Production of 22,000 Tons/Yr. of Vinyl Acetate Monomer by Oxy-Acetylation of Ethylene

By

Muhammad Saad Chaudhary, FA19-CHE-022 Muhammad Faizan, FA19-CHE-038 Shehryar Niazi, FA19-CHE-064 Affan Bin Zahid, FA19-CHE-080 Muhammad Saqib Bashir, FA19-CHE-084

COMSATS University Islamabad Lahore Campus - Pakistan

Spring, 2023

COMSATS University Islamabad, Lahore Campus

Production of 22,000 Ton/Yr. of Vinyl Acetate Monomer by Oxy-Acetylation of Ethylene

A Chemical Engineering Plant Design Project Report Presented to

COMSATS University Islamabad

In partial fulfillment

of the requirement for the degree of

Bachelor of Science in Chemical Engineering

By

Name:	Registration ID.
Muhammad Saad Chaudhary	FA19-CHE-022
Muhammad Faizan	FA19-CHE-038
Shehryar Niazi	FA19-CHE-064
Affan Bin Zahid	FA19-CHE-080
Muhammad Saqib	FA19-CHE-084

Spring, 2023

Production of 22,000 Ton/Yr. of Vinyl Acetate Monomer by Oxy-Acetylation of Ethylene

The Department of Chemical Engineering received a Chemical Engineering Plant Design Project Report as partial fulfilment of the requirement for the degree of Bachelor of Science in Chemical Engineering.

Name	Registration ID.
Muhammad Saad Chaudhary	FA19-CHE-022
Muhammad Faizan	FA19-CHE-038
Shehryar Niazi	FA19-CHE-064
Affan Bin Zahid	FA19-CHE-080
Muhammad Saqib Bashir	FA19-CHE-084

Supervisor

Dr. Mehwish Batool

Assistant Professor

Department of Chemical Engineering,

COMSATS University Islamabad, Lahore campus.

Author's Declaration

We now declare that our Chemical Engineering Plant Design Report, "Production of 22,000 Tons/Year of Vinyl Acetate Monomer by Oxy-Acetylation of Ethylene," and all information included in the references, are our original work. This report has never before been submitted by us for the purpose of obtaining a degree from COMSATS University Islamabad or any other university.

Name: Muhammad Saad Chaudhary

Name: Shehryar Niazi

Signature: _____

Name: Affan Bin Zahid

Name: Muhammad Saqib Bashir

Signature: _____

Signature: _____

Signature: _____

Name: Muhammad Faizan

Signature: _____

May 26, 2023

Supervisor's Declaration

We hereby certify that we have read this thesis and that, in our judgement, it meets the requirements for the award of the degree of Bachelor of Chemical Engineering in terms of scope and quality.

Name: Dr. Mehwish Batool

Signature: _____

DEDICATION

We are grateful to Allah Almighty for the knowledge, guidance, and protection that helped us complete our Chemical Engineering project. We also want to express our heartfelt appreciation to our FYDP supervisor, Dr. Mehwish Batool, for her valuable time, effort, and patience in guiding us throughout the project. We are grateful for her insights, encouragement, and support, which have helped us understand the subject matter and complete this project successfully.

Additionally, we dedicate this project to our parents, whose unwavering support and encouragement have been our constant source of inspiration and strength. Their moral, emotional, spiritual, and financial support have helped us overcome the challenges and obstacles we faced during this project. We owe our success to them. We would also like to extend our appreciation to our teachers.

ACKNOWLEDGEMENTS

We'd like to take this opportunity to acknowledge the contributions and support of individuals who have helped us complete this project. First and foremost, we'd like to thank Allah Almighty for granting us the ability to undertake and complete this study. We're thankful for the guidance, protection, and power of mind that He has bestowed upon us.

We'd also like to express our sincere appreciation to our parents, whose unwavering support and encouragement have been our constant source of inspiration and strength. Their moral, emotional, spiritual, and financial support have helped us overcome the challenges and obstacles we faced during this project.

We would like to express our gratitude to our FYDP supervisor, Dr. Mehwish Batool, for her valuable time, effort, and patience in guiding us throughout the project. We are grateful for her insights, encouragement, and support, which have helped us understand the key concepts of Chemical Engineering. We also thank our teachers.

Last but not least, we'd like to thank our classmates and friends who have supported and motivated us throughout this project. Their words of encouragement and advice have kept us focused and motivated. We acknowledge the contributions of all the individuals who have helped us in this journey, and we hope that our work will be useful to the scientific community.

ABSTRACT

Production of 22,000 Ton/Yr. of Vinyl Acetate Monomer by Oxy-Acetylation of Ethylene

This project aims to address the growing demand for Vinyl acetate Monomer (VAM) in Pakistan and foster growth in the polymer sector. To achieve this, various methods of producing VAM have been carefully analyzed and evaluated for cost-effectiveness, and Oxy-Acetylation of Ethylene has been determined to be the most efficient and economical approach. This method involves a straightforward process using a catalyst at the appropriate temperature and pressure to produce high-purity VAM.

To design the VAM production plant, several critical steps have been undertaken, including conducting mass and energy balances, designing the primary equipment, developing process instrumentation and control, and estimating the process's cost. The significance of this initiative is its potential to drive growth in the polymer sector in Pakistan, given that this method has been successfully industrialized in other countries.

TABLE OF	CONTENTS
----------	----------

Chapter 1	2
Introduction	2
1.1. Project Description:	3
1.2. Background:	4
1.3. Literature Review:	5
1.3.1. Physical and thermodynamic properties of VAM:	5
1.3.2. Application of VAM in Industries:	6
1.3.3. Raw Materials:	8
1.3.4. Reaction:	8
Chapter 2	9
Market Analysis and Capacity Selection	9
2.1. World VAM Supply and Demand:	10
2.2. Pakistan's Annual VAM Consumption:	11
2.3. Capacity Selection:	12
2.4. Site Location:	12
Chapter 3	13
Process Selection	
3.1. Production Processes:	13
3.1.1. Reaction of Acetic Acid and Acetylene	14
3.1.2. Reaction of Acetaldehyde and Acetic Anhydride:	14
3.1.3. Reaction of Acetic Acid, Ethylene and Oxygen:	15
3.2. Process Comparison:	16

Chapter 41'	7
Process Flow Diagram1'	7
4.1. Process Description:	9
4.1.1. Reactants:	9
4.1.2. Vaporizer:	9
4.1.3. Reactor:	0
4.1.4. Heat Exchanger:	0
4.1.5. Flash Separator:	1
4.1.6. CO ₂ Removal System:	1
4.1.7. Distillation Column:	1
4.1.8. VAM Recovery:	2
4.2. Hazards:	2
4.2.1. Flammability:	2
4.2.2. Reactivity:	2
4.2.3. Health Effects:	3
4.2.4. Environmental Effects:	3
Chapter 524	4
Material Balance24	4
5.1. Decanter:	5
5.2. Distillation Column:	9
5.3. Mixer/Storage Tank:	3
5.4. Absorber:	7
5.5. Flash Separator/Column:	2
5.6. Multi Tubular Reactor:	6

Chapter 6	51
Energy Balance	51
6.1. Multi Tubular Reactor	52
6.2. Heat Exchanger:	55
6.3. Flash Separator /Column:	56
6.4. Absorber	57
6.5. Distillation Column:	58
Chapter 7	62
Equipment Design	62
7.1. Reactor:	62
7.1.1. Types of Reactors:	63
7.1.2. Design Steps:	65
7.1.3. Reaction Equation:	65
7.1.4. Kinetics of Reaction:	66
7.1.5. Design Equations:	67
7.1.6. Shell and Tube Configuration:	71
7.1.7. Mechanical Design of Reactor:	74
7.1.8. Pressure Drop in Tube Side:	75
7.1.9. Specification Sheet:	76
7.2. Heat Exchanger:	77
7.2.1. Classification Of Heat Exchangers:	77
7.2.2. Selection of Heat Exchanger:	78
7.2.3. Types of the shell and tube heat exchangers:	80
7.2.4. Heat Exchanger Design Algorithm	82
7.2.5. Selection of basic type of Heat Exchanger:	83

	7.2.6. Cp Calculation:	. 84
	7.2.7. Viscosity Calculation:	.85
	7.2.8. Thermal Conductivity Calculation:	.86
	7.2.9. Thermal Rating:	.86
	7.2.10. Tube Side Calculations:	. 89
	7.2.11. Shell Side Calculations:	.90
	7.2.12. Pressure Drop Calculations:	.92
	7.2.13. Specification Sheet:	.94
7.3. I	Flash Separator:	.95
	7.3.1. Classification of Separators:	.95
	7.3.2. Selection Criteria:	.96
	7.3.3. Diagram:	.96
	7.3.4. Design Steps:	.96
	7.3.5. Calculations of Density of liquid and vapors:	.97
	7.3.6. Calculations for K _v :	.98
	7.3.7. Calculations for maximum velocity	99
		• • • •
	7.3.8. Calculations for Volumetric flow rate:	.99
	7.3.8. Calculations for Volumetric flow rate:7.3.9. Calculations of Area:	.99 .99
	7.3.8. Calculations for Volumetric flow rate:7.3.9. Calculations of Area:7.3.10. Calculations of Diameter	.99 .99 .99
	 7.3.8. Calculations for Volumetric flow rate: 7.3.9. Calculations of Area: 7.3.10. Calculations of Diameter 7.3.11. Calculations of L/D ratio: 	.99 .99 100
	 7.3.8. Calculations for Volumetric flow rate:	.99 .99 100 100
	 7.3.8. Calculations for Volumetric flow rate:	.99 .99 100 100 100

7.3.15. L/D ratio calculations:	101
7.3.16. Mechanical Design	
7.3.17. Specification Sheet:	
7.4. Absorber/Absorption Column:	105
7.4.1. Types of Absorption:	105
7.4.2. Selection of Absorbent:	105
7.4.3. Selection of Column type:	105
7.4.4. Design Parameters:	106
7.5. Distillation:	111
7.5.1. Classification of Distillation Column:	112
7.5.2. Types of Distillation:	112
7.5.3. Selection of Distillation Column:	113
7.5.4. Selection of reboiler:	114
7.5.5. Distillation Column Design Algorithm:	115
7.5.6. Major Design Steps:	116
7.5.7. Process Design:	116
7.5.8. Plate Efficiency:	
7.5.9. Plate Hydraulic Design:	
7.5.10. Selection of Plate Contactors:	
7.5.11. Plate Design Procedure:	
7.5.12. Specification Sheet:	

Chapter 8	141
Process Control & Instrumentation	141
8.1. Process Instrumentation:	141
8.2. Process Control	150
Controlled Variables:	152
Manipulated Variable:	152
Controlled Variables:	152
Manipulated Variable:	152
Controlled Variables:	153
Manipulated Variable:	153
Controlled Variables:	154
Manipulated Variable:	154
Chapter 0	156
Chapter 9	
Cost Estimation	
Cost Estimation	150 156
Cost Estimation	156
Cost Estimation	156 157 158 159
Cost Estimation	156 157 158 159 160
Cost Estimation	150 156 157 158 159 160 161
Cost Estimation	150 157 157 158 159 160 161 162
Cost Estimation	150 157 157 158 159 160 161 162 163
Cost Estimation 9.1. Cost Estimation of the reactor: 9.2. Cost Estimation of the Heat Exchangers: 9.3. Cost Estimation of Absorber: 9.4. Cost Estimation of Multicomponent Distillation column: 9.5. Cost Estimation of Decanter: 9.6. Cost Estimation of Vaporizer: 9.7. Cost Estimation of Pumps: Chapter 10	150 157 157 158 159 160 161 162 163 163
Cost Estimation 9.1. Cost Estimation of the reactor: 9.2. Cost Estimation of the Heat Exchangers: 9.3. Cost Estimation of Absorber: 9.4. Cost Estimation of Multicomponent Distillation column: 9.5. Cost Estimation of Decanter: 9.6. Cost Estimation of Vaporizer: 9.7. Cost Estimation of Pumps: Chapter 10	150 157 157 157 158 159 160 161 162 163 167 167
Cost Estimation 9.1. Cost Estimation of the reactor: 9.2. Cost Estimation of the Heat Exchangers: 9.3. Cost Estimation of Absorber: 9.4. Cost Estimation of Multicomponent Distillation column: 9.5. Cost Estimation of Decanter: 9.6. Cost Estimation of Vaporizer: 9.7. Cost Estimation of Pumps: Chapter 10 HAZOP 10.1. Reactor:	150 157 157 157 159 160 161 163 163 167 169
Cost Estimation 9.1. Cost Estimation of the reactor: 9.2. Cost Estimation of the Heat Exchangers: 9.3. Cost Estimation of Absorber: 9.4. Cost Estimation of Multicomponent Distillation column: 9.5. Cost Estimation of Decanter: 9.6. Cost Estimation of Vaporizer: 9.7. Cost Estimation of Pumps: Chapter 10 HAZOP 10.1. Reactor: 10.2. Heat Exchanger:	150 157 157 157 159 160 161 162 163 163 167 167 169 170

10.4. Absorber:	171
10.5. Storage Tank:	172
10.6. Distillation Column:	173
Chapter 11	174
Simulation	174
11.1. Properties:	174
11.1.1. Selected Components:	175
11.1.2. Base Method:	175
11.2. Simulation:	176
11.2.1. Decanter:	177
11.2.2. Separator:	178
11.2.3. Distillation Column:	
11.2.4. Mixer:	
11.2.5. Heat Exchanger:	
11.2.6. Reactor:	
Chapter 12	
Layout	
12.1. Economic Compensation:	
12.2. Process Pre-requisite:	
12.3. Ease of operation:	
12.4. Ease of Maintenance:	
12.5. Safety:	190
12.6. Future Expansion:	190
Chapter 13	191
Sustainability Development Goals	

Chapter 14	
Appendix	
Chapter 15	210
References	

LIST OF FIGURES

Figure 1 : Structural formula of VAM5
Figure 2 : Demand of VAM in world by 202110
Figure 3 : Consumption of VAM in world by 2021 [5]10
Figure 4 : Annual VAM Import12
Figure 5 : Process Flow Diagram of Oxy-Acetylation of Ethylene
Figure 6 : Rate of reaction for primary reaction
Figure 7 : Rate of reaction of secondary reaction70
Figure 8 : Shell and Tube HX80
Figure 9 : Shell and Tube HX
Figure 10 : Specification of HX94
Figure 11 : Tori spherical Shape102
Figure 12 : Bracket Support103
Figure 13 : P&ID of Vinyl acetate Monomer Production143
Figure 14 : Process Control Diagram of Vinyl Acetate Monomer Production 151
Figure 15 : Selected Components
Figure 16 : Property Method Selection175
Figure 17 : Flowsheet of VAM plant176
Figure 18 :Simulated Figure of Separator178
Figure 19 :Simulated Figure of Distillation Column
Figure 20 : Simulated Figure of Mixer
Figure 21 : Simulated figure of Heat Exchanger
Figure 22 : Layout display of VAM plant

LIST OF TABLES

Table 1 : Thermodynamic and Physical Properties of VAM [3]	5
Table 2 : Applications of VAM in Industries [3]	7
Table 3 : Annual VAM import of Pakistan	
Table 4 : Comparison Table of Different Process	16
Table 5 : Material Balance Across Decanter	
Table 6 : Material Balance across Distillation Column	
Table 7 : Material Balance across Mixer	
Table 8 : Material Balance Across Absorber	41
Table 9 : Material Balance Across Flash Vessel	
Table 10 : Flow rates of outlet stream of Reactor	
Table 11 : Material Balance Across Reactor	
Table 12 : Heat capacity coefficients for Gases	
Table 13 : Energy Balance across reactor Inlet Side	
Table 14 : Energy Balance across reactor Outlet Side	
Table 15 : Energy Balance Across Heat Exchangers	
Table 16 : Choice of Reactors	
Table 17 : Reaction Parameters [15]	
Table 18 : Specification sheet of reactor	
Table 19 : Selection of Heat Exchanger	
Table 20 : Heat capacity coefficients for Gases	
Table 21 : Data of viscosity	
Table 22 : Data of Thermal Conductivity	

Table 23 : Types of Separators) 5
Table 24 : Specification of Separator)4
Table 25 : Types of Absorption 10)5
Table 26 : Selection of Absorption column)5
Table 27 : Selection of Distillation Column	13
Table 28 : Types of Configurations 11	14
Table 29 : Selection of Trays	25
Table 30 : Specification Sheet of Distillation Column	40
Table 31 : Selected temperature measuring instruments 14	14
Table 32 : Unselected temperature measuring instruments 14	14
Table 33 : Selected temperature measuring instruments 14	14
Table 34 : Unselected temperature measuring instruments 14	45
Table 35 : Selected flow measuring instruments 14	45
Table 36 : Unselected flow measuring instruments	45
Table 37 : Selected measuring instruments 14	46
Table 38 : Unselected measuring instruments 14	46
Table 39 : Selected measuring instruments 14	46
Table 40 : Unselected measuring instruments 14	46
Table 41 : Selected Level measuring instruments 14	17
Table 42 : Unselected Level measuring instruments 14	17
Table 43 : Selected concentration measuring instruments 14	48
Table 44 : Unselected concentration measuring instruments 14	48
Table 46 : HAZOP Study on Reactor 16	59

Table 47 : HAZOP Study on Heat Exchanger	170
Table 48 : HAZOP Study on Separator	171
Table 49 : HAZOP Study on Absorber	171
Table 50 : HAZOP Study on Distillation Column	173
Table 51 : Sustainability development goals	193

LIST OF ABBREVIATIONS

- VAM Vinyl Acetate Monomer
- PVA Poly-vinyl Acetate
- EVA Ethylene Vinyl Acetate
- Pd based Palladium Based
- PVOH Polyvinyl Alcohol
- PVB Polyvinyl Butyral
- EVOH Ethylene Vinyl Alcohol
- EDA Ethylidene diacetate
- MEA Mono-ethanol-amine
- HQ Hydroquinone
- FeCl₃ Ferric Chloride
- PdCl₂
 Palladium Dichloride
- CuCl₂ Cupric Chloride
- PVAs Polyvinyl Acetyls
- BWG Birmingham Wire Gauge
- LHV Lower Heating Value
- HAZOP Hazard and Operability Study
- HAZID Hazard Identification

LIST OF APPENDICES

Appendix A : LMTD correction factors for 1-2 exchangers	96
Appendix B : Tube sheet layouts Triangular Pitch	97
Appendix C : Heat Exchanger and Condenser tube data	98
ppendix D : Design vapour velocity factor for vertical separators	99
Appendix E : Flooding velocity, sieve plates	99
Appendix F : Selection of liquid-flow arrangement	00
Appendix G : Entrainment correlation for sieve plates	01
Appendix H : Weep-point correlation	02
Appendix I : Relation between downcomer area and weir length20	03
Appendix J : Relation between angle subtended by chord,20	04
Appendix K : Relation between hole area and pitch	05
Appendix L : Discharge coefficient, sieve plates	06
Appendix M : Materials cost factors, fm, relative to plain carbon steel20	07
Appendix N : Installation factors proposed by Hand (1958)20	07
Appendix O : Purchased equipment cost for common plant equipment	08

Chapter 1

Introduction

1.1. Project Description:

This project is concentrated on the vinyl acetate monomer synthesis process with the intention of starting manufacturing in Pakistan. Many polymeric and polymers products, such as paints, adhesives, binders, moldings, various types of coatings, cosmetics, pharmaceuticals, and numerous more items for use in agriculture, industry, and daily life, all contain vinyl acetate monomer (VAM) as a key chemical constituent. The 22,000 Ton per year of VAM capacity is chosen by taking into account the annual import statistics. Out of all possible manufacturing methods, the oxy-acetylation of ethylene employing a Pd-based catalyst approach was chosen for this project. The reaction has carried out in the plug flow (tubular) reactor.

 $C_2H_4 + CH_3COOH + 0.5 O_2 \xrightarrow{Pd} C_4H_6O_2 + H_2O$

Then, employing absorption, distillation, decantation, flash separate key on, and other processes, VAM is separated from the other chemical reaction's constituents. Flashing is mostly used to remove the gaseous byproducts (oxygen, ethylene, and carbon dioxide). VAM is entirely absorbed via absorption, separating from the remaining gaseous components. While VAM is totally recovered from the liquid components (water and acetic acid) via distillation and decantation. While VAM can be produced by three ways:

• By reacting Acetic acid and Acetylene

$$C_2H_2 + CH_3COOH \longrightarrow C_4H_6O_2$$

• By reacting Acetaldehyde and Acetic Anhydride

 $CH_{3}CHO + (CH_{3}CO)_{2}O \longrightarrow C_{2}H_{4} - (OCOCH_{3})_{2}$

 C_2H_4 -(OCOCH₃)₂ \longrightarrow $C_4H_6O_2$ + CH₃COOH

• By reacting Acetic acid, Ethylene and oxygen.

 $C_2H_4 + CH_3COOH + 0.5 O_2 \xrightarrow{Pd} C_4H_6O_2 + H_2O$

The project's main objective is to develop a chemical engineering solution to a genuine industrial problem while taking Pakistan's economic and marketing environment into consideration. While the project involves the subsequent phases for VAM manufacture.

- Develop a Process Flow Diagram (PFD) using Microsoft Visio.
- Conduct HAZOP analysis.
- Material and Energy balance on the complete process.
- Design Process Equipment (Reactor, Heat exchanger, Liquid-Gas Separator, Absorber, Distillation Column)
- Perform process simulations using suitable software (Aspen HYSYS/Aspen Plus).
- Develop a process instrumentation diagram (P&ID) using MS Visio.
- Conduct a HAZOP study.
- Perform an economic analysis of process.

1.2. Background:

Polyvinyl acetate homopolymer (PVA or PVAs) is a significant polymer used in chewing gum, adhesives, and textile sizing. When German chemist Fritz Klatte noticed that vinyl acetate readily interacts with itself, he made the discovery of PVA in 1912. The PVA formulations created by Klatte were solid, dense materials, but over time, researchers discovered ways to create the polymer in different forms. PVA latices are widely used in adhesives. Elmer's Glue is one of the most well-known brands. PVA adhesives are employed in a variety of packaging materials, including bags and shipping boxes, food containers, tapes, binders for foil, envelopes, palstics and paper. Vinyl acetate is coupled with other monomers like ethylene and acrylates to create a variety of copolymers in addition to homopolymers. Ethylene vinyl acetate (EVA) copolymers (also known as EVAs) can be produced in large quantities or using emulsion polymerization. Emulsion EVAs have a variety of applications, including homopolymers of vinyl acetate-like adhesives. Applications for bulk polymers range from high-volume industrial uses to the convenient glue sticks you might have at home or in the classroom **[1]**.

1.3. Literature Review:

The organic compound vinyl acetate has the following structural formula:

Figure 1: Structural formula of VAM

It is a crucial raw material utilized in the production of several goods that form the foundation of the polymer industry. The chemical building block used in the production of a vast array of industrial goods is vinyl acetate. An odorless, flammable liquid with a low flash point, vinyl acetate monomer (VAM) has a distinct taste and color. Vinyl acetate is soluble in the majority of typical organic solvents despite not being soluble in water. A wide range of industrial and consumer applications use polyvinyl acetate homopolymers and copolymers, which are made using vinyl acetate as a precursor [2].

