Period

Payback period = $\frac{1}{rate \text{ or return}} = 3.8 \text{ years}$

8.14 Discounted Cashflow

Total Capital Cost

$$= C_{FC} + C_L + C_{WC}$$
 8.21

 $C_{FC} = Fixed Capital$

 $C_L = Land \ Cost$

Cwc = Working Capital

Annual Expense

= Cost of manufacturing

$$COM = 0.304FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{RM})$$
8.22

 $C_{OL} = Cost of Labor$

 $C_{UT} = Utilities Cost$

C_{RM} = Raw Material Cost

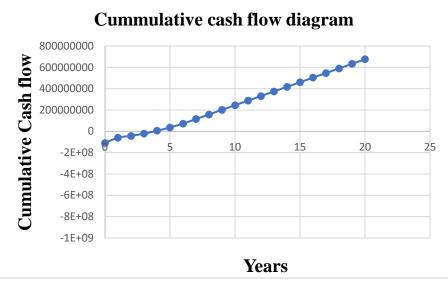


Figure 8.1: Cumulative Cash Flow Chart

8.15 Net Present Worth

Minimum Acceptable Rate of Return

(MARR) = 15%

Internal Rate of Return = I %

$$NPV = \frac{Net Profit((1+i)^n - 1)}{i(1+i)^n} - TCI = 0$$
8.23

By hit and trial method

IRR = 0.6

 $NPV = 1×10^{9}

This shows that

IRR > MARR

So, project is profitable and acceptable. Also

NPV > 0,

So, the investment is economically feasible

years	Gross	Annual	Investment	Cashflow	Depreciation	Taxable	Taxes	Cashflow	Cumulative
	income	Expense	and	before		income		after tax	cash flow
	(\$)		salvage	tax					
			value						
0	-	-	-95100000	-95100000					-95100000
0	-	-	-1170000	-1170000					-96270000
0	-	-	-14200000	-14200000					-109300000
1	1780000000	145490000		1634510000	62111380	83378620	33351448	50027172	-59272828
2	1780000000	145490000		1634510000	117684720	27805280	11122112	16683168	-42589660
3	1780000000	145490000		1634510000	109512170	35977830	14391132	21586698	-21002962
4	1780000000	145490000		1634510000	101339620	44150380	17660152	26490228	5487266
5	1780000000	145490000		1634510000	93167070	52322930	20929172	31393758	36881024
6	1780000000	145490000		1634510000	86629030	58860970	23544388	35316582	72197606
7	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	115359836
8	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	158522066
9	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	201684296
10	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	244846526
11	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	288008756
12	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	331170986
13	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	374333216
14	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	417495446
15	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	460657676
16	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	503819906
17	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	546982136
18	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	590144366
19	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	633306596
20	1780000000	145490000		1634510000	73552950	71937050	28774820	43162230	676468826
			9.51×10^6						

 Table 8.6: Net Present Worth

PROCESS DESIGN SIMULATION

9.1 Introduction

Process simulation is used for the design, development, analysis, and optimization of technical processes such as: chemical plants, chemical processes, environmental systems, power stations, complex manufacturing operations, biological processes, and similar technical functions.

Process simulation software describes processes in flow diagrams where unit operations are positioned and connected by product or duct streams. The software solves the mass and energy balance to find a stable operating point on specified parameters. The goal of a process simulation is to find optimal conditions for a process. This is essentially an optimization problem which has to be solved in an iterative process.

Process simulation uses models which introduce approximations and assumptions but allow the description of a property over a wide range of temperatures and pressures which might not be covered by available real data. Models also allow interpolation and extrapolation - within certain limits - and enable the search for conditions outside the range of known properties.

Aspen HYSYS (or simply HYSYS) is a chemical process simulator currently developed by Aspen Tech used to mathematically model chemical processes, from unit operations to full chemical plants and refineries. HYSYS is able to perform many of the core calculations of chemical engineering, including those concerned with mass balance, energy balance, vapor-liquid equilibrium, heat transfer, mass transfer, chemical kinetics, fractionation, and pressure drop.^[2] HYSYS is used extensively in industry and academia for steady-state and dynamic simulation, process design, performance modeling, and optimization.

It can also handle very complex processes, such as:

- Dedicated Unit Operations for the Refinery Industry (Crackers, Coker, Reformer, FCC Unit, etc.)
- Multiple-column separation systems
- Chemical reactors
- Simulation of Petroleum Crude Oils (based on their properties)
- Complex Recycle Bypass Stream in Processes

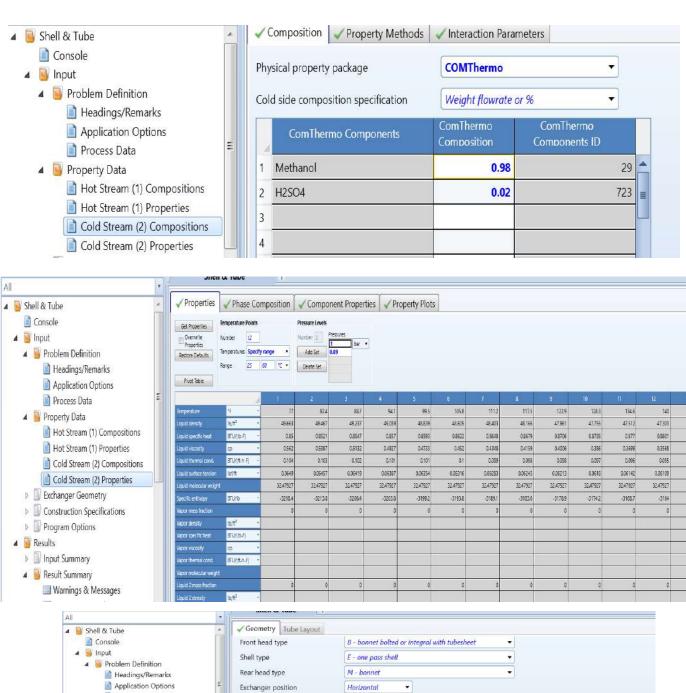
9.2. Simulation of Heat Exchanger (HX-102)

Shell & Tube											
	V Geometr	y 🗸 Process 🖌 Errors & Wa	rnings								
Console									Recei	nt	
4 🧧 Input					Hotside		ColdSide		Hotside	ColdSide	Hot
4 🧕 Problem Definition	61. L.V.			(D	100 A. A.				nousau	compare	
Headings/Remarks	Calculation	n mode		Desig	n (Sizing)	•					
Application Options	Process	Conditions									
📄 Process Data 👘			(Instance)			-11-					
🔺 🧾 Property Data	Mass flo	w rate	kg/h	•		2	07839		11625	207839	
Hot Stream (1) Compositions	Inlet pre	ssure	bar	- 1		1			1	1	
📄 Hot Stream (1) Properties	Outlet p	rossura	bar	• 0.89	1	0	.89		0.90278	0.80496	
Cold Stream (2) Compositions			C		-				0.00210	0.00150	
📄 Cold Stream (2) Properties	Pressure	at liquid surface in column	bar	•							
Exchanger Geometry	Inlet Ter	nperature	°C	• 105		2	5		105	25	
Construction Specifications	Output T	7. 	°C	• 105			0		99.81	60	
Program Options	Outlet 1	emperature	100				•		99.81	00	
🛛 🧕 Results	Inlet vap	oor mass fraction							1	0	
Input Summary	Outlet v	apor mass fraction							4.133814E-16	0	
🔺 🧕 Result Summary			(and a								
Warnings & Messages	Heat exc	shanged	BTU/h	•					24941132		
Input Problem Definition Headings/Remarks Application Options		Get Properties Overwrite Properties Restore Defaults Range	sure Points 5 Ures Specify ran 100 105		Pressure Levels Number Add Set Delete Set	bar	-				
🔺 🥃 Problem Definition	ш	Coverwrite Number Properties Temperat	5 ures Specify ran		Number 1 Pres	bar	J				
 Problem Definition Headings/Remarks Application Options Process Data Property Data 	ш	Cverwrite Number Properties Temperat Restore Defaults Range Pivot Table	5 ures Specify ran	[•c •]	Number 1 Pres Add Set Delete Set	a	4	5	6	7	
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions 	E.	Overwrite Number Properties Temperat Restore Cefaults Range Pivot Table Temperature *F	5 ures Specify ran](•c •) 1 211.67	Number 1 Pres	a 212		5 216.5	5 218.75	7 22	1
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties 		Cverwrite Number Properties Temperat Restore Defaults Range Pivot Table	5 Specify ran 100 105	[•c •]	Number 1 Pres Add Set Delete Set	a	4	1.	12	7 22	1
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties Cold Stream (2) Compositions 		Corewite Properties Restore Cefaults Range Privot Table Temperature Liquid density Liquid density Liquid viscosity core	5 Specify rans 100 105	1 211.67 59.875 1.002 0.2841	Number 1 Pres Add Set Delete Set	a	4	1.	12	7 22	1
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties 		Crewite Properties Restore Defaults Restore Defaults Range Privot Table Temperatum '5 Liquid density Liquid specific heat EU/(Liquid specific heat EU/(Liquid specific heat EU/(Liquid thermal cond. ETU/(5 Specify ran 100 105	1 211.67 59.875 1.002 0.2841 0.391	Number 1 Pres Add Set Delete Set	a	4	1.	12	7 22	1
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties Cold Stream (2) Compositions 		Corewite Properties Restore Cefaults Range Privot Table Temperature Liquid density Liquid density Liquid viscosity core	5 Specify rans 100 105	1 211.67 59.875 1.002 0.2841	Number 1 Pres Add Set Delete Set	a	4	1.	12	7 22	1
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Gold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Exchanger Geometry Construction Specifications Program Options 		Corewite Properties Restore Cefaults Restore Cefaults Range Pivot table Temperature Liquid density Liquid density Liquid density Liquid density Core Liquid density Liquid density Liquid density Core Liquid density Liquid density Core Liquid density Specific entralopy BTU/f	5 100 105 100 105 10-F) - 1 10-F) - 1 10-F] - 1 10-F] - 1 10-F] - 1 1	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number 1 Pres Add Set Delete Set	a	4	1.	12	7 22	
 Problem Definition Headings/Remarks Application Options Process Data Poperty Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Exchanger Geometry Exchanger Geometry Program Options Results 		Corewite Properties Restore Cefaults Restore Cefaults Range Privet Table Temperature Liquid density Liquid durace tension Lifuf Liquid surface tension	5	1 211.67 59.875 1.002 0.2841 0.301 0.00402 18.00999	Number Delete Set	3) 212 212 966.8 1	214.25 214.25 969.9 1	216.5 	218.75 	973.	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Exchanger Geometry Exchanger Geometry Program Options Results Input Summary 		Crewite Properties Restore Cefaults Restore Cefaults Finge Privet Table Temperatum F- Liquid density Liquid density Liquid specific haat ETU/ Liquid specific haat ETU/ Liquid sufface tension Liquid sufface tension Liquid sufface tension Liquid density Control thermal Specific enthalpy ETU/ Vapor mas factor Vapor density RU/	5 100 105 100 105 100 105 10-F) - 10-F) -	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number 1 Prev Add Set Delete Set 211.67 2 215.67 2 2 215.67 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 3 2 2 3 3 2 3 3 2 3	a bar 212 212 968.8 1 0.036	4 214.25 969.9 1 0.036	216.5 216.5 971 1 0.036	218.75 218.75 972.1 1 0.036	973.	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Exchanger Geometry Construction Specifications Program Options Results Input Summary Result Summary 		Corewite Properties Restore Cefaults Restore Cefaults Range Privet Table Temperature Liquid density Liquid durace tension Lifuf Liquid surface tension	5 100 105 100 105 100 105 10-F) - 10-F) -	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number Delete Set	3) 212 212 966.8 1	214.25 214.25 969.9 1	216.5 	218.75 	973.	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Exchanger Geometry Exchanger Geometry Program Options Results Input Summary 		Crewite Properties Restore Cefaults Restore Cefaults Range Pivot Table Temperature Liquid density Liquid density Liquid density Liquid surface tension Liquid thermal cond. ERU// Liquid surface tension ERU// Liquid surface tension Specific enthality Specific enthality Vapor mass fraction Vapor density Vapor specific heat ERU// Vapor hermal cond. ERU//	5 100 105 100 105 100 105 10-F) - 10-F) -	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014	3 212 212 966.8 1 0.036 0.4953 0.0453 0.014	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 216.5 971 1 0.036 0.4932 0.0123 0.014	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Stream (2) Properties Program Geometry Construction Specifications Program Options Results Result Summary Warnings & Messages 		Crewite Properties Restore Cefaults Restore Cefaults Range Privat Table Temperature 1 and density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Coperties Specific entral Coperties Specific entral Specific entral Vapor mass fraction Vapor density Specific entral Specific entral Vapor specific heat STU/ Vapor mass fraction Vapor incosoty Vapor mass fraction Vapor incosoty Vapor mass action Vapor mass a	5 100 <t< td=""><td>1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0</td><td>Number 1 Add 6t Oelete 5er 211.67 211.67 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>3 212 212 968.8 1 0.036 0.04555 0.0123</td><td>21425 21425 969.9 1 0.036 0.4943 0.0125</td><td>216.5 216.5 971 1 0.036 0.4932 0.0123</td><td>918.75 918.75 972.1 1 0.036 0.4921 0.0124</td><td>973. 0.03 0.491. 0.012</td><td>2</td></t<>	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number 1 Add 6t Oelete 5er 211.67 211.67 4 4 4 4 4 4 4 4 4 4 4 4 4	3 212 212 968.8 1 0.036 0.04555 0.0123	21425 21425 969.9 1 0.036 0.4943 0.0125	216.5 216.5 971 1 0.036 0.4932 0.0123	918.75 918.75 972.1 1 0.036 0.4921 0.0124	973. 0.03 0.491. 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Construction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 		Crewite Properties Restore Cefaults Restore Cefaults Range Pivot Table Temporatum '5 Liquid density Liquid density Liquid specific heat Eliquid specific heat Eliquid surface tension Liquid surface tension Liquid surface tension Eliquid surface tension Eliquid medecular weight Specific entralizy Rapor density Rapor density Rapor density Vapor mesority Specific heat ETU/ Vapor secolity Specific heat ETU/ Specific hea	5 100 <t< td=""><td>1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0</td><td>Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014</td><td>3 212 212 966.8 1 0.036 0.4953 0.0453 0.014</td><td>4 214.25 2000 2000 2000 2000 2000 2000 2000 2</td><td>216.5 216.5 971 1 0.036 0.4932 0.0123 0.014</td><td>218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124</td><td>973. 0.03 0.491. 0.012 0.012</td><td>2</td></t<>	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014	3 212 212 966.8 1 0.036 0.4953 0.0453 0.014	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 216.5 971 1 0.036 0.4932 0.0123 0.014	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Construction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 		Crewite Properties Restore Cefaults Restore Cefaults Range Privat Table Temperature 1 and density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Coperties Specific entral Coperties Specific entral Specific entral Vapor mass fraction Vapor density Specific entral Specific entral Vapor specific heat STU/ Vapor mass fraction Vapor incosoty Vapor mass fraction Vapor incosoty Vapor mass action Vapor mass a	5 100 <t< td=""><td>1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0</td><td>Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014</td><td>3 212 212 966.8 1 0.036 0.4953 0.0453 0.014</td><td>4 214.25 2000 2000 2000 2000 2000 2000 2000 2</td><td>216.5 216.5 971 1 0.036 0.4932 0.0123 0.014</td><td>218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124</td><td>973. 0.03 0.491. 0.012 0.012</td><td>2</td></t<>	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00599 0	Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014	3 212 212 966.8 1 0.036 0.4953 0.0453 0.014	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 216.5 971 1 0.036 0.4932 0.0123 0.014	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Construction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 		Crewite Properties Restore Cefaults Restore Cefaults Range Privat Table Temperature Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Coperties Specific enthalogy RTU/(Liquid functecular weight Specific enthalogy RTU/(Vapor mass fraction Vapor density Vapor specific heat ETU/(Vapor molecular weight Liquid 2 mass fraction Liquid 2 mass fraction	5	1 211.67 59.875 1.002 0.2841 0.00402 18.00599 0 0	Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014	3 212 212 966.8 1 0.036 0.4953 0.0453 0.014	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 216.5 971 1 0.036 0.4932 0.0123 0.014	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Construction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 		Crewite Properties Restore Cefaults Restore Cefaults Range Proof Table Temperature Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Comperation Range Proof Table Temperature Specific Institution Specific entrialized Specific Institution Vapor density Vapor mass fraction Vapor indecalar weight Liquid acessity Vapor indecalar weight Liquid 2 mass fraction Liquid 2 censity Norther Nort	5	1 211.67 59.875 1.002 0.2841 0.391 0.00402 18.00999 0 0	Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014	3 212 212 966.8 1 0.036 0.4953 0.0453 0.014	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 216.5 971 1 0.036 0.4932 0.0123 0.014	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Schanger Geometry Sconstruction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 	5	Crewite Properties Restore Cefaults Restore Cefaults Range Privet Table Temperature Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid density Liquid duriscesty Cop Liquid fuermal cond. Specific enthaloy RTU/(Liquid nuclecular weight Specific enthaloy RTU/(Vapor mass fraction Vapor density Vapor molecular weight Liquid 2 mass fraction Liquid 2 mass fraction	5	1 211.67 59.875 1.002 0.2841 0.00402 18.00599 0 0	Number 1 Pre- Add Set Delete Set 211.67 2 211.67 4 4 908.6 1 1 0.0386 0.0123 0.014	3 212 212 966.8 1 0.036 0.4953 0.0453 0.014	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 216.5 971 1 0.036 0.4932 0.0123 0.014	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Schanger Geometry Sconstruction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 	5	Crewite Properties Restore Cefaults Range Proof Table Temperature Liquid density Comparison Compar	5	1 211.67 59.675 1.002 0.2241 0.00402 18.0099 0 0 0	Number 1 Add Set Delete Set 2 11.67 2 11.67 4 2 11.67 4 4 4 4 4 4 4 4 5 6 6 1 1 0.036 0.4956 0.0123 0.0124 18,00995 1 1 1 1 1 1 1 1 1 1 1 1 1	3 212 212 968.8 1 0.036 0.4953 0.0123 0.0124 18,00999	214.25 214.25 969,9 1 0.036 0.4943 0.0123 0.014 18,00599	216.5 971 1 0.036 0.4932 0.0123 0.014 18.00999	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Schanger Geometry Sconstruction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 	5	Crewite Properties Restore Cefaults Range Proof Table Temperature Liquid density Comparison Compar	5	1 211.67 59.675 1.002 0.2241 0.00402 18.0099 0 0 0	Number 1 Add Set Delete Set 2 11.67 2 11.67 4 2 11.67 4 4 4 4 4 4 4 4 5 6 6 1 1 0.036 0.4956 0.0123 0.014 18,00995 1 1 1 1 1 1 1 1 1 1 1 1 1	3 212 212 968.8 1 0.036 0.4953 0.0123 0.0124 18,00999	4 214.25 2000 2000 2000 2000 2000 2000 2000 2	216.5 971 1 0.036 0.4932 0.0123 0.014 18.00999	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Schanger Geometry Schanger Geometry Construction Specifications Program Options Results Input Summary Warnings & Messages Optimization Path 	5	Crewite Properties Restore Cefaults Range Proof Table Temperature Liquid density Comparison Compar	5	1 211.67 59.675 1.002 0.2241 0.00402 18.0099 0 0 0	Number 1 Add Set Delete Set 2 11.67 2 11.67 4 2 11.67 4 4 4 4 4 4 4 4 5 6 6 1 1 0.036 0.4956 0.0123 0.014 18,00995 1 1 1 1 1 1 1 1 1 1 1 1 1	3 212 212 968.8 1 0.036 0.4953 0.0123 0.0124 18,00999	214.25 214.25 969,9 1 0.036 0.4943 0.0123 0.014 18,00599	216.5 971 1 0.036 0.4932 0.0123 0.014 18.00999	218.75 218.75 972.1 1 0.036 0.4921 0.0124 0.0124	973. 0.03 0.491. 0.012 0.012	2

- Input
 Problem Definition
 Headings/Remarks
 - Application Options
 Process Data
 - Process Date
 Property Data
 - Hot Stream (1) Compositions
 - Hot Stream (1) Properties
 - Cold Stream (2) Compositions