1.3.1. Physical and thermodynamic properties of VAM:

Properties	Vinyl Acetate
Chemical Formula	C ₄ H ₆ O ₂
Appearance	Colorless Liquid
Molecular Weight (kg/kmol)	86.09
Density (kg/m ³)	933.8
Boiling Point (°C)	72.9
Freezing Point (°C)	-92.8
Snecific Gravity	0.934
Critical temperature (°C)	246
Critical pressure (kPa)	3950
Vigeogity et 20 %	0.42
viscosity at 20 °C	0.43

Table 1: Thermodynamic and Physical Properties of VAM [3]

1.3.2. Application of VAM in Industries:

Though many substances are capable of polymerizing, VAM stands out for how quickly the process can take place in bulk, solution, emulsion, or suspension. VAM is the precursor to each of these consumer products produced through the polymerization processes, but in order to store and distribute them, hydroquinone must be employed as an inhibitor to stop polymerization and the finished product must be chilled [4]. The application of VAM involves:

- PVA
- PVOH
- PVB
- EVA
- EVOH
- PVAs

Product Abbreviation	Product Name	Uses
ADDreviation		
		• Paints and Adhesives
PVA	Polyvinyl Acetate	• Textile Binders
		Textile Finishes
		• Coating for Flexible Substrates
		Paper Coating
		Adhesives
		• Paper and Textile Coating
		• Binders for Building Products
PVOH	Polyvinyl Alcohol	Photosensitive Coatings
		Moldings
		Thickening Agents
		• Used as a laminated glass for
DIVD		automobiles and commercial
PVB	Polyvinyl Butyral	• Coatings and inks
		Molding
TT T	Ethylana Vinyl A satata	• Wires and Cable Coatings
EVA	Ethylene vinyl Acetate	• Elastomers
		• Molded Rubber applications
		Provide Food barrier
EVOU		• Medical & Pharmaceuticals
EVOH	Ethylene vinyl Alconol	Cosmetics
		• Applications of Packaging in
		Industrial and Agricultural
		sector
		D 1 1 1 1
		Primers and Adhesives
		Metal Coatings

Table 2: Applications of VAM in Industries [3]

PVAs	Polyvinyl Acetyls	Textile Coatings

1.3.3. Raw Materials:

The raw material for this project is:

- Oxygen
- Acetic Acid
- Ethylene

1.3.4. Reaction:

The reaction involved in this process is given as:

$C_2H_4 + CH_3COOH + 0.5 O_2 \xrightarrow{Pd} C_4H_6O_2 + H_2O$

In this process ethylene and oxygen as a gas and acetic acid as a liquid reacts to produce vinyl acetate and water. This reaction is carried out in the reactor at 147 - 159°C.

While there are two more reactions in which vinyl acetate in produced but oxyacetylation is economic and better than all the processes. Chapter 2

Market Analysis and Capacity Selection

2.1. World VAM Supply and Demand:

The world is quickly transitioning to a plastic economy since we are living in the age of plastics. Plastics and polymeric goods can be found everywhere. Plastics and other polymeric products are included in almost all of the things we use every day.

Figure 2: Demand of VAM in world by 2021

Figure 3: Consumption of VAM in world by 2021 [5]

2.2. Pakistan's Annual VAM Consumption:

All of Pakistan's vinyl acetate consumption is dependent on imports from nearby oil-rich countries in the Persian Gulf and the Middle East because vinyl acetate monomer, one of the key components, is required for the creation of numerous valuable polymers and polymeric products. We have selected the production capacity of our project to meet the continually increasing demand for VAM and attain self-sufficiency in VAM manufacture.

The following industries in Pakistan that import VAM:

- Griffon Plastic Industries Limited, Shahdara
- Power Chemical Industries (Pvt.) Limited
- Karachi-based Alsons Auto Parts (Pvt.) Limited
- Lahore-based Neelam Industries
- Karachi-based Arfeen International (Pvt.) Limited

Import Year		Product Vinyl Acetate Monomer (VAM)			
	Ton/Yr.	Ton/day	Kg/Yr.	Kg/day	
2014	14501.45	39.73	13155494.14	36042.44	
2015	15136.55	41.47	13731647.17	37620.9	
2016	15435.85	42.29	14003167.56	38364.84	
2017	16611.15	45.51	15069381.79	41285.9	
2018	18191.6	49.84	16503141.92	45214.0	
2019	19118.7	52.38	17344192.89	47518.3	
2020	19856	54.4	18013060	49350.8	
2021	21728.45	59.53	19711718.26	54004.7	

Table 3: Annual VAM import of Pakistan

2.3. Capacity Selection:

Given that Pakistan currently imports roughly 23,000 tonnes of VAM annually, it is accurate to state that the country's demand for the substance is growing. As a result, we draw the conclusion that this amount may rise even further in the future year, which could put pressure on the nation's economy. In order to fulfil the rising demand for VAM, we have chosen for our project plant's production capacity to be 22,000 metric tonnes annually.

2.4. Site Location:

The proposed project involves oxy-acetylating ethylene to produce vinyl acetate. Given that Karachi is an industrial and port city, the construction and commissioning of this plant will have a favorable impact on Pakistan's economy as a whole as well as on employment and business prospects. Karachi was chosen because it will be economical to ship imported machinery through its seaport and to regularly provide raw materials. Additionally, Karachi is a center for the polymer sector, making it simple to identify customers for our product, VAM. Chapter 3

Process Selection

3.1. Production Processes:

There are three reactions that can be used to create vinyl acetate monomer, and they are as follows:

- VAM is created when acetic acid and acetylene react.
- VAM is created when acetaldehyde and acetic anhydride react.
- VAM is created when acetic acid, ethylene, and oxygen react.

3.1.1. Reaction of Acetic Acid and Acetylene

Acetic acid and acetylene are processed using this method by first passing them into a vaporizer, which operates at 170 to 250°C. In order to carry out the addition reaction that results in crude VAM, the reactor comprises a zinc acetate catalyst that has been impregnated on charcoal.

$C_2H_2 + CH_3COOH \longrightarrow C_4H_6O_2$

[6]. Acetic acid and acetylene are reacted to form vinyl acetate monomer (VAM) in a vapor-phase process. The reaction mixture is cooled and fed to a flash separator, where the VAM vapor is separated from the unreacted acetylene. The VAM vapor is then fed to a scrubbing column, where it is scrubbed with water to remove any residual acetylene. The scrubbed VAM vapor is then condensed and fed to a light key separation column, where it is separated from any heavier components. The VAM is then fed to a purification column, where it is purified to remove any impurities. The purified VAM is then sent to storage. Acetic acid that hasn't been reacted is recycled back into the vaporizer. [7].

3.1.2. Reaction of Acetaldehyde and Acetic Anhydride:

Ethylidene diacetate (EDA) synthesis happens in two steps. Acetaldehyde and acetic anhydride are heated to 120–140 degrees Celsius in a reactor using a FeCl₃ catalyst in the first stage. This reaction produces EDA and acetic acid. In the second stage, the EDA is purified by distillation, the following liquid phase reaction occurs:

 $CH_{3}CHO + (CH_{3}CO)_{2}O \longrightarrow C_{2}H_{4}(OCOCH_{3})_{2}$

Acetaldehyde has an extremely low boiling point of 20 degrees Celsius, which allows it to be easily separated from the other reaction products by flash distillation. The EDA is then recycled or fed to the following stage, as shown, after the EDA and acetic anhydride have been separated in a distillation column:

$C_2H_4-(OCOCH_3)_2 \longrightarrow C_4H_6O_2 + CH_3COOH$

Acetic acid and VAM can also be flash separated from unreacted EDA and recycled before being fed to separate purification columns to produce the products.

3.1.3. Reaction of Acetic Acid, Ethylene and Oxygen:

Acetic acid, ethylene, and oxygen are delivered into a cooled tubular reactor at a temperature of 421 K and 6 Bar, together with a vaporizer running at 7 Bar and 423 K. The subsequent vapor phase reactions take place. **[8]**:

$$C_{2}H_{4} + CH_{3}COOH + 0.5O_{2} \xrightarrow{Pd} C_{2}H_{3}OOC_{2}H_{3} + H_{2}O$$

Side Reaction: $C_{2}H_{4} + 3O_{2} \xrightarrow{Pd} 2CO_{2} + 2H_{2}O$

Vinyl acetate monomer (VAM) is produced primarily via a side reaction that also produces carbon dioxide as an unwanted by-product. The cooler, which lowers the temperature to 310 Kelvin, then feeds the reacting gas to a separator. As a result, the separator's VAM, water, and unreacted acetic acid condense. After that, an initial absorption column receives the unreacted ethylene, oxygen, carbon dioxide, and uncondensed VAM. Acetic acid, which serves as a solvent in a wash stream in this column, absorbs the uncondensed VAM. The remaining gas is injected into a second absorption column where the carbon dioxide is removed using mono-ethanol-amine (MEA).

Through the use of a compressor, the remaining gas is recycled to the vaporizer. The de-euthanizer distillation column is where the ethylene is extracted from the VAM crude after each stage. The acetic acid is condensed and recycled to the vaporizer in the azeotropic distillation column from which the column bottoms are supplied. The water is extracted from the aqueous VAM mixture in a decanter and separator. [1].
3.2. Process Comparison:

The comparison of all the above processes is given as:

Production Processes	Acetic Acid and Acetylene	Acetaldehyde and Acetic Anhydride	Acetic Acid, Ethylene and Oxygen
Pressure	15 - 18 bar	20 – 40bar	9 – 40bar
Temperature	170 – 250°C	120 – 140°C	110 – 160°C
Catalysts	Zn (OAs) ₂ Impregnated on Charcoal	FeCl ₃	PdCl ₂ / CuCl ₂ (Corrosive) Pd/Au - KOAs impregnated on Silica (2 year)
Economics	Expensive	Relative Expensive	Expensive and Feasible
Advantages	Single step process	Renewable raw materials	Better productivity and high conversion per pass
Disadvantages	Lower conversion per pass	Corrosion problem due to liquid phase reaction	By product CO ₂ is produced

Table 4: Comparison Table of Different Process
--

Based on the comparison of different production processes for vinyl acetate monomer (VAM), we have selected the oxy-acetylation of ethylene process for our project. This process is relatively efficient and cost-effective, and it produces a high quality product **[9].**

Chapter 4

Process Flow Diagram

Figure 5: Process Flow Diagram of Oxy-Acetylation of Ethylene

4.1. Process Description:

The fundamental unit activities for the vinyl acetate production process, which is the subject of this study and the strategy we want to design and implement, are:

- > Vaporizer
- Reactor
- Heat Exchanger
- Separator
- Absorber
- Distillation column

4.1.1. Reactants:

Our process reaction requires three reactants: oxygen, ethylene, and acetic acid. where acetic acid is a liquid and oxygen and ethylene are gases at normal temperature. Gases are combusted at a pressure of 7 bar, combined with recycled gas from an absorber, and then heated to 150°C in a heat exchanger. Reactants enter the reactor after the acetic acid has been combined with recycling acid from the distillation column, which has been heated to 150°C and vaporized.

4.1.2. Vaporizer:

The vaporizer is a heat exchanger that uses steam to heat the feed. The steam heats the feed to its boiling point, which vaporizes the liquid. The vaporized feed is then passed to the heater. The vaporizer is typically a large, cylindrical vessel made of stainless steel. The vessel is equipped with a steam inlet and a liquid feed inlet. The steam inlet is located at the bottom of the vessel, and the liquid feed inlet is located at the top of the vessel. The steam and liquid feed are mixed in the vessel, and the heat from the steam vaporizes the liquid feed. The vaporized feed is then passed out of the vessel through a vapor outlet.

The vaporizer is an important part of the process of producing acetic acid from ethylene and oxygen. The vaporizer ensures that the liquid feed is vaporized before it enters the heater. This is important because the reaction that produces acetic acid occurs in the gas phase. If the liquid feed were not vaporized, it would not be able to react with the oxygen to form acetic acid. The vaporizer is a critical piece of equipment in the production of acetic acid. It ensures that the liquid feed is vaporized before it enters the heater, which is necessary for the reaction that produces acetic acid to occur.

4.1.3. Reactor:

Ethylene, oxygen, and acetic acid are the three primary chemical inputs needed to produce VAM. These basic materials are mixed together in a reactor to create the byproducts VAM, water, and carbon dioxide. Ethane is also believed to arrive with the ethylene feed stream as an entrance component. The two reactions listed below are taken into account when creating VAM:

 $C_{2}H_{4} + CH_{3}COOH + 0.5O_{2} \xrightarrow{\text{Pd}} C_{2}H_{3}OOCCH_{3} + H_{2}O$ $C_{2}H_{4} + 3O_{2} \xrightarrow{} 2CO_{2} + 2H_{2}O$

An exothermic technique is used to create vinyl acetate monomer (VAM) in a reactor with tubes filled with a precious metal catalyst on a silica support. The heat of the reaction is removed by creating steam on the shell side of the tubes. From a steam drum, where make-up water is fed, water enters the reactor. As saturated vapor, the steam emerges from the drum. Under the specified circumstances of 150°C temperature and 7 bar pressure, the reaction takes place and is irreversible. Water, CO₂, and vinyl acetate are the reactions end products. Cooling coils are used to reduce the heat generated during chemical reactions because the reactions are strongly exothermic in nature. VAM, carbon dioxide, water, unconverted oxygen, ethylene, and acetic acid are all present in the exit stream.

4.1.4. Heat Exchanger:

Using cold steam from the gas recycle, the reactor effluent is cooled in a process-toprocess heat exchanger. After cooling with cooling water, the reactor effluent is transferred to a separator. The VAM is separated from the reactor's other components by the separator. Before entering the flash column, the VAM-rich stream from the reactor is cooled using a heat exchanger to 34.5°C and 7 bar of pressure.

4.1.5. Flash Separator:

The components of a flash column separate into liquid and gaseous phases when the pressure is reduced to 4 bar. Ethylene, carbon dioxide, and oxygen are among the gases exhaled. Further processing is necessary after collecting VAM from its liquid constituents, including water, acetic acid with a little quantity of oxygen, carbon dioxide, and ethylene.

In a separator, the reaction's vapor and liquid byproducts are separated. The oxygen, ethylene, carbon dioxide, and ethane-containing vapor stream is sent towards a compressor. The liquid stream is directed to the azeotropic distillation column together with vinyl acetate, water, and acetic acid.

4.1.6. CO₂ Removal System:

This method of eliminating carbon dioxide (CO_2) from a gas stream is common in industry. First, a CO₂-rich stream and a CO₂-lean stream split from the gas stream. The inert ethane is subsequently removed from the CO₂-rich stream during a purge. The recycle gas stream and CO₂ lean stream are then combined and supplied to the heat exchanger's feed.

The purge is a device that uses a vacuum to remove the inert ethane from the CO_2 rich stream. The vacuum lowers the pressure of the stream, which causes the ethane to vaporize. The vaporized ethane is then removed from the stream by a condenser.

4.1.7. Distillation Column:

Unconverted acetic acid (AA) is separated from water and vinyl acetate (VA) in a distillation column. The VA and water phases can separate because the condensed overhead product is separated in a decanter. The organic and aqueous compounds that are left behind are then sent to another distillation stage for additional purification.

The bottom distillation column product, acetic acid, is recycled back to the vaporizer together with fresh acetic acid. A part of this bottom stream is used as the wash acid in the absorber after it has cooled.

4.1.8. VAM Recovery:

The VAM recovery process consists of three steps:

Absorption: The first step is to absorb the VAM and other liquids in acetic acid. This is done in an absorber, which is a device that uses a liquid to absorb a gas. In this case, the acetic acid absorbs the VAM and other liquids from the gas stream.

Fractional distillation: The second step is to separate the VAM from the acetic acid by fractional distillation. This is done in a distillation column, which is a device that separates liquids based on their boiling points. The VAM has a lower boiling point than the acetic acid, so it will vaporize first and be collected at the top of the column.

Decantation: The third step is to separate the VAM from the water by decantation. This is done by pouring the mixture of VAM and water into a decanter, which is a device that allows the two liquids to separate based on their densities. The VAM will be on top of the water, so it can be easily removed.

4.2. Hazards:

4.2.1. Flammability:

Vinyl acetate monomer (VAM) is a flammable liquid. It has a flash point below 37°C (100°F), which means that it can vaporize and form an ignitable mixture with air at room temperature. VAM vapors are heavier than air, so they will sink to the ground and travel along the floor. This means that a VAM vapor can travel a long distance to a source of ignition, such as a flame or electric spark, and ignite **[10]**.

4.2.2. Reactivity:

Vinyl acetate monomer (VAM) is a reactive molecule. It can polymerize, or form long chains, if it is not inhibited or if it is not handled and stored properly. VAM is typically inhibited with a polymerization inhibitor, such as hydroquinone (HQ). When stored under the recommended conditions, VAM is stable and will not polymerize. VAM can also hydrolyze in water. This reaction is not considered dangerous because it is usually not violent. When VAM and water are combined, the polymerization and hydrolysis reactions do not occur. This is because the water molecules inhibit the polymerization reaction and the hydrolysis reaction is slowed down by the water. It is important to be aware of the hazards associated with VAM polymerization and hydrolysis and to take the necessary safety precautions to prevent these reactions from occurring[11].

4.2.3. Health Effects:

As with all chemical compounds, the quantity and duration of exposure have a substantial impact on the health impacts associated with VAM exposure. Since VAM irritates the upper respiratory tract, skin, and eyes, contact with vapors and liquids should be avoided. The threshold for odor perception, according to reports, is at 0.5 ppm. VAM has the potential to irritate, expand, and cause eye redness and edema. VAM vapors have been found to be intolerably irritating to the eyes at 21 ppm, but not at 5 to 10 ppm. Skin sensitivity is not thought to be brought on by VAM. Laboratory animals have shown that water consumption over a lifetime or exposure to VAM can cause cancer. Tumors appeared in the tissues that had direct contact with VAM, such as the mouth, esophagus, and stomach if eaten or the nose and upper respiratory tract if inhaled. The enzymatic conversion of VAM by tissue carboxylesterases to acetaldehyde and acetic acid is regarded to be a key event in the threshold-based tumor process. Acetaldehyde is a byproduct of food metabolism and is present in low concentrations in both the environment and the body. If threshold exposure values for VAM are exceeded, acetaldehyde may accumulate above background levels. Acetaldehyde, which is also mutagenic, is thought to mediate the genotoxicity caused by VAM. [12].

4.2.4. Environmental Effects:

If released into the environment, VAM will divide up into the compartment of that environment. If discharged into the air, VAM has a tendency to remain there where it is quickly broken down by photochemical processes. It has been determined that the VAM atmospheric half-life is 0.6 days. Following discharges of VAM to soil or water, some volatilization may take place. When released into water, VAM divides mostly there and goes through hydrolysis. At pH 7 and 25°C (77°F), the hydrolytic halflife of VAM is thought to be around 7 days. VAM hydrolysis results in the hydrolysis of acetic acid and acetaldehyde. In general, hydrolysis intensifies in neutral environments. It is not anticipated that VAM will adsorb heavily to sediments or soils. VAM is considered to be toxic in aquatic environment [13]. Chapter 5

Material Balance

Material Balance

Basis:

Production capacity of plant = 22,000tons/yr.

22,000 ton	1 yr.	1 day	1000 kg
Yr.	365 days	24 hr.	1 ton

= 2511.41 kg/hr.

We gather the data and made assumption for this material balance from literature survey.

5.1. Decanter:

For Outlet C (Organic Product):

<u>C Stream = 2511.41 kg/hr.</u>

For Outlet D (Aqueous Product):

 $H_2O = (84.3/100) *710 = 598.5 \text{ kg/hr}.$

 $CH_3COOH = (15.7/100) *710 = 111.4 \text{ kg/hr}.$

D Stream = 710 kg/hr.[1]

For Outlet B (Purge):

By literature survey we get the out flow rate of Decanter[1] as shown below;

<u>B Stream = 430 kg/hr.</u>

 $CO_2 = 43.6\%$

 $O_2 = 0.52\%$

 $C_2H_4\,{=}\,55.8\%$

Overall, Balance:

 $\mathbf{A} = \mathbf{B} + \mathbf{C} + \mathbf{D}$

A = 430 + 2511.41 + 710

B = 430 + 2511.41 + 710

<u>A Stream = 3651.41 kg/hr.</u>

For Inlet A (From Distillation Column):

Component (VAM):

A (% VAM) = C (% VAM)

3651.41 (%VAM) = 2511.41 (100)

VAM = 251141/3651.41= **68.77%**

Component (CO₂):

A (%CO₂) = B (%CO₂)

 $3651.41(\% CO_2) = 430 (43.6)$

 $CO_2 = 5.13\%$

Component (O₂):

 $A(\%O_2) = B\%(O_2)$

 $3651.41(\%O_2) = 430(0.52)$

 $(O_2) = 0.061\%$

Component (C₂H₄):

A (%C₂H₄) = B (%C₂H₄)

 $3651.41(\%C_2H_4) = 430(55.8)$

 $C_2H_4 = 6.57\%$

Component (CH₃COOH):

A (%CH₃COOH) = D (%CH₃COOH)

3651.41 (%CH₃COOH) = 710 (15.7)

 $CH_3COOH = 3.05\%$

Component (H₂O):

 $A(\%H_2O) = D(\%H_2O)$

 $3651.41 (\%H_2O) = 710 (84.3)$

 $H_2O = 16.39\%$

Result:

Components	Inlet (A) kg/hr.	Organic Phase (C) kg/hr.	Aqueous Phase (D) kg/hr.	Purge Stream (B) kg/hr.
VAM	2511.07	2511.41	0	0
Carbon Dioxide	187.682474	0	0	187.48
Oxygen	2.2275987	0	0	2.236
Water	598.83124	0	598.53	0
Acetic Acid	111.3623	0	111.47	0
Ethylene	239.897637	0	0	239.94
Sum	3651.41	2511.41	710	430

Table 5: Material Balance Across Decanter

5.2. Distillation Column:

For Outlet C (Bottom):

Assumptions:

Acetic Acid = 99 Percent in Bottom and C = 11053.47963kg/hr.

Overall, Balance:

Inlet = Distillate + Bottom

A=B+C

A = 3651.41 + 11053.47963

A = 14704.88

For Inlet A (Inlet):

Assumptions:

 \blacktriangleright VAM = 100 Percent in Inlet

Component (VAM):

A(%VAM) = B(%VAM)

14704.88 (%VAM) = 3651.41 (68.77)

VAM = 251141/3651.41= **17.07%**

Component (CO₂):

 $A (\% CO_2) = B (\% CO_2)$

14704.88 (%CO₂) = 3651.41 (5.14)

 $CO_2 = 1.2763\%$

Component (O₂):

 $14704.88 (\%O_2) = 3651.41 (0.061)$

 $(O_2) = 0.0151\%$

Component (C₂H₄):

A (%C₂H₄) = B (%C₂H₄)

14704.88 (% C_2H_4) = 3651.41 (6.57)

 $C_2H_4 = 1.6314$ %

Component (CH₃COOH):

Assumptions:

Acetic Acid = **99 Percent** in Bottom

A (%CH₃COOH) = B (%CH₃COOH)

14704.88 (%CH₃COOH) = 3651.41 (3.05)

CH₃COOH = 0.7573 *99%

 $CH_{3}COOH = 74.97\%$

Component (H₂O):

 $A (\% H_2 O) = B (\% H_2 O)$

14704.88 (% H_2O) = 3651.41 (16.40)

 $H_2O = 4.07233\%$

For Outlet C (Bottom):

Component (H₂O):

 $A (\%H_2O) = B (\%H_2O) + C (\%H_2O)$

 $14704.88 (4.07) = 59883.124 + 11053.47963 (\%H_2O)$

 $59848.8616 - 59883.124 = 11053.47963 (\% H_2O)$

 $H_2O = 0.00309\%$

Component (CH₃COOH):

 $A (\%CH_3COOH) = B(\%CH_3COOH) + C (\%CH_3COOH)$

14704.88 (74.97) = 11136.80+11053.47963 (%CH₃COOH)

CH₃COOH = 99.6 %

Results:

Fable 6: Materia	l Balance across	Distillation	Column
------------------	------------------	--------------	--------

Components	Inlet (A)	In Distillate (B)	In Bottom (C)	
	kg/hr.	kg/hr.	kg/hr.	
VAM	2510.12	2511.07	0	
Carbon Dioxide	187.68	187.682474	0	
Oxygen	2.2273	2.2275987	0	
Water	598.83124	598.83124	0.34155	
Acetic Acid	11024.24	111.3623	11009.26571	
Ethylene	239.8954	239.897637	0	
Sum	14704.88963	3651.41	11053.47963	

5.3. Mixer/Storage Tank:

For Inlet B (Absorber):

Assumptions:

- > 9.15% VAM obtain from Absorber
- = (% of VAM in Absorber/100) *(VAM flow rate After Mixing)

= (9.15/100) *2510.12

VAM = 229.6756 kg/hr.