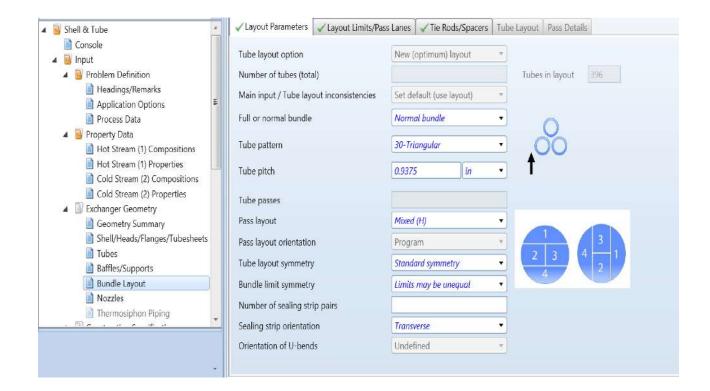
H

2


4

Ξ

Cold Stream (2) Properties


Phy	sical property package	B-JAC				
Ho	t side composition specification	Weight flowrate or %				
	BJAC Components	BJAC Composition	Component type			
1	Steam	1	Program -			
2			* =			
3			•			

PROCESS DESIGN SIMULATION

Process Data							
4 🧕 Property Data	Shell(s)		Tubes		Tube Layout		
 Hot Stream (1) Compositions Hot Stream (1) Properties 	ID	in *	Number		New (optimu	m) layout	
Cold Stream (2) Compositions	OD	in -	Length	in 👻	Tubes	396	
Cold Stream (2) Properties	Series		OD	0.75 in •	Tube Passes		
Exchanger Geometry	Parallel		Thickness	0.083 in 🔹	Pitch	0.9375 In	
Geometry Summary							_
Shell/Heads/Flanges/Tubesheets					Pattern	30-Triangular	
📄 Tubes							
Baffles/Supports	Baffles						
📄 Bundle Layout	Spacing (center-center)		in *	Туре	Single se	gmental 🔹	
Nozzles	Spacing at inlet		in	Tubes in window	Yes	-	
Thermosiphon Piping	Number			Orientation	Horizont	al 🔹	
	Spacing at outlet		in -	Cut(%d)			

🖥 Shell & Tube 🖉 🔬	Shell/Heads Covers Tubesheets	Flanges	
Console			
i 😼 Input	T., . .	x9	
🔺 📴 Problem Definition			
📄 Headings/Remarks			
Application Options	Т	A	
Process Data			
🔺 🥃 Property Data	Front head type	B - bonnet bolted or integral with tubesheet	-
Hot Stream (1) Compositions	Shell type	E - one pass shell	
Hot Stream (1) Properties		CTT	
Cold Stream (2) Compositions	Rear head type	M - bonnet	•
Cold Stream (2) Properties	Exchanger position	Horizontal 🔹	
Exchanger Geometry	Location of front head for vertical units	Set default	
Geometry Summary Shell/Heads/Flanges/Tubesheets			
Tubes	"E" shell flow direction (inlet nozzle location)	Near rear head •	
Baffles/Supports	Double pipe or hairpin unit shell pitch	in 🔹	
Bundle Layout	Tubeside inlet at front head	Set default 👻	
Nozzles	Flow within multi-tube hairpin (M-shell)	Set default	
Thermosiphon Piping	Overall flow for multiple shells	Countercurrent	

PROCESS DESIGN SIMULATION

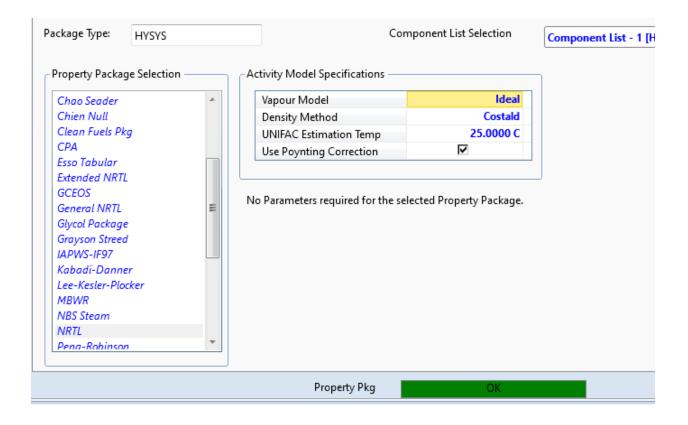
Shell/Heads/Flanges/Tubesheets	Default exchanger material	Carbon Steel	 ✓ 1
 Tubes Baffles/Supports Bundle Layout 	Component	Material	Designator
Nozzles	Cylinder - hot side	Carbon Steel	▼ 1
Thermosiphon Piping	Cylinder - cold side	Carbon Steel	• 1
Construction Specifications Materials of Construction	Tubesheet	Carbon Steel	•
Design Specifications	Double tubesheet (inner)	Set Default	→ 0
Program Options	Baffles	Carbon Steel	• 1
 Results Input Summary 	Tube material	Carbon Steel	•
4 🦉 Result Summary	Fin material	Set Default	v 0

Geometry Summary	Design Specifications					
Shell/Heads/Flanges/Tubesheets	Codes and Standards					
Tubes Baffles/Supports	Design Code	ASME C	ode Sec VIII Div	1	•	
菌 Bundle Layout	Service class	Service class Normal TEMA class R - refinery service Material standard ASME		•		
Nozzles	TEMA class				•	
Thermosiphon Piping Gonstruction Specifications	Material standard				•	
Materials of Construction	Dimensional standard	al standard ANSI - American		•		
Design Specifications						
Program Options	Design Conditions					
B Results					Shell Side	Tube Side
Input Summary					Hot Side	Cold Side
🔺 🥃 Result Summary					2	
Manufactor O. Manuala	Design pressure (gauge)		psi	• 5	U	50
Warnings & Messages	Design pressure (gauge) Design temperature		-	36	90	50 210
 Warnings & Messages Optimization Path Recap of Designs 	Design temperature	(gauge)	°F	36	24	
Optimization Path	Design temperature Vacuum design pressure ((gauge)	°F psi	• 2	24	
Optimization Path Recap of Designs	Design temperature	(gauge)	°F psi	• 2	24	
Optimization Path Recap of Designs TEMA Sheet	Design temperature Vacuum design pressure ((gauge)	°F psi psi	•	24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Heat Exchanger Specification Sheet

I - 1				iger speci				
	Company: Heat excha	-						
2	Location: Wah Engine	<u> </u>						
3	Service of Unit:	Our Refer						
4	Item No.: HX-102	Your Refe						
5	Date: 8-5-2023		lob No.:					
6	Size: 23 - 96	-	pe: BEM	Horizontal		Connected in		1 series
7	Surf/unit(eff.)	600.2 ft ²	Shells/u				hell(eff.)	600.2 ft ²
8			PERFO	RMANCE O				
9	Fluid allocation				Shell S	lide	Tube	Side
	Fluid name							
	Fluid quantity, Total		lb/h		2562			-
12	Vapor (In/Out)		lb/h	2562	8	0	0	0
13	Liquid		lb/h	0		25628	458199	458199
14	Noncondensable		lb/h	0		0	0	0
15								
16			٩F	221		211.67	77	140
17	Bubble / Dew poin		۴	211.67 / 2	11.67	211.67 / 211.67	1	/
18	· · ·	r/Liquid	lb/ft³	0.036 /		/ 59.875	/ 49.663	/ 47.302
19	Viscosity		ср	0.0124 /		/ 0.2841	/ 0.562	/ 0.3568
20	Molecular wt, Vap			18.01	1			
21	Molecular wt, NC		DT	0.1040.1		1	4 0.05	(
22	Specific heat		BTU/(Ib-F)	0.4912 /		/ 1.002	/ 0.85	/ 0.8801
23	Thermal conductivity		BTU/(ft-h-F)	0.014 /	-	/ 0.391	/ 0.104	/ 0.095
24	Latent heat		BTU/Ib	968.6		968.6	445	44.57
25	Pressure (abs)		psi	14.5		13.09	14.5	11.67
	Velocity (Mean/Max)		ft/s		95.5 /			/ 7.24
27	Pressure drop, allow./c		psi	1.6		1 .41	3	2.83
28 29	Fouling resistance (min Heat exchanged	n) 24941130	ft ² -h-F/BTU BTU/h		0	MTD (co	_) Ao based °F I
30	Transfer rate, Service	415.9	втоуп	Dirty	440.24		ean 440.24	BTU/(h-ft ² -F)
31	Tansier rate, service		CTION OF ONE S	,	440.24			etch
32		CONSTRU			-	Tube Side	500	
33								
	Design/Vacuum/test p	ressure psi	Shell Sid		50 /	1		
34	Design/Vacuum/test p Desion temperature		50 /	1	50 /	/ /		_
-	Design temperature	۳F			50 /	210 2	1	─ ─────── ──
35	Design temperature Number passes per sh	۴	50 / 290 1	1	50 /	210 2		
-	Design temperature	۳F	50 / 290 1 0.125	1		210		
35 36	Design temperature Number passes per shi Corrosion allowance Connections	°F ell in	50 / 290 1 0.125 1 16 /	-	1	210 2 0.125 8 / -		
35 36 37	Design temperature Number passes per she Corrosion allowance	°F ell In in	50 / 290 1 0.125 1 16 /	/	1	210 2 0.125 8 / -		
35 36 37 38	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal	°F ell In in Out Intermediate	50 / 290 1 0.125 1 16 / 1 3 /	/	1 1 1 1 1	210 2 0.125 8 / - 8 / - / -	h: 0.9375 in	Tube pattern: 30
35 36 37 38 39	Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal	°F ell In in Out Intermediate OD: 0.75 Tks. Ave	50 / 290 1 0.125 1 1 16 1 3 1 1	/ 	1 1 1 1 1	210 2 0.125 8 / - 8 / - / -	h: 0.9375 in Material: Carbon	•
35 36 37 38 39 40 41	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396	°F ell In in Out Intermediate OD: 0.75 Tks. Ave	50 / 290 1 0.125 1 1 16 1 3 1 / rage 0.083	/ 	1 i 1 i 1 gth: 9	210 2 0.125 8 / - 8 / - 6 in Pitc #/in		•
35 36 37 38 39 40 41 42	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain	°F ell In in Out Intermediate OD: 0.75 Tks. Ave Insert	50 / 290 1 0.125 1 1 16 / 1 3 / 1 - / rage 0.083 .	/ 	1 1 1 1 gth: 9 Fin#:	210 2 0.125 8 / - 8 / - 6 in Pite #/in	Material: Carbon	•
35 36 37 38 39 40 41 42 43	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel	°F ell In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25	50 / 290 1 0.125 1 1 16 / 1 3 / 1 - / rage 0.083 .	/ 	1 1 1 1 gth: 9 Fin#:	210 2 0.125 8 / - 8 / - 6 in Pitc #/in Shell cover	Material: Carbon - -	•
35 36 37 38 39 40 41 42 43 44	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet	°F ell In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 / rage 0.083 None OD 24	/ 	1 1 1 1 gth: 9 Fin#:	210 2 0.125 8 / - 8 / - 6 in Pite #/in Shell cover Channel cover	Material: Carbon - - 9 -	•
35 36 37 38 39 40 41 42 43 44 45	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	°F ell in In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24	/ - - in Leng	1 1 1 1 gth: 9 Fin#:	210 2 0.125 8 / - 8 / - 6 in Pitc #/in Shell cover Channel cover Tubesheet-floatin Impingement proc	Material: Carbon - - 9 -	Steel
35 36 37 38 39 40 41 42 43 44 45 46	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	°F ell in In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel - Steel Type	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24	/ - - in Leng	1 ii 1 ii 1 gth: 9 Fin#: in	210 2 0.125 8 / - 8 / - 6 in Pitc #/in Shell cover Channel cover Tubesheet-floatin Impingement proc	Material: Carbon - - 1g - vtection None	Steel 5 in
35 36 37 38 39 40 41 42 43 44 45 46 47	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S	°F ell in In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel - Steel Type	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24 - Single segm	/ - - in Leng	1 ii 1 ii 1 gth: 9 Fin#: in	210 2 0.125 8 / - 8 / - 6 in Pitc #/in Shell cover Channel cover Tubesheet-floatin Impingement proc	Material: Carbon - - og - stection None H Spacing: c/c 23.	Steel 5 in
35 36 37 38 39 40 41 42 43 44 45 46 47	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	°F ell in In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel - Steel Type	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0	/ - - in Leng	1 i 1 gth: 9 Fin#: in ut(%d)	210 2 0.125 8 / - 8 / - 6 in Pito #/in Shell cover Channel cover Tubesheet-floatin Impingement pro 40.06	Material: Carbon - - og - stection None H Spacing: c/c 23.	Steel 5 in 25 in
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	°F ell in In in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel - Steel Type	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0	/ - - in Leng	1 i 1 i 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j	210 2 0.125 8 / 8 / 6 in Pite #/in Shell cover Channel cover Tubesheet-floatin Impingement pre 40.06 Type Expanded onl	Material: Carbon - - otection None H Spacing: c/c 23. Inlet 34.56	Steel 5 in 25 in
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal	°F ell in in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel - - Steel Type	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0	/ - - in Leng ental Cu ube-tubeshe Type	1 i 1 i 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j	210 2 0.125 8 / 8 / 6 in Pite #/in Shell cover Channel cover Tubesheet-floatin Impingement pre 40.06 Type Expanded onl	Material: Carbon - - otection None H Spacing: c/c 23. Inlet 34.56	Steel 5 in 25 in
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	ell in in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0 The segment of the s	/ - - in Leng ental Cu ube-tubeshe Type	1 i 1 i 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j	210 2 0.125 8 / 8 / 6 in Pito #/in Shell cover Channel cover Tubesheet-floatin Impingement pro 40.06 Type Expanded onl re Bundle exit	Material: Carbon - - - - - - - - - - - - - - - - - - -	Steel 5 in 25 in
35 36 37 38 39 40 41 42 43 44 45 64 47 48 49 50 51	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	ell in in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel	50 / 290 1 0.125 1 16 / 1 3 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0 The segment of the s	/ - - in Leng ental Co ube-tubeshe Type nce 1224	1 i 1 i 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j	210 2 0.125 8 / 8 / 6 in Pito #/in Shell cover Channel cover Tubesheet-floatin Impingement pro 40.06 Type Expanded onl re Bundle exit	Material: Carbon - - - - - - - - - - - - -	Steel 5 in 25 in
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	ell in in Out Intermediate OD: 0.75 Tks. Ave Insert ID 23.25 Carbon Steel Carbon Steel	50 / 290 1 0.125 1 16 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0 The Bundle entra	/ - - in Leng ental Co ube-tubeshe Type nce 1224	1 i 1 i 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j	210 2 0.125 8 / - 8 / - 6 in Pito #/in Shell cover Channel cover Tubesheet-floatin Impingement pro 40.06 Type Expanded onlive Bundle exit Flat M	Material: Carbon - - - - - - - - - - - - -	Steel 5 in 25 in ')
35 36 37 38 39 40 1 42 43 44 45 14 44	Design temperature Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 396 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	ell in in Out Intermediate OD: 0.75 Tks. Ave Insert OD: 0.75 Tks. Ave Insert Carbon Steel Carbon Steel - Steel Type U-bend - 881 - 10 Carbon Steel C	50 / 290 1 0.125 1 16 / 1 3 / 1 7 rage 0.083 None OD 24 - - Single segm Seal Type 0 The Bundle entra	/ - - in Leng ental Co ube-tubeshe Type nce 1224 Tube side	1 i 1 i 1 in fin#: 9 Fin#: in in ut(%d) et joint et joint	210 2 0.125 8 / - 8 / - 6 in Pito #/in Shell cover Channel cover Tubesheet-floatin Impingement pro 40.06 Type Expanded onlive Bundle exit Flat M	Material: Carbon - - - - - - - - - - - - -	Steel 5 in 25 in

1	Size 23.25 X	96	i	n Type	BEM Ho	or	Connected in 1	parallel	1 series	
2	Surf/Unit (gross/eff/finned)		622	/ 60	0.2 /	ft	² Shells/unit 1			
3	Surf/Shell (gross/eff/finned)		622	/ 60	0.2 /	ft	2			
4	Design (Sizing)			PI	RFORMANC	E OF ONE U	INIT			
5			S	hell Side	Tut	oe Side	Heat Transfer Parame	ters		
6	Process Data		In	Out	In	Out	Total heat load		BTU/h	24941130
7	Total flow	lb/h	2	25628	458	199	Eff. MTD/ 1 pass MTD		°F 99.92	/ 99.77
8	Vapor	lb/h	25628	0	0	0	Actual/Reqd area ratio	- fouled/clean	1.06	/ 1.06
9	Liquid	lb/h	0	25628	458199	458199				
10	Noncondensable	lb/h		0	0		Coef./Resist.	BTU/(h-fl	t ² -F) ft ² -h-F/BTU	%
11	Cond./Evap.	lb/h	2	25628	0		Overall fouled	440.24	0.0023	
12	Temperature	°F	221	211.67	77	140	Overall clean	440.24	0.0023	
13	Bubble Point	°F	211.67	211.67			Tube side film	613.53	0.0016	71.76
14	Dew Point	°F	211.67	211.67			Tube side fouling		0	0
15	Vapor mass fraction		1	0	0	0	Tube wall	3816.94	0.0003	11.53
16	Pressure (abs)	psi	14.5	13.09	14.5	11.67	Outside fouling		0	0
17	DeltaP allow/cal	psi	1.6	1.41	3	2.83	Outside film	2634.38	0.0004	16.71
18	Velocity	ft/s	201.02	0.12	7.07	7.2				
19	Liquid Properties						Shell Side Pressure Dr	гор	psi	%
20	Density	lb/ft³		59.875	49.663	47.302	Inlet nozzle		0.15	9.35
21	Viscosity	ср		0.2841	0.562	0.3568	InletspaceXflow		0.72	45.11
22	Specific heat	BTU/(lb-F)		1.002	0.85	0.8801	Baffle Xflow		0.44	27.4
23	Therm. cond.	BTU/(ft-h-F)		0.391	0.104	0.095	Baffle window		0.09	5.76
24	Surface tension	lbf/ft					OutletspaceXflow		0.16	9.76
25	Molecular weight			18.01	32.48	32.48	Outlet nozzle		0.04	2.56
26	Vapor Properties						Intermediate nozzles			
27	Density	lb/ft³	0.036				Tube Side Pressure Dr	rop	psi	%
28	Viscosity	ср	0.0124				Inlet nozzle		0.28	9.82
29	Specific heat	BTU/(lb-F)	0.4912				Entering tubes		0.26	9.41
30	Therm. cond.	BTU/(ft-h-F)	0.014				Inside tubes		1.69	60.15
31	Molecular weight		18.01				Exiting tubes		0.42	14.95
32	Two-Phase Properties						Outlet nozzle		0.16	5.67
33	Latent heat	BTU/lb	968.6	968.6			Intermediate nozzles			
34	Heat Transfer Parameters						Velocity / Rho*V	/2	ft/s	lb/(ft-s²)
35	Reynolds No. vapor		53211.82				Shell nozzle inlet		157	881
36	Reynolds No. liquid			2328.19	45218.36	69101.26	Shell bundle Xflow	201	1.02 0.12	
37	Prandtl No. vapor		1.02				Shell baffle window	220	5.32 0.13	
38	Prandtl No. liquid			1.76	11.14	7.98	Shell nozzle outlet		2.32	321
39	Heat Load			3TU/h	BTU	J/h	Shell nozzle interm			
40	Vapor only		-1	18004	0				ft/s	lb/(ft-s²)
41	2-Phase vapor			0	0		Tube nozzle inlet		7.38	2703
42	Latent heat		-24	\$823130	0		Tubes	7.	07 7.2	
43	2-Phase liquid			0	0		Tube nozzle outlet		7.75	2838
44	Liquid only			0	2494	1130	Tube nozzle interm			
45	Tubes				Baffles		Nozzles: (
46	Туре			Plain	Туре	Single segr			ll Side	Tube Side
47	ID/OD		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ 0.75	Number		2 Inlet	in 1		1 / 8.62
48	Length act/eff	ft 8		/ 7.7188	Cut(%d)	40.06	Outlet	1	/ 3.5	1 / 8.62
49	Tube passes		2		Cut oriental		H Intermedia		/	/
50	Tube No.		96		Spacing: c/c			ent protection	None	
51	Tube pattern		80		Spacing at i					
52	Tube pitch	in 0.9	9375		Spacing at o	outlet in	34.5625			
53	Insert			, Non	e					
54	Vibration problem (HTFS / T	EMA)	Yes	/			RhoV2 vio	lation		No