- ▶ 2.212% H₂O obtain from Absorber
- = (% of H₂O in Absorber/100) *(H₂O flow rate After Mixing)

= (2.21/100) *598.83124

 $H_2O = 13.2341$ kg/hr.

➤ 53.59% CH₃COOH obtain from Absorber

= (% of CH₃COOH in Absorber/100) *(CH₃COOH flow rate After Mixing)

= (53.59/100) *11024.24

 $CH_{3}COOH = 5908.70 \text{ kg/hr}.$

 $\mathbf{B} = \mathbf{CH}_{3}\mathbf{COOH} + \mathbf{H}_{2}\mathbf{O} + \mathbf{VAM}$

 $\mathbf{B} = 5908.70 + 13.2341 + 229.6756$

B = 6151.6130 kg/hr.

VAM in A = (229.6756/6151.6130) *100

VAM in A = 3.733%

H₂O in A = (13.2341/6151.6130) *100

H₂O in A = 0.2151%

CH₃COOH in A = (5908.70/6151.6130) *100

CH₃COOH in A = 96.0512%

Overall, Balance:

Separator + **Absorber** = **After Mixing**

 $\mathbf{A} + \mathbf{B} = \mathbf{C}$

 $\mathbf{A} = -\mathbf{B} + \mathbf{C}$

A = -6151.6130 + 14704.88963

<u>A = 8553.27663 kg/hr.</u>

For Separator A (Inlet):

Component (VAM):

A (% VAM) + B (% VAM) = C (% VAM)

8553.27663 (%VAM) = 14704.88963*(17.07) - 6151.6130*(3.733)

VAM = 26.66%

Component (CO₂):

 $A (\%CO_2) + B (\%CO_2) = C (\%CO_2)$

8553.27663 (%CO₂) = 14704.88963* (1.2763) - 6151.6130*(0)

 $CO_2 = 2.1942\%$

Component (O₂):

 $A (\%O_2) + B (\%O_2) = C (\%O_2)$

 $8553.27663 (\%O_2) = 14704.88963* (0.0151) - 6151.6130*(0)$

$O_2 = 0.02596009\%$

Component (C₂H₄):

A $(\%C_2H_4)$ + B $(\%C_2H_4)$ = C $(\%C_2H_4)$

8553.27663 (%C₂H₄) = 14704.88963* (1.6314) - 6151.6130*(0)

$C_2H_4 = 2.804721276\%$

Component (CH₃COOH):

 $A (\%C_2H_4) + B (\%CH_3COOH) = C (\%CH_3COOH)$

8553.27663 (%CH₃COOH) = 14704.88963* (74.97) - 6151.6130*(96.0512)

CH₃**COOH** = **59.8081%**

Component (H₂O):

 $A (\%H_2O) + B (\%H_2O) = C (\%H_2O)$

 $8553.27663 (\%H_2O) = (14704.88963*4.07233) - (6151.6130*0.2151)$

 $H_2O = 6.8464\%$

Results:

Table 7: Material Balance across Mixer

	From Flash Separator (A)	From Absorber (B)	After Mixing (C)
Components	kg/hr.	kg/hr.	kg/hr.
VAM	2280.30355	229.6756	2510.12
Carbon Dioxide	187.6759958	0	187.68
Oxygen	2.220438311	0	2.2273
Water	239.8955694	13.2341	598.83124
Acetic Acid	5115.55224	5908.70	11024.24
Ethylene	239.8955694	0	239.8954
Sum	8553.27663	6151.6130	14704.88963

 $H_2O = 0.2151\%$

For Inlet liquid 1 of Absorber (B):

Assumptions:

98.77% of Acetic acid of Bottom outlet liquid stream D(L2) is present in top Inlet liquid stream B(L1)

= (98.77/100) *5908.70

B = 5836.022 kg/hr.

For Outlet Gas 2 from Absorber (C):

By literature survey we get the out flow rate of Gas 2 from Absorber[1] as shown below; C=13627.21628 kg/hr.

Assumptions:

CO₂ = 45.10% = (45.10/100) *13627.21628 = **6146.93 kg/hr.**

 $O_2 = 3.27\% = (3.27/100) * 13627.21628 = 445.73 \text{ kg/hr.}$

 $C_2H_4 = 51.62\% = (51.62/100) * 13627.21628 = 7034.54 \text{ kg/hr.}$

 $\mathbf{C} = \mathbf{CO}_2 + \mathbf{O}_2 + \mathbf{C}_2\mathbf{H}_4$

C = 6146.93 + 445.73 + 7034.54

<u>C = 13627.21628 kg/hr.</u>

Overall, Balance:

Inlet Gas Bottom (G1) + Inlet Liquid Top(L1) = Outlet Gas Top (G2) + Outlet Liquid Bottom (L2)

 $\mathbf{A} + \mathbf{B} = \mathbf{C} + \mathbf{D}$

 $\mathbf{A} = \mathbf{-B} + \mathbf{C} + \mathbf{D}$

A = -5836.022 + 13627.21628 + 6151.6130

<u>A = 13942.80728 kg/hr.</u>

For Absorber G1 (Inlet):

Component (VAM):

A (% VAM) + B (% VAM) = C (% VAM) + D(% VAM)

13942.80728 (%VAM) = - 5836.022 (0) + 13627.21628 (0) + 6151.6130 (3.733)

13942.80728 (%VAM) = 6151.6130*(3.733)

VAM = 1.64701203%

Component (CO₂):

 $A(CO_{2\%}) + B(CO_{2\%}) = C(CO_{2\%}) + D(CO_{2\%})$

13942.80728 (**CO**₂%) = - 5836.022 (0) + 13627.21628 (45.10) + 6151.6130 (0)

13942.80728 (%**CO**₂) = 13627.21628*(45.10)

 $CO_2 = 44.07917587\%$

Component (O₂):

A $(\% O_2)$ + B $(\% O_2)$ = C $(\% O_2)$ + D($\% O_2$)

13942.80728 (%**O**₂) = - 5836.022 (0) + 13627.21628 (3.27) + 6151.6130 (0)

13942.80728 (% O_2) = 13627.21628*(3.27)

 $O_2 = 3.195984592\%$

Component (C₂H₄):

A $(\%C_2H_4)$ + B $(\%C_2H_4)$ = C $(\%C_2H_4)$ + D($\%C_2H_4$)

13942.80728 (% C_2H_4) = - 5836.022 (0) + 13627.21628 (51.62) + 6151.6130 (0)

13942.80728 (% C_2H_4) = 13627.21628 (51.62)

 $C_{2}H_{4} = 50.45159775\%$

Component (CH₃COOH):

 $A (\%CH_3COOH) + B (\%CH_3COOH) = C (\%CH_3COOH) + D(\%CH_3COOH)$

13942.80728 (%CH₃COOH) = - 5836.022 (100) + 13627.21628 (0) + 6151.6130 (96.0512)

13942.80728 (%CH₃COOH) =- 5836.022 (100) + 6151.6130*(96.0512)

CH₃COOH = 0.521244427%

Component (H₂O):

 $A (\% VAM) + B (\% H_2O) = C (\% H_2O) + D (\% H_2O)$

 $13942.80728 (\% H_2 O) = -5836.022 (0) + 13627.21628 (0) + 6151.6130$

(239.8955694)

13942.80728 (% H_2O) = 6151.6130*(0.2151)

 $H_2O = 0.094902836\%$

Results:

B = 5836.022 kg/hr.

VAM = 3.733%

 $CH_{3}COOH = 96.0512\%$

 $H_2O = 0.2151\%$

	Gas-1 In (A)	Liquid-1 In (B)	Gas-2 Out (C)	Liquid-2 Out (D)
Components	kg/hr.	kg/hr.	kg/hr.	kg/hr.
VAM	229.639709	0	0	229.6756
Carbon Dioxide	6145.874532	0	6146.93	0
Oxygen	445.6099721	0	445.73	0
Water	13.23200296	0	0	13.2341
Acetic Acid	72.64202593	5836.02	0	5908.70
Ethylene	7034.285701	0	7034.54	0
Sum	13942.80728	5836.022	13627.21	6151.6130

 Table 8: Material Balance Across Absorber

5.5. Flash Separator/Column:

Overall, Balance:

Inlet Stream (A) = Outlet Gas Top (B) + Outlet Liquid Bottom (C)

 $\mathbf{A} = \mathbf{B} + \mathbf{C}$

A = 13942.80728 kg/hr. + 8553.27663 kg/hr.

<u>A = 22496.08391 kg/hr.</u>

For Inlet (A):

Component (VAM):

A (% VAM) = B (% VAM) + C (% VAM)

22496.08391(%VAM) = 13627.21628 (1.64701203) + 8553.27663 (26.66)

22496.08391(% VAM) = 250474.5441

(% VAM) = (250474.5441) / (22496.08391)

VAM = 11.13413984%

Component (CO₂)

 $A (\% CO_2) = B (\% CO_2) + C (\% CO_2)$

 $22496.08391(\%CO_2) = 13627.21628(44.0791) + 8553.27663(2.1942)$

 $22496.08391(\% \text{CO}_2) = 250474.5441$

 $(\% CO_2) = (619443.0287)/(22496.08391)$

 $CO_2 = 27.5355938\%$

Component (O₂):

 $A (\%O_2) = B (\%O_2) + C (\%O_2)$

 $22496.08391(\%O_2) = (13627.21628*3.1942) + (8553.27663*0.02596009)$

 $22496.08391(\%O_2) = 43750.09807$

 $(\%O_2) = (43750.09807)/(22496.08391)$

 $O_2 = 1.94478729\%$

Component (C₂H₄):

A (%VAM) = B (%C₂H₄) + C (%C₂H₄)

 $22496.08391(\% C_2 H_4) = (13627.21628*50.451) + (8553.27663*2.804721276)$

 $22496.08391(\% C_2H_4) = 711496.2455$

(%**C**₂**H**₄) = (250474.5441)/(22496.08391)

 $C_2H_4 = 31.62756008\%$

Component (CH₃COOH):

 $A (\%CH_3COOH) = B (\%CH_3COOH) + C (\%CH_3COOH)$

22496.08391(%CH₃COOH) = (13627.21628 *0.521) + (8553.27663 *59.8081)

22496.08391(%CH₃COOH) = 518655.0037

 $(%CH_3COOH) = (250474.5441)/(22496.08391)$

CH₃COOH = 23.05534624%

Component (H₂O):

 $A (\%H_2O) = B (\%H_2O) + C (\%H_2O)$

 $22496.08391(\%H_2O) = (13627.21628 * 0.094902) + (8553.27663 * 6.8464)$

 $22496.08391(\% H_2 O) = 59852.4032$

 $(\% H_2 O) = (59852.4032) / (22496.08391)$

 $H_2O = 2.660569877\%$

Result:

B = 13942.80728

Components	Inlet (A) kg/hr.	Gas (B) kg/hr.	Liquid (C) kg/hr.
VAM	2504.745252	229.639709	2280.30355
Carbon Dioxide	6394.430286	6145.874532	187.6759958
Oxygen	447.5009806	445.6099721	2.220438311
Water	598.524032	13.23200296	239.8955694
Acetic Acid	5186.472145	72.64202593	5115.55224
Ethylene	7114.962436	7034.285701	239.8955694
Sum	22496.08391	13942.80728	8553.27663

 Table 9: Material Balance Across Flash Vessel

5.6. Multi Tubular Reactor:

Assumptions:

- Steady state process
- > Argon and Methane are inert

Reactions:

Primary reaction:

$$C_{2}H_{4} + CH_{3}COOH + 0.5O_{2} \xrightarrow{\text{Pd}} C_{2}H_{3}OOCCH_{3} + H_{2}O$$

Secondary reaction:

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$

Conversions:

Acetic acid = 25%

Ethylene = 10-11%

Oxygen = 60%

Components	Outlet (B) kg/hr	Molar Mass g/mol	Outlet (B) Kmole/hr.	Mole fraction
VAM	2504.745252	86.09	29.09449706	0.051799036
Carbon Dioxide	6394.430286	44	145.327961	0.258737875
Oxygen	447.5009806	32	13.98440564	0.024897448
Water	598.524032	18.01	33.25133511	0.059199756
Acetic Acid	5186.472145	60.05	86.36922806	0.15376938
Ethylene	7114.962436	28.05	253.6528498	0.451596505
Sum	22496.08391		561.6802767	1

Table 10: Flow rates of outlet stream of Reactor

For First Reaction:

СН3СООН	: C ₂ H ₄	: O ₂ :	C ₂ H ₃ OOCCH	I3 : H2O
1	: 1	: 0.5 :	1	: 1
	Coefficient x Mo	olar Mass of	Components	
	60.053:28.054	: 0.5*32:86	.09: 18.015	
	60.053: 28.054	4:16:86.0	09:18.015	
	$\frac{60.053}{86.09} \div \frac{28.05}{86.09}$	$\frac{4}{9}:\frac{16}{86.09}:\frac{8}{8}$	$\frac{6.09}{6.09}$: $\frac{18.01}{86.09}$	
0.6975606923 :	0.3258682774 :	0.185852	20153 : 1	: 0.2091996748
The amount of Acetic	c Acid outlet is 25	504.745252	kg	

1 x 2504.745252 : 0.2091996748 x 2504.745252

 $1747.211832 \ : \ 816.2170206 \ : \ 465.5119529 \ : \ 2504.745252 \ : \ 523.9918922$

Only the first reaction uses acetic acid, hence the remaining amounts of acetic acid are now present in the product is: Acetic acid consumed = 1747.211832

Acetic Acid conversion is 25% then

Acetic acid inlet = $\frac{1747.211832}{0.25}$ = 6988.84 kg/hr.

Prove:

Acetic acid remaining = total – consumed

Outlet = Inlet - consumed

Outlet = 6988.84 - 1747.211832

Outlet = 5186.472145 kg/hr.

The quantity of ethylene used in the first reaction = 816.2170206

Ethylene conversion is 10% then

Ethylene Inlet = $\frac{816.2170206}{0.11}$ = 7420.154545 kg/hr.

The quantity of oxygen used in the first reaction = 465.5119529

Oxygen conversion is 60% then

Oxygen Inlet = $\frac{465.5119529}{0.60}$ = 775.8532088 kg/hr.

The amount of Water consumed in 1st reaction

Water consumed = 523.9918922 kg

VAM remaining = total – consumed

VAM remaining = 2504.745252 - 2504.745252

Acetic acid remaining = 0 kg/hr.

2nd Reaction:

$O_2: C_2H_4: CO_2: H_2O$

3:1:2:2

3* 32 : 1* 28.054: 2*44.01 : 2* 18.015

96:28.054:88.02:36.03

 $\frac{96}{36.03}:\frac{28.054}{36.03}:\frac{88.02}{36.03}:\frac{36.03}{36.03}$

2.66444: 0.7786289: 2.4429641: 1

598.524032 x 2.66444 :598.524032 x 0.7786289: 598.524032 x 2.4429641

: 598.524032 x 1

1594.7313: 466.0281: 1462.172723: 598.524032

CO2 produced = 1462.172723 kg/hr.

CO2 in product = In Feed + Produced

6394.430286 - 1462.172723 = In Feed

4932.258286 = In Feed

Water produced for 2^{nd} reaction = 598.524032

H2O in product = In Feed + Produced

598.524032 - 598.524032 =In Feed

Water in Feed = 0 kg/hr.

Results:

Table 11: Material Balance Across Reactor

Components	Inlet (A) kg/hr.	Outlet (B) kg/hr.
VAM	0	2504.745252
Carbon Dioxide	6204.353072	6394.430286
Oxygen	1120.994491	447.5009806
Water	0	598.524032
Acetic Acid	6935.676053	5186.472145
Ethylene	7979.350424	7114.962436
Sum	22496.08391	22496.08391

Chapter 6

Energy Balance
For Gas Stream:

The correlation for heat capacity of gas is a series expansion in temperature.

$$Cp = a + bT + cT^{2} + dT^{3} + eT^{4}$$

(Chemical Properties Handbook, Carl L. Yaws)

Here a, b, c, d, e is regression coefficients for chemical compound

Components	Heat capacity coefficients for Gases				
	a	b	c	D	e
Acetic acid	34.85	0.037626	0.00028311	-3.067E-07	9.2646E-11
Water	33.93 3	- 0.0084186	0.000029906	-1.7825E- 08	3.6934E-12
Oxygen	29.52 6	- 0.00889999	0.000038083	-3.2629E- 08	8.8607E-12
VAM	27.66 4	0.23366	0.000062106	-1.6972E- 07	5.7917E-11
Ethylene	32.08 3	-0.014831	0.00024774	-2.3766E- 07	6.8724E-11
Carbon Dioxide	27.43 7	0.042315	- 0.000019555	3.9968E-09	-2.9872E- 13

Table 12: Heat capacity coefficients for Gases

6.1. Multi Tubular Reactor Reactions:

Primary reaction:

$$C_{2}H_{4} + CH_{3}COOH + 0.5O_{2} \xrightarrow{\text{Pd}} C_{2}H_{3}OOCCH_{3} + H_{2}O$$

Secondary reaction:

 $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$

Inlet Side:

A series expansion in temperature serves as the correlation for the heat capacity of gases.

$$Cp = a + bT + cT^2 + dT^3 + eT^4$$

Inlet Temperature = 147.4 C

Components	m	Ср	ΔΤ	Q
	(kmol/hr.)	(J/mole)	(T2-T1)	(kJ/hr.)
VAM	0	27,699	11.5	0
Carbon Dioxide	141.0080244	33	11.5	53513
Oxygen	35.03107784	29	11.5	11683
Water	0	33	11.5	0
Acetic Acid	115.4983523	46	11.5	61099
Ethylene	284.4688208	35	11.5	114499
Sum	576.0062753			240,793

 Table 13: Energy Balance across reactor Inlet Side

Outlet Side:

The correlation for heat capacity of gas is a series expansion in temperature.

$$\mathbf{C}\mathbf{p} = \mathbf{a} + \mathbf{b}\mathbf{T} + \mathbf{c}\mathbf{T}^2 + \mathbf{d}\mathbf{T}^3 + \mathbf{e}\mathbf{T}^4$$

Outlet Temperature = 158.9 C

Table 14: Energy	Balance across 1	reactor Outlet Side
------------------	------------------	---------------------

Components	m	Ср	ΔΤ	Q
	(kmol/hr.)	(J/mole)	(T 2- T 1)	(kJ/hr.)
VAM	29.09449706	27,702	11.5	0
Carbon Dioxide	145.327961	34	11.5	53513
Oxygen	13.98440564	29	11.5	11683

Water	33.25133511	33	11.5	0
Acetic Acid	86.36922806	47	11.5	61099
Ethylene	253.6528498	35	11.5	114499
Sum	561.6802767			240,793

Average Specific Heat

Inlet	Outlet
KJ/kmol. K	KJ/kmol. K
53.45	54.7

 $\boldsymbol{Q}=ncp\Delta T$

For Inlet

$$\begin{split} Q_{in} &= n_{in}\,Cp_{in}\,\Delta T_{in}\\ Q_{in} &= 581.5*53.45*125\\ \textbf{Q_{in}} &= \textbf{3885146.875}~(\textbf{J/hr.}) \end{split}$$

For Outlet

$$\label{eq:Qout} \begin{split} Qout &= n_{out}\,Cp_{out}\,\Delta T_{out} \\ Qout &= 566.9625*54.7*125 \\ \textbf{Qout} &= \textbf{3876606.094}~(\textbf{J/hr.}) \end{split}$$

Q In = Q Out

Change in Enthalpy ∆H

ΔHr1 at 25⁰ C= **-5123015 kJ/hr.**

 Δ Hr2 at 25⁰ C = -2820430 kJ/hr.

 Δ Hr1 at 148⁰C = (nCp Δ T) reactants + Δ Hr1 at 25°C + (nCp Δ T) products

= -5151598 kJ/hr.

 Δ Hr2 at 148°C = (nCp Δ T) reactants + Δ Hr2 at 25°C + (nCp Δ T) products

 Δ Hr. = -5151598 - 2731842

= -7883440 KJ/hr.

 $\mathbf{Q} = \mathbf{Qin} - \mathbf{Qout} + \Delta \mathbf{Hr}.$

= 3885146 - 3876606 - 7883440

= -7874900 KJ/hr.

= -2187.47 KW

For water flow rate

 $Q = nCp\Delta T$

$$m = \frac{Q}{Cp\Delta T}$$

m= 0.65 kmol/ sec = 11.7 kg/ $\,$

sec

= 4.212 ton/hr.

6.2. Heat Exchanger:

Stream	Cp avg (J/kg °C)	m(kg/hr.)
Hot side Stream(gas)	1177.600	22399.11
Cold side Stream(gas)	1629.58	13627.21

Heat released from Hot stream:

 $Qh = mCp\Delta T$

 $Q_h = 22402.8319 * 1177.600 *{\text{-}}50$

 $Q_h = -1321059.7026 \text{ kJ/hr}.$

 $Q_h = -366961.0285 \ W$

Heat absorbed by cold stream:

 $Qc = mCp\Delta T$

 $Q_C = 13629.538998 * 1.3415 * 58.6$

 $Q_C = 1321059.7026 \text{ kJ/hr}.$

 $Q_C = 366961.0285 \text{ W}$

Heat absorbed = Heat released

1321059.7026 kJ/hr.= -1321059.7026 kJ/hr.

6.3. Flash Separator /Column:

For Gaseous Phase

Q = 13948.08* 36.7554592 *9.5 = 4870338.967 kJ/hr. = 1352.871935KW

For Liquid Phase

Q = 8553.27* 3.777764072 * 9.5 = **306961.0368 kJ/hr. = 85.266955KW**

Table 15: Energy Balance Across Heat Exchangers

HEAT FLOWS				
Feed Vapor Liquid				
5194630.572 KJ/hr.	4870338.967 KJ/hr.	306961.0368 KJ/hr.		
1442.952937 KW	1352.871935 KW	85.266955 KW		

6.4. Absorber

Heat Flow of Feed

Temperature	308.5 K
Pressure	4.81 bar
Feed Flow Rate	13942.8072 Kg/hr.
Qin = mCp∆T	165835.5 kJ / kgmole

Heat Flow of Dilute VAM

Temperature	308.5 K
Pressure	4.81 bar
Feed Flow Rate	6151.61 Kg/hr.
$Qin = mCp\Delta T$	71991.69 kJ / kgmole

Heat Flow of Top Gases

Temperature	308.5 K
Pressure	4.81 bar
Feed Flow Rate	13627.61 Kg/hr.
Qin = mCp∆T	117338.9 kJ / kgmole

Overall Heat Flow

Qout = Qtop + Qbottom

71991.69 + 117338.9 = 189330.59KJ/hr.

 $Q = Qout - Qin + \Delta Hr.$

= 189330.59 - 13942.8072 - 316000

Q = -140612.2172 kJ / hr.