Cost / Weights

Input Summary	Design (Sizing)		Shel	Side	Tub	e Side
A 🧧 Result Summary	Total mass flow rate	lb/h	256	528	458	199
Warnings & Messages	Vapor mass flow rate (In/Out)	lb/h	25628	0	0	0
Optimization Path	Liquid mass flow rate	lb/h	0	25628	458199	458199
Recap of Designs	Vapor mass fraction		1	0	0	0
TEMA Sheet	Temperatures	°F	221	211.67	77	140
Overall Summary	Bubble / Dew point	°F	211.67 / 211.67	211.67 / 211.67	/	/
🛯 🗍 Thermal / Hydraulic Summary	Operating Pressures	psi	14.5	13.09	14.5	11.67
Performance	Film coefficient	BTU/(h-ft ² -F)	263	4.38	613	3.53
🔲 Heat Transfer	Fouling resistance	ft ² -h-F/BTU	0		0	
Pressure Drop	Velocity (highest)	ft/s	226	.32	7.	24
Flow Analysis	Pressure drop (allow./calc.)	psi	1.6 /	1.41	3	/ 2.83
Vibration & Resonance Analysis	Total heat exchanged	BTU/h	24941130	Unit BEM	2 pass 1	ser 1 par
Methods & Convergence	Overall clean coeff. (plain/finned)	BTU/(h-ft ² -F)	440.24 /	Shell size 2	3 - 96 in	Hor
Mechanical Summary	Overall dirty coeff. (plain/finned)	BTU/(h-ft ² -F)	440.24 /	Tubes Plain		
Exchanger Geometry	Effective area (plain/finned)	ft²	600.2 /	Insert None		
Setting Plan & Tubesheet Layout	Effective MTD	°F	99.92	No. 396	OD 0.75 T	ks 0.083 i
Cost / Weights	Actual/Required area ratio (dirty/clean)		1.06 / 1.06	Pattern 30	Pitch	0.9375 in
	Vibration problem (HTFS)		Yes	Baffles Single	segmental	Cut(%d) 40.06
Calculation Details	RhoV2 problem		No	Total cost	29135	Dollar(US)

	Costs/Weights			
Results				
Input Summary	Weights	lb	Cost data	Dollar(US)
🔺 🧕 Result Summary	Shell	1057.3	Labor cost	22768
🔲 Warnings & Messages	Front head	337.4	Tube material cost	2320
Optimization Path	Rear head	241.8	Material cost (except tubes)	4047
Recap of Designs	Shell cover			
TEMA Sheet	Bundle	2295.8		
Overall Summary	Total weight - empty	3932.2	Total cost (1 shell)	29135
🔺 🔝 Thermal / Hydraulic Summary	Total weight - filled with water	5603.1	Total cost (all shells)	29135
Performance				
🔲 Heat Transfer				
Pressure Drop				
Flow Analysis				
Vibration & Resonance Analysis				
Methods & Convergence				
▲ Wechanical Summary				
Exchanger Geometry				
Setting Plan & Tubesheet Layout				

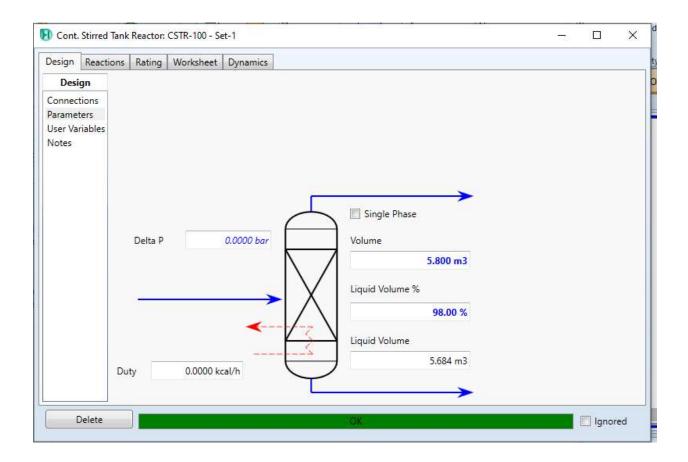
9.3 Simulation of CSTR (R-101)

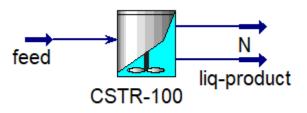
Properties <	Component List - 1 × +			
All Items 🔹	Component	Туре	Group	
Component Lists Component List - 1	Methanol	Pure Component		
 Image: Second sec	H2SO4	Pure Component		
	H2O	Pure Component		< Add
Petroleum Assays Reactions	M-Oleate	Pure Component		
Component Maps	OleicAcid	Pure Component		
				Replace
				Remove
77 -				
Properties	Status:	ØK		

hiometry and Ra	te Info				Basis		
Component	Mole Wt.	Stoich Coeff	Fwd Order	Rev Order	Basis	Molar Concn	
OleicAcid	282.467	-1.000	1.00	0.00	Base Component	OleicAcid	
Methanol	32.042	-1.000	1.00	0.00	Rxn Phase	LiquidPhase	
M-Oleate	296.500	1.000	0.00	1.00	Min. Temperature	-273.1 C	
H2O	18.015	1.000	0.00	1.00	Max Temperature	3000 C	
Add Comp					Basis Units	Ibmole/ft3 🔹	
					Rate Units	Ibmole/ft3-min 🔻	
					$b \qquad 0.0000$ Equation Help $r = k^{*}f(Basis) - k^{*}f(Basis)$ $k = A^{*} exp \{-E/RT\}^{*}T$ $k' = A'^{*} exp \{-E'/RT\}^{*}$ T in Kelvin	;) ;)	-
		Balance Error		0.00000			
		Reaction Hea		<empty></empty>			
Balance							

Properties <	Reaction Set: Set-1	× +			
All Items Component Lists Component List - 1 Component List - 1 Book Set-1 Component List - 1 Comp	Set Info Set Type Solver Method	Kinetic Auto Selected	Re	ady	Add to FP Detach from FP Advanced
Component Maps	Active React	tions Rxn-1	Type Kinetic	Configured	Operations Attached

🕖 Cont. Stir	rred Tank	0.0000000000000000000000000000000000000						51970	×
Design Re	actions	Rating W	orksheet Dynamic	s					
Design			Name CS	TR-100					
Connection	IS								
Parameters	8								
User Variab	les	Inlets							
Notes			feed	10					
			<< Stream >>						
				1 Alexandre					
					ur Outlet				
					•				
		-		> /					
			-						
		Energy (Op	otional) _	Liquid	d Outlet				
		<u></u>	•		product 🔹				
		5			~				
				Fluid Package					
				Fiuld Fackage					
Dele	te			Requires a Read	tion Set			🔲 Igno	red
		T.S.						ante de	
🕑 Cont. Sti	rred Tank	Reactor: CS	TR-100 - Set-1				_		×
	eactions	Rating W	Vorksheet Dynami	-5			-		×
Design Re Reactions	eactions		Vorksheet Dynami	5		·	_		×
Design Reactions Details	eactions Rea	Rating W	Vorksheet Dynami	rs Reaction	Rxn-1		_		×
Design Re Reactions	eactions Rea Re	Rating W ction Informa eaction Set	Vorksheet Dynami ation Set-1			•	-		×
Design Reactions Details	eactions Rea Re	Rating W	Vorksheet Dynami		Rxn-1 View Reaction	•	_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics	Vorksheet Dynami ation Set-1 © Stoichiometry	▼ Reaction		•	_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 © Stoichiometry	▼ Reaction		•	-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 ③ Stoichiometry pomponent	 Reaction Basis Mole Wt. 	View Reaction Stoich Coeff		-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 (a) Stoichiometry pomponent OleicAcid	Reaction Basis Mole Wt. 282.467	View Reaction Stoich Coeff -1.000		_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 ③ Stoichiometry omponent OleicAcid Methanol	Reaction Basis Mole Wt. 282.467 32.042	View Reaction Stoich Coeff -1.000 -1.000		-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol	 Reaction Basis Mole Wt. 282.467 32.042 296.500 	View Reaction Stoich Coeff -1.000 -1.000 1.000		-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000		-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000 1.000		_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000 1.000		_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000 1.000		-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000 1.000		_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000 1.000 1.000		_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	Reaction Rea	View Reaction Stoich Coeff -1.000 -1.000 1.000 1.000 0.00000		_		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	 Reaction Basis Mole Wt. 282.467 32.042 296.500 18.015 	View Reaction Stoich Coeff -1.000 -1.000 1.000 1.000		-		×
Design Reactions Details	eactions Rea Re S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H20	Reaction Rea	View Reaction Stoich Coeff -1.000 -1.000 1.000 1.000 0.00000		_		×
Design Reactions Details	Real Real S	Rating W ction Informa eaction Set pecifics toichiometry	Vorksheet Dynami ation Set-1 Stoichiometry pomponent OleicAcid Methanol H2O	Reaction Rea	View Reaction Stoich Coeff -1.000 -1.000 1.000 1.000 1.000 1.000 1.3e+03 kcal/kgmole		-		


Delete


esign Reacti	ons Rating Worksheet Dynamic	s					
Vorksheet		feed	liq-product	N			
onditions	Methanol	0.6296	<empty></empty>	<empty></empty>			
operties	H2SO4	0.0000	<empty></empty>	<empty></empty>			
mposition	H2O	0.0000	<empty></empty>	<empty></empty>			
Specs	M-Oleate	0.0000	<empty></empty>	<empty></empty>			
	OleicAcid	0.3704	<empty></empty>	<empty></empty>			
Delete		Volume not spe	tified			🔲 Igno	prec
	Tank Reactor: CSTR-100 - Set-1	Volume not spe	cified	- 21		lgnc	ored
			cified	- 21		0	orec
Cont. Stirred			cified	O'		0	prec
Cont. Stirred sign Reacti /orksheet	ions Rating Worksheet Dynamic	s	I I	N 1.0000		0	orec
Cont. Stirred sign React Iorksheet onditions operties	ions Rating Worksheet Dynamic Name Vapour Temperature [C]	s feed	liq-product			0	prec
Cont. Stirred sign React forksheet onditions operties omposition	ions Rating Worksheet Dynamic Name Vapour Temperature [C] Pressure [bar]	s feed 0.0000 60.00 1.000	liq-product 0.0000 <empty> 1.000</empty>	1.0000 <empty> 1.000</empty>		0	brec
Cont. Stirred sign React forksheet onditions operties omposition	ions Rating Worksheet Dynamic Name Vapour Temperature [C] Pressure [bar] Molar Flow [kgmole/h]	s feed 0.0000 60.00 1.000 8.976e+004	liq-product 0.0000 <empty></empty>	1.0000 <empty></empty>	_	0	prec
Cont. Stirred sign React forksheet onditions operties omposition	ions Rating Worksheet Dynamic Name Vapour Temperature [C] Pressure [bar]	s feed 0.0000 60.00 1.000	liq-product 0.0000 <empty> 1.000</empty>	1.0000 <empty> 1.000</empty>	_	0	orec
Cont. Stirred sign React Iorksheet onditions operties omposition	ions Rating Worksheet Dynamic Name Vapour Temperature [C] Pressure [bar] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h]	s feed 0.0000 60.00 1.000 8.976e+004 1.120e+007 1.279e+004	liq-product 0.0000 <empty> 1.000 <empty></empty></empty>	1.0000 <empty> 1.000 <empty> <empty> <empty></empty></empty></empty></empty>		0	bred
Cont. Stirred	ions Rating Worksheet Dynamic Name Vapour Temperature [C] Pressure [bar] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kcal/kgmole]	s feed 0.0000 60.00 1.000 8.976e+004 1.120e+007 1.279e+004 -1.030e+005	liq-product 0.0000 <empty> 1.000 <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	1.0000 <empty> 1.000 <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>		0	brec
Cont. Stirred sign React Iorksheet onditions operties omposition	ions Rating Worksheet Dynamic Name Vapour Temperature [C] Pressure [bar] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h]	s feed 0.0000 60.00 1.000 8.976e+004 1.120e+007 1.279e+004	liq-product 0.0000 <empty> 1.000 <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	1.0000 <empty> 1.000 <empty> <empty> <empty></empty></empty></empty></empty>		0	prec

olume not specified

231 |

🔲 lgnored

9.4. Simulation of CSTR (R-102)

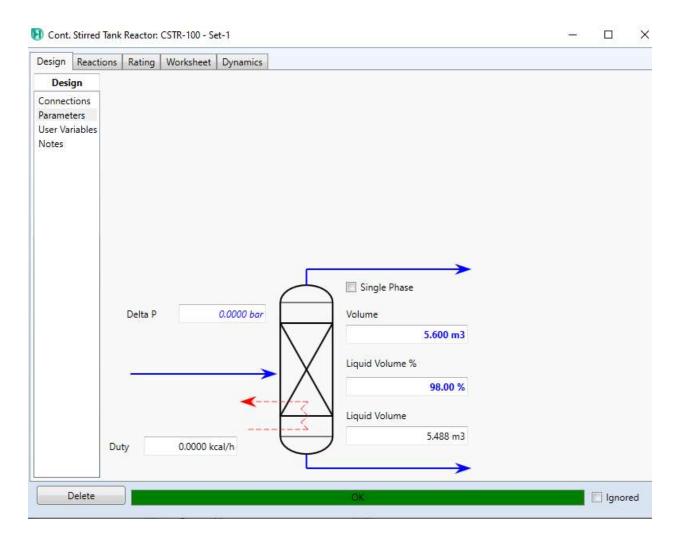
Properties	< Component List - 1 ×	+				
All Items All Component Lists Component List - 1	Source Databank: HYSYS				Select:	Pure Compone
📮 Fluid Packages	Component	Туре	Group		Search for:	gly
 Petroleum Assays Reactions Component Maps 	LinoleicAcid	Pure Component			-	
	Methanol	Methanol Pure Component		Simu	lation Name	
	M-Linoleate	Pure Component		< Add		4HoxyC4Aldyd
ber Properties	Glycerol	Pure Component				Glutaldehyde
						Glutaldehyde
				Replace		Glutaldehyde
						GltrcAnhydrd
				Remove		Glutaldehyde
				Kemove		123-CIC3
						23Epoxy1C3ol
						GlyTriC2oate
						23Epoxy1C3ol
						23Epoxy1C3ol
						23Epoxy1C3ol
						Glycine
Properties						Glvcine
다. Simulation	Status:	OK				

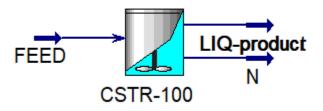
Properties	Basis-1 × +			
All Items	Set Up Binary Coeffs StabTest Phase	e Order Tabular Notes		
 Component Lists Component List - 1 Fluid Packages Basis-1 	Package Type: HYSYS Property Package Selection Extended NRTL *	Activity Model Specifications Vapour Model	mponent List Selection	Component List - 1 [H
 Petroleum Assays Reactions Component Maps User Properties 	GCEOS General NRTL Giycol Package Grayson Streed IAPWS-IF97 Kabadi-Danner	Density Method UNIFAC Estimation Temp Use Poynting Correction	Costald 25.0000 C IZ	
	Kabaai-Danner Lee-Kesler-Plocker MBWR NBS Steam NRTL Peng-Robinson PR-Twu PRSV ≡ Sour PR Sour PR Sour SRK SRK SRK SRK SRK SRK SRK-Twu Sulsim (Sulfur Recovery) Twu-Sim-Tassone UNIQUAC ■	No Parameters required for the se	lected Property Package.	
Properties		Property Pkg	OK:	
$\square \square$ Simulation				

	ate Info				Basis		
Component	Mole Wt.	Stoich Coeff	Fwd Order	Rev Order	Basis	Molar Concn	
LinoleicAcid	280.450	-1.000	1.00	0.00	Base Component	LinoleicAcid	
Methanol	32.042	-1.000	1.00	0.00	Rxn Phase	LiquidPhase	
M-Linoleate	294.459	1.000	0.00	1.00	Min. Temperature	-273.1 C	
Glycerol	92.095	1.000	0.00	1.00	Max Temperature	3000 C	
*Add Comp**					Basis Units	Ibmole/ft3 -	J
					Rate Units	Ibmole/ft3-min 🔻	-
					5 10 1		
					Forward Reaction A 0.2400 E 0.0000 b 0.0000	0 E' <em;< td=""><td>pty></td></em;<>	pty>
					A 0.2400 E 0.0000 b 0.0000 Fequation Help r = k*f(Basis) - k'*f'(Basis k = A * exp { -E / RT } * T	0 0 0 0 0 0 0 0 0 0 0 0 0 0	pty>
					A 0.2400 E 0.0000 b 0.0000 Equation Help r = k*f(Basis) - k'*f'(Basis	0 0 0 0 0 0 0 0 0 0 0 0 0 0	pty>
Balance		Balance Error Reaction Hea		74.06210 <empty></empty>	$ \begin{array}{c c} A & 0.2400 \\ E & 0.0000 \\ \hline & 0.0000 \\ \end{array} $ Equation Help $ r = k^{*}f(Basis) - k^{*}f'(Basis) \\ k = A^{*} \exp \{ -E / RT \}^{*}T \\ k' = A'^{*} \exp \{ -E / RT \}^{*}T \\ \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0	pty>

niometry and Ra	te Info				Basis			
Component	Mole Wt.	Stoich Coeff	Fwd Order	Rev Order	Basis	N	olar Concn	
LinoleicAcid	280.450	-1.000	1.00	0.00	Base Component	L	inoleicAcid	
Methanol	32.042	-1.000	1.00	0.00	Rxn Phase		LiquidPhase	
M-Linoleate	294.459	1.000	0.00	1.00	Min. Temperature		-273.1 C	
Glycerol	92.095	0.196	0.00	1.00	Max Temperature		3000 C	
*Add Comp**					Basis Units	lbmole/ft3		
					busis enits	ibilitic, rts		
					Rate Units	lbmole/ft3-min	•	
					Forward Reaction A 0.24000 E 0.00000 b 0.00000 Cequation Help r = k*f(Basis) - k'*f'(Basis) k = A * exp { -E / RT } * T k' = A' * exp { -E / RT } * T T in Kelvin	р Е' Ь'	<emptj <emptj <emptj< th=""><th>v></th></emptj<></emptj </emptj 	v>
Balance		Balance Error Reaction Hea		0.00000 e+04 kcal/kgmole				

PROCESS DESIGN SIMULATION

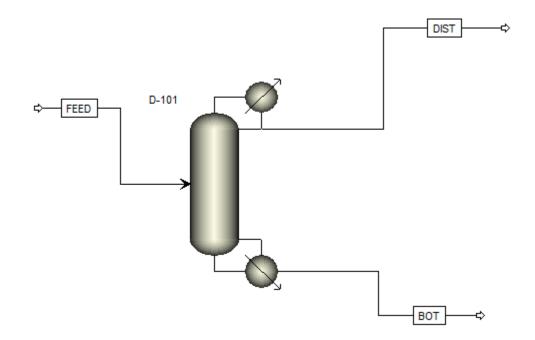

CHAPTER 09


Properties	<	Reaction Set: Set-1 × +	
All Items		_ Set Info	
 Component L Componert Fluid Package Basis-1 Petroleum Ass Reactions 	nt List - 1 :s	Set Type Kinetic Ready Solver Method Auto Selected	Add to FP Detach from FP Advanced
 Eig Set-1 Component M User Propertie 		Active Reactions Type Configured Rxn-1 Kinetic	Operations Attached
Properties		Add Reaction	
🖲 Cont. Stirred Ta	nk Reactor: CS1	R-100	– 🗆 X
Design Reaction	ns Rating W	orksheet Dynamics	
Connections Parameters User Variables Notes	Inlets	<pre> FEED << Stream >> Vapour Outlet LIQ OUTLET </pre>	
Delete	Energy (Op	tional) Fluid Package Liquid Outlet N Fluid Package Requires a Reaction Set	Ignored
			I Ignored

🚯 Cont. Stirre	ed Tank Reactor: CSTR	R-100 - Set-1				_		×
Design Read	ctions Rating Wo	rksheet Dynami	cs					
Reactions	Reaction Informati	on						
Details Results	Reaction Set	Set-1	 Reaction 	Rxn-1	•			
	Specifics	Stoichiometry	Basis	View Reaction				
	Stoichiometry -							
	Com	nponent	Mole Wt.	Stoich Coeff				
		LinoleicAcid		-1.000				
		Methanol		-1.000				
		M-Linoleate Glycerol		1.000				
		Add Comp		0.190				
			Balance Error Reaction Heat (25 C)	0.00000 2.бе+04 kcal/kgmole				
Delete			Volume not	specified			🔲 Ignor	ed

Vorksheet onditions operties omposition Specs	LinoleicAcid Methanol	FEED 0.3300 0.6700	N <empty></empty>	LIQ OUTLET	
operties omposition	Methanol				
omposition			the Arteston Brown and a		
		0.0700	<empty></empty>	0.0000	
Specs	M-Linoleate	0.0000	<empty></empty>	0.7800	
14 C	Glycerol	0.0000	<empty></empty>	0.2200	