Mass flow rate of Absorbent (Acetic Acid)

 $m = Q / (Cpavg \Delta T) = 23.53 \text{ kg} / \text{hr.}$

6.5. Distillation Column:

Feed Stream:

$$Cp = a + bT + cT^2 + dT^3 + eT^4 = J/kgmole$$

Cp Avg = 169.5829 kJ/kmol. K

m=F=261.355 kgmole/hr.

$$\Delta H_F = mCp\Delta T$$

$$\Delta H_F = 421052.3561 \text{ kJ/hr.} = 116.958 \text{ kW}$$

Enthalpy of Liquid in distillate:

 $Cp = a + bT + cT^2 + dT^3 + eT^4 = J/kgmole$

Cp Avg = 197.931 kJ/ kgmole. K

m = D = 77.057 kgmole/hr.

 $\Delta H_d = mCp\Delta T$

 $\Delta H_d = 762606.93 \text{ kJ/hr.} = 211.835 \text{ kW}$

R = 0.879

L = RD = 67.73897 kgmole/hr.

V = L + D = 144.79673 kgmole/hr.

Enthalpy of Vapors at top:

 $Cp = a + bT + cT^2 + dT^3 + eT^4 = J/kgmole$

Cp Avg = 197.931 kJ/ kgmole. K

The following formula converts the latent heat of vaporization at the boiling point of the constituents for stream conditions:

$$(\Lambda_2/\Lambda_1) = (Tr_1/Tr_2) ^0.38$$

 Tr_1 = Reduced Bubble point of feed stream

 Tr_2 = Reduced Dew point of Top stream

Component	LHV kJ/mol	J/Kmol
Water	40.65	40650

Acetic Acid	39.82	39820
VAM	31.4	31400

 λ = 29877.97 kJ/kgmole. K T_f = 338 K T_r = 298 K m= V = 144.796 kgmole/hr. Δ HV= m Cp Δ T + m λ

 $\Delta HV = 5759221.677 \text{ kJ/hr.} = 1599.784 \text{ kW}$

Enthalpy of liquid refluxed back at top:

 $\lambda_{avg} = 317.4 \text{ kJ/ kgmole. K}$

 $T_{f\,=}\,338~K$

 $T_r=298 \text{ K}$

m=L=67.738 kgmole/hr.

 $\Delta H_L = mCp\Delta T$

 $\Delta HL = 870986.5 \text{ kJ/hr.} = 241.94 \text{ kW}$

Calculation of Heat Duties:

Condenser Duty:

The energy balance before and after the condenser, which can be expressed as follows, can be used to calculate the condenser duty.

Heat Leaving = Heat Entering

Enthalpy of vapors entering the condenser equals the sum of the heat removed, the distillate's enthalpy, and the reflux stream's enthalpy.

Q = 1146.008 kW

Water flow rate:

Cp= 4.18 kJ / kg. K $\Delta T = 348 - 298 = 50K$ Q= mCp ΔT m = Q/Cp ΔT m = 19739.848 Kg/hr. M= 5.483 kg/sec

Reboiler Duty:

A distillation column's reboilers heat output can be determined using an energy balance. The feed, distillate, bottom stream, and reboiler make up the system under study. The amount of heat entering and leaving the system is equal. The heat generated by the feed's vaporization is the heat that enters the system. The amount of heat needed to vaporize a liquid is known as the heat of vaporization. Condensation of the distillate and bottom stream vaporization generate the heat that leaves the system.

The amount of heat emitted when a vapor condenses to a liquid is known as the heat of condensation. According to the energy balance,

(Heat entering the system = Heat leaving the system) = 1932.8522 kW

<u>Qin = Qout</u>

Chapter 7

Equipment Design

Reactor:

The reactor is the core of the chemical plant. It is the most common unit process equipment in the industry. Reactors are vessels that are intended to contain the chemical reactions involved. The significance of reactors stems from their ability to facilitate chemical reactions in a controlled and efficient manner, which is essential to produce high-quality products. A critical aspect of a reactor is reactor design, which must consider factors such as heat and mass transfer, and reaction kinetics to guarantee that the reaction occurs efficiently and safely.

7.1.1. Types of Reactors:

- Slurry Reactor
- Segregated Tank Reactor
- Metal Gauze Reactors
- External Recycle Reactor

- Monolith Reactors
- Berty Reactors
- Carberry (Spinning Basket) Reactor
- Counter Diffusive Reactor

Reactor Type	Advantages	Disadvantages	Area of
			Application
	 Suitable for small 	■ Not designed	 Micro-
	scale production.	for large scale	Chemical
	■ Suitable for long	production	Industry
Batch Reactor	time reactions.	 Closed system 	·
	■ Suitable for high	-	
	selectivity.		
Continuous	■ High flexibility;	■ Complex and	Chemical
Stirred Tank	increased	expensive as	reactions
Reactor	concentration	compared to	involving gas
(CSTR)	gradient.	tubular	and liquids.
	■ Between	reactor.	
	reactions, during	■ Assumed that	
	the process,	mixing is	
	byproducts can	perfect	
	be eliminated.		
Tubular	 Reactants can be 	■ Not cost	Chemical
Reactor (PFR)	submerged under	effective for	production at
	several	small scale	cryogenic and
	circumstances.	production	hyperthermic
	■ When compared		temperatures.
	to CSTR, it is		
	more efficient		
	and multitubular.		

 Table 16: Choice of Reactors

It is not possible to assume perfect mixing because both reactions are catalytic. Also, the production size is too large for a batch reactor. As a result, the production will use a multi-tubular catalytic reactor, which is less complex and more economically feasible for VAM plants.

7.1.2. Design Steps:

- 1. Identify the desired flow rates and operating conditions
- 2. Choose and appropriate catalyst and particle size.
- 3. Choose the appropriate configuration for the reactor.
- 4. Evaluate the reaction rate through the analysis of experimental data.
- 5. Determine the catalyst's weight using the design equation for a Packed Bed Reactor.
- 6. Determine the volume occupied by the catalyst.
- 7. Determine the number of tubes required.
- 8. Determine the tube's diameter and length using the L/D ratio.
- 9. Determine the dimensions and quantity of the tubes.
- 10. Determine the volume of the shell surrounding the reactor.
- 11. Determine the reactor's diameter and length using the L/G ration
- 12. Assess the pressure drop within the system.
- 13. Choose a suitable construction material.
- 14. Develop an initial mechanical design for the reactor.

7.1.3. Reaction Equation:

Primary Reaction:

 $C_{2}H_{4} + CH_{3}COOH + 0.5O_{2} \xrightarrow{Pd} C_{2}H_{3}OOCCH_{3} + H_{2}O$

Secondary Reaction:

 $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$

For the production of vinyl acetate, gas-phase processes are favored because they result in a better yield and are less likely to corrode. Because it reduces yield and makes it more challenging to remove reaction heat, the combustion of ethylene to carbon dioxide is a highly unfavorable secondary reaction.

The amount of heat released or absorbed when one mole of substance reacts under typical circumstances is known as the standard heat of reaction. In this instance, the conventional heats of reaction for ethylene combustion and vinyl acetate combustion are **-1322.8 Kcal/KJ per mol** and **-176.2 Kcal/KJ per mol**, respectively. When these

two reactions are allowed to occur simultaneously the heat released from combustion of vinyl acetate is added to the heat released from combustion of ethylene. This results in an overall heat release of **250 KJ/KJ per mol [14]**.

Catalysts:

Catalysts play a vital role in technology, and their composition has evolved over time. In the past, catalysts were primarily composed of 1 to 5 wt.% palladium impregnated on silica, with alkali metal acetates used as activators. However, in modern catalysts, noble metals, particularly gold, are often utilized as enhancers. A typical example of a catalyst following the Bayer-type approach consists of 0.15 to 1.5 wt.% palladium and 0.2 to 1.5 wt.% gold, with a bulk content of 4 to 10 wt.%. The average lifespan of such catalysts ranges from 1 to 2 years.

7.1.4. Kinetics of Reaction:

In more recent studies the formation of vinyl acetate can be described conveniently by a power law kinetics involving only ethylene and oxygen:

For the Primary Reaction:

$$r_{VA} = k_1 p_{C2H4}^{\alpha 1} p_{o2}^{\beta 1}$$

where the partial pressures of ethylene and oxygen are directly proportional to the rate of vinyl acetate production (rVA). The reaction constant is $K2 = A_2e^{-E2/RT}$.

 α_1 and β_1 are partial reaction orders derived empirically, while A₂ is a pre-exponential factor. P_{C2H4} is the partial pressure of ethylene and P_{O2} is the partial pressure of oxygen.

For Secondary Reaction:

$$r_{CO2} = k_2 p_{C2H4}^{\alpha 1} p_{O2}^{\beta 1}$$

where r_{CO2} is the rate of formation of vinyl acetate is directly proportional to the partial pressure of ethylene and the partial pressure of oxygen. K2 = $A_2e^{-E2/RT}$ is the reaction constant. P_{C2H4} is partial pressure of ethylene and P_{O2} is the partial pressure of oxygen; α_2 and β_2 are partial reaction orders derived experimentally, A2 is a pre-exponential factor.

 Table 17: Reaction Parameters [15]

Reactions	Α	В	E (J/mol)	A (mol kg cat ⁻¹ s ⁻
1	0.36	0.20	15000	0.000265
2	-0.31	0.82	21000	0.000750

7.1.5. Design Equations:

$$\frac{W}{FA0} = \int_0^{XAout} \frac{dXA}{-rA}$$

For 1st Reaction:

R = 8.314 KJ/kmol. K

T = 423.15K

P = 7 bar, 70000 Pa

$$K_1 = A_1 e^{-(E1/RT)}$$

$$K_{1} = 0.000265 \exp\left(-\frac{15000}{RT}\right)$$
$$K_{1} = 0.000265 \exp\left(-\frac{15000}{(8.314)(423.15)}\right)$$
$$K_{1} = 3.728*10^{-6} \frac{kmol}{kg.cat.s}$$

Now,

$$r_{VA} = k_1 p_{C2H4}^{\alpha 1} p_{o2}^{\beta 1}$$

whereas, from the design equation

Generate data curve between X_A and $1/-r_A$ up to $X_A = 0.2$. These values have been taken from the book. (Chemical-process-design-alexandre)

Figure 6: Rate of reaction for primary reaction

While $r_{vA} = 3.728 \times 10^{-6} (0.4515 \times 7)^{0.36} (0.02489 \times 7)^{0.20}$

 $r_{\rm VA}=3.97*10^{-6}\frac{\rm kmol\ bar}{\rm kg.cat.s}$

Now by solving these values through Simpson 1/3rd rule for numerical integration we get:

$$\int_0^{0.2} \frac{dXA}{-rA} = \frac{0.05}{3} ((f(0) + f(0.2) + 4(f(0.05) + f(0.15) + 2(f(0.1) + f(0.2))))$$

$$\int_0^{0.2} \frac{dXA}{-rA} = 61.82 \frac{kg.\,cat.\,s}{mol}$$

so,

$$\mathbf{F}_{\mathbf{A0}} = \frac{1000}{61.82} \, \frac{mol}{s}$$

 $F_{A0} = 162.52 \text{ mol/s}$

Now from design equation,

$$W = \int_0^{0.2} \frac{dXA}{-rA} * F_{A0}$$
$$W = 61.82 * 162.52$$
$$W_2 = 10046.98 \text{ Kg}$$

For Volume of Catalyst,

Volume of catalyst
$$=$$
 $\frac{\text{Weight of catalyst}}{\text{Density of catalyst}}$

Whereas, Density = 1000kg/m^3

Volume = 10046.98/1000

Volume = $V_1 = 10.046 \text{ m}^3$

For 2nd Reaction:

R = 8.314 KJ/kmol. K

T = 423.15K

P = 7 bar, 70000 Pa

 $\mathbf{K}_{2} = \mathbf{A}_{2} \mathbf{e}^{-(\mathbf{E}_{1}/\mathbf{R}_{T})}$

$$K_{2} = 0.00075 \exp \left(-\frac{21000}{RT}\right)$$
$$K_{2} = 0.00075 \exp \left(-\frac{21000}{(8.314)(423.15)}\right)$$
$$K_{2} = 1.917*10^{-6} \frac{kmol}{kg.cat.s}$$

Now,

$$r_{cO2} = k_2 p_{C2H4}^{\alpha 1} p_{o2}^{\beta 1}$$

whereas, from the design equation

Generate data curve between X_A and $1/-r_A$ up to $X_A = 0.03$. These values have been taken from the book. (Chemical-process-design-alexandre)

Figure 7: Rate of reaction of secondary reaction

While
$$r_{CO2} = 1.917*10^{-6} \frac{kmol}{kg.cat.s} (0.4515*7)^{-0.31} (0.02489*7)^{0.82}$$

 $r_{\rm CO2}=3.20^{*}10^{-7}\frac{\rm kmol\ bar}{\rm kg.cat.s}$

Now by solving these values through Simpson 1/3rd rule for numerical integration we get:

$$\int_{0}^{0.03} \frac{dXA}{-rA} = \frac{0.05}{3} ((f(0) + f(0.03) + 4(f(0.005) + f(0.015) + f(0.025) + 2(f(0.01) + f(0.02) + f(0.03)))$$

$$\int_0^{0.03} \frac{dXA}{-rA} = 110.776 \frac{cat.s}{mol}$$

So, from here we get,

 $F_{A0} = 2.22 \text{ mol/s}$

$$\mathbf{W} = \int_0^{0.03} \frac{dXA}{-rA} * \mathbf{F}_{A0}$$

W = 110.776 * 2.22

 $W_2 = 245.8 \text{ Kg}$

For Volume of Catalyst,

Volume of catalyst = $\frac{\text{Weight of catalyst}}{\text{Density of catalyst}}$

Whereas, Density = 1000kg/m^3

Volume = 245.8/1000

Volume = $V_2 = 0.2458 \text{ m}^3$

Total Volume = $V_1 + V_2$

Total Volume of catalyst = V= 10.2918 m³

Void Volume = 0.55

Assuming,

L/D = 3

Whereas,

Volume = $\pi D^2/4$

Then by solving L/D with volume we get,

Diameter of Catalyst = 1.9811

Length of Catalyst = 5.9434

7.1.6. Shell and Tube Configuration:

All of this data of shell and tube configuration have been taken from the book (Chemical-process-design-alexandre) Chapter 10.

Outer Diameter = OD = 2 inch = 0.0508 m

Inner Diameter ID =1.76 inch = 0.0447m

Birmingham Wire Gauge = BWG = 11

Inner cross-sectional area of 1 tube:

Inner cross sectional flow area per tube= 2.433 inch² = 0.00157 m²

Length of 1 tube = L = 13 ft = 4.0 m

Volume of 1 tube = cross sectional area per tube * Length of 1 tube

Volume of 1 tube = (0.00157 * 4.0)

Volume of 1 tube = 0.00628 m^3

No of tubes = $\frac{\text{Volume of reactor}}{\text{Volume of 1 tube}}$

No. of tubes = $\frac{\text{(volume of catalyst/void volume)}}{0.00956}$

No. of tubes = $\frac{(10.2918/0.55)}{0.00628}$

No. of tubes = 2500

Triangular pitch = 1.25 * OD

Triangular pitch = 1.25*0.0508

Triangular Pitch = $P_t = 0.0635m$

Diameter of bundle in mm = Db = do $\left(\frac{n}{k_1}\right)^{(1/n_1)}$

Whereas,

Do = outer diameter

N = No. of tubes

So,

For Triangular pitch;

K1 = 0.319

N1 = 2.142

So,

Db = 2954.33 mm

From figure 12.10 of book (RK SINNOT)

Clearance = 127 mm

Inside diameter of shell = D_b + Clearance

Inside diameter of shell = 2954.33 + 127 = 3081.22 mm/1000 = 3.081 m

For 20 percent extra space

Inside diameter of shell =3.081m

Thickness t = 17.7mm

Shell outside Diameter = 3.1105m

Length of shell= 3D = 3*3.1105 = 9.3315m

Now, calculating

Original diameter of reactor = 3.3015 m

Original length of reactor = 3D = 9.9044 m

Diameter and Area of Shell:

The diameter of the shell (total bundle of tubes diameter) can be calculated by the formula:

$$D_{b} = D_{o} \frac{(Number \ of \ Tubes)^{\frac{1}{n}}}{K_{1}}$$

Where,

K1 and n are constant values obtained from the choice of pitch:

Triangular pitch is selected as it gives a compact arrangement, resulting in smaller shell.

 $Pt = 1.25D_0$

 $Pt = 1.25 \times 0.0025 = 0.003125 \ m$

For 1 shell pass, 1 tube pass: K1 = 0.319 and n = 2.142

$$D_{b} = 0.0025 \frac{(1920)^{\frac{1}{2.142}}}{0.319}$$

 $D_{b} = 0.2673m$

Clearance = 25% of $D_0 = 0.000625$ m

Shell diameter:

Shell diameter $= D_b + Clearance$

Shell diameter = 0.2673 + 0.000625

Shell diameter
$$= 0.2679$$
 m

Area of Shell:

Area of Shell
$$=$$
 $\frac{\pi (D \text{ of Shell})^2}{4}$
Area of Shell $=$ $\frac{\pi (3.1105)^2}{4}$

Area of Shell
$$= 7.59 \text{m}^2$$

Outer area of tubes:

Area of tubes
$$= \frac{\pi \times Nt \times (Dt)^2}{4}$$
Area of tubes
$$= \frac{\pi \times 1920 \times (0.0025)^2}{4}$$
Area of tubes
$$= 0.00942 \text{ m}^2$$

Area of shell is greater than area of tubes, so the design is satisfactory.

Aspect ratio
$$- L/D$$
 ratio $= \frac{9.3315}{3.1105}$

L/D ratio = 3

The L/D ratio is not extremely high hence capital cost is reduced as well. For tubular reactors, the aspect ratio is around 8.

Residence Time:

Residence Time $= \frac{volume \ of \ reactor}{volume \ tric \ flow \ rate}$

$$\tau = \frac{V}{v_o}$$
$$\tau = \frac{10.2918}{2109.133}$$

Residence Time = 0.00487 hr. = 17.56 sec

7.1.7. Mechanical Design of Reactor:

For cylindrical shell, minimum wall thickness;

$$T(m) = \frac{Pri}{SEj - 0.6P} + CC$$

Whereas,

Pressure = 7 bar

Joint Efficiency = Ej = 1

Maximum Allowable stress = S = 94500 KPa

Corrosion Allowance = Cc = 0 (Assume)

Radius of Shell = ri = 3.1105/2 = 1.555m

Now calculating,

$$T = \frac{7*1.555}{94500*1 - 0.6*7} + 0 = 0.0011519m = 11.51 mm$$

7.1.8. Pressure Drop in Tube Side:

$$\frac{\Delta p}{L} = \frac{150\mu(1-\varepsilon)^2\mu 0}{\varepsilon^3 (Particle\ diameter)^2} + \frac{1.75(1-\varepsilon)\ \rho\mu 0}{\varepsilon^3 (Particle\ diameter)^2}$$

Whereas,

 ε = Void Fraction = 0.45

L = Length of bed = 5.9434m

 ρ = Density (Assume) = 10kg/m³

 μ = Viscosity = 8.3637 pa.s

 μ 0= Super facial velocity = 0.1945 m/sec

Particle diameter = 5 mm

So, by calculation we get,

$$\Delta p = \frac{150 * 8.3637 * (1 - 0.45)^2 * 0.1945}{(0.45)^3 * (5)^2} + \frac{1.75 * (1 - 0.45) * 10 * 0.1945}{(0.45)^3 * (5)^2} + \frac{1.75 * (1 - 0.45) * 10 * 0.1945}{(0.45)^3 * (5)^2}$$

 $\Delta p = 1929614$ Pa = 1929.614 KPa = 1.9 Bar

7.1.9. Specification Sheet:

Identification				
Item	Reactor			
No. Required	1			
Туре	Packed Bed Multi Tubular Reactor			
Operating Temperature	423.15			
Pressure	7 Bar			
Time of Contact	17.23 sec			
Reactor Volume	85.05 m ³			
Reactor Diameter	3.301			
Reactor Length	9.904			
Outside diameter of tube	0.0508 m			
Length of 1 tube	4.0 m			
Volume of 1 tube	0.00628 m ³			
Total Tubes	2500			
Pressure Drop	1929 KPa			

Table 18: Specification sheet of reactor

7.1. Heat Exchanger:

- A heat exchanger (HX) is a device that transfers thermal energy between two fluids. It is a common component in many industrial and commercial applications, including boilers, coolers, cooling water heat exchangers, evaporators, and condensers.
- Two fluids with varying temperatures that are separated from one another by a conducting medium make up the basic building blocks of a heat exchanger. The most common design uses two fluids, one of which circulates inside the tubes and the other surrounds them. The heat is transferred from the heated fluid to the cool fluid through a combination of conduction and convection.
- The surface area of the heat transfer surface, the temperature differential between the fluids, and the kind of conducting media are only a few variables that affect how efficient a heat exchanger is. Heat exchangers are a crucial part of numerous industrial processes and are crucial for energy efficiency and conservation.

7.2.1. Classification Of Heat Exchangers:

7.2.2. Selection of Heat Exchanger:

Туре	Significant feature	Applications that work best	Limitations	Comparative cost in carbon steel construction, approximation
Fixed tube sheet	The tube sheets are rigidly attached to the shell.	Condensers, liquid-liquid, gas-gas, gas- liquid, cooling and heating, horizontal or vertical reboiling	Temperature difference at extremes of about 200 °F. Due to differential expansion.	1.0
Floating head or tube sheet (removable and non- removable bundles)	Floating tube sheets allow tubes to expand and contract freely preventing stress and making the bundle removeable.	Extreme Temp. differences above 200 °F filthy fluids required cleaning on both inside or outside whether horizontally or vertically.	Internal gaskets present at leakage risk fluid ability to control floating portion on the shell.	1.28
U-tube; U-Bundle	There is only one tube sheet required in the form of U shaped curved. Bundle can be eliminated	High temp. differences which may necessitates adding expansion capacities to fixed tube system	Bends must be done carefully to prevent mechanical damage and the risk of rupture. Inside of bends may erode due to tube side velocities.	0.9-1.1
Double pipe	In a shell and tube heat exchanger, each tube is	In banks for larger applications, or in relatively	Finned tubes are suitable for high heat transfer	0.8-1.4

Table 19: Selection of Heat Exchanger

	surrounded by its own shell. The shell-side fluid flows through the annular space, transferring heat to the finned tube	small transfer areas. particularly well suited for high tube pressures (higher than 400 psig).	applications. However, they are costly and space- consuming.	
Pipe coil	A pipe coil submerged in water is the simplest type of heat exchanger. It is simple, inexpensive, and versatile, but not very efficient or suitable for high-heat applications.	Low heat burdens on sensible transfer, or condensation.	A low transfer coefficient requires a large heat exchanger for a high heat load.	0.5-0.7
Plate and frame	Thin metal plate heat exchangers are compact and easy to clean.	Fluids with high heat transfer, slurries, and viscosity.	The maximum temperature for plate heat exchangers is between 350 and 500°F, which makes them unsuitable for boiling or condensing. They cannot be utilized for gas-gas applications; only liquid- liquid applications	0.8-1.5

Shell and Tube Heat Exchanger:

The effective, dependable, and adaptable method of transferring heat between two fluids is the shell and tube heat exchanger. They are the most prevalent type of heat exchanger used in industry and have a wide range of uses, including food processing, chemical processing, and the production of electricity.

A shell, a bundle of tubes, and a tube sheet make up a shell and tube heat exchanger. The tubes are kept in the shell, which is a sizable cylindrical container. The hot fluid is poured into the tubes, and the cool fluid is poured into the shell. Through the tube walls, heat is transmitted from the hot fluid to the cool fluid.

Because they may be used to transfer heat between a wide range of fluids and function at a wide range of temperatures and pressures, shell and tube heat exchangers are widely employed. Additionally, they are comparatively simple to maintain and fix.

Figure 8: Shell and Tube HX

7.2.3. Types of the shell and tube heat exchangers:

Heat exchangers have been developed with different approaches to these four fundamental design factors. Three principal types of heat exchangers

- U-tube exchangers
- Fixed tube-sheet exchangers
- Floating head exchangers

U-Tube Exchangers:

U-shaped tubes are used in U-tube heat exchangers, a form of heat exchanger, to transfer heat between two fluids. They are utilized in many different applications, including as power production, chemical processing, and food processing. They are small and effective.

U-shaped tubes are used in U-tube heat exchangers to transfer heat between two fluids. They are effective and little. They are employed in a number of processes, such as food processing, chemical processing, and power generation.

Straight or Fixed tube Exchangers:

Straight tubes are used in straight-tube heat exchangers to transfer heat from one fluid to another. They are made to deal with applications involving heavy fouling fluids or temperature cross situations. It is advantageous to handle high fouling fluids with them because the head assemblies can be taken apart and the tubes may be mechanically cleaned.

Floating-head type Exchanger:

A form of shell-and-tube heat exchanger that can withstand high temperatures and pressures are floating head heat exchangers. By enabling the tube bundle to move within the shell as it expands and contracts, they are intended to prevent thermal stress and fatigue.

To satisfy the needs of our process, we have chosen a fixed tube sheet 1-2 shell and tube heat exchanger.

7.2.4. Heat Exchanger Design Algorithm

7.2.5. Selection of basic type of Heat Exchanger:

The following qualitative traits are used to select fixed tube shell and tube heat exchangers:

- TEMA and ASME offer well-established codes and standards.
- Comes in the broadest range of materials
- Several years of good service
- Thermodynamic and hydraulic properties
- Material compatibility
- Operational upkeep and cleaning
- Rules and considerations relating to SHE
- High volume and weight to heat transfer area ratios.
- The product comes in the most styles and sizes.
- Mechanical adversity

t1=312.85K

t₂=371.45K.

Figure 9: Shell and Tube HX

7.2.6. Cp Calculation:

For Gas Stream:

The correlation for heat capacity of gas is a series expansion in temperature.

$$Cp = a + bT + cT^{2} + dT^{3} + eT^{4}$$

(Chemical Properties Handbook, Carl L. Yaws)

Here a, b, c, d, e is regression coefficients for chemical compound

Components	Heat capacity coefficients for Gases						
	a	b	c	d	e		
Acetic acid	34.85	0.037626	0.00028311	-3.067E-07	9.2646E-11		
Water	33.933	-0.0084186	0.000029906	-1.7825E-08	3.6934E-12		
Oxygen	29.526	-0.00889999	0.000038083	-3.2629E-08	8.8607E-12		
VAM	27.664	0.23366	0.000062106	-1.6972E-07	5.7917E-11		
Ethylene	32.083	-0.014831	0.00024774	-2.3766E-07	6.8724E-11		
Carbon Dioxide	27.437	0.042315	-0.000019555	3.9968E-09	-2.9872E-13		

Table 20: Heat capaci	ity coefficients for	or Gases
-----------------------	----------------------	----------

TOTAL Cold side Cp at		TOTAL hot side Cp at	
average temperature	1646.0357 J/Kg. K	average temperature	1177.600774 J/Kg.
342.15 K =		407.05 K =	K

7.2.7. Viscosity Calculation:

For Gas Stream:

The correlation for viscosity of gas is a series expansion in temperature.

$$Viscosity = a + bT + cT^{2}$$

(Chemical Properties Handbook, Carl L. Yaws)

Here a, b, c, is regression coefficients for chemical compound

Table 21: Data o	of viscosity
------------------	--------------

Components	a	b	c	Viscosity COLD	Viscosity HOT
Carbon	11.811	0.49838	-0.00010851	167.2290386	200.3791782
Dioxide					
Ethylene	-3.985	0.38726	-0.00011227	113.6154053	137.7008552
Acetic Acid	-28.66	0.2351	0.00022087	75.46075706	107.3854225
VAM	-7.462	0.30466	0.000057544	101.5719266	129.2525214
Water	-36.826	0.429	-0.0000162	105.6981376	138.8552688
Oxygen	44.224	0.562	-0.000113	220.5417558	258.4840709

TOTAL Cold side Viscosity at average temperature 342.15 K = 1.13615E-05 kg/ms TOTAL hot side Viscosity at average temperature 407.05 K =

9.72057E-05 kg/ms

7.2.8. Thermal Conductivity Calculation:

For Gas Stream:

The correlation for thermal conductivity of gas is a series expansion in temperature.

Thermal Conductivity = $a + bT + cT^2$

(Chemical Properties Handbook, Carl L. Yaws)

Here a, b, c, is regression coefficients for chemical compound

				Thermal	Thermal
				Conductivity	Conductivity
Components	а	b	С	COLD	HOT
Carbon					
Dioxide	-0.012	0.00010208	-2.2403E-08		0.026592478
Ethylene	-0.00123	0.000036219	1.2459E-07	0.0250653	0.035405145
Acetic Acid	0.00234	-6.5956E-06	1.2439E-07		0.021127511
VAM	-0.00846	0.000058704	1.7678E-08		0.019023819
Water	0.00053	0.000047093	4.9551E-08		0.028700202
Oxygen	0.00121	0.000086157	-1.3346E-08		0.034745459

Table 22: Data of Thermal Conductivity

TOTAL Cold side Thermal
conductivity at average
temperature 342.15 K =

TOTAL hot side Thermal conductivity at average temperature 407.05 K =

0.165594615 W/mK

7.2.9. Thermal Rating:

The design calculations or thermal rating of a shell and tube exchanger comprises of the following steps.

0.0250653 W/mK

Inlet temperature of the Cold stream	$= t_1 = 312.85K$
Outlet temperature of the Cold stream	$= t_2 = 371.45K.$
Inlet temperature of hot stream	$= T_1 = 432.05 K$
Outlet temperature of hot stream	$= T_2 = 382.05K$
Mass flow rate of hot stream	$= m_h = 6.2489 \text{ Kg/s}$

Specific heat capacity of the hot stream	= Cp _{avg} =1177.600 J/Kg. K
Specific heat capacity of the cold stream	= Cp _{avg} = 1629.58 J/Kg. K
Mass flow rate of the cold stream	$= m_c = ?$
Viscosity of the Cold stream	$= \mu_{avg} = 0.0000113615 \text{ Kg/ms}$
Viscosity of the Hot stream	$= \mu_{avg} = 0.0000972 \text{ Kg/ms}$
Thermal Conductivity of the Cold stream	$= k_{avg} = 0.0250653 \text{ w/m. K}$
Thermal Conductivity of the Hot stream	$= k_{avg} = 0.165594$ w/m. K

Heat load Calculations:

$$Q = mC_p \Delta T$$

 $Q = 6.2489 * 1177.600 * (432.05 - 382.05)$
 $Q = 366961.0285 Watt$

Mass flow rate of utility stream:

 $Q = mC_p \Delta T$ $m = \frac{366961.0285}{1629.58 * (371.45 - 312.85)}$ m = 3.844074 Kg/s

LMTD:

$$\Delta T_{\rm m} = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln \frac{(T_1 - t_2)}{(T_2 - t_1)}}$$
$$\Delta T_m = \frac{(432.05 - 371.45) - (382.45 - 312.85)}{\ln \frac{(432.05 - 371.45)}{(382.45 - 312.85)}}$$

$\Delta T_m = 64.9049 \text{ K}$

TMTD:

 $R = \frac{T_1 - T_2}{t_2 - t_1} = 0.853242 \qquad \qquad S = \frac{t_2 - t_1}{T_1 - t_1} = 0.491611$

Ft = 0.85 so, it is 1 shell pass and 2 or more tube pass

$$TMTD = LMTD * Ft$$
TMTD = 55.0841 K

Assumed calculations:

Value of U_D assumed

 $U_D = 425.8698 \text{ W/m}^2.\text{K}$

Now, Assume 3/4 inch OD of tube, 16ft length and 16 BWG

Heat transfer area:

$$A = \frac{Q}{U_D \Delta t}$$
$$A = \frac{366961.0285}{425.8698 * 64.9049}$$
$$A = 15.64286 \text{ m}^2$$

Tube length = 16ft = 4.876562 m

Tube OD = 0.75inch = 0.019045 m

Tube ID = 0.62inch = 0.015744 m

Shell ID = 10 inch = 0.253936 m

Flow area per tube Sq inch at 16 BWG = af = $0.302in^2 = 0.000195 m^2$

External area of tube = a = 0.1963ft = 0.05983m

Number of tube pass = n = 2

Pitch = 1inch = 0.0253936m

Number of Tubes

$$\mathbf{N} = \frac{\mathbf{A}}{\mathbf{aL}}$$

a = 0.1963 ft = 0.05983 m (from table at $\frac{3}{4}$ inch OD of tube)

$$N = \frac{15.64286}{0.05983 * 4.8765}$$

N = 53.61525

Now the actual number of tubes are; (from table in book)

N_{actual} = 52 tubes

Area real:

$$Areal = N * a * L$$

 $Areal = 52 * 0.05983 * 4.8765$
 $Areal = 15.17159m^2$

7.2.10. Tube Side Calculations:

Since my cold stream flow rate is lower than hot stream so cold stream will be in tube side and all cold stream related values will be used

Flow area:

$$a_t = \frac{N * a_f}{n}$$

 $a_t \!= 0.005063244 m^2$

Mass velocity:

$$G_{t} = \frac{m}{a_{t}}$$

$$G_{t} = \frac{3.8142}{0.005063244}$$

$$G_{t} = 753.3164 \frac{kg}{sec.m^{2}}$$

Reynolds No.:

$$Re = \frac{D * G_t}{\mu}$$
$$Re = 1043897$$

Prandtl Number:

$$Pr = \frac{Cp * \mu}{k}$$

Pr = 0.73840

Nusselt Number:

$$Nu = 0.023 Re^{0.8} Pr^{0.33} \frac{\mu}{\mu w}^{0.14}$$

Since, $\frac{\mu}{\mu w}^{0.14} = 1$

$$Nu = 1358.91$$

Heat Transfer coefficient:

$$hi = \frac{Nu * k}{ID \ of \ tube}$$

$$h_i = 2163.455 \text{ W/m}^2.\text{K}$$

7.2.11. Shell Side Calculations:

Tube Clearance:

$$C = P_T - OD \text{ of tube}$$

 $C = 0.0253936 - 0.019045$
 $C = 0.006348 \text{ m}$

Baffle Spacing:

$$B = IDof \ shell - (ID \ of \ shell * \frac{1}{5})$$
$$B = 0.253936 - (0.253936 * \frac{1}{5})$$

$$B = 0.2031488 m$$

Flow area:

$$a_s = \frac{Ds * C'B}{P_T}$$
$$a_s = \frac{0.253936 * 0.006348 * 0.2031488}{0.0253936}$$
$$a_s = 0.012897m^2$$

Mass velocity

$$G_s = \frac{m}{a_s}$$

 $G_s = \frac{6.2489}{0.012897}$
 $G_s = 484.5348 \frac{kg}{sec m^2}$

Equivalent Diameter:

$$D_{\rm E} = 8(0.43 \ {\rm P_T}^2 - 1/8 \ \Pi \ {\rm d}^2_{\rm o}) \ / \ \Pi \ {\rm d}_{\rm o}$$
$$De = \frac{4[0.5(P_T)0.86(P_T) - (\frac{\pi do^2}{8})}{(\frac{\pi do}{2})}$$

Reynolds No.:

$$Re = \frac{D_e G_s}{\mu}$$

Re = 89966.89

Prandtl Number:

$$Pr = \frac{Cp * \mu}{k}$$

Pr = 0.689395

Nusselt Number:

$$Nu = 0.36Re^{0.55}Pr^{0.33}\frac{\mu}{\mu w}^{0.14}$$

 $\frac{\mu}{\mu w}^{0.14} = 1 \quad \text{so,} \quad$

$$Nu = 168.9439$$

Shell side coefficient:

$$ho = \frac{Nu * k}{De}$$

$ho = 1550.112 \text{W/m}^2.\text{K}$

For coefficient correction:

$$hio = hi \frac{ID \ of \ tube}{OD \ of \ tube}$$

$$hio = 1788.456 \text{W/m}^2$$
.K

Clean overall coefficient:

$$U_C = \frac{h_{io}h_o}{h_{io} + h_o}$$
$$U_C = 830.388 \text{ W/m}^2.\text{K}$$

Design overall coefficient:

$$\frac{1}{U_D} = \frac{1}{U_C} + Rdi + Rdo$$

 $Rdi = 0.00053 m^2 K/W$ (value for light organic hydrocarbon gas)

 $Rdo = 0.00061 m^2 K/W$ (value for Solvent vapors)

$$U_D = 426.5745 \text{ W/m}^2.\text{K}$$

This value is sufficiently close to the assumed the value of 425.8698 W/m^2 .K to be acceptable.

Calculated Area:

$$\mathbf{A_{cal}} = \frac{\mathbf{Q}}{\mathbf{U_D} * \mathbf{TMTD}}$$

$$A_{cal} = 15.61702m^2$$

Hence, A_{cal} is almost equal to A_{real}

7.2.12. Pressure Drop Calculations:

Condition:

f = Friction factor can be calculated using following equation.

For laminar region (NRe < 2100)

f = 16/NRe

For turbulent region (NRe > 2100)

If NRe < 20000, f = 0.316 NRe ^(-1/4)

If NRe > 20000, f = 0.184 NRe ^(-1/5)

Tube side:

For Reynolds number = 1043897

Friction factor for tube side, f = 0.184 NRe^(-1/5) = 0.01151

Tube diameter, $D_t = 0.1934$ ft

Number of passes, n = 2

Mass Velocity, $G_t = 418492$ lb./hr. sqft

Tube length, L = 16 ft

S = 0.491611

$$\Delta P_t = \frac{f G_t^{\ 2} L n}{5.22 * 10^{10} * D_e * s}$$

$$\Delta P_t = 12.42139 \ psi$$

Shell side

Reynolds No, Re = 89966.89

Mass velocity, $G_s = 301856.832$ lb/hr. sqft

Friction factor, f = 0.184 NRe $^{(-1/5)} = 0.018793$

S = 0.491611

No. of crosses, N+1 = [(Ls/2*Bs)-1] + 1 = 12

Shell Diameter, $d_s = 10$ inch

Equivalent Diameter, $D_e = 0.891$ ft

$$\Delta P_s = \frac{f G_s^2 d_s (N+1)}{5.22 * 10^{10} * D_e * s}$$

7.2.13. Specification Sheet:

Figure	10:	Sp	ecification	of HX
--------	-----	----	-------------	-------

Shell Diameter (Ds)	10 inches
Number of Total Tubes	52
Pressure Drop (Shell side)	8.98psi
Pressure Drop (Tube side)	12.42psi
Area of Heat Exchanger	15.610m ²
Overall Heat Transfer Coefficient (UD)	425.8698 W/m2.K

7.2. Flash Separator:

A flash column or two-phase separator is a device that uses forces to separate two phases of a fluid. The forces can be centrifugal, primary, or electromotive. Flash columns and two-phase separators are used in a variety of applications, including oil and gas production, chemical processing, water treatment, and wastewater treatment

7.2.1. Classification of Separators:

Other Types:

- Spherical Separators
- Centrifugal Separators
- Venturi Separators
- Double-Barrel Horizontal Separators
- Horizontal Separator with a Water Pot
- Filter Separator
- Scrubbers
- Slug Catchers

Table 23: Types of Separators

Туре	Description	
	Vertical gas-liquid separators separate gas and liquid	
Vartical Cog Liquid Separator	mixtures. They are available in various sizes and	
vertical Gas-Liquid Separator	configurations. They are a reliable and cost-effective	
	way to separate gas and liquid mixtures	
	Vertical gas-liquid separators are used for gas-rich	
Horizontal Cas liquid	mixtures, while horizontal gas-liquid separators are	
Separator	used for liquid-rich mixtures. Vertical separators are	
	larger and more expensive, while horizontal separators	
	are smaller and less expensive.	

Selection Criteria:

- 1. The selection of either a Horizontal or Vertical flash column is typically based on the density of the liquid or vapor. However, the actual determining factor for choosing between Horizontal or Vertical flash columns is the L/D ratio.
- 2. The design steps for both vertical gas-liquid separators and horizontal gas-liquid separators are nearly identical.
- **3.** A vertical two-phase separator is utilized when the L/D ratio falls within the range of 3-5.
- **4.** If the L/D ratio does not fall within this range, the next option is to consider a Horizontal two-phase separator.
- 5. A Horizontal two-phase separator is chosen when the L/D ratio exceeds 5

7.2.2. Diagram:

7.2.3. Design Steps:

- 1. Determination of density of vapors and liquids
- 2. Determination for maximum velocity
- 3. Determination of VFR of liquids and vapors
- 4. Determination of Area
- 5. Determination of Diameter
- 6. Determination of Volume of liquid
- 7. Determination of total height
- 8. Determination of L/D ratio

7.2.4. Calculations of Density of liquid and vapors:

For liquid:

Average density of liquid phase = mass fraction of component * density of component

$$\rho_{\text{liquid}} = x_{\text{components}} * \rho_{\text{component}}$$

 $\begin{aligned} \rho_{\text{liquid}} &= (x_{\text{vam}} * \rho_{\text{vam}}) + (x_{\text{co2}} * \rho_{\text{co2}}) + (x_{\text{o2}} * \rho_{\text{o2}}) + (x_{\text{H2O}} * \rho_{\text{H2O}}) + (x_{\text{CH3COOH}} * \rho_{\text{CH3COOH}}) + (x_{\text{C2H4}} * \rho_{\text{C2H4}}) \end{aligned}$

$$\begin{split} \rho_{liquid} &= (0.2689*934) + (0.0221*1101) + (0.0002659*1141) + (0.0699*997) + \\ &\quad (0.6102*1049) + (0.02839*1.18) \end{split}$$

$\rho_{\text{liquid}} = 985.6116921 \text{ kg/m}^3$

For vapors:

$$PV = nRT$$

$$P \frac{m}{\rho} = nRT$$

$$\frac{P n M}{\rho} = nRT$$

$$\frac{P n M}{n R T} = \rho_{vap}$$

$$\rho_{vap} = \frac{P M}{R T}$$

So, firstly we need to calculate the Molar Mass of Vapor Phase;

Molar Mass of Vapors = mass fraction of component * molar mass of component

$$\begin{split} M_{m} &= (x_{vam} * M_{vam}) + (x_{co2} * M_{co2}) + (x_{o2} * M_{o2}) + (x_{H2O} * M_{H2O}) + (x_{CH3COOH} * M_{CH3COOH}) + (x_{C2H4} * M_{C2H4}) \end{split}$$

$$\begin{split} M_m &= (0.016400521 * 86.09 \text{ g/mol}) + (0.440867513 * 44.01 \text{ g/mol}) + (0.03196898 * \\ 16\text{g/mol}) + (0.000957367 * 18 \text{ g/mol}) + (0.005277229 * 60.052 \text{ g/mol}) + \\ & (0.50452839 * 28.05 \text{ g/mol}) \end{split}$$

 $M_m = 1.411920874 + 19.40257923 + 0.511503685 + 0.017232611 + 0.316908137 + 14.15202133$

$M_m = 35.81216587 \text{ g/mol}$

$$\rho_{vap} = \frac{P M}{R T}$$

$$\rho_{vap} = \frac{4.18 (bar) * 35.81(g/mol)}{8.314472e^{-5} (m^3 bar / K mol) * 308.5 (K)}$$

$$\rho_{vap} = \frac{172.2461 g}{0.02565 m3}$$

$$\rho_{vap} = 6715.2475 g/mol$$

$$\rho_{vap} = \frac{172.2461 g/m3}{1000}$$

 $\rho_{vap} = 6.71524 \text{ kg/m}^3$

7.2.5. Calculations for K_V:

There are two methods to find out the value of Kv.

By Equation
 By Chart

$$F_{LV} = \frac{mass flow rate of liquid}{mass flow rate of vapor} * \sqrt{\frac{density of vapor}{density of liquid}}$$
$$F_{LV} = \frac{8553.27663}{13942.80728} * \sqrt{\frac{6.71524}{985.6116921}}$$
$$F_{LV} = 0.050$$

$$K_V = e^{A+B \ln (Flv)+C \ln (Flv)^2+D \ln (Flv)^3+E \ln (Flv)^4}$$

 $K_V = e^{-1.877478 + (-0.814580)(-3) + (-0.187074)(-3)^2 + (-0.014523)(-3)^3 + (-0.001015)(-3)^4}$

 $K_V = 0.44$

From Appendix Chart:

At $F_{LV} = 0.050$ the value of $K_V = 0.42$ which is approximately equal to above value which we find out from equation;

7.2.6. Calculations for maximum velocity

$$V_{max} = (K_V) \sqrt{\frac{\rho_{1iq} - \rho_{gas}}{\rho_{gas}}}$$
$$V_{max} = (0.44) \sqrt{\frac{985.6116921 - 6.71524}{6.71524}}$$
$$V_{max} = 5.31 \text{ m/s}$$

7.2.7. Calculations for Volumetric flow rate:

For Liquid:

$$Q_{L} = \frac{\text{Liquid Flow rate}}{\text{Density of liquid}}$$
$$Q_{L} = \frac{8553.27663}{1000}$$

$$Q_L = \frac{1}{985.6116921}$$

 $Q_L = 8.67814 \text{ m}^3/\text{hr.}$

 $Q_L = 2.41059 \text{ x } 10^{-3} \text{ m}^3/\text{sec}$

For Gas:

$$Q_{g} = \frac{\text{Gas Flow rate}}{\text{Density of Gas}}$$
$$Q_{g} = \frac{13942.80728}{6.71524}$$

 $Q_g = 2076 \text{ m}^3/\text{hr.}$

 $Q_g = 0.576748 \text{ m}^3/\text{sec}$

7.2.8. Calculations of Area:

Area = $\frac{volumetric flow rate of gas}{maximum velocity}$ Area = $\frac{0.576748}{5.31}$

 $Area = 0.1086 \text{ m}^2$

7.2.9. Calculations of Diameter

$$D = \sqrt{\frac{4 * \text{Area}}{\pi}}$$
$$D = \sqrt{\frac{4 * 0.1086}{3.14}}$$

$D = 0.37186 \ m$

7.2.10. Calculations of L/D ratio:

L/D Ratio for vertical flash Drum/Separator = 4 - 6

Assume L/D = 4 for verification L/D = 4 $\frac{L}{D} = 4$ $\frac{L}{0.37186} = 4$ L = 4 * 0.37186 L = 1.48744Now put value of L $\frac{L}{D} = \frac{1.48744}{0.37186}$ $\frac{L}{D} = 4$

7.2.11. Vapor Height Calculations:

$$\begin{split} H_v &= 1.5 D{+}0.45 \\ H_v &= 1.5 (0.37186) + 0.45 \\ H_v &= 1.007 \; m \end{split}$$

7.2.12. Liquid Height Calculations:

$$H_{\rm L} = \frac{4 \text{ V}}{\pi D^2}$$

$$H_{\rm L} = \frac{V \ 4}{\pi \ D^2}$$

Volume Calculations:

$$V = Q_L * t$$

 $V = 2.41059 \text{ x } 10^{-3} * 60 \text{ sec}$

$$V = 0.1446 m^3$$

Whereas,

Q_L=height of liquid

t = Retention time

$$H_{L} = \frac{V * 4}{\pi * D^{2}}$$
$$H_{L} = \frac{0.144635 * 4}{\pi * 0.37186^{2}}$$

$$H_L = 1.33243 \text{ m}$$

7.2.13. Total Height Calculations:

Total height = Height of Liq + Height of Vapors

 $H = H_L + HV$

H = 1.33243 + 1.007

Total height = H = 2.3394 m

7.2.14. L/D ratio calculations:

L/D = 2.3394 / 0.37186

L/D = 6.01

7.2.15. Mechanical Design

Shell thickness (Ts)

Ts =Pri/SEj-0.6P +Cc

Design Pressure; $P_d = 1.1*P_o$ (here P_o =Operating pressure)

=111.43 KPa

S=79300kPa

Cc= 3mm= .003m; Ej=Joint Efficiency =0.85

Ts = (111.43) (0.2378m) / (79300) (0.85) - (0.6) (111.43) + 0.003

Ts = 0.0033m

Head Selection

There are two types of Head:

- 1. Tori spherical (for P<1134.97KPa)
- 2. Ellipsoidal (for P>1134.97KPa)
- 3. Hemispherical for very high pressures

According to my range of pressure I am using tori spherical.