PROCESS DESIGN SIMULATION



237 |

Com	ponents - Specific	ations × +		
0	Selection Petrole	um Nonconventional Enterprise Database	Comments	
Sele	ct components			
	Component ID	Туре	Component name	Alias
۲	OLEIC-01	Conventional	OLEIC-ACID	C18H34O2
Þ	TRIOL-01	Conventional	TRIOLEIN	C57H104O6
Þ	METHA-01	Conventional	METHANOL	CH40
Þ	WATER	Conventional	WATER	H2O
Þ	SULFU-01	Conventional	SULFURIC-ACID	H2SO4
Þ	METHY-01	Conventional	METHYL-OLEATE	C19H36O2
Þ	POTAS-01	Conventional	POTASSIUM-HYDROXIDE	кон
Þ	GLYCE-01	Conventional	GLYCEROL	C3H8O3
Þ				
	Find	c Wizard SFE Assistant User Defin	ned Reorder Review]

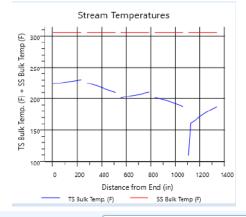
9.5. Simulation of Distillation Column

Methods - S	pecificatio	ns× 🕂					
🥑 Global	Flowsheet	Sections	Referenced	0	omments		
Property m Method filt Base metho Henry com Petroleur Free-wate Water sol	eethods & o ter od iponents in calculatio er method ubility e calculatio	NRTL STEAM-TA 3	· · ·	1 -	Method name NRTL Modify Vapor EOS Data set Liquid gamma Data set Liquid molar enthalpy Liquid molar volume	Method ESIG GMRENON HLMX86 VLMX01	s Assistant
V Use tr	ue compon	ients			 Heat of mixing Poynting correction Use liquid reference 		

		acy nesans ,			(naan na c	., 50.001	ritesaits (boa	naang, ,
Configuration	🥝 Streams	Pressure		⊘ Reboiler	3-Phas	e Com	ments	
Setup options								_
Calculation type		E	quilibrium	•				
Number of stages				17 🍣	Stag	e Wizard		
Condenser		1	lotal			-		
Reboiler		k	Kettle			-		
Valid phases		١	/apor-Liquid			-		
Convergence		S	Standard			-		
Operating specific	ations							_
Distillate rate		- 1	Vole	• 13	307.5	mol/hr		•
Reflux ratio		- 1	Vole	•	1.2			-
Free water reflux ra	atio		0				Feed Basis	
Design and spec	ify column int	ernals						

Boilup ratio

Bottoms to feed ratio


	Mole -			
on	denser / Top stage performance			
	Name	Value	Units	
	Temperature	64.2038	с	
	Subcooled temperature			=
	Heat duty	-101532	kJ/hr	
	Subcooled duty			
	Distillate rate	1.3075	kmol/hr	
	Reflux rate	1.569	kmol/hr	-
b	oiler / Bottom stage performance —			
b	oiler / Bottom stage performance Name	Value	Units	
b		Value 113.257		Î
	Name			
eb	Name Temperature	113.257	с	
	Name Temperature Heat duty	113.257 177766	C kJ/hr	

0.904307

Enthalpy Flow cal/sec 165697 140300 20339.5 Average MW 159.677 205.683 32.0392 + Mole Flows kmol/hr 4.935 3.6275 1.3075 - Mole Fractions 6 6 6 6 OLEIC-01 6 0.00603926 0.00821605 7.70019e-29 MRTHA-01 6 0.00201308 0.00164321 4.23083e-68 SULFU-01 6 0.00201309 0.00266261 0.000211056 SULFU-01 6 0.00301963 0.000410803 2.1999e-24 METHY-01 6 0.0301963 0.0410803 2.199e-24 METHY-01 6 0.0301963 0.0410803 2.1948e-72	mass o crisicy	900.00	0.050501	002002		
+ Mole Flows kmol/hr 4.935 3.6275 1.3075 - Mole Fractions	Enthalpy Flow	cal/sec	-165697	-140300	-20339.5	
Mole Fractions Image: Constraint of the image: Constrain	Average MW		159.677	205.683	32.0392	
OLEIC-01 0.00603926 0.00821605 7.70019e-29 TRIOL-01 0.00120785 0.00164321 4.23083e-68 METHA-01 0.396578 0.179156 0.999789 WATER 0.000201309 0.00266261 0.000211056 SULFU-01 0.000301963 0.000410803 2.1999e-24 METHY-01 0.442879 0.60251 8.12502e-24 POTAS-01 0.0301963 0.0410803 2.11048e-72	+ Mole Flows	kmol/hr	4.935	3.6275	1.3075	
TRIOL-01 0.00120785 0.00164321 4.23083e-68 METHA-01 0.396578 0.179156 0.999789 WATER 0.00201309 0.00266261 0.000211056 SULFU-01 0.000301963 0.000410803 2.1999e-24 METHY-01 0.442879 0.60251 8.12502e-24 POTAS-01 0.0301963 0.0410803 2.11048e-72	 Mole Fractions 					
METHA-01 0.396578 0.179156 0.999789 WATER 0.00201309 0.00266261 0.000211056 SULFU-01 0.000301963 0.000410803 2.1999e-24 METHY-01 0.442879 0.60251 8.12502e-24 POTAS-01 0.0301963 0.0410803 2.11048e-72	OLEIC-01		0.00603926	0.00821605	7.70019e-29	
WATER 0.00201309 0.00266261 0.000211056 SULFU-01 0.000301963 0.000410803 2.1999e-24 METHY-01 0.442879 0.60251 8.12502e-24 POTAS-01 0.0301963 0.0410803 2.11048e-72	TRIOL-01		0.00120785	0.00164321	4.23083e-68	
SULFU-01 0.000301963 0.000410803 2.1999e-24 METHY-01 0.442879 0.60251 8.12502e-24 POTAS-01 0.0301963 0.0410803 2.11048e-72	METHA-01		0.396578	0.179156	0.999789	
METHY-01 0.442879 0.60251 8.12502e-24 POTAS-01 0.0301963 0.0410803 2.11048e-72	WATER		0.00201309	0.00266261	0.000211056	
POTAS-01 0.0301963 0.0410803 2.11048e-72	SULFU-01		0.000301963	0.000410803	2.1999e-24	
	METHY-01		0.442879	0.60251	8.12502e-24	
GLYCE-01 0.120785 0.164321 1.04883e-18	POTAS-01		0.0301963	0.0410803	2.11048e-72	
	GLYCE-01		0.120785	0.164321	1.04883e-18	

9.6. Simulation of Evaporator (V-101)

		Hotside	ColdSide	Rece Hotside	nt ColdSide	Previ Hotside	ous ColdSide
alculation mode	(Design (Sizing) 🔹		notate	colubiac	notside	colabilac
Process Conditions							
Mass flow rate	lb/h 🔸		1141235	925148	1141235	925148	1141235
Inlet pressure	bar 🔹	1	1	1	1	1	1
Outlet pressure	bar 🔹	0.89	0.89	0.89	0.91005	0.89	0.89985
Pressure at liquid surface in column	bar •						
Inlet Temperature	°C -	152	42.5	152	42.5	152	42.5
Outlet Temperature	°C •	152	110	151.98	110.11	151.98	109.78
Inlet vapor mass fraction				1	0	1	0
Outlet vapor mass fraction				0	0.8659704	0	0.86608
Heat exchanged	BTU/h •			835505104		835505104	
Process Input							
Allowable pressure drop	psi 🔹	1.6	3	1.6	3	1.6	3
Fouling resistance	ft²-h-F/BTU ▼	0	0	0	0	0	0
Calculated Results							
Pressure drop	psi 🔹			18.29	1.3	22.37	1,45

Phy	sical property package	B-J/	AC	•								
Ho	side composition specification	Weight flowrate or %										
	BJAC Components		BJAC Composition	Component type								
1	Steam		1	Program	•							
2					•							
3					•							
4					•							
5					•							
6					•							
7					•							
8					•							
9					•							
10					•							
11					-	-						
Se	arch Databank Delete Row											

Properties 🗸	Phase Comp	osition	Compone	ent Properties	Property Plots				
Get Properties	Temperature	Points		Pressure Levels					
Overwrite Properties	Number	5		Number 1	Pressures				
Restore Defaults	Temperatures	Specif	y range 🔹	Add Set					
	Range	152	152 °C •	Delete Set					
Pivot Table									
				2	3	4	5	6	7
Temperature	٩F		306.05	305.82	305.6	305.56	305.56	305.38	305.1
Liquid density	lb/π ³						57.115	57.121	57.12
Liquid specific heat	BTU/(Ib-F)	•					1.0146	1.0146	1.014
Liquid viscosity	cp						0.1935	0.1936	0.193
Liquid thermal cond.	BTU/(ft-h-	-F) *					0.398	0.398	0.39
Liquid surface tension	lbf/ft						0.00328	0.00328	0.0032
Liquid molecular weigl	ht						18.00999	18.00999	18.0099
Specific enthalpy	BTU/Ib		0	-0.1	-0.3	-0.3	-903.3	-903.4	-903.
Vapor mass fraction			1	1	1	1	0	0	
Vapor density	lb/ft ³		0.163	0.163	0.163	0.163			
Vapor specific heat	BTU/(Ib-F)	•	0.5688	0.5691	0.5693	0.5693			
Vapor viscosity	ср		0.0142	0.0142	0.0142	0.0142			
Vapor thermal cond.	BTU/(ft-h-	-F) -	0.017	0.017	0.017	0.017			
Vapor molecular weigh	at .		18.00999	18.00999	18.00999	18.00999	2		

Physi	cal property package	COMThermo	•							
Cold	side composition specification	Weight flowrate or %								
	ComThermo Components	ComThermo Composition	ComThermo Components ID							
1 0	Glycerol	0.0078	502							
2 V	Water	0.04	19							
3 0	DleicAcid	0.005	3097							
4 H	H2SO4	0.00067	723							
5 N	Vethyl_Oleate	0.0012	570							
6 T	Friethylene_Glycol	0.00128	54							
7 N	Vethanol	0.00834	29							
8										
9										
10										
11				-						

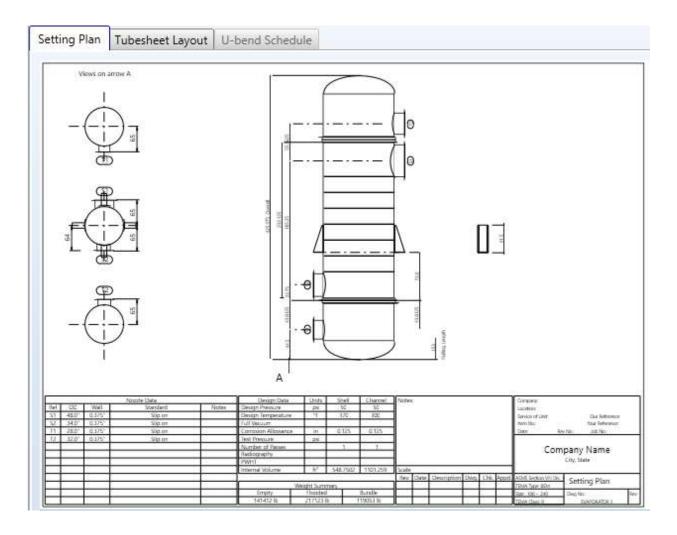
Overseter Poperties		21 Specifyrang		al sector a	Diversaries															
	florge	tite is an	N -	Dyste lat																
		1	1	1	1		5	6	1		B. 11		- 11	12	u	54	15			18
ingenitari	1.	1.0	1085	125.6	143.6	167.15	165/	176.9	85	192.8	-705.5	281.0	2025	207.96	218, 38	208120	46.803	203.4	201.0	2111
equal density	Here?		\$2.046	11.651	31224	50.758	12:367	15.13	5127	11.46	54.d/m	\$4340	66.505	36.8	17:220	3731	40.0e3	42.066	-40.084	40.15
spant spectric beet	HILLOW-C	x - 1 * 2	- 2.966T	239645	-115/2h	:9.9774	434678	R5655	-11/125	2,0405	0.0839	0.9100	:0.9494	-109462	10,0194	0.9.86	35427	023987	B.141	2,94.8
	141		2,11212	9.251	2,6424	63321	1.5780	233394	steen.	4.5134	10791	910136	3.477.04	6.2646	4:000	0.9685	4.mii.	4.050	400	3,0022
	anum-t-	11.57	10,120	0.326	2.7.5	11-3112	11.04	4.363	(10.00)	15,244	1.164	11.1147		3.11	11.1.9%	11.115	11.04	11.00	6104	нав
	144(M)	1.4	100040140	811455	0.11218.6	830764	0.13211	10.011.0.0.0	0.123-019,	(11134-51)	=1/8.403	11 11 11 11 11 11 11	E11278-	12.2362.7.9	0.1003.6	115.381.6	1005431	118430	2100316	910.415
ig it enders to make t		1	2158(1)	21.17/112	11/0/014	21/00411	21.41578	21,40915	35.52000	23.7587	22.59938	38.62835	3617/65	20.05248	35.81974	17 0519	221.99944	221.81/4	322.4610	211,216
loant for writheliny	mute	- 19	-62(061	-5110.4	-51/3.0	(\$156.7	-1080.1	-5855.2	-5011.9	-40673	-4061.6	-41117	-4668.8	-4555.5	-640	-464E.B	-4644.1	-4642.7	-4611.2	4581/
Againer massing franchistory			U	(iii)	U U	(p)	1134(51338	0.375468	0.1192022	11.274123	0.39544	114878231	0.6719812	0.6275562	05345557	0,5581382	11.8225753	18259812	112252058	0.8-0018
Aques density	16/H	- 27	1		14	0.01	0.053	0055	0.05.2	11:041	1044	81242	0.041	0.041	11241	0.041	0.04:	1,041	0.041	(1.64
Appropriate (MAR)	aimp-i	x				63852	0.3866	0.7857	8,4029	0.4524	34/5	8451	3.4351	64364	0.4384	3A29	0.43/	6,437	041/8	84.9
Apport microsity	ε μ	1.0				0.0514	£0074	D.8078	0.0001	0.0064	03067	0.0288	0.079	3.008	0.000	11.009	0.008	£.009	0.000	0.0081
Apport thermal stand.	HUUTH-6	41 A.*				0.01	0.011	0011	0.012	BOT	2012	DOTE	a a a a a a a a a a a a a a a a a a a	3.011	8312	0.013	0.011	6013	0.010	800
Again matteradar weight						21.42.01	295.537.12	25.55250	24.23904.5	221KM0F	21,42542	30.0015	30,13614	200611	20.05879	20.04004	20339209	20.0321	12.05/67	THERE
			11.11/21-05	11.1.60203	1131510	0.102282		n	п	(I)	D	- C - C - C - C - C - C - C - C - C - C	U.	1	a	n		U.	п	1
equal 2 stansity	16/12 [°]		39.518	194.31	29349	38.85				1										
	munite-r	2	23,549	23/85	83378	0.5407														
	44		2.327		+3231	3.3777	11		3	1.0	1.					10	10			
	MULTIPE JA	aj 🗇	0.047	and the	isten.	0.006					1			1		1				
	Hele		10016	2.01116	Armin .	0.121.011							1							
grad 7 molecular and		1	1.0.7239	1346291	135.0997	116.1311			1	5.6			1	1.1	4.5		0		1.1	

Front head type	В	- bonnet bolted	or integral with tubesheet	•		
Shell type	E	- one pass shell		•		
Rear head type	M	- bonnet		•		
Exchanger position	Ve	ertical	•			
Shell(s)		Tubes		Tube Layou	t	
ID	in 🔻	Number		New (optin	num) layout	Ŧ
OD 📃	în *	Length	in 👻	Tubes	8849	
Series		OD	0.75 in 🔹	Tube Passes		
Parallel		Thickness	0.083 in 🔹	Pitch	0.9375 in	٠
				Pattern	30-Triangular	•
Baffles						
Spacing (center-center)		in *	Туре	Single	segmental 🔻	
Spacing at inlet		in 💌	Tubes in window	Yes	•	
Number		Orientation	Vertic	al 🔹		
Spacing at outlet		in 🔹	Cut(%d)			

Front head type	B - bonnet bolted or integral with tubesheet
Shell type	E - one pass shell 🔹
Rear head type	M - bonnet 🔹
Exchanger position	Vertical
Location of front head for vertical units	At bottom
"E" shell flow direction (inlet nozzle location)	Near rear head
Double pipe or hairpin unit shell pitch	in 💌
Tubeside inlet at front head	Set default 💌
Flow within multi-tube hairpin (M-shell)	Set default 💌
Overall flow for multiple shells	Countercurrent
	OD Thickness Series Parallel
Shell(s) in 👻	
Front head in	
Rear head in 🚽	

Baffle type	Single segmental	•)				6		
Tubes are in baffle window	Yes	•)						
Baffle cut % - inner/outer/intermediate:	/	/				101			
Align baffle cut with tubes	Yes	•]						
Multi-segmental baffle starting baffle	Set default	Ŧ							
Baffle cut orientation	Vertical	•]						
Baffle thickness		in 🔻							
Baffle spacing center-center		in -							
Baffle spacing at inlet		in -	a	at outlet				in	-
Number of baffles]						
End length at front head (tube end to closes	t baffle)			in	•				
End length at rear head (tube end to closest	baffle)			in	•				
Distance between baffles at central in/out fo	r G,H,I,J shells			in	-				
Distance between baffles at center of H shell				in	•				
Baffle OD to shell ID diametric clearance			in	•					
Baffle tube hole to tube OD diametric cleara	nce			in	•				

			Heat Excha	nger Spec	ification	Sheet					
1	Company:										
2	Location:										
3	Service of Unit:	Our Refer	ence:								
4	Item No.:	Your Refere	nce:								
5	Date: Rev No.:	Job No.:									
6	Size : 100 - 240 in	Ту	pe: BEM	Vertical		Connected in	: 10 parallel	5 series			
7	Surf/unit(eff.) 1680	484 ft ²	Shells/u	unit 50		Surf/s	hell(eff.) 33	3609.7 ft ²			
8			PERFO	RMANCE	F ONE UN	NIT					
9	Fluid allocation				Shell Side Tube Side						
10	Fluid name			STEAM			PROCESS FLUID				
11	Fluid quantity, Total		lb/h	925148			1141235				
12	Vapor (In/Out)		lb/h	9251	48	0	0	988275			
13	Liquid		lb/h	0		925148	1141235 152959				
14	Noncondensable		lb/h	0		0	0	0			
15											
16	Temperature (In/Out)		۴F	305.	6	305.56	108.5	230.19			
17	Bubble / Dew point		۴F	305.56 / 3	305.56	305.56 / 305.56	162.25 / 708.49	157.71 / 716.77			
18	Density Vapor/Liqui	d	lb/ft³	0.033 /		/ 57.115	/ 49.952	0.035 / 40.436			
19	Viscosity		cp	0.0142 /		/ 0.1935	/ 1.3441	0.0094 / 3.3284			
20	Molecular wt, Vap			18.0	1			19.65			
21	Molecular wt, NC										
22	Specific heat		BTU/(Ib-F)	0.5693 /		/ 1.0146	/ 0.9069	0.4428 / 0.5516			
23	Thermal conductivity		BTU/(ft-h-F)	0.017 /		/ 0.398	/ 0.284	0.014 / 0.083			
24	Latent heat		BTU/Ib	903		903	462.6	1289.8			
25	Pressure (abs)		psi	14.5		12.91	14.5	13.2			
26	Velocity (Mean/Max)		ft/s	35.33 / 7		72.87	23.65	/ 47.27			
27	Pressure drop, allow./calc.		psi	1.6		18.29	3	1.3			
28	Fouling resistance (min)		ft²-h-F/BTU	0			0	D Ao based			
29	Heat exchanged 8355	505100	BTU/h	MTD (corrected) 108.69							
30	Transfer rate, Service	4.57		Dirty	137.69	Cle	an 137.69	BTU/(h-ft²-F)			
31		CONSTRU	CTION OF ONE S	HELL			Ski	etch			
32			Shell Si	de		Tube Side	1				
33	Design/Vacuum/test pressur	e psi	50 /	/ 50 / /				de la			
	Design temperature	°F	370				- <u></u>				
35	Number passes per shell		1			1					
36	Corrosion allowance	in	0.125			0.125	4	4			
37	Connections In	in	1 48 /	-	1	8 / -	5	-			
38	Size/Rating Out		1 8 /	-	1	32 / -	୍ୟ	\rightarrow			
39	-	mediate	1 34 /	-	1	28 / -					
40	Tube #: 8849 OD:		rage 0.083	in Len	gth: 2	40 in Pitc	h: 0.9375 in	Tube pattern: 30			
41	Tube type: Plain		None		- Fin#:	#/in	Material: Carbor				
	Shell Carbon Steel	ID 100	OD 101			Shell cover	-				
⊢ +		Carbon Steel									
		Carbon Steel	-			Channel cover Tubesheet-floatir	g -				
	Floating head cover					Impingement pro	•				
	Baffle-cross Carbon Steel	Туре	Single segm	ental C	ut(%d)		Ve Spacing: c/c 23.	75 in			
⊢ +	Baffle-long -		Seal Type				Inlet 51.03				
⊢ +		U-bend	0			Туре	21103				
_	Bypass seal		-	ube-tubeshe	et joint		y (2 grooves)(App.A	i')			
	Expansion joint -			Тур			/ (= 3, set cs/(-)k/m	.,			
⊢ +	RhoV2-Inlet nozzle 137		Bundle entra			Bundle exit	1	lb/(ft-s ²)			
	Gaskets - Shell side	-	earraid eritid	Tube side			etal Jacket Fibe	10/(10-3-)			
53	Floating head	-		Tabe Side		FIGC IVI	ever received the				
54		service conditionality of the Vi		TEMA class R - refinery service							
⊢ +		141416.5 Eilled w	ith water 2171	30.1	Bundle	119057.1	LIS.				
55	Weight/Shell	141416.5 Filled w	vith water 2171	30.1	Bundle	119057.1	lb				
55		141416.5 Filled w	vith water 2171	30.1	Bundle	119057.1	lb				