Figure 11: Tori spherical Shape

Head Thickness

Head Factor:

$$X_{h} = 1.104*P_{d}/(2ES-0.2P_{d})$$

= (1.104*111.43)/ (2*.085*79300-0.2*111.43)
= 0.00091)

Head Thickness:

$$T_h = X_h * D + t_c$$

= 0.00091 * 0.4756 + 0.003

= 0.0034m

Support

These types of supports are available:

- Saddle support
- Skirt support
- Bracket support

For horizontal vessels, skirt supports, extremely tall vessels, and all other types of vessels, bracket supports are employed. For the supports of our cylindrical and vertical vessels, we will employ brackets.

Figure 12: Bracket Support

7.2.16. Specification Sheet:

Maximum Velocity	5.31 m/s
Area	0.1086 m ²
Diameter	0.37186 m
Total Height	2.3394 m
Volume	0.1446 m ³
L/D Ratio	6.01

Table 24:	Specification	of Separator

7.3. Absorber/Absorption Column:

7.4.1. Types of Absorption:

Physical Absorption	Chemical Absorption	
Weak van der Waals forces are	The forces operating are similar to	
operating	chemical bonding, but they are weaker	
Reversible process	Irreversible Process	
Attained equilibrium speedily	Attained Equilibrium slowly	
Not Specific	Highly specific	

Table 25: Types of Absorption

7.4.2. Selection of Absorbent:

The process solution is chosen based on the pressure and temperature of the gas, its composition, and the purity requirements of the treated gas.

7.4.3. Selection of Column type:

Packed Column	Plate Column	
Allows vapor and liquid to mix	Plate columns contact vapor and liquid	
continuously	in stages.	
Packed columns have lower pressure	Frictional losses occur when vapor	
drop	flows through liquid on each tray	
Liquid flows in thin film in packed	Plate columns require a large liquid	
tower to reduce pressure drop	inventory	
Packed columns are more cost-effective	For corrosive fluids, plate column is	
and require less maintenance for	usually avoided	
corrosive liquids		
Small space requirement.	Relatively large in size and expensive.	

Table 26: Selection of Absorption column

7.4.4. Design Parameters:

Column design steps:

- Number of Theoretical stages
- Number of Actual stages
- Efficiency
- Diameter of column
- Height of column

Tray design steps:

- Down comer area, net & active area
- Weir dimensions
- Hole area & number of holes
- Minimum vapor velocity
- Flooding
- Entrainment
- Pressure drops

Number of Theoretical stages:

Number of theoretical stages will be calculating from **KREMSER method**: First of all, we have to calculate absorption factor:

Absorption factor = (**A**) =
$$\frac{L}{K*V}$$

For K-Value:

Component	Vapor Pressure	Total Pressure	K-Value
CH ₃ COOH	0.0458 Bar	8.825 Bar	0.00518

 Table 7. 1: No. of Theoretical Stages

Liquid Flow-rate= L= Lmin *1.5 = 3.1491 Kmol/hr.

Vapor Flow-rate= V = 405.2907 Kmol/hr.

Absorption factor = (A) = $\frac{3.1491}{0.00518 * 305.29}$

Now, number of theoretical stages using absorption factor that comes out from equation

Fraction of Solute Absorbed = $(A^{n+1}-A)/(A^{n+1}-1)$

Fraction of solute absorber = 1 (assuming that all solute coming in process stream is being absorbed in water or absorbent)

 $1 = (1.199^{n+1} - 1.199) / (1.199^{n+1} - 1)$

No. of Theoretical stages = 16.23

Efficiency of Column:

Density of Liquid Stream = ρL = 64.2133 lb/ft³ Molecular weight of liquid stream = ML = 60 Viscosity of Solvent (Liquid Stream) = μL = 9.11 cp K value of desired components = 0.00518

Components	Mole Fraction	Viscosities
Acetic Acid	100%	9.11 cp

$$Factor = \frac{Ki*M1*\mu L}{\rho L}$$

Factor = 0.04409

Efficiency = 0.90 = 90%

No. of Actual Stages:

From overall stage efficiency:

 $E_0 = N_t/N_0$

Na = 16.23/0.90

Na = 18

Entrainment flooding capacity in a Tray column:

Liquid Flow-rate = L = 3.1491 Kmol/hr.

Vapor Flow-rate = V = 408.6857

Kmol/hr. Density of Liquid = ρL = 64.2133 lb/ft³ Density of Vapor = ρ_V = 50.78 lb/ft³ Molecular weight of liquid = ML = 60 Molecular weights of vapor = MV = 34.047

$$FLV = \left(\frac{L}{V}\right) \left(\frac{ML}{MV}\right) \left(\frac{\rho V}{\rho L}\right)^{0.5}$$

 $F_{LV} = 0.012075$

Diameter of Column:

Vapor Flow-rate = V = 408.6857 Kmol/hr.

Molecular weight of vapor = M_V =

34.04781 Fraction of flooding = f = 0.85

Ad/A taken as 0.1 on the basis of FLV Value

while equation used for calculating diameter is given as:

$$\mathbf{Dc} = \frac{4 * V * M v}{f * U f * \pi * \left(1 - \frac{Ad}{A}\right) * \rho v}$$

$$\frac{A_d}{A} = \begin{cases} 0.1, & F_{LV} \le 0.1\\ 0.1 + \frac{F_{LV} - 0.1}{9}, & 0.1 \le F_{LV} \le 1.0\\ 0.2, & F_{LV} \ge 1.0 \end{cases}$$

Density of vapor = $\rho_V = 50.78 \text{ lb/ft}^3$ Flooding Velocity= U_f = C $\left(\frac{\rho L - \rho V}{\rho V}\right)^0.5$

Uf = 29.98 ft/sec

Actual velocity = $V_f = 0.75*0.8$ ft/sec = 0.232 ft/sec (80% of flooding velocity). Diameter = $D_C = 11.70$ ft = 3.56 m

Height of Absorber:

Height of absorption column = HC = plate spacing * Number of actual plates

Column Height = 36ft

Height of absorption column = HC = 36 ft + 4 ft (above the tray for the removal of entrained liquid)

HC = 40 ft

Height of absorption column = HC = 40 ft + 10 ft (Below the bottom tray for bottom surge capacity)

$$HC = 50 ft = 15.243 m$$

Area of Column:

Area of column can be calculated as:

$$Ac = \pi \frac{D^2}{4}$$

$A_{C}=2.487 \text{ m}^{2}$

Down comer area can be calculated from equation bellow:

$$A_d = 12\% * A_c$$

 $A_d = 0.29 m^2$

Net Area:

Net area can be calculated from equation bellow:

$$\label{eq:An} \begin{split} A_n &= A_c - A_d \\ A_n &= 1.587 \ m^2 \end{split}$$

Active Area:

Active area can be calculated from equation bellow:

$$Aa = A_C - 2Ad$$

$$Aa = 1.907 \text{ m}^2$$

Hole Area:

Hole area can be calculated from equation below:

$$A_h = 10\% * A_a$$

$$A_h = 0.1907 \text{ m}^2$$

Number of Holes:

For calculating number of holes in plates we have to take some assumptions:

Tray Spacing = $L_t = 0.6 \text{ m}$ Hole Pitch = $l_p = 3*d_h = 3*0.005 = 0.015 \text{ m or } 15 \text{ mm}$ Tray Thickness = $T_t = 5 \text{ mm}$ or 0.005 m Hole size = $d_h = 5 \text{ mm}$ or 0.005 m Total Active Holes = $n_t = \frac{Total Hole Area}{Area of One hole}$ Nt = 9717.707

Friction for vapor flow through dry tray perforation:

C0 = 0.78 (ratio of tray thickness to hole diameter)

Density of vapor = $\rho V = 813.417 \text{ kg/m}^3$

Density of liquid = $\rho L = 1028.59 \text{ kg/m}^3$

Hole velocity = U0 = 0.232 ft/sec (80% of Flooding velocity)

Hd =
$$0.186^* \left(\frac{\mu 0^2}{C0^2}\right) \left(\frac{\rho v}{\rho L}\right)$$

 $Hd = 1.310*10^{-2}$ inch of water

Hold up of equivalent clear liquid on the try (hi):

Weir height $= h_w = 2$ inch

Weir length = $L_W = 73\%$ of DC=

140.436 inch Liquid flow rate = q_L =

427.95 gal/min

Effective relative froth density (height of clear liquid /froth height) = $\phi_e = 0.526$

$$\mathbf{Hi} = \mathbf{\Phi e} + \left[\mathbf{h}_{w} + \left(\frac{ql}{Lw* \, \mathbf{\Phi e}}\right)^{0.67}\right]$$

Hi = 2.758 inch of water

Loss due to Surface Tension:

Surface Tension of acetic acid at $25^{\circ}C = \sigma = 0.027 \text{ kg/s}^2$

Hole Diameter (max) = Db = 0.18 inch

 $h_{\sigma} = 0.82$ inch of water

$$\mathbf{h}\boldsymbol{\sigma} = \left(\frac{6*\sigma}{g*\rho L*Db}\right)$$

Using Equation, we can calculate total pressure drop due to head:

ht = 3.5793 inch of water

Weeping

For checking whether weeping is occurring in our process or not we have relation bellow:

$hd + h\sigma < hl$

From equation we can conclude

0.821< 2.758Therefore, if the liquid level is uniform, weeping occurs.

7.5. Distillation Column:

Distillation column is a unit operation that separates the components of a liquid mixture by boiling and condensing the mixture. The components are separated based on their different boiling points. The liquid mixture is introduced into the column and flows down due to gravity. The vapor is produced by partial vaporization of the liquid and flows up the column. The remaining liquid is withdrawn from the column as the bottom products. Here are some additional details about distillation:

- Distillation is a versatile process that can be used to separate a wide variety of liquid mixtures.
- Distillation is a commonly used process in the chemical, petrochemical, and food industries.
- Distillation can be used to separate a mixture into its individual components or to produce a purified product.
- Distillation requires a fair amount of energy. Gravity causes the liquid mixture to flow downward after being injected into the column. The liquid is partially vaporized to generate the vapor, which rises up the column. The bottom product is the liquid that is still in the column.

7.5.1. Classification of Distillation Column:

7.5.2. Types of Distillation:

Following are the top seven distillation methods:

- Steam distillation
- Extractive distillation
- Reactive distillation
- Fractional distillation
- Azeotropic distillation
- Flash distillation
- Vacuum Distillation

7.5.3. Selection of Distillation Column:

Sr #	Distillation	Description
1	Fractional Distillation	Fractional distillation is a process that separates mixtures of liquids with close boiling points. The mixture is heated to a temperature at which one or more of the liquids will vaporize. The vapor is then condensed back into a liquid, and the different liquids are collected separately. Several sectors, particularly the oil and gas sector, employ fractional distillation to separate crude oil into its individual constituents, such as petrol, diesel fuel and kerosene. The chemical industry is working to separate chemical combinations like benzene and toluene. Aspirin and paracetamol are two examples of medication combinations that the pharmaceutical industry is working to separate. the facility where pure substances are prepared for study and analysis.
2	Azeotropic Distillation	Azeotropic distillation is a type of distillation that is used to separate mixtures that form azeotropes. An azeotrope is a mixture of two or more liquids that have the same boiling point. This means that simple distillation cannot be used to separate these mixtures, as the vapors will always contain the same proportions of the liquids as the liquid mixture itself. The third ingredient, an entrainer, is added to the mixture in azeotropic distillation to make it function. One of the components in the mixture will create an azeotrope with the entrainer, and this will cause the azeotrope to break. The combination can then undergo distillation to remove the entrainer. Many industries, particularly the petrochemical and chemical processing sectors, use azeotropic distillation. Numerous combinations, including ethanol-water, nitric acid-water, and benzene- toluene, can be separated using this technique.
3	Extractive Distillation	Extractive distillation is a separation process that uses a solvent to change the volatility of components in a mixture. This allows for the separation of close- boiling, pinched, or azeotropic mixtures that cannot

 Table 27: Selection of Distillation Column

be separated by simple distillation. The solvent is
added to the mixture before it is distilled. The solvent
interacts with the components in the mixture,
changing their relative volatilities. This allows the
components to be separated by distillation. Many
businesses, notably the petrochemical and chemical
processing sectors, use extractive distillation.
Benzene-cyclohexane, ethyl acetate-ethanol, among
many other mixes, are among the various mixtures
that it is used to separate.

Table 28: Types of Configurations

7.5.4. Selection of reboiler:

There are several types of reboilers used in distillation processes, including:

Kettle reboilers: These are the most common type of reboilers and consist of a shell and tube heat exchanger with a vapor-liquid separator. They are well-suited for handling large volumes of fluid and are relatively easy to maintain.

Thermosiphon reboilers: These use natural convection to circulate the heating medium, typically steam or hot oil, through the heat exchanger. They are often used when a large temperature difference between the heating medium and the process fluid is required.

Forced circulation reboilers: These use a pump to circulate the heating medium through the heat exchanger, allowing for greater control over the temperature and flow rate. Kettle reboilers are often considered the best option for several reasons.

- They are simple and reliable, with no moving parts. This makes them easy to operate and maintain.
- They have a large surface area for heat transfer, which allows for efficient operation.
- They can handle a wide range of fluid volumes and are well-suited for handling viscous fluids or those with a high solids content.
- Kettle reboilers are relatively inexpensive compared to other types of reboilers, making them a cost-effective choice.

7.5.5. Distillation Column Design Algorithm:

7.5.6. Major Design Steps:

- **1.** Decide what the process' operational variables will be.
- 2. Apply the Fenske equation to get the minimal quantity of plates necessary.
- **3.** Employ the Underwood equation to calculate the minimal reflux ratio.
- **4.** Based on design factors, choose the theoretical reflux ratio.
- **5.** Utilize the Gilliland correlation approach to ascertain the quantity of trays.
- **6.** Apply the Kirkbride empirical equation to choose the best placement for the feed stage.
- 7. Identify the column's main measurements, such as its diameter and height.
- 8. Create the column's internal components.

7.5.7. Process Design:

Classification of Components:

A series of empirical equations known as the Antoine data can be used to determine the saturation vapor pressure of a liquid at a specific temperature. The relative volatility of the components in a liquid combination is commonly determined using the Antoine equations.

How readily a component can be separated from other components in a combination is determined by its relative volatility. A component can be easily isolated from other components if its relative volatility is significant. A component is difficult to isolate from other components if its relative volatility is low.

Reflux Ratio:

Reflux is the fraction of condensed vapor that is sent back to the top of a distillation column in order to boost productivity and stop volatile components from being lost. Depending on the reflux ratio employed, a particular separation may take one or more phases.

$$R = \frac{Flow \ returned \ as \ reflux}{flow \ of \ top \ product \ taken \ off}$$

Relative Volatilities:

The relative volatility of two components can be expressed as the given ratio:

$$\alpha = \frac{Vapour \ Pressure \ of \ more \ volatile \ Component}{Vapour \ Pressure \ of \ less \ volatile \ Component}$$
$$\alpha = \frac{P_A^{\ sat}}{P_B^{\ sat}}$$

Vapor Pressure:

The vapor pressure of a liquid can be estimated at intermediate temperatures by drawing a straight line between the critical point and the normal boiling point on a log-pressure versus reciprocal absolute temperature plot. Numerous equations have been developed to describe this relationship

One widely used equation is the three-term Antoine equation, introduced by Antoine in 1888.

$$ln P = A - \frac{B}{T+C}$$

where

P = vapor pressure, mmHg,

A, B, C = the Antoine coefficients,

T = temperature, K.

Components	α at B.P	α at D.P	α geometric mean
Oxygen	4013.5622	280.8185	1061.6415
Ethylene	751.5126	86.7319	255.3040
Carbon dioxide	971.6347	156.1905	389.5640
Water	1.7258	1.8970	1.8093
Acetic Acid	1	1	1
VAM	5.3963	2.8889	3.9484

On the basis of relative volatilities components are distributed into as follows:

• Light key = Oxygen, Carbon dioxide

• Heavy Key = Acetic Acid

Calculation of Minimum No. of Stages (N min):

By using Fenske equation:

$$\left[\frac{x_i}{x_r}\right]_d = \alpha_i^{Nm} \left[\frac{x_i}{x_r}\right]_b$$

 $\left[\frac{x_i}{x_r}\right]$ = The ratio of any component's concentration to that of a reference component's concentration, with the prefixes d and b designating the distillate's tops and bottoms, respectively.

$$N_{m} = \frac{\log \left[\frac{x_{LK}}{x_{HK}}\right]_{d} * \left[\frac{x_{HK}}{x_{LK}}\right]_{b}}{\log \alpha_{LK}}$$

 N_m = minimum number of stages at total reflux

- α = average volatility of the component i with respect to the reference component.
- = mole fraction of distillate of heavy key component = 0.4312
- = mole fraction of distillate of light key component = 0.02411
- = mole fraction of bottom of light key component = 0.0018
- = mole fraction of bottom of heavy key component = 0.9981
- α_{LK} = volatility of light component = 1.8093

Putting values in Fenske equation,

$$N_{m} = \frac{\log \left[\frac{x_{LK}}{x_{HK}}\right]_{d} * \left[\frac{x_{HK}}{x_{LK}}\right]_{b}}{\log \alpha_{LK}}$$
$$N_{m} = \frac{3.8625}{0.2575}$$

$$N_{\rm m} = 14.49 \sim 15$$
 Stages

Calculation of Minimum Reflux Ratio (R min):

This can be calculated from Underwood's method:

$$\sum \frac{\alpha_i \, x_{i,d}}{\alpha_i - \theta} = R_m + 1$$

 α_i = the relative volatility of component i with respect to the reference component, usually the heavy key.

 $R_m = minimum reflux ratio$

 X_{id} = concentration of component i in the tops

 θ = the root of the equation

 θ is computed using

$$\sum \frac{\alpha_i \, x_{i,f}}{\alpha_i \, -\theta} = 1 - q$$

The value of θ must lie between the values of the relative volatility of the light and heavy key

q = depends on the feed temperature

$$\frac{\alpha_A x_{fA}}{\alpha_A - \theta} + \frac{\alpha_B x_{fB}}{\alpha_B - \theta} + \frac{\alpha_C x_{fC}}{\alpha_C - \theta} + \frac{\alpha_D x_{fD}}{\alpha_D - \theta} + \frac{\alpha_E x_{fE}}{\alpha_E - \theta} + \frac{\alpha_F x_{fF}}{\alpha_E - \theta} = 1 - q$$

where,

q = 1.36 according to feed condition

Components	Inlet (A)	a geometric mean
	Mol fraction	_
VAM	0.11262777	1061.6415
Carbon Dioxide	0.016476654	255.3040
Oxygen	0.000268864	389.5640
Water	0.128438269	1.8093
Acetic Acid	0.709152039	1
Ethylene	0.033036404	3.9484
Sum	1	

And:

$$\frac{1061.6415(0.11262777)}{1061.6415 - \theta} + \frac{255.3040(0.016476654)}{255.3040 - \theta} + \frac{389.5640(0.000268864)}{389.5640 - \theta} \\ + \frac{1.8093(0.128438269)}{1.8093 - \theta} + \frac{1(0.709152039)}{1 - \theta} + \frac{3.9484(0.033036404)}{3.9484 - \theta} = 1 - 1.36 \\ \theta = \text{common root} = 1.517 \\ \frac{\alpha_A x_{dA}}{\alpha_A - \theta} + \frac{\alpha_B x_{dB}}{\alpha_B - \theta} + \frac{\alpha_C x_{dC}}{\alpha_C - \theta} + \frac{\alpha_D x_{dD}}{\alpha_D - \theta} + \frac{\alpha_E x_{dE}}{\alpha_E - \theta} + \frac{\alpha_F x_{dF}}{\alpha_F - \theta} = R_m + 1$$

Components	In Distillate (B)	α geometric mean
	Mol fraction	-
VAM	0.378019179	1061.6415
Carbon Dioxide	0.055281366	255.3040
Oxygen	0.000902183	389.5640
Water	0.430921793	1.8093
Acetic Acid	0.024034379	1
Ethylene	0.1108411	3.9484
Sum	1	

Minimum Reflux Ratio:

$$\frac{1061.6415(0.378019179)}{1061.6415 - 1.517} + \frac{255.3040(0.055281366)}{255.3040 - 1.517} + \frac{389.5640(0.000902183)}{389.5640 - 1.517}$$
$$+ \frac{1.8093(0.430921793)}{1.8093 - 1.517} + \frac{1(0.024034379)}{1 - 1.517} + \frac{3.9484(0.1108411)}{3.9484 - 1.517} = R_m + 1$$

$$R_{\rm m} = 0.586$$

Actual Reflux ratio:

The actual reflux ratio is calculated by multiplying the minimum reflux ratio with a factor between 1.1-1.5.

$$R_m = 1.50(R_m)$$

 $R_m = 1.50(0.586)$
 $R = 0.879$

Number of trays (N):

Gilliland Correlation:

$$X = \frac{R - R_{min}}{R + 1}$$
$$X = \frac{0.879 - 0.586}{0.879 + 1}$$

$$X = 0.1559$$

$$Y = 1 - \exp\left[\left(\frac{1 + 54.5X}{11 + 117.2X}\right)\left(\frac{X - 1}{X^{0.5}}\right)\right]$$

$$Y = 1 - \exp\left[\left(\frac{1+54.5(0.1559)}{11+117.2(0.1559)}\right)\left(\frac{(0.1559)-1}{(0.1559)^{0.5}}\right)\right]$$
$$Y = 1 - 0.4997$$
$$Y = 0.5002$$
$$Y = \frac{N - N_{min}}{N+1}$$
$$0.5002 = \frac{N - 15}{N+1}$$
$$0.5002(N+1) = N - 15$$
$$0.5002N + 0.5002 = N - 15$$
$$0.5002N - N = -15 - 0.5002$$
$$-0.4998N = -15.5002$$
$$N = 31.01 \sim 31$$

Feed Plate Location:

Kirkbride Equation is used for determination of were location of feed plate

$$\frac{N_{R}}{N_{S}} = \left[\left(\frac{x_{HK,F}}{x_{LK,F}} \right) \left(\frac{x_{LK,W}}{x_{HK,D}} \right)^{2} \left(\frac{W}{D} \right) \right]^{0.206}$$

Also,

$$N = N_R + N_S$$

where,

 N_R = number of plates in rectifying section

 N_S = number of plates in stripping section

 $x_{HK,F}$ = Conc. of heavy key (Acetic Acid) in feed = 0.71098

 $x_{LK,F}$ = Conc. of light key (water) in feed = Water = 0.12845

 $x_{LK,W}$ = Conc. of light key in bottom = Water = 0.0018

 $X_{HK,D}$ = Conc. of heavy key in top = Acetic Acid = 0.02411

D = 77.0550 Kmole/hr.

W = 184.2685 Kmole/hr.

Putting values, we calculate feed location.

$$\frac{N_{\rm R}}{N_{\rm S}} = \left[\left(\frac{0.71098}{0.12845} \right) \left(\frac{0.0018}{0.02411} \right)^2 \left(\frac{184.2685}{77.0550} \right) \right]^{0.206}$$

$$\frac{N_R}{N_S} = 0.5845$$

$$N_{R} = 0.5845 * N_{S}$$

N= 31

Rectifying Section Plates + Striping Section Plates = Total Plates

 $N_R + N_S = 31$ $N_s = 31 - N_R$ Put N_s in equation $N_R = 0.5845 * N_S$ $N_R = 0.5845(31 - N_R)$ $1.5845N_R = 18.1195$ = 11.4Feed Stage = N_R = 11

7.5.8. Plate Efficiency:

The designer is concerned with the actual performance of a distillation column, not the idealized performance assumed in theoretical models. Equilibrium is rarely achieved in a real column, so the concept of stage efficiency is used to quantify the difference between the actual and ideal performance

Stage efficiency $= \frac{BC}{AC} = \frac{Actual \ enrichment}{The rotical \ enrichment}$
Principle Definitions of efficiency:

Murphree plate efficiency:

It is the ratio of the actual separation achieved to that which would be achieved in an equilibrium stage.

$$E_{mV} = \frac{y_n - y_{n-1}}{y_e - y_{n-1}}$$

Where y_e is the composition of the vapour that would be in equilibrium with the

liquid leaving the plate.

Point efficiency (Murphree point efficiency):

If the liquid and vapor compositions are measured at a single spot on the plate, the local or point efficiency is given above. E_{mv}

Overall column efficiency:

$$E_{o} = \frac{number \ of \ ideal \ stages}{number \ of \ ideal \ stages}$$

Methods for Prediction of plate efficiency:

- 1. O'Connell's correlation:
- 2. Van Winkle's correlation

3. AIChE method:

O'Connell's correlation, however, is utilized to forecast plate efficiency since it enables quick prediction of total column efficiency.

The result of the relative volatility of the light key component (compared to the heavy key) and the overall column efficiency determines the molar average viscosity of the feed, which is computed at the average column temperature.

$$E_o = 51 - 32.5 * \log(\mu_a \alpha_a)$$

 μ_a = the molar average liquid viscosity, mNs/m^2

 α_a = average relative volatility of the light key

 $\mu_a \alpha_a = 0.67$

 $E_o = 51 - 32.5 * \log(0.67)$

7.5.9. Plate Hydraulic Design:

7.5.10. Selection of Plate Contactors:

Different type of plate contactors is available some types of are given below:

- 1) Sieve Plate
- 2) Bubble cap Plate
- 3) Valve Plate
- 4) Dual Flow Plate

Factors	Sieve tray	Valve tray	Bubble cap tray	Dual flow tray
Cost	Low	~1.2 times sieve trays	~2-3 times of sieve trays	Least
Capacity	High	High	Medium high	Very high
Efficiency	High	High	High	Medium
Down turn	~50%	~25-30%	10%	Least
Entrainment	Medium	Medium	High	Low to medium
Total Pressure Drop	Lowest	Medium	High	Low to medium

Table 29: Selection of Trays

Maintenance	Low	Low to medium	Relatively high	Low
Tendency of Fouling	Low	Low to medium	High: prone to accumulating solids	Extremely low
Corrosion Effect	Low	Low to medium	High	Very low
Information for Design	Well known	Proprietarily made, but easily accessible	Well known	There is some available data. In stability, enormous diameters are possible.

Based on the comparisons made above, "Sieve Tray Configuration" is the configuration that is most appropriate for our project.

7.5.11. Plate Design Procedure:

- 1. Key performance criteria are evaluated after a preliminary plate layout as part of the iterative plate design process. Once a good design has been produced, the design is then changed as necessary.
- **2.** Based on the intended turn-down ratio, calculate the needed maximum and minimum vapor and liquid flow rates.
- **3.** Identify or calculate the system's physical characteristics. Choose a starting plate spacing that will affect the overall height of the column. Typically, plate spacings between 0.15 m (6 in.) and 1 m (36 in.) are utilized, depending on the column diameter and operating conditions.
- 4. Calculate the column diameter taking floods into account.
- 5. Choose the configuration for liquid flow.

- **6.** 6. Sketch a preliminary plate plan that indicates the weir height, the downcomer area, the active area, the hole area, and the size of the hole.
- 7. Evaluate the weeping rate; if it is not acceptable, go back to step 6.
- **8.** Determine the pressure drop between the plates; if it is too great, go back to step 6.
- 9. Inspect the backup of the downcomer; if it is too high, go back to step 6 or step 3.
- **10.** Specify the exact details of the plate arrangement, including the soothing zones and unperforated areas. Return to step 6 if the hole pitch is unacceptable.
- **11.** Recalculate the flooding percentage using the chosen column diameter.
- 12. Determine whether the entrainment is appropriate; if it is, go back to step 4.

Column Diameter:

$$F_{LV(BOTTOM)} = \frac{L_W}{V_W} \sqrt{\frac{\rho_V}{\rho_L}}$$
$$F_{LV(BOTTOM)} = 0.6241$$
$$F_{LV(TOP)} = \frac{L_W}{V_W} \sqrt{\frac{\rho_V}{\rho_L}}$$
$$F_{LV(TOP)} = 0.0205$$

Tray spacing = 0.30 m

Using Fig 11.27 (Sinnott, 2005) (

K1 (top) = 0.06

K1 (bottom) = 0.03

Correction for surface tension

Flooding Velocity Calculation:

Top $u_f = 1.712$

Bottom
$$u_f = Bottom k1 \sqrt{\frac{\rho_1 - \rho_v}{\rho_v}}$$

Bottom
$$u_f = 0.7201$$

Design for 80% flooding at mass flow rate

Top u_v = 0.80 x 1.712 = 1.3696
$$\frac{m}{s}$$

Bottom u_v = 0.80 x 0.7201 = 0.57608 $\frac{m}{s}$

Maximum volumetric flow rate:

Top m_v =
$$\frac{V_m}{\rho_v * 3600}$$

Bottom m_v = $\frac{V_m}{\rho_v * 3600}$

Net Area:

From Equation of Continuity we get,

or,

$$m_{v} = A_{n}V_{n}$$
$$Top A_{n} = \frac{m_{v}}{V_{n}}$$
$$Top A_{n} = 0.524$$
$$Bottom A_{n} = \frac{m_{v}}{V_{n}}$$

Bottom $A_n = 1.247$

Column Cross-sectional Area:

As First trail take downcomer area as 15% of total

$$Top A_{c} = \frac{A_{n}}{0.85}$$

$$Top u_{f} = Top k1 \sqrt{\frac{\rho_{1} - \rho_{v}}{\rho_{v}}}$$

$$Top A_{c} = \frac{0.524}{0.85}$$

$$Top A_{c} = 0.6164$$

$$Bottom A_{c} = \frac{m_{v}}{0.85}$$

$$Bottom A_{c} = \frac{1.247}{0.85}$$

$$Bottom A_{c} = 1.467$$

Column Diameter

$$Top D_{T} = \sqrt{\frac{4 \times A_{C}}{\pi}}$$
$$Top D_{T} = \sqrt{\frac{4 \times 0.6164}{\pi}}$$
$$Top D_{T} = 0.8859$$
$$Bottom D_{T} = \sqrt{\frac{4 \times A_{C}}{\pi}}$$
$$Bottom D_{T} = \sqrt{\frac{4 \times 1.467}{\pi}}$$

Bottom
$$D_T = 1.3666$$

Liquid flow pattern:

Maximum volumetric liquid rate
$$= \frac{L'_m}{3600 * \rho_{L (bottom)}}$$

Maximum volumetric liquid rate = $\frac{L'_m}{3600 * (x_{WATER} \ge \rho_{(H2O)} + x_{A.ACID} \ge \rho_{(A.ACID)})}$

$$\begin{aligned} & \text{Maximum volumetric liquid rate} \\ &= \frac{11053.47963}{3600 * [(0.000030 \times 997) + ((0.9959 \times 1050)]]} \\ & \text{Maximum volumetric liquid rate} = \frac{11053.47963 \, kg/hr}{3600 * [(0.0307076) + (1045.8)]} \\ & \text{Maximum volumetric liquid rate} = \frac{11053.47963}{3764990.547} \end{aligned}$$

Maximum volumetric liquid rate = $2.9358 \times 10^{-3} \frac{\text{m}^3}{\text{sec}}$

The liquid flow pattern is single pass because the column diameter and maximum liquid flow rate both fall within this range.

Provisional plate design:

i. Column Area:

Area of cirlce =
$$A_C = \frac{\pi D_C^2}{4}$$

Area of cirlce = $A_C = \frac{\pi * 1.3666^2}{4}$
 $A_C = 1.467 \text{ m}^2$

ii. Downcomer Area:

As first trial take downcomer area as 15 percent of total.

Downcomer area = $A_d = 0.15 \text{ x Ac}$

$$A_d = 0.15 \text{ x } 1.467$$
$$A_d = 0.22005 \text{ m}^2$$

iii. Net Area:

$$A_n = A_c - A_d$$

 $A_n = 1.467 - 0.22005$
 $A_n = 1.24695 \text{ m}^2$

iv. Active Area:

Active area =
$$A_a = A_c - 2A_d$$

Active area = $A_a = 1.467 - 2(0.22005)$
 $A_a = 1.0269 \text{ m}^2$

v. Area of Hole:

Total hole area, Ah = 4.5 % Aa (Hole area is assumed to be 0.045 of the active area)

Total hole area = $0.045 \times 1.0269 \text{ m}^2$

Total hole area = 0.04621 m^2

Hole diameter = $d_h = 2.5 \text{ mm}$

Plate thickness = 3 = mm

Area of one hole
$$= A_h = \frac{\pi d_h^2}{4}$$

Area of one holes $= A_h = \frac{\pi x 0.0025^2}{4}$
 $A_h = 4.90873 \times 10^{-6} m^2$

vi. Number of Holes:

Number of Holes =
$$\frac{Total Hole Area}{Area of one hole}$$

Number of Holes = $\frac{0.04621}{4.90873 \ x \ 10^{-6}}$

Number of Holes =
$$9430$$

vii. Weir Length:

$$= \frac{A_d}{A_c} \ge 100$$

$$= \frac{0.22005}{1.467} \ge 100$$
$$\frac{L_W}{A_C} = 15$$

From Figure

$$\frac{L_W}{D_C} = 0.8$$

Weir length = $L_W = 0.8 * D_C$

$$L_W = 0.8 * 1.3666$$

 $L_W = 1.09328 m$

Assume then verified by iterations:

viii. Weir height:

Weir height = $H_w = 40 \text{ mm}$

Check Entrainment:

Actual Velocity = $\frac{maximum \ volumetric \ flow \ rates}{net \ area}$ $u_n = \frac{0.43148712}{1.24695}$ % Flooding = $\frac{u_n}{U_f}$ % Flooding = $\frac{0.54}{0.7201}$ % Flooding = 0.7498 % Flooding = 75

 $F_{LV} = 0.54$, from figure ψ

Entrainment = Ψ = 0.0015, well below 0.1

Check Weeping:

Maximum liquid rate
$$=\frac{L_m}{3600}$$

$$L_{\rm w} = 6.349 \, \rm kg/s$$

Turn down ratio = 0.85

 L_{wm} = minimum liquid flow rate, 0.85 at turn down

 $L_{\rm wm}=0.85\ L_{\rm w}$

 $L_{wm} = 0.85 (6.349)$

 $L_{wm} = 5.469 \text{ kg/s}$

Weir Crest:

Franci's weir formula

$$h_{ow} = 750 \left[\frac{L_W}{\rho_L * l_w} \right]^{\frac{2}{3}}$$

Where,

 $I_w = weir length, m,$

 $h_{ow} =$ weir crest, mm liquid,

 $L_w = liquid$ flow-rate, kg/s.

maximum
$$h_{ow} = 750 \left[\frac{L_W}{\rho_L * l_w} \right]^{\frac{2}{3}}$$

maximum
$$h_{ow} = 750 \left[\frac{6.349}{(1045.83) * (1.09328)} \right]^{\frac{2}{3}}$$

maximum $h_{ow} = 23.5181 \text{ mm}$ liquid

minimum
$$h_{ow} = 750 \left[\frac{L_{WO}}{\rho_L * l_w} \right]^{\frac{2}{3}}$$

maximum
$$h_{ow} = 750 \left[\frac{5.469}{(1045.83) * (1.09328)} \right]^{\frac{2}{3}}$$

maximum $h_{ow} = 21.29 \text{ mm}$ liquid

At minimum rate $h_w + h_{wo} = 40 \text{ mm} + 21.29 \text{ mm}$

= 61.29 mm liquid

Finding K₂ from figure 11.30 (Coulson and Richardson, Volume 6)

K2 = 30.3

The minimum design vapor velocity

$$u_{h} = \frac{[K_{2} - 0.90(25.4 - d_{h})]}{\rho_{v}^{\frac{1}{2}}}$$
$$u_{h} = 6.9278 \text{ m/s}$$

Actual minimum vapor velocity = $\frac{\text{minimum vapor rate}}{A_{\text{h}}}$

 V_{min} = Min. vapor flow rate = 0.4314 kg/s

$$A_h = 0.04621 \text{ m}^2$$

Actual minimum vapor velocity
$$=$$
 $\frac{0.4314}{0.04621}$

Actual minimum vapor velocity = 9.335 m^2

The weeping velocity is less than the vapor velocity, hence it is above weeping point.

Perforated Area:

Width of calming zones: 75 mm

Unperforated edges strip: 75 mm

$$\frac{L_W}{D_C} = 0.8$$

 $\theta^0 = 109^\circ$

Angle Held by the Plate's Edge
$$=180^{\circ} - 109^{\circ} = 71^{\circ}$$

Unperforated Edge Strips, Average Length

$$= \pi x (D_{C} - weir height) x \frac{\text{Angle at edge of plate}}{180}$$

Unperforated Edge Strips, Average Length = $\pi x (1.3666 - 0.075) x \frac{109}{180}$

Unperforated Edge Strips, Average Length = 2.523m

Area of unperforated Edge strips = weir height × Mean length edge strips

$$= 0.075 \times 2.523 m$$
$$= 0.1841 m^{2}$$

Mean Length of Calming Zone, approximately = (Column Dia - Weir Height) * $\sin \frac{109}{2}$

$$= (1.3666 - 0.075) * (\sin \frac{109}{2})$$
$$= 1.0515 \text{ m}$$

Area of Calming Zones = $2 \times$ (Mean length of Calming Zone \times weir height)

Area of Calming Zones = $2 \times 1.0515 \times 0.075$

Area of Calming Zones = 0.1577 m^2

Total Area for Perforations, Ap = Aa - Calming Zone Area - Area of Edge Strip= 1.0269 - 0.1577 - 0.1841 = 0.6851 m²

$$\frac{A_{\rm h}}{A_{\rm p}} = \frac{0.04621}{0.6851}$$

= 0.06745

$$\frac{I_{\rm P}}{d_{\rm h}} = 3.2$$

The above calculated ratio is satisfactory as it lies between the range of 2.5 - 4.0

$$\frac{I_P}{d_h} = 3.2$$

 $I_P = 3.2 * 2.5 \text{ mm}$
 $I_P = 0.008 \text{m or 8 m}$

Plate Pressure Drop:

Maximum vapor velocity through hole:

$$u_{h} = \frac{\text{volumetric flow rate at bottom}}{A_{h}}$$
$$u_{h} = \frac{2.9358 \times 10^{-3}}{0.04621}$$
$$u_{h} = 0.0635 \text{ m/s}$$

Hole diameter = $d_h = 2.5 \text{ mm}$

Plate thickness = 3 = mm

$$\frac{\text{Plate thickness}}{\text{Hole diameter}} = \frac{3}{2.5} = 1.2$$

Orifice Coefficient = $C_0 = 0.87$

Dry plate pressure drops (hd):

$$h_{\rm d} = 51 \left[\frac{u_{\rm h}}{C_{\rm o}} \right]^2 \left[\frac{\rho_{\rm v}}{\rho_{\rm L}} \right]$$

 $h_d = 15.45 \text{ mm}$ liquid

Residual Head (hr.):

$$h_r = \frac{12.5 \text{ x} 10^{-3}}{\rho_L}$$

$$h_r = 12 mm liquid$$

The total pressure drops across one plate (h_t):

$$h_t = (h_{ow} + h_w) + h_d + h_r$$

 $h_t = (61.29) + 15.45 + 12$
 $h_t = 88.74 \text{ mm liquid}$

Pressure drops in Pascal:

$$\Delta Pt = 9.81 \times 10^{-3} * h_t * \rho_L$$

 $\Delta Pt = 921.36 Pa$
 $\Delta Pt = 0.00921 bar$

The pressure drop in bar is 0.00921 bar for one stage

Overall Pressure Drop:

$$\Delta P$$
 = Acural No. of Plates x Δp
 ΔP = 29 x Δp
 ΔP = 31 x 0.00921

Pressure drops across column

$$\Delta P = 0.28551 \text{ bar}$$

Downcomer Liquid Backup:

$$\mathbf{h}_{\mathbf{b}} = (\mathbf{h}_{\mathbf{ow}} + \mathbf{h}_{\mathbf{w}}) + \mathbf{h}_{\mathbf{t}} + \mathbf{h}_{\mathbf{dc}}$$

 h_b = Downcomer backup measured from plate surface

 h_{dc} = Head loss in the downcomer

The constriction at the downcomer outlet will be the primary source of flow resistance, and the equation can be used to predict head loss in the downcomer. (Coulson & Richardson Volume 6):

$$h_{dc} = 166 \ x \left[\frac{L_{wd}}{\rho_L * A_{ap}} \right]^2$$

Area under the apron:

 $Aap = Iw \times hap$

So, we find h_{ap};

$$h_{ap} = h_w - 10$$
$$h_{ap} = 40 - 10$$
$$h_{ap} = 30 \text{mm}$$

 $Aap = Iw \times hap$

Aap =
$$1.09328 m * 0.03 m$$

A_{ap} = $0.032798 m^2$

Because the space beneath the apron is less than the lower area ($Ad = 0.22005 \text{ m}^2$), so it can be used in the head loss in downcomer equation:

$$h_{dc} = 166 \text{ x} \left[\frac{L_{wd}}{\rho_L * A_{ap}} \right]^2$$
$$h_{dc} = 4.9 \approx 5 \text{ mm liquid}$$

Backup in Downcomer

$$h_b = (h_{ow} + h_w) + h_t + h_{dc}$$

 $h_b = 61.29 + 88.74 + 5$
 $h_b = 155.03 \text{ mm}$

If $hb < \frac{1}{2}$ (plate spacing + weir height) So plate spacing is acceptable

 $155.03 \text{ mm} < \frac{1}{2} (300 + 40) \text{ mm}$

The plate spacing is acceptable as 155.03 mm < 170 mm

Residence Time:

$$t_{r} = \frac{A_{d} * h_{bc} * \rho_{L}}{L_{wd}}$$
$$t_{r} = \frac{A_{d} * h_{bc} * \rho_{L}}{L_{wd}}$$
$$t_{r} = 4.8 \text{ sec}$$

The residence time is greater than 3 seconds, hence it is feasible.

Height of the column:

$$H_{C} = (Number of actual plates - 1) \times Hs + (\Delta H)$$

Where,

Hc is the actual column height.

Nact the actual number of trays.

Hs the plate spacing.

 ΔH is the additional height.

Take plate spacing as = 0.30 m

Additional height = 15% of height required by trays.

 $Hc = (31-1) \times 0.30 + [(31-1) \times 0.30 \times 0.15]$

Hc = 10.35 m

7.5.12. Specification Sheet:

Identification				
Item no.	Equipment Name	Operation	Туре	
C-102	Distillation Column	Continuous	Sieve Tray Type	
Function	Separ	ration of VAM from m	ixture	
Material Handled	Feed	Тор	Bottom	
Quantity	14681.409 kg/hr.	3639.3907 kg/hr.	11042.018 kg/hr.	
Composition of				
VAM	17.03%	68.70%	0%	
Temperature	34.5 °C	75 °C	129 °C	
Pressure	4 bars	1.1 bar	1.3 bar	
	Design Data			
Number of Trays	29	Condenser Duty	1.146 MW	
Feed Plate located	11	Reboiler Duty	1.932 MW	
Reflux Ratio	0.879	Flooding Velocity	0.7201 m/sec	
Tray Spacing	0.30 m	Tray Efficiency	65%	
Diameter	1.35 m	Column Efficiency	56.65%	
Height	10.35 m	Flow Arrangement	Cross flow single	
Pressure Drop	0.0092 bar		pass	

 Table 30: Specification Sheet of Distillation Column

Chapter 8

Process Control & Instrumentation

8.1. Process Instrumentation:

For Instrumentation on various equipment's and pipeline of plants, following instrument are frequently used.

- 1. Temperature Sensors
- 2. Pressure Gauges
- 3. Flowmeters
- 4. Level measuring instruments
- 5. Concentration measuring instruments
- **6.** Safety

Objectives:

The main objective of instrumentation and process control are:

Safety:

- ➤ Keep process variables within defined safe operating limits.
- To distinguish risky circumstances as they create and to give cautions and programmed shut-down frameworks.
- > To e interlocks and alarms and thus prevent accidents.

Smooth production:

To meet the product specifications

Quality:

> To ensure that the product meets the required quality standard

Economics:

To work at the most minimal creation cost, in a run of the mill substance preparing plant these targets are accomplished by a blend of programmed control, manual observing and research center examination.

Figure 13: P&ID of Vinyl acetate Monomer Production

Instrumentation On Vinyl Acetate Monomer Plant:

Temperature Measuring Instruments:

TT-01 to TT-11:

Instrument Name	Reason
RTD	RTD with stainless steel because temp is low and stainless steel is economical.
	RTD is robust and has liner response to temp less than 700°C.
	RTD is widely used in industry due to its robustness and linear response

Table 32: Unselected temperature measuring instruments

Instrument	Reason
Name	
Thermocouple	Thermocouple : its range is high 750-1250°C and expensive then RTD with stainless steel
Pyrometer	Pyrometer: NO radiation involves in our process
Thermistor	Thermistor : use only for lab scale. Not used in industry on equipment's

Pressure Measuring Instruments:

PT-01 to PT-20:

Table 33: Selected temperat	ure measuring instruments
-----------------------------	---------------------------

Instrument Name	Reason
Pressure	All pressure differential cell with isolated diaphragm because it
Differential Cell	is highly accurate, stable and rugged.

Table 34: Unselected temperature measuring instruments

Instrument Name	Reason
Vibrating Wire	It is sensitive, the output generated is nonlinear which can cause control problem. It cannot handle high pressure or pressure spikes, it is mostly used in lab scale
Strain Gauge:	It is not an instrument that means it cannot transmit electrical single. it is only for lab use

Flow Measuring Instruments:

FT 01 to FT-02, FT-15, FT-22 TO FT-25:

Instrument	Reason
Name	
Ultrasonic	It is used for liquid acidic fluids. We have acetic acid so we use
Flowmeter	ultrasonic flowmeter
	Its diaphragm is not directly in contact with acid to prevent corrosion

Table 36: Unselected flow measuring instruments

Instrument Name	Reason
T T (
Vortex	We don't use it due to acidic medium
Flowmeter	
Coriolis	We don't use it because it is expensive and use mostly for
Flowmeter	gases
Electromagnetic	We don't use it because we don't have IONS in our process
Flowmeter	
Turbine	We don't use it because turbine has low flowrate accuracy.
Flowmeter	
Turbine Flowmeter	We don't use it because turbine has low flowrate accuracy.