Γ	Size 100 X	240	in	Type	BEM V	er	Connected in	10 p	arallel	5 series	
	Surf/Unit (gross/eff/finned)		1737495	/ 1680)484 /	ft	² Shells/unit	50			
	Surf/Shell (gross/eff/finned)		34749.9	/ 336	09.7 /	ft	2				
1	Design (Sizing)			Pi	ERFORMANC	E OF ONE U	NIT				
1			Sh	ell Side	Tu	be Side	Heat Transfer	Parameters			
	Process Data		In	Out	In	Out	Total heat load			BTU/h	835505100
	Total flow	lb/h	92	5148	114	1235	Eff. MTD/ 1 pas	is MTD		°F 108.69	/ 110.20
	Vapor	lb/h	925148	0	0	988275	Actual/Regd ar	ea ratio - foule	d/clean	30,1	/ 30.1
	Liquid	lb/h	0	925148	1141235	152959					
	Noncondensable	lb/h)	0		Coef./Resist.	1	BTU//h-ft	² -F) ft ² -h-F/BTL	1 %
	Cond./Evap.	lb/h	92	5148	988	275	Overall fouled		37.69	0.0073	
	Temperature	°F	305.6	305.56	108.5	230.19	Overall clean	1	37.69	0.0073	
	Bubble Point	°F	305.56	305 56	162.25	157.71	Tube side film		52.55	0.0066	90.26
	Dew Point	۰F	305.56	305.56	708.49	716.77	Tube side fouli			0	0
	Vapor mass fraction		1	0	0	0.87	Tube wall		62.55	0.0003	3.66
	Pressure (abs)	psi	14.5	12.91	14.5	13.2	Outside fouling		02.35	0	0
		1.		18.29	3		Outside film		64.40		6.08
Ľ	DeltaP allow/cal	psi	1.6			1.3	Outside film	- 22	64.42	0.0004	0.08
L	Velocity	ft/s	68.34	0.04	0.04	47.27					
	Liquid Properties	2					Shell Side Pre	ssure Drop		psi	%
	Density	lb/ft ³		57.115	49.952	40.436	iniet nozzie			0.02	0.13
	Viscosity	ср		0.1935	1.3441	3.3284	InletspaceXflov	V .		2.84	15.49
	Specific heat	BTU/(Ib-F)		1.0146	0.9069	0.5516	Baffle Xflow			12.19	66.5
	Therm. cond.	BTU/(ft-h-F)		0.398	0.284	0.083	Baffle window			0.39	2.11
	Surface tension	lbf/ft				0.00445	OutletspaceXfl	ow		2.39	13.04
L	Molecular weight			18.01	18.96	231.3	Outlet nozzle			0.01	0.04
	Vapor Properties						Intermediate n	ozzles		0.48	2.6
	Density	lb/ft ³	0.033			0.035	Tube Side Pre	ssure Drop		psi	%
	Viscosity	cp	0.0142			0.0094	iniet nozzie			0.02	1.53
	Vapor Properties						Intermediate n	ozzles		0.48	2.6
	Density	lb/ft ³	0.033			0.035	Tube Side Pre	ssure Drop		psi	96
	Viscosity	CD	0.0142			0.0094	Inlet nozzle			0.02	1.53
	Specific heat	BTU/(Ib-F)	0.5693			0.4428	Entering tubes			0.01	0.75
	Therm. cond.	BTU/(ft-h-F)	0.017			0.014	Inside tubes			0.59	45.4
	Molecular weight	0.0,000,000,000	18.01			19.65	Exiting tubes			0.02	1.7
	Two-Phase Properties		10.01			19.05	Outlet nozzle			0.02	3.55
		OTILIA	000		100.0	1289.8		9			46.9
-	Latent heat	BTU/Ib	903	903	462.6	1289.8	Intermediate n	Contraction of the second second		0.6	
	Heat Transfer Parameters						10.000	Rho*V2		ft/s	lb/(ft-s ²)
	Reynolds No. vapor		14604.35	0220022	See	12876.19	Shell nozzle inl			64.7	137
	Reynolds No. liquid			1071.65	103.78	5.62	Shell bundle Xi	200	68.	귀양 그가라 옷을	
	Prandtl No. vapor		1.13			0.72	Shell baffle win		54.		
	Prandtl No. liquid			1.19	10.39	53.39	Shell nozzie ou			1.3	96
	Heat Load		BT	U/h	BT	J/h	Shell nozzle int	erm		130.5	556
	Vapor only		-10	4660	0					ft/s	lb/(ft-s²)
	2-Phase vapor)	1406	7600	Tube nozzle in	et		1.83	167
	Latent heat		-835	400300	7319	00080	Tubes		0.0	04 47.27	
	2-Phase liquid)	3347	4360	Tube nozzle ou	itlet		146.01	869
	Liquid only)	5605	5030	Tube nozzle in	term		183.56	1437
	Tubes				Baffles		Ne	zzles: (No./O	D)		
	Type			Plain	Туре	Single segr		10 CON		l Side	Tube Side
	ID/OD	in 0	.584 /	0.75	Number	<u> </u>		et j	n 1	/ 48	1 / 8.0
	Length act/eff	360	20 /	19.3438	Cut(%d)	29.7		rtlet	1	/ 8.625	1 / 3
	Tube passes		1		Cut orienta			ermediate	1	/ 34	1 / 2
	Tube No.		849		Spacing: c/			pingement pro	taction	/ 54 None	10 1 6
	Tube pattern		30		Spacing at			pargement pro	Accion	None	
		in 0.									
	Tube pitch	in 0.	3375	4200	Spacing at	outlet in	50.5050				
	Insert			Non	e						

Baffle cut area percent, outer Baffle cut area percent, inner

- 1							
	Basic Geometry	Tubes	Baffles	Supports-Misc. Baffles	Bundle	Enhancements	Thermosiphon Piping

Туре		Plain	Total number of tubes		8849
Outside diameter	in	0.75	Number of tubes plugged		0
Inside diameter	in	0.584	Tube length actual	ft	20
Wall thickness	in	0.083	Tube length effective	ft	19.3438
Area Ratio Ao/Ai		1.284247	Front tubesheet thickness	in	3.875
Pitch	in	0.9375	Rear tubesheet thickness	in	3.875
Pattern		30	Material		Carbon Stee
External enhancement			Thermal conductivity	BTU/(ft-h-F)	29.415
Internal enhancement					
Low fins			Longitudinal fins		
Fin density	#/in		Fin number		0
Fin height	in		Fin thickness	in	
Fin thickness	in		Fin height	in	
Tube root diameter	in		Fin spacing	in	
Tube wall thickness under fin	in		Cut and twist length	in	
Tube inside diameter under fins	in				
Other (high) fins			•		
High Fin Type		Default	High Fin Thick	in	
			High Fin Frequency		

Baffles							
Туре	Sing	le segmental	Baffle cut: inner/outer/interm				
Tubes in window		Yes	Actual (% diameter)	1	29.7	/	
Number		7	Nominal (% diameter)	1	30	/	
Spacing (center-center)	in	23.75	Actual (% area)	/	24.89	/	
Spacing at inlet	in	51.0394	Cut orientation				V
Spacing at outlet	in	38.5856	Thickness		in		0.625
Spacing at center in/out for G,H,I,J	in		Tube rows in baffle overlap				50
Spacing at center for H shell	in		Tube rows in baffle window				35.5
End length of the front head	in	42.5856	Baffle hole - tube od diam clearance		in		0.0156
End length of the rear head	in	54.9144	Shell id - tube od diam clearance		in		0.4375
Variable Baffle Spacings							
Baffle spacing	in	Ŧ					
Baffle cut percent, outer							
Baffle cut percent, inner							
Number of baffle spaces							
Baffle region length	in	*					

INSTUMENTATION AND PROCESS CONTROL

10.1 Introduction

Instrumentation is the study of automated measurement and control. Numerous applications of this science can be found in modern research, industry, and daily life. Everything around us is automated, including home thermostats, aero plane autopilots, vehicle engine control systems, and pharmaceutical drug production. Selecting the best measuring technique is essential for first step in the design and formulation of many process control systems. While using manual control, an operator may read the process variable and adjust the input up or down until the temperature reaches the optimum value. In non-critical applications, manual control is used when the operator's attention needs to be maintained to a minimum and any process condition changes gradually and modestly. When under automated management, measurement and changes are made automatically on a regular basis. The following benefits have led to the widespread usage of automated control in industry today.

- Product quality enhancement
- Increase in the manufacturing rate's process yield
- Boost employee and equipment safety.
- Economic savings in materials and time
- Enhancement of working conditions
- Manual control does not allow for the completion of the procedure.

10.2 Objectives

The following are the goals of the Instrumentation and Control System:

- Suppressing and eliminating external disruptions
- Maintain the process's stability.
- Optimize the functioning of the process

10.3 Components of control system

Components of Control System are follows

- Process
- Measuring Element
- Process Variable

Controller

10.4 Process

A process is any activity or combination of operations that results in the intended end result.

10.5 Measuring Element

As with other components of a control system, the measuring element is likely the most critical. The system as a whole will not operate appropriately if measurements are not made correctly, and the measured variable is chosen to match the process' intended circumstances.

10.6 Process Variable

The control of process variables is critical to the smooth running of a process. These are described as changing conditions in process materials or apparatus. The principal variables include temperature, pressure, flow, and liquid level, followed by a dozen or so less often encountered variables such as chemical composition, viscosity, density, humidity, moisture content, and so on. Measurement is a key need for process control, whether it is automatic, semi-automatic, or human. An automated control is used to measure, rectify, and alter the four major categories of process variations.

- Measuring temperature
- Measuring pressure
- Measuring flow rate
- Measuring level

There are several types of measuring devices for temperature, pressure, flow, and level.

10.6.1 Temperature Measurement and Control

Temperature readings are utilized to control the intake and output temperatures. flows in reactors, heat exchangers, and other devices. To make it easier to bring the measurement to a centralized place, thermocouples are used for the majority of temperature measurements in the industry. Bimetallic or filled system thermometers are utilized for local measurements at the equipment to a lesser extent. Resistance thermometers with high measurement accuracy are utilized.

All of these meters are covered by thermo-walls when being used locally. This offers defense against the elements of the weather as well as other natural hazards.

10.6.2 Pressure Measurement and Control

Pressure, like temperature, is a variable that indicates the condition and composition of a substance. In fact, when taken together, these two metrics are the fundamental evaluation devices for industrial materials. In the reactor, pressure measurements are crucial. Pumps, compressors, and other process equipment that is linked to pressure changes in the process material have pressure measurement instruments attached to them. As a result, measures of pressure are used to determine whether or not energy has increased. The majority of pressure measurements in industry are made using elastic element devices that are either relayed to a centralized location or directly linked for local use. A bourdon tube or a bellows with a diaphragm is the most typical industrial pressure component.

10.6.3 Flow Measurement and Control

Flow measurement is an important aspect of practically every industrial process, and numerous ways have been developed to do so. Similar to pressure measurement, flow measurement frequently makes use of a sensing device coupled to a DP cell. For unusual circumstances, such as when there is no external disturbance in the fluid stream, magnetic flow meters may be employed instead of other flow meters. To control the amount of liquid, flow indicator controllers are employed. All manually set streams also need some type of flow indication or a straightforward sampling device. In industrial, variable head devices are used to measure flow. Variables are employed to a lesser extent, as are the various accessible kinds when particular measurement scenarios arise.

Measured Process Variable	Measuring Devices	Comments
	Thermocouples,	Most frequently used for
	Thermometer,	Radiation pyrometers with
Temperature	Thermistor,	low temperatures High-
	Bimetallic	Temperature applications
	Thermometers,	
	Radiation Pyrometers	
	Manometers	Based on the elastic
	Bourdon tube	deformation of materials,
	Elements Bellow	floats or displacers are used.
Pressure	Elements Strain	Pressure is converted to an
	Gauges	electrical signal using this
	Capsule gauges	device. For the purpose of
	Thermal conductivity Gauge	measuring vacuum
	McLeod gauge	
	Orifice plate	Pressure decrease over a flow
	Venture flow nozzle	restriction is measured.
Flowrate	Pitot tube	Positive displacement and
	Turbine flow meter	mass flowmeters for Quantity
	Hot wire anemometry	Flowmeters with High
	Positive displacement	Precision
	Mass flowmeter	
	Float actuated devices	This two-phase system
	Displacer devices	functions well with many
Liquid Level	Liquid head	types of indicators and signal
	pressure devices	converters. Utilizing Indirect
	Dielectric measurement	Hydrostatic Pressure

 Table 10.1: Measuring Devices

10.7 Type of Controls

In industry, several sorts of controls are utilized depending on the requirements and individual demands. They span from very simple controls to highly complicated systems, and may be divided into two primary categories:

- Feed forward control
- Feed Backward control

10.7.1 Feed Forward Control

A feedback control, as the name indicates, operates on the same principle. Any change to an input to a system results in "disturbances," which are modifications to the system. These interruptions are noted, and subsequent adjustments are made to the input to undo the impact of the change.

Advantages

- It is not necessary to identify and measure the disruption.
- Insensitive to modelling flaws.
- Changes in parameters have no effect

Disadvantages

- After irregularities have been detected, control action is done.
- Unsatisfactory due of a lengthy and considerable dead time procedure.
- It might result in instability in the closed-loop reaction.

10.7.2 Feed Backward Control

Adjusts the value of manipulated variables based on direct measurement of disturbances.

Advantages

- It takes action before the system feels the effects of the disturbance.
- It works well with sluggish systems or ones that have a lot of downtime.
- It doesn't cause the control system to become unstable.

Disadvantages

- It necessitates the identification of all potential disruptions as well as their immediate measurement.
- Cannot handle unmeasured disturbances.
- Sensitive to changes in process parameters.
- It is not possible to eliminate steady-state offset.
- It necessitates a thorough understanding of the process model.

10.8 Control on Distillation Column

Control Objective

- Temperature of distillation column
- Flowrate of coolant in condenser
- Flowrate of steam in reboiler

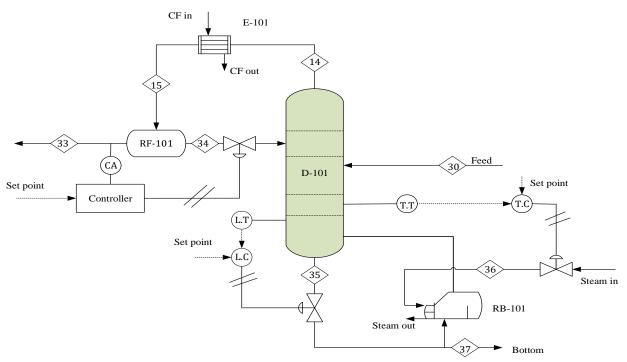


Figure 10-1: Control on Distillation Column

Manipulated Variables

- Steam flowrate
- Coolant flowrate

Disturbances

- Temperature of feed
- Temperature of steam
- Temperature of coolant
- Flowrate of feed
- Flowrate of steam
- Flowrate of coolant

10.9 Control on CSTR Control Objective

- Temperature inside the reactor
- Temperature of coolant

Manipulated Variable

• Flowrate of feed and water

Disturbances

- Temperature of feed
- Temperature of coolant
- Flowrate of feed
- Flowrate of coolant

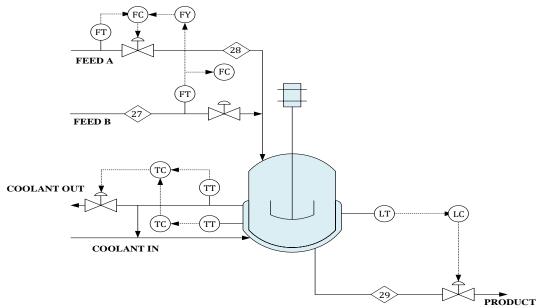


Figure 10-2: Control on Reactor

CHAPTER 11 HAZOP STUDY

11.1 HAZOP Study

The HAZOP study, also known as a hazard and operability study, is a methodical approach for identifying all plant or equipment dangers and operability issues. Each component (pipeline, piece of machinery, instrument, etc.) is thoroughly evaluated and any potential deviations from the identified usual operating conditions.

11.2 Objectives of HAZOP

The contractor frequently had to take the following into account, as is evident from the lessons learned from the practical application of HAZOP in the process industry.

- The potential for material degradation or breakdown,
- The potential for human factors to fail,
- the potential for an exothermic reaction runaway, the danger of raw materials, the reaction mixture, intermediate products, and finished goods decomposing,
- the potential for negative side effects,
- the potential for a utility outage.

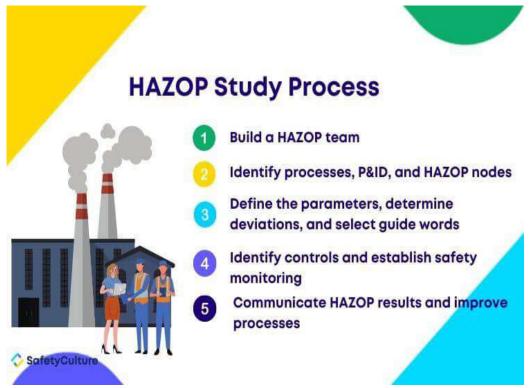


Figure 111: HAZOP Study Process

11.3 Guide Words

Guide words	Meaning	Example
NO	Total negation of opposite function	No flow
MORE	Quantitative increase	Higher flow
LESS	Quantitative decrease	Lower flow
AS WELL AS	Qualitative increase	Penetration of water in reactor
PART OF	Qualitative decrease	Compound is missing
REVERSE	Opposite function	Reverse flow of fluid
OTHER THAN	Total substitution	Presence of other substances

 Table 11.1: Guided Words

11.4 Advantages and Disadvantages

HAZOP has following advantages

- A thorough and methodical analysis of the examined equipment to find potentially dangerous situations,
- The capacity to evaluate the results of a personnel failure and recognize situations where a personnel error could have detrimental impacts,
- Discovery of new harmful circumstances, a methodical approach that enables the discovery of new dangerous circumstances that may arise,
- Making operational regulations more stringent, enhancing the efficiency of the operational equipment, and detecting situations that could interfere with the operation, result in unplanned breaks, harm the equipment, or result in the loss of raw materials still being processed.

HAZOP STUDY

HAZOP has following disadvantages:

- Long period of time necessary (based on the scale of the technology).
- Without a clear description of objectives (such as the identification of emergency situations), studies might be endless and produce results that are unclear. This is why a set of HAZOP studies that account for the impacts at the beginning of the study are necessary.
- High expectations are placed on research participants' knowledge and abilities, and effective HAZOP studies cannot be carried out without a strong HAZOP team.

11.5 HAZOP Study on Distillation Column (D-101)

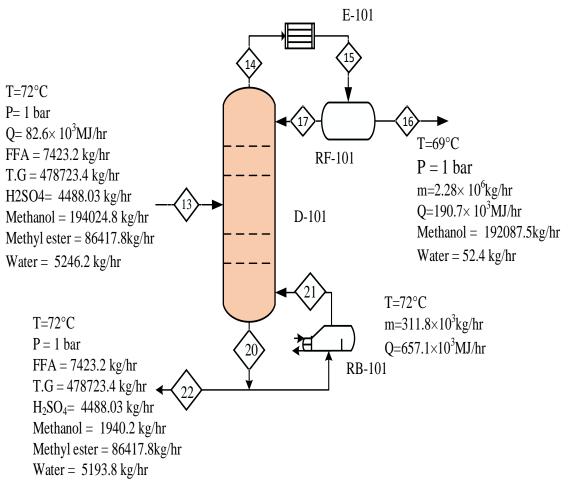


Figure 11.2: HAZOP Study on Distillation Column

Process	Guide	Possible causes	Possible consequences	Action required
parameter	word	I USSIDIC Causes	i ossible consequences	Action required
Flow	No	Pipe is broken or	Loss of feed in column/	Schedule inspection
TIOW	110	plugging	desired output not achieved	Senedule inspection
Flow	Low	Pipe is partial	Decrease of level in	Install check valves
TIOW	Low	plugged/leakage	column	instant check varves
Flow	High	High pressure	Flooding in column	_
	mgn	ingh pressure	Thousang in column	
Flow	Low	Pipe partial	Level decrease in column	Schedule inspection
110 10	Low	clogged/ leakage		+ install valves
Temperature	Low	High flowrate from	Low level inside reboiler	Schedule inspection
		condenser		
		Failure of cooling		Install temperature
Temperature	More	media in condenser	Low level of reflux	indicator
		Valve close	Line over pressure	Failure of
Pressure	More			compressor
Flow	Less	Leakage in	Low level in condenser	Level controller
		upstream system		(LC)

 Table 11.2: Guide Words for Distillation Column

11.6 HAZOP Study of Heat Exchanger (HX-104)

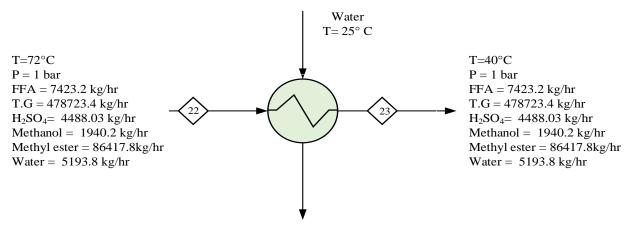


Figure 11.3: HAZOP Study on Distillation Column

Process	Guide word	Possible causes	Possible	Action
parameter			consequences	required
Flow	Low	Pipe is partial	Decrease of level	Install check
		plugged/leakage	in exchanger	valve
Flow	Reverse	Failure of inlet	Fluid flow is	Install check
		valve	reversed.	valve.
Temperature	Less	Blockage in pipe	Temperature of	High
			process fluid	temperature
			remains constant	alarm
Temperature	More	Failure of valve	Process fluid	Low
			temperature	temperature
			decreases	alarm
Temperature	None	Failure of inlet	Temperature of	Install
		valve to open	process fluid	temperature
			remains constant	indicator
Pressure	More of	Failure of	Bursting of tubes	Install high
		process fluid	of exchanger	pressure
		valve		alarm

Table 11.3: Guide Words for Heat Exchanger

CHAPTER 12

ENVIRONMENTAL IMPACT ASSESSMENT

12.1 Environmental Impact Assessment

The evaluation of the impacts that are likely to result from a big project (or other action) that has a significant environmental impact is known as an environmental impact assessment (EIA). In reality, it is a tool for assessing how commercial activity, profitable planning, or action that affects the bio-geophysical environment and human health and well-being will be interpreted and communicated to the general public. All environmental factors are taken into account during the EIA process, starting with the project's initial planning and decision-making stages.

In EIA the negative and positive aspects of a certain project is inspected meticulously. And during the design stages of the product it also take into account these aspects. Environmental effects that the project can will also be pointed out by EIA. It also prognosticates the negative impact on environment and also suggest different techniques that will help lessen them. This technique has many advantages such as it protects the environment, utilization of resources is maximized and the outlay of project is reduced by applying different techniques to control environmental problems during the planning of project [6]

12.2 Biodiesel

The transesterification of oils or fats from plants or animals with short-chain alcohols like methanol and ethanol produces, an alkyl ester of fatty acids called biodiesel. A very good alternative fuel for diesel engines is biodiesel and it is nontoxic, biodegradable fuel. Instead of releasing carbon dioxide that has been stored in the atmosphere, we are cycling carbon with the aid of biodiesel.

It burns cleanly and has a lot of lubricity. Although it functions similarly to petroleum diesel, biodiesel made from renewable sources emits substantially less air pollution. [6]

12.3 Composition of Biodiesel Exhaust Emissions

Combustion emissions, fugitive emissions, and spills are only a few of the risks and hazards connected with biodiesel facilities. These risks and hazards can be reduced by technological and behavioral mitigation techniques.

It has been demonstrated that biodiesel emissions have lower levels of particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons (PAHs) than emissions from petroleum-based diesel. Sulfur-containing molecules also don't seem to be present. However, the combustion of

biodiesel in a diesel engine often results in an increase in the generation of nitrogen oxides, which have been recognized as an ozone precursor in addition to potentially having negative health impacts. [6]

12.4 Respiratory Issues

The proportion of ultrafine (100-nm diameter) particles in the PM typically increases as the proportion of biodiesel in the fuel mix does as well. This is crucial because epidemiological connections between inhaled PM and respiratory health are most often caused by ultrafine (as opposed to larger) particles. Because they have a larger specific surface area, smaller particles can more efficiently adsorb harmful chemicals such polyromantic hydrocarbons (PAH), volatile organics, aldehydes, and ketones. Many of them, which are present in biodiesel exhaust, are dangerous, can cause cancer, or can cause mutations in both humans and animals. [6]

Because ultrafine particles have a greater inflammatory effect, particle size and respiratory health may be connected. Airway restriction appears to hasten the accumulation of ultrafine particles in the lungs of people with obstructive or restrictive lung disease (such as asthma). Because of their smaller size, biodiesel exhaust particles float in the air for longer, are easier to breathe in, can enter the lungs more deeply, and may even go straight to the pulmonary circulation. [6]

These issues can be solved by using filters in diesel engines.

12.5 Storage

Biodiesel may be stored and handled largely in the same ways as conventional petroleum diesel. The fuel needs to be kept in a tidy, dry, and dark location. Aluminum, steel, polyethylene, polypropylene, and Teflon are suggested materials for storage tanks, while concrete-lined storage tanks are not. If at all feasible, the storage tank should not include any copper, brass, lead, tin, zinc, or rubber fittings (in actuality, many people use brass ball valves with little to no harm).

A fungicide or algaecide should always be used while storing biodiesel during warm weather because it is an organic liquid. For optimal performance, biodiesel and conventional diesel should only be stored for a maximum of six months.

12.6 Byproduct Handling

Approximately 25% of the volume of crude glycerol by-product is methanol-contaminated, making it potentially hazardous waste. At room temperature, methanol will not adequately evaporate from stored glycerol to deem the glycerol uncontaminated.

Handle raw methanol-glycerol byproduct as though it were methanol. This entails donning gloves and safety glasses, as well as avoiding intense vapors. This glycerol can be sold to other industries in which it can be used as a raw material. [6]

12.7 Wash Water

Getting rid of and treating wash water waste from the production of biodiesel is quite difficult. Methanol, soap, too much catalyst, glycerol, fat oil, free fatty acids, and biodiesel are all possible contaminants of wash water. Typically, wash water has a high, alkaline pH. Before dumping the water in a sanitary sewer, the pH of the water should be measured. Local laws may differ, however because of its corrosive nature, any liquid with a pH of 9.5 or higher is of concern. [6]

Wash water's alkalinity can be reduced in small batches using muriatic acid or vinegar that has been diluted. However, neutralizing waste through "pretreatment" or before disposal is governed. Water treatment plants can be installed to treat the water so that it can be reused again and again.

12.8 Handling of Chemicals Used in Biodiesel Production

12.8.1 Methanol Handling

Methanol must be handled and utilized in a well-ventilated location since it is hazardous. At greater amounts, methanol can be fatal or can cause blindness when ingested or inhaled. Safety goggles, chemical-resistant clothes, and gloves must be worn whenever handling the substance because it is particularly harmful to the eyes. It is necessary to wear air-supplied respirators, preferably with a full-face mask, if airborne concentrations are higher than 200 ppm. [6]

12.8.2 KOH Handling

Potassium hydroxide (KOH) is caustic and potentially deadly if consumed. Affected skin should be properly washed with water or a weak vinegar solution to prevent serious burns. It is feasible to inhale solid KOH if the substance is broken down into dust-sized particles. Any of these circumstances calls for emergency medical care because they are all critical. [6]

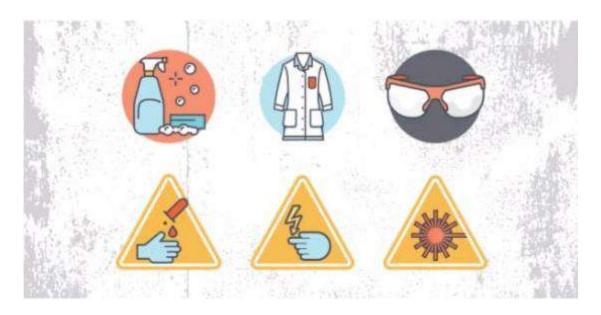


Figure 12.1: Handling of Chemicals

REFERENCES

References

- 1. Alexandre C. Dim, C. B. (2008). Chemical Process Design .
- 2. Ali Farokhnia, S. M. (2022). A novel design for biodiesel production from methanol+mutton bone fat mixture.
- 3. Anietie Okon Etim, C. F. (2022). Production of Biodiesel from Non-Edible Sources.
- 4. Azhaham Perumal Saravanan, A. P. (2020). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps.
- 5. Daming Huang, H. Z. (2012). Biodiesel: an Alternative to Conventional Fuel.
- 6. Diana-Carolina Cruz-Forero, O.-A. G.-R. (2012). Calculation of thermophysical properties of oils and triacylglycerols using an Extended Constituent Fragments approach.
- Fahed Javed a, Z. S. (2021). Conversion of poultry-fat waste to a sustainable feedstock for biodiesel production.
- 8. Gerhard Knothe, J. K. (2010). the biodiesel handbook.
- 9. H. Noureddini, D. Z. (2008). Kinetics of Transesterification of SoyBean Oil.
- 10. Hajar Rastegari, H. J. (2020). Biodiesel Guide Sources, Production, Uses, & Regulations.
- 11. J.M. Encinar, S. N.-D. (2021). Pre-esterification of high acidity animal fats to produce biodiesel: A kinetic study.
- John Abraham, V. R. (2013). Yield and Quality Characteristics of Rendered Chicken Oil for Biodiesel Production.
- 13. K. Sandesh Suresh, T. G. (2019). Prospective ecofuel feedstocks for sustainable production.
- 14. Kaniz Ferdous, M. R. (2013). Preparation of Biodiesel Using Sulfuric Acid as a Catalyst.
- 15. Kesieme, U. K. (2019). Biofuel as alternative shipping fuel: technology, environmental and economic assessment.
- 16. Lalit M. Bal, S. S. (2010). Solar dryer with thermal energy storage systems for drying agricultural food products: A review.
- 17. Marchetti, J. M. (2012). A summary of the available technologies for biodiesel production based on a comparison of different feedstock's properties.
- Marcos V.D. Silva, R. C. (2015). Determination of Enthalpies of Formation of Fatty Acids and Esters by Density Functional Theory Calculations with an Empirical Correction.

- 19. Renata N. Vilas Bôas, M. F. (2022). A REVIEW OF BIODIESEL PRODUCTION FROM NON-EDIBLE RAW MATERIALS USING THE TRANSESTERIFICATION PROCESS WITH A FOCUS ON INFLUENCE OF FEEDSTOCK COMPOSITION AND FREE FATTY ACIDS.
- Rungnapa Kaewmeesri, A. S. (2014). Deoxygenation of Waste Chicken Fats to Green Diesel over Ni/Al2O3: Effect of Water and Free Fatty Acid Content.
- 21. S. Tamalampudi, H. F. (2011). Industrial Biotechnology and Commodity Products.
- 22. Saifuddin Nomanbhay, R. H. (2018). Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review.
- Steiman, M. (2008). Biodiesel Safety and Best Management Practices for Small-Scale Noncommercial Use and Production.
- Sujan Shee, B. P. (2022). Pincer-Metal Complexes Applications in Catalytic Dehydrogenation Chemistry.
- 25. Zaitsau, D. H., & Verevkin, S. P. (2013). Thermodynamics of biodiesel: combustion experiments in the standard conditions and adjusting of calorific values for the practically relevant range (273 to 373) K and (1 to 200) bar.

APPENDICES

Appendix-A

Tables

Table A.1: Maximum Allowable Stress	
Table A.2: Degree of Radiography	
Table A.3: Minimum Practical Thickness	
Table A.4: Cost of Utilities	
Table A.5: Typical Percentages of Fixed Capital Investment	
Table A.6: Purchased Prices of Equipment's 2003	
Table A.7: Typical overall Coefficients	
Table A.8: Fouling Factors	
Table A.9: Constants to Use in Equation	
Table A.10: Typical Baffle Clearances	
Table A.11: Conductivity of metals	

Material	Tensile	Tensile Design stress at temperature °C (N/mr strength					mm ²)	m^2)			
	(N/mm ²)	0 to 50	100	150	200	250	300	350	400	450	500
Carbon steel (semi-killed or											
silicon killed) Carbon-manganese steel (semi-killed or	360	135	125	115	105	95	85	80	70		
silicon killed)	460	180	170	150	140	130	115	105	100		
Carbon-molybdenum steel, 0.5											
per cent Mo	450	180	170	145	140	130	120	110	110		
Low alloy steel											
(Ni, Cr, Mo, V)	550	240	240	240	240	240	235	230	220	190	170
Stainless steel 18Cr/8Ni											
unstabilised (304)	510	165	145	130	115	110	105	100	100	95	90
Stainless steel 18Cr/8Ni											
Ti stabilised (321)	540	165	150	140	135	130	130	125	120	120	115
Stainless steel 18Cr/8Ni											
Mo $2\frac{1}{2}$ per cent											
(316)	520	175	150	135	120	115	110	105	105	100	95

Table A.1: Maximum Allowable Stress

Table A.2: Degree of Radiography

Type of joint	Degree of radiography					
	100 per cent	spot	none			
Double-welded butt or equivalent	1.0	0.85	0.7			
Single-weld butt joint with bonding strips	0.9	0.80	0.65			

 Table A.3: Minimum Practical Thickness

Vessel diameter (m)	Minimum thickness (mn			
1	5			
1 to 2	7			
2 to 2.5	9			
2.5 to 3.0	10			
3.0 to 3.5	12			

Utility	UK	USA
Mains water (process water)	60 p/t	50 c/t
Natural gas	0.4 p/MJ	0.7 c/MJ
Electricity	1.0 p/MJ	1.5 c/MJ
Fuel oil	65 £/t	100 \$/t
Cooling water (cooling towers)	1.5 p/t	1 c/t
Chilled water	5 p/t	8 c/t
Demineralised water	90 p/t	90 c/t
Steam (from direct fired boilers)	7 £/t	12 \$/t
Compressed air (9 bar)	0.4 p/m ³ (Stp)	0.6 c/m^3
Instrument air (9 bar) (dry)	0.6 p/m^3 (Stp)	1 c/m^3
Refrigeration	1.0 p/MJ	1.5 c/MJ
Nitrogen	6 p/m^3 (Stp)	8 c/m ³

Table A.4: Cost of Utilities

Note: $\pounds 1 = 100p$, 1\$ = 100c, 1 t = 1000 kg = 2200 ib, stp = 1 atm, $0^{\circ}C$

Component	Range of FCI, %		
Direct costs			
Purchased equipment	15-40		
Purchased-equipment installation	6-14		
Instrumentation and controls (installed)	2-12		
Piping (installed)	4-17		
Electrical systems (installed)	2-10		
Buildings (including services)	2-18		
Yard improvements	2-5		
Service facilities (installed)	8-30		
Land	1-2		
Indirect costs			
Engineering and supervision	4-20		
Construction expenses	4-17		
Legal expenses	1-3		
Contractor's fee	2-6		
Contingency	5-15		

Table A.5: Typical	Percentages of Fixed	Capital Investment

Table A.6: Purchased Prices of Equipment's 2003

1. Agitators

[Meyers and Kime, Chem. Eng., 109-112 (27 Sep. 1976)]

 $C = \exp[a + b \ln HP + c (\ln HP)^2]$ \$, 1 < HP < 400

		Single Impeller			0	ual Impe	iller
	-	Speed 1	2	3	1	2	3
Carbon		8.57	8.43	8.31	8.80	8.50	8.43
steel	b	0.1195	-0.0680	-0.1368	0.1603	0.0257	-0.1981
	¢	0.0819	0.1123	0.1015	0.0659	0.0878	0.1239
Type 316	à,	8.82	8.55	8.52	9.25	8.82	8.72
	ь	0.2474	0.0308	-0.1802	0.2801	0.1236	-0.1225
	÷.	0.0654	0.0943	0.1158	0.0542	0.0818	0.1075

- Speeds 1: 30, 37, and 45 rpm 2: 56, 88, 84, and 100 rpm 3: 125, 155, 190, and 230 rpm

2. Compressors, turbines, and fans (K\$)

Centrifugal compressors, without drivers (IFP, 1981);

C = 6.49(HP)^{0.62} K\$, 200 < HP < 30,000

Reciprocating compressors without drivers (IFP):

C = 5.96(HP)^{0.01} K\$, 100 < HP < 20.000

Screw compressors with drivers (FP):

C=1,49(HP)^{0.74} K\$, 10 < HP < 800

Turbines (IFP):

Pressure discharge,	$C = 0.31(HP)^{0.61}$	K\$,	20 < HP < 5000
vacuum discharge,	$C = 0.69(HP)^{0.81}$	K\$,	200 < HP < 8000

Fans with motors (Ulrich)

$C = f_m f_p \exp[a + b]$	$\ln Q + c (\ln Q)$	"] installed	i cost, K\$,	() in KSCFM
		ь	¢	Q
Radial blades	0.4692	0.1203	0.0931	2-500

Radial blades	0,4692	0.1203	0.0931
Backward curved	0.0400	0.1821	0.0786
Propeller Propeller, with	-0,4456	0.2211	0.0820
guide vanes	-1.0181	0.3332	0.0547

materials factor, f.,

Carbon steel	2.2
Fiberglass	4.0
Stainless steel	5.5
Nickel alloy	11.0

Pressure Factors, F_a

	Cen	trilugal	Aa	cial
Pressure (kPa[gage])	Radiai	Backward Curved	Prop.	Vane
1	1.0	1.0	1.0	1.00
2	1.15	1.15	-	1.15
4	1.30	1.30	-	1.30
8	1.45	1.45	-	-
16	1.60	-	-	-

3. Conveyo	rs (IFP) KS
------------	-------------

Troughed belt: $C = 1.40L^{0.60}$, $10 < L < 1300$ ft
Flat belt: C = 0.90L ^{0.66} , 10 < L < 1300 ft
Screw (steel): C = 0.40L ^{G.78} , 7 < L < 100 ft
Screw (stainless steel): C = 0.70L ^{0.78} , 7 < L < 100 ft
Bucket elevator: C = 4.22L ^{6.63} , 10 < L < 100 ft
Pneumatic conveyor (Chemical Engineers' Handbook, McGraw-Hill New York, 1984), 600 ft length
$C = \exp[3.5612 - 0.0048 \ln W + 0.0913[\ln W]^2], 10 < W < 100 klb/hr$

4. Cooling towers, installed K\$

Concrete (IFP) C = 135/Q^{0.61}, 1 < Q < 60 K gal/min:

Ar (°C)	10	12	15
1	1.0	1.5	2.0

Redwood, without basin (Hall): C = 33.90^{C.66}, 1.5 < Q < 20 K gai/min

5. Crushers and grinders (IFP) K\$

Cone crusher: C = 1.55W^{1.08}, 20 < W < 300 tons/hr Gyratory crusher: C = 8.0W^{0.60}, 25 < W < 200 tons/hr Jaw crusher: C = 6.3W^{0.67}, 10 < W < 200 tons/hr Hammer mill: C = 2.44W^{0.78}, 2 < W < 200 tons/hr Ball mill: $C = 50.0W^{0.00}$, 1 < W < 30 tons/hr Pulverizer: $C = 22.6W^{0.35}$, T < W < 6 tans/hr

6. Crystallizers (IFP, Chemical Engineers' Handbook, p. 19.40) External forced circulation:

> $C = f \exp[4.868 + 0.3092 \ln W + 0.0548(\ln W)^3],$ 10 < W < 100 klb/hr of crystals

Internal draft tube: C = 178/W^{0.58}, 15 < W < 100 klb/hr of crystals Batch vacuum: $C = 8.16 fV^{0.47}$, 50 < V < 1000 cuft of vessal

Type	Material	1
Forced circulation	Mild steel	1.0
Vacuum batch	Stainless type 304 Mild steel	5.0
	Rubber-lined Stainless type 304	1,3 2.0

7. Distillation and absorption towers, tray and packed (Evans et al., 1984) prices in \$ Tray towers:

 $C_{\rm r} = f_1 C_{\rm B} + N I_2 I_2 f_4 C_{\rm r} + C_{\rm p}$

Distillation:

2 - 5002-900 2-300

2-500

 $C_{\rm p} = \exp[7.123 \pm 0.1478(\ln W) \pm 0.02488(\ln W)^2$

 $+ 0.01580(L/D) \ln(T_p/T_p)$

9020 < W < 2,470,000 lbs of shell exclusive of nozzles and skirt

C = 375.8 exp(0.1738D), 2 < D < 16 ft tray diameter

N = number of trays

 $C_{a1} = 204.9 D^{0.6332} L^{0.8016}, 2 < D < 24,$

57 < L < 170 ft (platforms and ladders)

Material f, f	
Stainless steel, 304 1,7 1,189 + 0.0577D Stainless steel, 316 2,1 1,401 + 0.0724D Carpenter 20C8-3 3,2 1,525 + 0.0788D Nickel-200 5,4 Monet-400 3,6 2,306 + 0.1120D Inconel-600 3,9 Incolog-825 3,7 Titanium 7,7	

Tray Types	5	
Valve Grid Bubble cap Sieve (with downcomer)	1.00 0.80 1.59 0.86	

 $f_{\rm s} = 2.25/(1.0414)^{27}$, when the number of trays N is less than 20

 $T_{\rm b}$ is the thickness of the shell at the bottom, $T_{\rm p}$ is thickness required for the operating pressure, D is the diarceter of the shell and tray, L is tangent-to-tangent length of the shell

Absorption:

 $C_{\rm b} = \exp[6.629 + 0.1826i \ln W) + 0.02297(\ln W)^2],$

 $\label{eq:constraint} 4250 < W < 980,000 \mbox{ lb shell} \\ C_{\mu\nu} = 246.4D^{0.7996} t^{0.990}, \ 3 < D < 21,$

27 < L < 40 ft lplatforms and ladderal.

f, f, f, and f as for distillation

Packed towers:

 $C = f_1C_1 + V_2C_2 + C_{22}$

V, is volume of packing, C, is cost of packing \$/cuft

Packing Type	C, (\$/out)
Ceramic Reschig rings, 1 in. Matai Reachig rings, 1 in. Intelox saddles, 1 in. Ceramic Reachig rings, 2 in. Metai Reachig rings, 2 in. Metai Pall rings, 1 in. Intelox saddles, 2 in. Metai Pall rings, 2 in.	19.6 32.3 19.6 13.6 23.0 32.3 13.6 23.0

8. Drynrs (IFP)

Rotary hot air heated: $C = 2.38(1 + \xi_p + \xi_m)A^{0.42}$, 200 < A < 4000 sqft interal surface

Rotary steam tube: C = 1.83FA^{0.00}, 500 < A < 18,000 sq/t tube surface, F = 1 for carbon steel, F = 1.75 for 304 stainless</p>

Cabinet dryer: $C = 1.15 f_{*} A^{0.77}$, 10 < A < 50 soft tray surface

Pressure	\$
Atmospheric pressure	1.0
Vacuum	2.0
Materiai	Ę,,
Mild steel	1.0
Stainless type 304	1.4

Drying Gas	4
Hot air	0.00
Combustion gas (direct contact)	0.12
Combustion gas (indirect contact)	0.35
Materials	fn.
Mild steel	0.00
Lined with stainless 304-20%	0.25
Lined with stainless 316-20%	0.60

Spray dryers:

 $C = F \exp[0.8403 + 0.8526(\ln x) - 0.0229(\ln x)^2]$

30 < x < 3000 lb/hr evaporation

Material	F
Carbon steel	0.33
304, 321	1.00
Monel	3.0
Inconel	3.67

Multiple hearth furnaces (Hali ot al., 1984)

 $C = \exp(a + 0.88N)$, 4 < N < 14 number of hearths

Diameter (tt) Sqit/hearth,		10.0 36		16.75 119			
approx a	5.071	5.295	5.521	5.719	5.853	6.014	8.094

8. Evaporators (IFP; also Chemical Engineers Handbook, p. 11.42)

Forced circulation: $C = \xi_n \exp[5.9785 - 0.8056(\ln A) + 0.08514(\ln A)^2]$, 150 < A < 8000 sqlt heat transfer surface $Long tube: <math>C = 0.36\xi_n A^{0.16}$, 300 < A < 20,000 sqltFalling film (316 internals, carbon steel shell)

C = exp[3.2362 - 0.01268n A) + 0.02448n A)²[, 150 < A < 4000 sph

Forced-Circulation Evaporators

Construction Material: Shell/Tuba	ς.
Steel/copper	1.00
Monet/supronickel	1.35
Nickel/nickel	1.80

Long-Tube Evaporators

Construction Meterial: Shell/Tube	4
Steel/copper	1.0
Steol/steel	0.6
Steel/sluminum	0.7
Nickel/rickel	3.3

10. Fired heaters, installed (Hall) KS

Box type: C = k(1 + C + C)Q^{0.48}, 20 < Q < 200 M Btu/hr

*
25.6 33.8 45.0
6
0 0.19
0.35
5
0 0.10 0.15 0.25 0.40 0.60

Cylindrical type: $C = k(1 + t_{e} + t_{e})Q^{0.42}$, $2 \le Q \le 30$ M Btu/hr

Tube Material

Carbon steel	27.3	
CrMo steel	43.2	
Stainless	42.0	[continued]

280 |

LIST OF TABLES

Design Type	4
Cylindrical	0
Dowtherm	0.33
Design Pressure (psi)	4
Up to 500	0
1,000	0,15
1,500	0,20

11. Heat exchangers

Shell-and-tube [Evans]: C = t_t_c_C_c, price in \$

$C_{4} = \exp[8.821 - 0.30863[\ln A] + 0.0681[\ln A]^{2}], 150 < A < 12,000 m$	$C_{4} = \exp[8.827 -$	- 0.30863(In A) +	-0.0681(in A)*],	160 < A <	12,000 std
--	------------------------	-------------------	------------------	-----------	------------

Туро	6
Fixed-head Kettle reboiler	exp(-1.1156 + 0.0906(In A))
U-tube	exp[-0.9816 + 0.0830(In A)]

Pressure Range (psig)	6
100-300	0.7771 + 0.04981(in A)
300-600	1.0305 + 0.07140(in A)

Material	g,	95
	f_ = g, -	+ g ₂ (in A)
600-900	1.1400 + 0.	12088(In A)

Stainless steel 316 Stainless steel 304 Stainless steel 347 Nickel 200 Monel 400 Incoloy 825 Titanism Hastelloy	0.8003 0.8193 0.6116 1.5092 1.2989 1.2040 1.1854 1.5420 0.1549	0.23296 0.15064 0.22186 0.60659 0.43377 0.50764 0.42913 0.51774
--	--	--

Double pipe (IFP): $C = 900 f_{\rm ex} f_{\rm p} A^{3.18}$, $2 \le A \le 60$ agft, price in \$

Material: Shell/Tube	٤.,
cs/cs cs/304L stainless cs/316 stainless	1.0 1.9 2.2
Pressure (bar)	4
*4 4-6	1.00

Air coolers (Hail): C = 24.64^{0.40}, 0.05 < A < 200 K sqh, price in K\$

12. Mechanical separators

Centrifuges: solid bowl, screen bowl or pusher types

C-s+DW, KS

	Inorganic Process		Organic Process	
Material	0	b	8	b
Carbon steel	42	1,63	-	-
316	65	3.50	98	5.06
Monei	70	5.50	154	7.14
Nickel	84.4	6.96	143	9.43
Hastelloy	-	-	300	10.0
	10<5	V<90	5 <w<< td=""><td>40 tons/hr</td></w<<>	40 tons/hr

Disk separators, 316 stainless (IFP):

C=8.00^{0.52}, 15<0<150 gpm, K\$

Cyclone separators (IFP): KS

heavy duty: $C = 1.39G^{0.00}$, 2 < Q < 40 K SCFM standard duty: $C = 0.65G^{0.01}$, 2 < Q < 40 K SCFM multiclone $C = 1.56G^{0.00}$, 9 < Q < 180 K SCFM

Filtere (Hall), prices in \$/sqft:

rotary vacuum belt discharg	e: C = exp[11.29 - 1.2252(in A) + 0.0587(in A) ²], 10 < A < 800 sqR
rotary vacuum drum scrape	discharge: C = exp[11.27
- 1.3408(in A) + 0	0.0709(in Al ²) \$/sqft, 10 < A < 1500 sqft
rotery vecuum disk: C-+0.	exp[10.50 - 1.008(in A) .0344(in Al ²]\$/aqft, 100 < A < 4000 aqft
horizontal vacuum belt: C pressure leaf: C = 665/ $A^{0.0}$ plate-and-frame: (Chemica C = 460/ $A^{0.00}$ \$/0	= 28300/A ^{8 #} \$/sqft, 10 < A < 1200 sqft * \$/sqft, 36 < A < 2500 sqft

13. Motors and couplings, prices in \$

Motors: $C = 1.2 \exp[a_1 + a_2(\ln HP) + a_2(\ln HP)^2]$ Belt drive coupling: $C = 1.2 \exp[3.689 + 0.8917(\ln HP)]$ Chain drive coupling: $C = 1.2 \exp[5.329 + 0.5048(\ln HP)]$ Variable speed drive coupling:

C = 12,000/(1.562 + 7.877/HP), HP < 75

Coefficients

Type		*1	63	HP limit
Open, drip-proof	UNCER!	IAST OCCUP	10000000	
3600 rpm	4.8314	0.09666	0.10960	1-7.5
	4.1514	0.53470	C.06252	7.5-250
	4.2432	1.03251	-0.03595	250-700
1800 rpm	4.7076	-0.01511	0.22888	1-7.5
	4.5212	0.47242	0.04820	7.5-250
	7.4044	-0.06464	0.05448	250-600
1200 rpm	4.9298	0.30118	0.12630	1-7.5
97 E ST	5.0999	0.35861	0.06052	7.5-250
	4.6163	0.88531	-0.02188	250-500
Totally enclosed, far	n-cooled			
3600 rpm	5.1058	0.03318	0.15374	1-7.5
CONCUMP IN	3,8544	0.83311	0.02399	7.5-250
	5.3182	1.08470	-0.05695	250-400
1800 rpm	4.9687	-0.00930	0.22616	7.5-250
and the second	4.5347	0.57065	0.04609	250-400
1200 rpm	5,1532	0.26931	0.14357	1-7.5
1.8365510th	5.3858	0.31004	0.07406	7.5-350
Explosion-proof				
3600 rpm	5.3934	-0.00333	0.15475	1-7.5
10.00 L 10.00 P. 10.00	4,6642	0.60820	0.05202	7.5-200
1800 rpm	5.2851	0.00048	0.19949	1-7.5
	4.8178	0.51086	0.05293	7.5-250
1200 rpm	5.4166	0.31216	0.10573	1-7.5
1008.55M	5.5655	0.31284	0.07217	7.5-200

14. Pumps

Centrifugal (Evans) prices in \$: $C = F_{M}F_{T}C_{s}$, base cast-iron, 3560 rpm VSC

C₆ = 1.55 exp[8.833 - 0.60190h QVH)

+ 9.8519(in QVH) Q in gpm, H in ft head

Material	Cost Factor Fac
Cast steel 304 or 316 fittings Stainless steel, 304 or 316 Cast Gould's alloy no. 20 Nickel Monei ISO B ISO B ISO C Tranium Hastelloy C Ductile iron Branze	1.35 1.15 2.00 2.00 3.30 3.30 3.30 4.95 4.60 9.70 2.95 1.18 1.90

 $F_1 = \exp[b_1 + b_2(\ln Q\sqrt{H} + b_3)\ln Q\sqrt{H}^2]$

0.00

281 |

[continued]

APPENDIX-A

Equipment	Multiplier	Equipment	Multiplier
Cyclones	1.4	Pumps, centrifugal, carbon steel	2.8
Oryers, spray and air	1.6	centrifugal, stainless steel	2.0
other	1.4	centrifugal, Hastelloy trim	1.4
Ejectors	1.7	centrifugal, nickel trim	1.7
Evaporators, calandria	1.5	centrifugal, Monel trim	1.7
thin film, carbon steel	2.5	centrifugal, titanium trim	1,4
thin film, stainless steel	1.9	all others, stainless steel	1.4
Extruders, compounding	1.5	all others, carbon steel	1.6
Fans	1.4	Reactor kettles, carbon steel	1.9
Filters, all types	1.4	kettles, glass lined	2.1
Furnaces, direct fired	1.3	kettles, carbon steel	1.9
Gas holders	1.3	Reactors, multitubular, stainless steel	1.6
Granulators for plastic	1.5	multitubular, copper	1.8
Heat exchangers, air cooled, carbon steel	2.5	multitubular, carbon steel	2.2
coil in shell, stainless steel	1.7	Refrigeration plant	1.5
glass	2.2	Steam drums	2.0
graphite	2.0	Sum of equipment costs, stainless steel	1.8
plate, stainless steel	1.5	Sum of equipment costs, carbon steel	2.0
plate, carbon steel	1.7	Tanks, process, stainless steel	1.8
shell and tube, stainless/stainless steel	1.9	Tanks, process, copper	1.9
shell and tube, carbon/stainless steel	2.1	process, aluminum	2.0
Heat exchangers, shell and tube, carbon steel/aluminum	2.2	storage, stainless steel	1.5
shell and tube, carbon steel/copper	2.0	storage, aluminum	1.7
shell and tubs, carbon steel /Monel	1.8	storage, carbon steel	2.3
shell and tube, Monel/Monel	1.6	field erected, stainless steel	1.2
shell and tube, carbon steel/Hastelloy	1.4	field erected, carbon steel	1.4
Instruments, all types	2.5	Turbines	1.5
Miscellaneous, carbon steel	2.0	Vessels, pressure, stainless steel	1.7
stainless steel	1.5	pressure, carbon steel	2.8

Table A.7: Typical overall Coefficients

Shell and tube exchangers			
Hot fluid	Cold fluid	U (W/m ² °C	
Heat exchangers			
Water	Water	800-1500	
Organic solvents	Organic solvents	100-300	
Light oils	Light oils	100 - 400	
Heavy oils	Heavy oils	50-300	
Gases	Gases	10-50	
Coolers			
Organic solvents	Water	250-750	
Light oils	Water	350-900	
Heavy oils	Water	60-300	
Gases	Water	20-300	
Organic solvents	Brine	150-500	
Water	Brine	600-1200	
Gases	Brine	15-250	
Heaters			
Steam	Water	1500 - 4000	
Steam	Organic solvents	500-1000	
Steam	Light oils	300-900	
Steam	Heavy oils	60-450	
Steam	Gases	30-300	
Dowtherm	Heavy oils	50-300	
Dowtherm	Gases	20-200	
Flue gases	Steam	30-100	
Flue	Hydrocarbon vapours	30-100	
Condensers			
Aqueous vapours	Water	1000 - 1500	
Organic vapours	Water	700-1000	
Organics (some non-condensables)	Water	500-700	
Vacuum condensers	Water	200-500	
Vaporisers			
Steam	Aqueous solutions	1000 - 1500	
Steam	Light organics	900-1200	
Steam	Heavy organics	600-900	

APPENDIX-A

Fluid	Coefficient (W/m ² °C)	Factor (resistance) (m ^{2°} C/W)
River water	3000-12,000	0.0003-0.0001
Sea water	1000-3000	0.001-0.0003
Cooling water (towers)	3000-6000	0.0003-0.00017
Towns water (soft)	3000-5000	0.0003-0.0002
Towns water (hard)	1000-2000	0.001-0.0005
Steam condensate	1500-5000	0.00067 - 0.0002
Steam (oil free)	4000-10,000	0.0025 - 0.0001
Steam (oil traces)	2000-5000	0.0005 - 0.0002
Refrigerated brine	3000-5000	0.0003 - 0.0002
Air and industrial gases	5000-10,000	0.0002 - 0.0001
Flue gases	2000-5000	0.0005-0.0002
Organic vapours	5000	0.0002
Organic liquids	5000	0.0002
Light hydrocarbons	5000	0.0002
Heavy hydrocarbons	2000	0.0005
Boiling organics	2500	0.0004
Condensing organics	5000	0.0002
Heat transfer fluids	5000	0.0002
Aqueous salt solutions	3000-5000	0.0003-0.0002

Table A.8: Fouling Factors

Table A.9: Constants to Use in Equation

No. passes	1	2	4	6	8
${K_1 \atop n_1}$	0.319 2.142	0.249 2.207	0.175 2.285	0.0743 2.499	0.0365 2.675
Square pitch, p	$t = 1.25d_{o}$				
No. passes	1	2	4	6	8
$\frac{K_1}{n_1}$	0.215 2.207	0.156 2.291	0.158 2.263	0.0402 2.617	0.0331 2.643

 Table A.10: Typical Baffle Clearances

e.a.

Shell diameter, Ds	Baffle diameter	Tolerance
Pipe shells		
6 to 25 in. (152 to 635 mm)	$D_s - \frac{1}{16}$ in. (1.6 mm)	$+\frac{1}{32}$ in. (0.8 mm)
Plate shells		
6 to 25 in. (152 to 635 mm)	$D_s - \frac{1}{8}$ in. (3.2 mm)	$+0, -\frac{1}{32}$ in. (0.8 mm)
27 to 42 in. (686 to 1067 mm)	$D_s - \frac{3}{16}$ in. (4.8 mm)	$+0, -\frac{1}{16}$ in. (1.6 mm)

Metal	Temperature (°C)	$k_w(W/m^{\circ}C)$
Aluminium	0	202
	100	206
Brass	0	97
(70 Cu, 30 Zn)	100	104
	400	116
Copper	0	388
	100	378
Nickel	0	62
	212	59
Cupro-nickel (10 per cent Ni)	0-100	45
Monel	0-100	30
Stainless steel (18/8)	0-100	16
Steel	0	45
	100	45
	600	36
Titanium	0-100	16

Table A.11: Conductivity of metals

-

Appendix-B

Figures

Figure B.1: Tube Side Heat Transfer Factor	
Figure B.2: Tube Side Friction Factor	
Figure B.3: Heat Transfer Factor for Crossflow Tube Banks	
Figure B.4: Window Correction Factor	
Figure B.5: Tube Row Correction Factor	
Figure B.6: Bypass Correction Factor	
Figure B.7: Coefficient of FL	
Figure B.8: Friction Factor for Crossflow Tube Banks	
Figure B.9: Bypass Factor for Pressure Drop	
Figure B.10: Correction F _L ' for Pressure Drop	
Figure B.11: Baffle Geometrical Factors	
Figure B.12: Power Number vs Reynolds Number Graph	
Figure B.13: J _H factor for Jackets	
Figure B.14: Agitator Selection	
Figure B.15: Evaporator Selection	
Figure B.16: Tube Side Heat Transfer curve	
Figure B.17: Tube Side Friction factor	
Figure B.18: Entrainment Correlation	

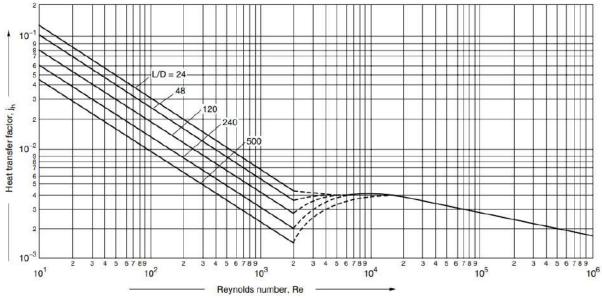


Figure B.1: Tube Side Heat Transfer Factor

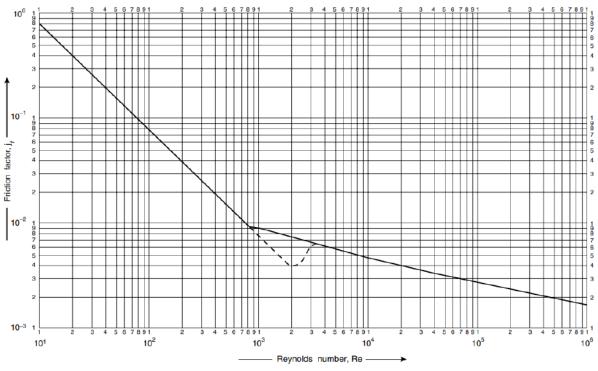


Figure B.2: Tube side Friction Factor

286 |

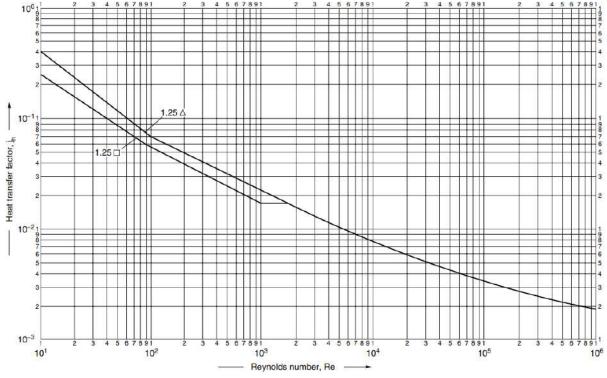


Figure B.3: Heat Transfer Factor for Crossflow Tube Banks

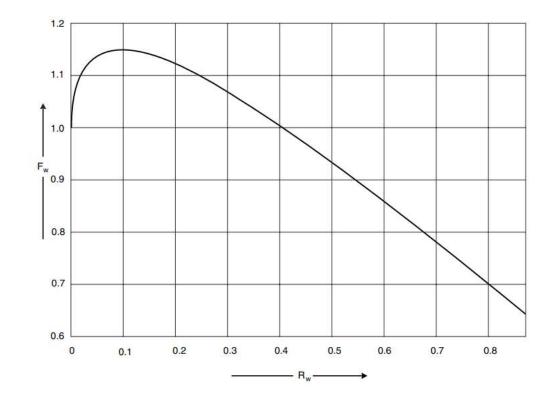


Figure B.4: Window Correction Factor

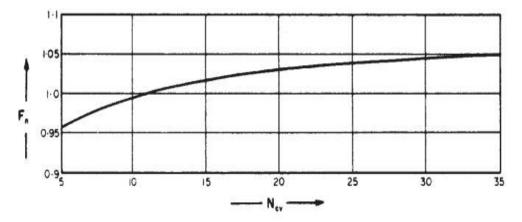


Figure B.5: Tube Row Correction Factor

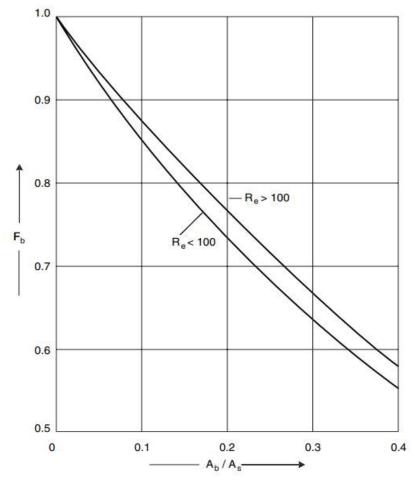
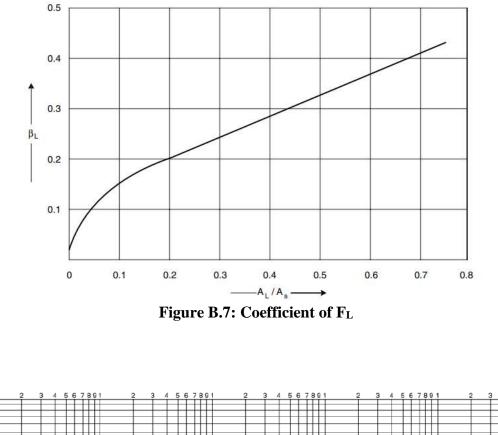



Figure B.6: Bypass Correction Factor

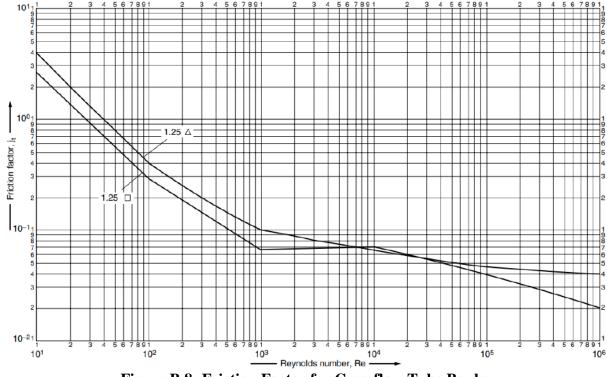


Figure B.8: Friction Factor for Crossflow Tube Banks

289 |

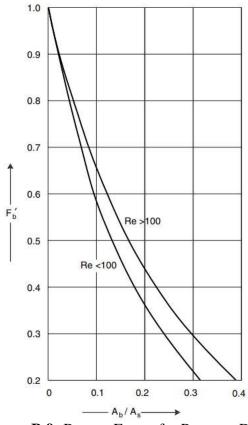


Figure B.9: Bypass Factor for Pressure Drop

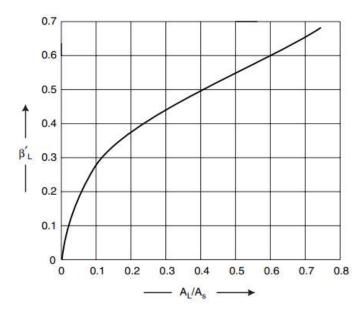
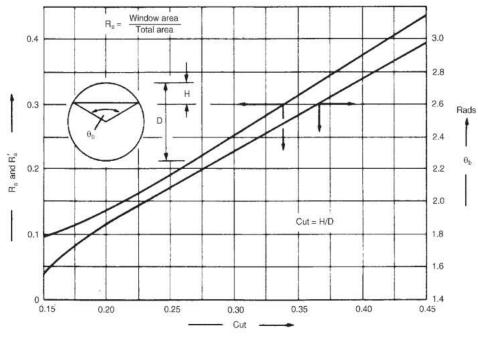



Figure B.10: Correction FL' for Pressure Drop

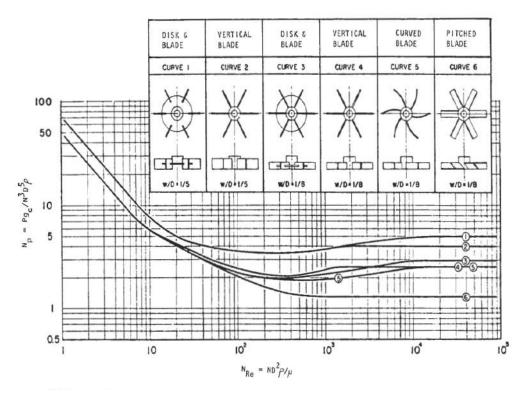
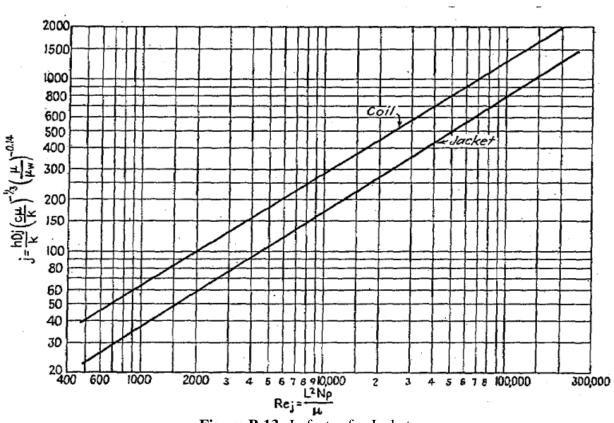
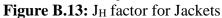




Figure **B.12:** Power Number vs Reynolds Number Graph

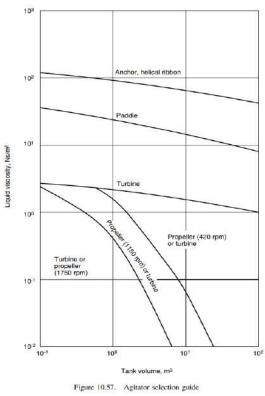


Figure B.14: Agitator Selection

			Fe	eed conditi	ons			Suitable
	v	iscosity, mN s	s/m ²					for heat-
Evaporator type	Very viscous > 1000	Medium viscosity < 1000 max	Low viscosity < 100	Foaming	Scaling or fouling	Crystals produced	Solids in suspension	sensitive materials
Recirculating Calandria (short vertical tube)								No
Forced circulation		4						Yes
Falling film			<>					No
Natural circulation			4					No
Single pass wiped film	•							Yes
Tubular (long tube) Falling film			<>					Yes
Rising film			4	>				Yes

Figure B.15: Evaporator Selection

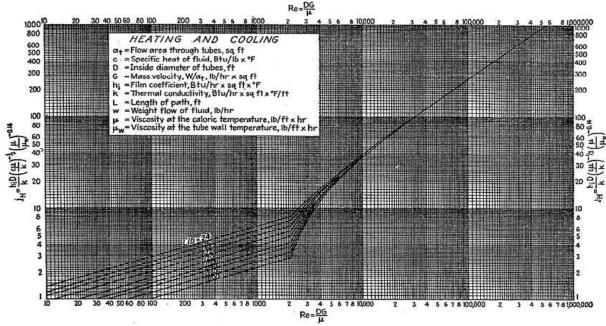


Figure B.16: Tube Side Heat Transfer curve

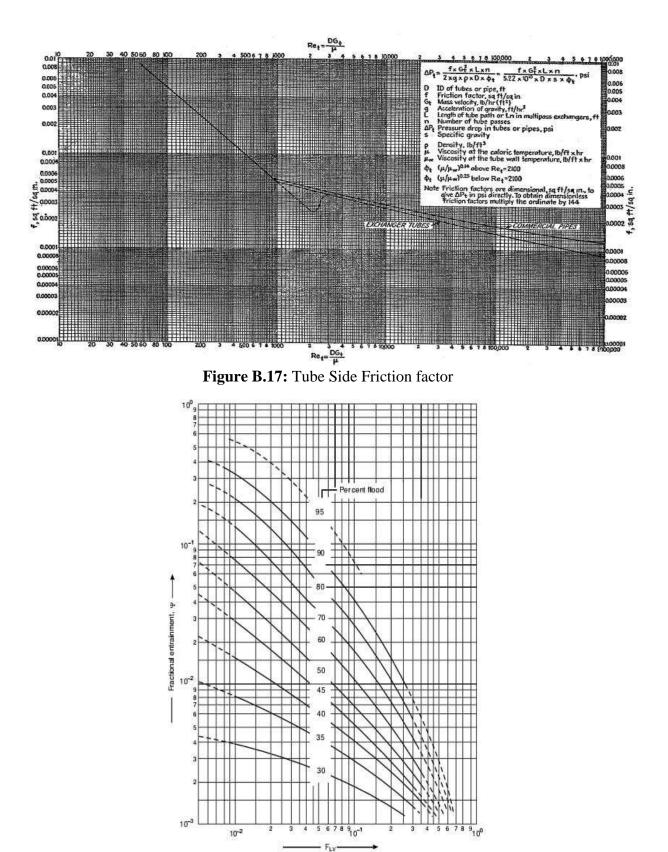


Figure B.18: Entrainment Correlation

PLAGIARISM REPORT

16% SIMILARITY INDEX	11% INTERNET SOURCES	4% PUBLICATIONS	11% STUDENT PAPERS
PRIMARY SOURCES			
1 Student Pape	ed to Heriot-Wa	tt University	2
2 WWW.CO	ursehero.com		1
3 Submitt Pakistar Student Pape		ucation Comm	nission 1
4 pdfcoffe			1
5 WWW.SC	ribd.com		1
6 Student Pape	ed to Engineers	Australia	<1
7 www.do	cstoc.com		<1
8 cyberler	ninka.org		<1
9 Submitt Student Pape	ed to Aston Uni	versity	<1

10	Submitted to University of Johannsburg	<1%
11	thefinanalyst.com	<1%
12	Submitted to Kuwait University Student Paper	<1 _%
13	Submitted to University of Teesside	<1%
14	acasestudy.com	<1%
15	Submitted to University of the West Indies Student Paper	<1%
16	repository.upenn.edu	<1%
17	vsip.info Internet Source	<1 _%
18	Submitted to University of Leeds Student Paper	<1%
19	eprints.abuad.edu.ng	<1%
20	www.wartsila.com	<1%
21	Submitted to Curtin University of Technology	<1%
		202

22	Submitted to National Institute of Technology, Raipur Student Paper	<1%
23	Submitted to Technological Institute of the Philippines Student Paper	<1%
24	vbook.pub Internet Source	<1%
25	Submitted to Cork Institute of Technology Student Paper	<1%
26	azdoc.tips Internet Source	<1%
27	www.slideshare.net	<1%
28	Couper, James R., W. Roy Penney, James R. Fair, and Stanley M. Walas. "Costs of Individual Equipment", Chemical Process Equipment, 2012. Publication	<1%
29	Larcombe, Alexander N., Anthony Kicic, Benjamin J. Mullins, and Gerhard Knothe. "Biodiesel exhaust: The need for a systematic approach to health effects research : Health effects of biodiesel exhaust", Respirology, 2015. Publication	< <mark>1</mark> %

30	Submitted to Imperial College of Science, Technology and Medicine Student Paper	< <mark>1</mark> %
31	Submitted to Singapore Institute of Technology Student Paper	<1%
32	RICHARDSON, J.F., J.H. HARKER, and J.R. BACKHURST. "Evaporation", Chemical Engineering, 2002. Publication	<1%
33	Submitted to University of Melbourne	<1%
34	WWW.FSC.OFg Internet Source	<1%
35	Submitted to Chester College of Higher Education Student Paper	<1%
36	www.researchgate.net	<1%
37	Submitted to Taylor's Education Group	<1%
38	idoc.pub Internet Source	<1%
39	A. Kayode Coker. "Distillation", Wiley, 2022	<1%

40	Submitted to Kumasi Polytechnic Student Paper	<1%
41	Yang Liu, Fan Sun. "Parameter estimation of a pressure swing adsorption model for air separation using multi-objective optimisation and support vector regression model", Expert Systems with Applications, 2013 Publication	<1%
42	"Biodiesel Production", American Society of Civil Engineers (ASCE), 2019 Publication	<1%
43	Submitted to New Jersey Institute of Technology Student Paper	<1%
44	Submitted to Palm Beach State College	<1%
45	R. M. Swanson, A. Platon, J. A. Satrio, R. C. Brown, D. D. Hsu. "Techno-Economic Analysis of Biofuels Production Based on Gasification", 'Office of Scientific and Technical Information (OSTI)', 2010 Internet Source	< <mark>1</mark> %
46	Submitted to RMIT University Student Paper	< <mark>1</mark> %
47	Submitted to University of Greenwich	< <mark>1</mark> %
_		301

48	Submitted to El-Sewedy Education	< <mark>1</mark> %
49	Liang-Yu Chen, Vincentius Surya Kurnia Adi, Rosalia Laxmidewi. "Shell and tube heat exchanger flexible design strategy for process operability", Case Studies in Thermal Engineering, 2022 Publication	<1%
50	Submitted to Monash University Student Paper	<1%
51	Submitted to Vaal University of Technology Student Paper	<1%
52	Mohamed Chaker Ncibi, Mika Sillanpaa. "Recent Research and Developments in Biodiesel Production from Renewable Bioresources", Recent Patents on Chemical Engineering, 2014 Publication	< <mark>1</mark> %
53	Ray Sinnott, Gavin Towler. "Heat-transfer Equipment", Elsevier BV, 2020 Publication	<1%
54	ehp.niehs.nih.gov Internet Source	<1%
55	www.slideserve.com	<1%
<u></u>		

56	Submitted to American University of the Middle East Student Paper	<1%
57	Submitted to University of Edinburgh	<1%
58	Submitted to University of Moratuwa Student Paper	<1%
59	ar.scribd.com	<1%
60	www.grin.com	< <mark>1</mark> %
61	Submitted to Universiti Teknologi Petronas	<1 _%
62	Submitted to University of Sheffield Student Paper	<1%
63	Mika Sillanpää, Chaker Ncibi. "A Sustainable Bioeconomy", Springer Science and Business Media LLC, 2017 Publication	<1%
64	Submitted to UC, Boulder Student Paper	< <mark>1</mark> %
65	Submitted to University of Adelaide	<1%
66	es.scribd.com	<1%
		202

67	repository.sustech.edu	<1%
68	www.nea.gov.sg	<1%
69	K. Sandesh Suresh, P.V. Suresh, Tanaji G. Kudre. "Prospective ecofuel feedstocks for sustainable production", Elsevier BV, 2019 Publication	<1%
70	Submitted to University of Malaya Student Paper	<1%
71	Submitted to University of Newcastle upon Tyne Student Paper	<1%
72	www.theengineerspost.com	<1%
73	Submitted to University of South Florida Student Paper	<1%
74	"Sustainable Product Development", Springer Science and Business Media LLC, 2020 Publication	< <mark>1</mark> %
75	George D. Saravacos, Athanasios E. Kostaropoulos. "Chapter 11 Mass Transfer Equipment", Springer Science and Business Media LLC, 2002 Publication	< <mark>1</mark> %

76	Submitted to Institute of Graduate Studies, UITM Student Paper	<1%
77	Knopf, . "Gas Turbine Cogeneration System Economic Design Optimization and Heat Recovery Steam Generator Numerical Analysis", Modeling Analysis and Optimization of Process and Energy Systems Knopf/Energy System Design, 2011. Publication	< <mark>1</mark> %
78	Submitted to Segi University College	< <mark>1</mark> %
79	Submitted to Stamford American International School Student Paper	<1%
80	"COSTS OF INDIVIDUAL EQUIPMENT", Elsevier BV, 2010 Publication	<1%
81	Submitted to Bogazici University Student Paper	<1%
82	Boulton. "Fermentation Systems", Brewing Yeast and Fermentation, 03/03/2006 Publication	<1%
83	Submitted to Fiji National University	<1%
84	Submitted to Harare Institute of TEchnology Student Paper	

		<1%
85	Subhabrata Ray, Gargi Das. "Evaporators", Elsevier BV, 2020 Publication	<1%
86	Submitted to University of Wales Swansea Student Paper	<1%
87	Submitted to University of Witwatersrand	<1%
88	kupdf.net Internet Source	<1%
89	Z. Mohamed, A. K. Chee, A. W. I. Mohd Hashim, M. O. Tokhi, S. H. M. Amin, R. Mamat. "Techniques for vibration control of a flexible robot manipulator", Robotica, 2006 Publication	<1%
90	edoc.pub Internet Source	<1%
91	Submitted to Caledonian College of Engineering Student Paper	<1%
92	Lama-Muñoz, Antonio, Juan Miguel Romero- García, Cristóbal Cara, Manuel Moya, and Eulogio Castro. "Low energy-demanding recovery of antioxidants and sugars from olive stones as preliminary steps in the	<1%

-	biorefinery context", Industrial Crops and Products, 2014. Publication	
93	Submitted to Teaching and Learning with Technology Student Paper	<1%
94	Submitted to The University of Manchester Student Paper	<1%
95	1library.net Internet Source	<1%
96	dl1.ponato.com	<1%
97	dspace.dtu.ac.in:8080	< <mark>1</mark> %
98	www.ksrct.ac.in	<1%
99	www.tandfonline.com	<1%
100	Venkatesh Mandari, Santhosh Kumar Devarai. "Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review", BioEnergy Research, 2021 Publication	< 1 %

archive.org

101	Internet Source	<1%
102	article.sciencepublishinggroup.com	< <mark>1</mark> %
103	docshare.tips	< <mark>1</mark> %
104	dspace.uii.ac.id	< <mark>1</mark> %
105	nahrainuniv.edu.iq	< <mark>1</mark> %
106	wondor.tistory.com	<1%
107	"Biotechnology Set", Wiley, 2001 Publication	< <mark>1</mark> %
108	Gavin Towler, Ray Sinnott. "Heat transfer equipment", Elsevier BV, 2022 Publication	< <mark>1</mark> %
109	real-j.mtak.hu Internet Source	< <mark>1</mark> %
		208

ACHIEVEMENTS

ACHIEVEMENTS