FT-03 to FT-14 and FT-16 to FT-21:

Instrument	Reason
Name	
Coriolis	It is used for mix acid and basic vapors.
Flowmeter	It is best for gases and have high accuracy. It is robust and most commonly used in industries

Table 37: Selected measuring instruments

Table 38: Unselected measuring instruments

Instrument	Reason
Name	
Vortex	We don't use it due to acidic medium
Flowmeter	
Ultrasonic	We don't use it because it is suitable for acidic liquids.
Flowmeter	
Electromagnetic	We don't use it because we don't have IONS in our process
Flowmeter	
Turbine	We don't use it because turbine has low flowrate accuracy.
Flowmeter	

FT-23 to FT-24:

Table 39: Selected measuring instruments

Instrument Name	Reason
Vortex	It is used for liquid and gases as well at low pressure and
Flowmeter	temperature.

Table 40: Unselected measuring instruments

Instrument Name	Reason
Coriolis	We don't use it because it is expensive and use mostly for
Flowmeter	gases
Ultrasonic	We don't use it because it is suitable for acidic liquids.
Flowmeter	
Electromagnetic	We don't use it because we don't have IONS in our process
Flowmeter	
Turbine	We don't use it because turbine has low flowrate accuracy.
Flowmeter	

Level measuring instruments:

LT-01:

Instrument	Reason
Name	
Guided Wave	Guided wave Radar are reliable and accurate level measurement
Radar	instruments that require little maintenance. They have no
	moving parts, making them ideal for harsh environment. GWR
	can measure both level and interface between two media and
	they are not affected by media density, varying temperatures and
	pressures.

 Table 41: Selected Level measuring instruments

Table 42: Unseled	cted Level me	asuring instru	uments

Instrument	Reason
Name	
Indirect sensors-	This method can be used to measure the level of corrosive
Bubble risers	liquids, the material of the tube can be chosen to be corrosion-
	resistant. So, the method is suitable for use in harsh environment
Indirect sensors-	The sensor is cost effective option for measuring the level of
Resistive Tapes	corrosive liquids or slurry. However, it is not rugged or accurate
	and it is prone to humidity problems. The measurement accuracy

is	also	dependent	on	material	density	and	sensor	is	not
rec	comm	ended for us	se w	ith explos	ives and	flamr	nable lic	lnic	ls.

Concentration Measuring Instruments:

CT-01 to CT-02:

Online Analyzer should be used.

A probe-based analyzer is selected as they are non-destructive and give readings in real time.

Instrument Name	Reason
Gas analyzer	Gas analyzer can measure many types of components in the line. Gas analyzers work on NDIR (Nondispersive Infrared sensor).

Offline analyzers are not allowed.

Table 44: Unselected concentration measuring instrument	ts
---	----

Instrument Name	Reason
Spectroscopy	Spectroscopy cannot be used as it is mostly used for discrete
	sampling.
Gas	Gas chromatography can be used but it is not preferred as it
Chromatography	destroys the sample.
HPLC	HPLC should not be used as the phase of the line is gas phase.

Safety:

Relief Valve:

We use 2 relief valves:

1st relief valve is in the reactor and then it connects with the inlet stream. It is because reactor has high pressure so if there are any spikes in pressure or temperature it releases them and maintain it accordingly so no accident can happen.

 2^{nd} relief value is in the mixer has it also has high pressure.

Safety on instruments:

We used butt weld and then attached a globe wall. the function of globe wall is whenever our sensor is not working properly and needs to be repair, we turn off the flow by shutting globe wall and then we can easily remove the sensor and replace it

After globe wall we use Bleeder valve so if there is any backflow it releases it.

After bleeder valve our sensor/transmitter is installed.

8.2. Process Control

Control Loops:

For instrumentation and control of various areas and gears of plants, following control circles are frequently utilized.

- **1.** Control loop of feedback
- **2.** Control loop of feedforward
- 3. Ratio control system
- **4.** Auctioneering control system
- 5. Control loop of split range
- **6.** Control loop of cascade

Control system elements:

Control system has following elements:

> Process:

Set of operations to achieve a desired result, by specific steps is called process.

Computing devices:

Every piece of framework control, estimating component is highly significant. On the off chance that estimations are not made appropriately the rest of the framework can't work acceptably, likewise the deliberate variable is picked to speak to the ideal conditions all the while.

> Controller:

Controller is a system which is used to regulate the process.

Final control element:

The final element which controls the varying process with basic control system is called final control element.

> Temperature Measurement & Control:

Temperature is measured and controlled at the inlet and outlet streams of different equipment, such as coolers, heaters & heat exchanger. Different devices are used such as thermocouples, RTD etc.

Figure 14: Process Control Diagram of Vinyl Acetate Monomer Production

Reactor:

Controlled Variables:

- > Temperature inside the tubes of the reactor
- Pressure of the reactor

Manipulated Variable:

> Flowrate of the flue gases in the shell of the reactor

Use Loops:

Feedback loop:

Feedback loop are also applied to the reactor, they play a crucial role in regulating the process variable. These loops constantly measure the process variable, compare it to the setpoint, and modify the control output to ensure the process variable is regulated at the desired level.

Heat Exchanger:

Controlled Variables:

- > Temperature
- > Pressure
- Product Composition

Manipulated Variable:

➢ Flowrate

Use Loops:

Feedback loop:

Feedback loops are used to handle changing conditions dynamically. At the top of the feed inlet, we have feedback loop which are pressure transmitter transmitting the pressure to the flow indicated controller which then controls the flowrate. It is necessary to maintain the pressure of the system and feedback control loop is used.

Cascade loop:

- Cascade loops are also commonly used in superheater. This feature is particularly useful when there is a significant delay between control action and the effect on the mixture.
- Temperature of the outlet streams of superheater must be controlled in order to assure their correct performance and achieve the desired operating conditions in downstream or upstream process units.

Separator:

Controlled Variables:

- ➢ Temperature
- Pressure
- > Level

Manipulated Variable:

- Flowrate of Process fluid (inlet)
- Flowrate of Gas flowrate (product)
- Flowrate of Liquid flowrate (product)

Use Loops:

Feedback Loop:

- The level of the separator is necessary to maintain to avoid the flooding and over pressure of the separator.
- The pressure of the vessel is necessary to maintain due to safety and if the pressure is not optimal, the separation of gas and liquid can be inefficient and proper separation does not occur.
- The temperature and flow are controlled by a cascade loop. The temperature of the outlet gas is measured and sent to the temperature controller.
- The flowrate controller sends a signal to the control valve the flowrate is changed according to the signal by the controller.

Absorber:

Controlled Variables:

- > Pressure
- Product Composition
- Level of absorber

Manipulated Variable:

> Flowrate

Use Loops:

Feedback Control:

The feedback control loop is applied in controlling the pressure of the vessel and the level of the vessel. Feedback loops respond dynamically and handle changing conditions.

Cascade Loop:

- The composition of the bottom solvent is maintained by transmitting the value to the flow controller and manipulating the flowrate at the desired setpoint of the inlet gas.
- > The flowrate of the inlet gas is transmitted to the flow controller.
- By taking control action earlier in the process, the cascade loop can help reduce or eliminate the impact of the delay.

Distillation Column:

Controlled Variables:

- Temperature at top of column
- Pressure of column
- Bottom liquid level
- Bottom temperature
- Product Composition
- Reflux ratio
- Reflux Drum Level

Manipulated Variable:

- Top outlet vapor flowrate
- Bottom liquid flowrate
- ➢ Feed flowrate
- Outlet flowrate of drum

Use Loops:

Feedback Loop:

To regulate the distillation column, multiple control loops are used. Feedback loops respond dynamically to changing conditions and adjust temperature, pressure, flow, and level to maintain the desired set points.

Ratio control loop & cascade:

A ratio control loop is a feedback control system that is designed to maintain a specific ratio between two process variables. In the case of a distillation column, the ratio control loop is used to maintain the desired reflux ratio that is 6.5 by adjusting the flow rate of either the reflux or the distillate.

Cascade Loop:

The temperature of the bottom is important to be maintained at 113 degrees Celsius. The reading of the bottom is transmitted to a temperature controller (primary loop) and the flow of the steam inlet of the reboiler is transmitted to the flow controller (secondary loop). The flow controller takes its setpoint from the temperature controller and the temperature setpoint is provided manually. The flow controller adjusts the steam inlet flowrate accordingly. Chapter 9

Cost Estimation

Total Capital Investment:

The total capital investment includes:

- Prime/Direct Cost
- General and Administrative/Indirect Cost.
- Fixed capital investment.
- Working capital.

Cost Estimation:

Firstly, we find the purchased cost of every equipment in the plant.

9.1. Cost Estimation of the reactor:

Volume of the reactor = 10.291 m^3

So, by using equation from (Towler and Sinnott second Edition):

$$C_e = a + b (S)^n$$

 C_e = Purchased cost of the equipment.

a & b= Cost constants (from Table 7.2).

S = equipment capacity.

n = exponent for that type of equipment.

So Purchased cost of the reactor is,

 $= 61500 + 32500 (10.291)^{0.8} =$ \$271321.227.

Material factor of stainless steel (316) from Table 7.6 = 1.3

Combined cost of equipment including Purchased cost and material factor

= 1.3*271321.227

= \$352717.595.

Installation factor of reactor (From Table 7.4) = 2.5.

So total cost of reactor is = 2.5*241696.3 = **\$881793.989.**

9.2. Cost Estimation of the Heat Exchangers:

Area of the Heat exchanger is $= 15.6170m^2$

Cost constants (from Table 7.2)

Purchased cost of Heat exchanger = $C_e = a + b (S)^n$

 $= 28000 + 54 (15.6170)^{1.2} = 29461.204

Material factor of stainless steel (316) from Table 7.6 = 1.3

Combined cost of equipment including Purchased cost and material factor

= 1.3*29461.204

\$ = \$38299.565.

Installation factor of Heat exchanger (From Table 7.4) = 3.5

Total cost of heat exchanger = 3.5*\$38299.565 = **\$134048.478**

Cost Estimation of the Flash Separator:

Pressure in the column = 4.81 bar = 481000 N/m²

Length of the column = 2.3394m.

Diameter of the column = 0.37186m.

Maximum allowable stress = $1422.5*10^5$ N/m² (from Table 14.2 Towler and Sinnott second edition).

No radiography is done for welding test.

So, Efficiency is = 0.90.

Now, we find the minimum thickness of the shell so we can calculate the mass.

$$t_{s} = \frac{P * D}{2SE - P}$$

$$t_s = \frac{481000*0.37186}{2*1422*10^5*0.90-481000} = 0.0007m = 0.7 \text{ mm}$$

Mass of column,

$$= \pi * 0.0007 \text{m} * 0.37186 * 2.3394 \text{m} * 8000 \text{kg/m}^3 = 15.29 \text{kg}$$

Where $\rho = 8000 \text{kg/m}^3$ is the density of the stainless steel (304).

Purchase cost of the flash drum = $17400 + 79*(15.29)^{0.85} = 1820236

Material factor for stainless steel (304) (from Table 7.6) = 1.3

Combined cost of equipment including Purchased cost and material factor = 1.3*1820236

= \$23663.07.

Installation factor for column (from Table 7.4) = 4

Total cost of absorber = 4*23663.07= **\$94652.3**

9.3. Cost Estimation of Absorber:

Pressure in the column = $4bar = 40000N/m^2$

Length of the column = 15.243m.

Diameter of the column = 3.56m.

Maximum allowable stress = $1422.5*10^5$ N/m² (from Table 14.2 Towler and Sinnott second edition).

No radiography is done for welding test.

So, Efficiency is = 0.90.

Now, we find the minimum thickness of the shell so we can calculate the mass.

$$t_{s} = \frac{P * D}{2SE - P}$$

$$t_s = \frac{400000*3.56}{2*1422*10^5*0.90-400000} = 0.005572m = 5.572 \text{ mm}$$

Mass of column,

$$=\pi^{*}0.005014$$
m*3.56m*15.243m*8000kg/m³ = **683kg**

Where $\rho = 8000 \text{kg/m}^3$ is the density of the stainless steel (304).

Purchase cost of the absorber = $17400 + 79*(683)^{0.85} = 37671.44

Material factor for stainless steel (304) (from Table 7.6) = 1.3

Combined cost of equipment including Purchased cost and material factor = 1.3*37671.44
= \$48972.877.

Installation factor for column (from Table 7.4) = 4

Total cost of absorber = 4*48972.877= **\$195891.488**

No. of Trays = 17

Purchased cost of one tray (Sieve tray) = $130 + 440 \times (3.56)^{1.8} = 4455.76$

Purchased cost of 17 sieve trays = 17*4455.76 = \$75747.96

Material factor for stainless steel (304) (from Table 7.6) = 1.3

Combined cost of equipment including Purchased cost and material factor = 1.3*75747.96

= \$98472.351

Installation factor of Trays (From Table 7.4) = 2.5.

Total cost of Trays = 2.5*33371.481 = **\$246180.870**

Total cost of Absorber with Trays = \$195891.488 + \$246180.870

= \$442072.36

9.4. Cost Estimation of Multicomponent Distillation column:

Pressure in the column = $1.2 \text{ bar} = 120000 \text{N/m}^2$

Diameter of the column = 1.35 m

Length of the column = 9.66 m.

No radiography is done for welding test.

Maximum allowable stress = $1422.5*10^5$ N/m² (from Table 14.2 Towler and Sinnott second edition).

So, Efficiency is = 0.56.

Now, we find the minimum thickness of the shell so we can calculate the mass.

$$t_{s} = \frac{P * D}{2SE - P}$$
$$t_{s} = \frac{120000 * 1.35}{2 * 1422 * 10^{5} * 0.56. - 120000} = 0.001017 \text{m} = 1.017 \text{mm}$$

Mass of column,

$$= \pi * 0.001017 \text{m} * 1.35 \text{m} * 9.66 \text{m} * 8000 \text{kg/m}^3 = 333.159 \text{kg}$$

Where $\rho = 8000 \text{kg/m}^3$ is the density of the stainless steel (304).

Purchased cost of Multicomponent distillation column = $C_e = a + b (S)^n$

Cost constants (from Table 7.2)

 $C_e = 17400 + 79*(333.159)^{0.85} = \28412.3728

Material factor for stainless steel (304) (from Table 7.6) = 1.3

Combined cost of equipment including Purchased cost and material factor = 1.3*28412.3728

= \$36936.084

Installation factor for column (from Table 7.4) = 4

Total cost of Multicomponent distillation column = 4*36936.084

= \$147744.339

No. of Trays = 29

Purchased cost of one tray (Sieve tray) = $130 + 440*(1.35)^{1.8} = 885.185

Purchased cost of 29 sieve trays = 29*885.185 = \$25670.37

Material factor for stainless steel (304) (from Table 7.6) = 1.3

Combined cost of equipment including Purchased cost and material factor = 1.3*25670.37

= \$33371.481

Installation factor of Trays (From Table 7.4) = 2.5.

Total cost of Trays = 2.5*33371.481 = **\$83428.703**

Total cost of Multicomponent distillation column with Trays = 147744.339 + 83428.703

= \$231173.042

9.5. Cost Estimation of Decanter:

Volume of the decanter = 10 m^3

So, by using equation from (Towler and Sinnott second Edition):

 $C_e = a + b \ (S)^n$

 C_e = Purchased cost of the equipment.

a & b= Cost constants (from Table 7.2).

S = equipment capacity.

n = exponent for that type of equipment.

So Purchased cost of the reactor is,

 $= 12800 + 73 (10)^{0.85} = $13316.80.$

Material factor of stainless steel (316) from Table 7.6 = 1.3

Combined cost of equipment including Purchased cost and material factor

= 1.3*13316.80

= \$17311.84

Installation factor of decanter (From Table 7.4) = 4.

So total cost of decanter is = 4*17238.77 = **\$69247.36.**

9.6. Cost Estimation of Vaporizer:

Volume of the vaporizer = 17 m^3

So, by using equation from (Towler and Sinnott second Edition):

$$C_e = a + b (S)^n$$

 C_e = Purchased cost of the equipment.

a & b= Cost constants (from Table 7.2).

S = equipment capacity.

n = exponent for that type of equipment.

So Purchased cost of the vaporizer is,

 $= 330+36,000(17)^{0.55} = \171350.98

Material factor of stainless steel (316) from Table 7.6 = 1.3

Combined cost of equipment including Purchased cost and material factor

= 1.3*171350.98

= \$222756.28.

Installation factor of vaporizer (From Table 7.4) = 2.

So total cost of vaporizer is = 2*17238.77 = **\$445512.56.**

9.7. Cost Estimation of Pumps:

Purchase cost of the Pump = $8000 + 240*(3.6)^{0.9} = \8760.12

Purchase cost of 5 Pumps = 5*8760.12 = \$43800.6

Material factor for Aluminum and Bronze (304) (from Table 7.6) = 1.07

Combined cost of equipment including Purchased cost and material factor = 1.07*43800.6 = \$46866.642.

Installation factor of Pumps (From Table 7.4) = 4

Total cost of Pumps = 4*46866.6 = **\$187466.4**

Direct Cost

Purchase equipment cost= **E** = **\$2485966.489**

- Installation cost, 39%E = \$969526.9307
- Instrumentation (installed),43%E =\$1068965.59
- Piping (installed), 31%E = \$770649.6116.
- Electrical (installed), 10%E = \$248596.6489.
- Building (including services), 15%E =\$372894.9734.
- Yard improvements, 12%E = \$298315.9787.
- Service facilities (installed), 55%E = \$1367281.569.

Total Direct cost = D = \$5096231.302

Indirect Cost

- Engineering and supervision, 32%E = \$795509.2765
- Construction expenses, 34%E = \$845228.6063
- Legal expenses, 4% E = \$99438.65956
- Contractor's fee, 19%E = \$472333.6329
- Contingency, 37%E = \$919807.6009

Total Indirect cost = I = \$3132317.776

Total Capital Investment

Fixed capital investment = Direct cost + indirect cost

=\$5096231.302+\$3132317.776

F.C.I = \$8228549.079

Working capital 18% of F.C.I = \$1481138.834

Total Capital investment = Fixed Capital investment + Working Capital Cost.

T.C.I = \$7596477 + \$1367365.9 = **\$8963842.9**

Product Cost:

Let us assume that fixed capital investment is depreciated using straight line method for 20 years. The salvage value at the end of plant is assumed to be 5%

Depreciation = $D = (V-V_s)/N$

Where,

V = F.C.I $V_s = 0.05*F.C.I$ $V_s = 379823.8 N = no. of years = 20So, D = \$360832.66

Total Product cost = Total Capital investment – Depreciation

T.P.C = \$8603010.24.

• Fixed charges (12% of T.P.C) = \$1032361.23

- Direct product Cost (55% of T.P.C) = \$4731655.6
- Plant overhead (10% of T.P.C) = \$860301.02
- Manufacturing Cost = Direct product cost + Fixed charges + plant Overhead

Manufacturing cost = \$6624317.8

General Expenses:

General Expenses = Administrative Cost + Distribution and selling cost + research and development cost

Administrative Cost

It is usually 2-6% of total product cost

Administrative cost = 4% of total product cost

Administrative cost = **\$344120.4**

Distribution and Selling cost:

Typically, 2-20% of the overall cost of the product goes towards distribution and marketing expenses, which include the cost of sales offices, salespeople, shipping, and advertising.

Consider the distribution and Selling cost = 12% of total product cost.

Distribution and Selling cost = **\$1032361.2**

Research and Development Cost:

It is about 5 % of total product cost.

Research and Development Cost = \$430150.5.

Financial (interest):

It is about 0-10% of total Capital Investment.

Consider interest is 6% of total capital investment.

So, interest is = **\$537830.6**

Then,

General Expenses =\$1806632.1.

So,

Total Product cost = Manufacturing cost + General Expenses

Total Product cost = \$8430949.9

Gross Earing/ Income:

Wholesale selling price of VAM per ton = \$1867.

- Total income = selling price*quantity of product manufactured
- Total income = 1867*10,000
- Total income = **\$18670000**
- Gross income = Total income Total product cost
- Gross income = \$18670000 \$8430949.9
- Gross income = **\$10239050.1.**
- Taxes (40% of Gross income) = **\$4095620.04**
- Net profit = Gross income Taxes
- Net profit =\$10239050.1 \$4095620.04 = **\$7043430.1**

Chapter 10 HAZOP

HAZOP:

HAZOP is a technique that has been developed over the past few decades to identify potential hazards and compatibility problems that may arise due to deviations from the design in both new and existing process plants. It involves conducting a systematic study to clarify the impact of deviations on the plant's processing. Often, too much emphasis is placed on identifying hazards to the detriment of potential problems. However, it is in this latter area where the benefits of a HAZOP study are usually the greatest.

Algorithm:

10.1.Reactor:

Guide Word	e Word Deviation Causes Consequences		Action	
	·	Flow	·	
NO	No heating	Flue gas value	Temperature	Install
		malfunction	decreases in	temperature
			reactor	alarm (TAH)
REVERSE	Reverse heating	Failure of	Less heating,	Install check
	flow	heating media	Possibility	value
		source resulting	runaway reaction	
		in backward		
		flow		
MORE	More cooling	Control valve	Too much	Install control
	flow	failure,	heating, off spec	valve and
		Operator fails to	product and shut	instruct the
		take action on	down of	operators on
		alarm	reactor/explosion	procedure
AS WELL AS	Reactor product	More pressure	Off-spec product	Check
	in tubes	in reactor		maintenance
				procedures and
				schedules
OTHER THAN	Another	Water source	May be heating	If less heating,
	material beside	contaminated	ineffective	(TAH) will
	heating media			detect
	1	Temperature	1	
LOW	Low heating	Low heating	Reaction rate	Install high
		media supply	slow down	level alarm and
				instruct
				operators
HIGH	More heating	More heating	Reactor may	Install a control
			explode	valve and low-
				level alarm
	I	Pressure		
LOW	Low pressure	Partially	Diminished	Install
		plugged heating	heating,	controller
		line	Possible	with
			runaway	maintenance

Table 45: HAZOP Study on Reactor

				procedure	
HIGH	High pressure	Control Valve	Reactor	Instruct	
		fails open.	Overheat,	operator	
		Controller fails	Reaction stops	and update	
		and open valves	As above	procedure	

10.2.Heat Exchanger:

Guide Word	Deviation	Causes	Consequences	Action	
	·	Flow			
NO	Cooling fluid flow	Failure of cooling water inlet valve to closed	Process fluid temperature not lowered accordingly	Install temperature indicator before and after the process	
MORE	Cooling water flow	Failure of cooling water inlet valve to open	Process fluid temperature too low	Install temperature indicator before and after the process	
LESS Cooling water flow		Pipe leakage	Process fluid temperature not lowered accordingly	Installation of flow meters	
		Temperature			
LOW	Tube side temperature	High flowrate of cooling water	Process fluid temperature too low	Install (TIA)	
HIGH Tube side temperature		Tube side outlet valve fully opened	Tube damage, Rupture	High temperature alarm must be installed	
		Pressure (Shell side	e)		
LOW	Shell side pressure	Pump tip	No significant effects	Not applicable	
HIGH Shell side pressure		Shell side discharge valve fully opened	Shell side will be over pressurized	Install high pressure alarm	
		Pressure (Tube side	e)		
HIGH	Tube side pressure	Shell side discharge valve fully opened	Tube maybe rupture	Install high pressure alarm	

Table 46: HAZOP Study on Heat Exchanger

10.3.Flash Separator:

Guide	Deviation	Causes	Consequences	Action
Word				
No, Not,	Flow	Pipe ruptures	No separation	Install alarm/
None		Close outlet valve	occurs	sensor
		Control valve failure		Install Automated
				Open &
				Closure of
				valve
Less	Flow	Valve Partially closed	Not Separation	Install
		Pipe leakage	proceeds	Flowmeter
			Separator not	
			work efficiently	
More	Flow	Failure of control	Fluid damage the	Install
		valve,	diverter of	flowmeter
		The operator failed to	separator	
		take appropriate action		
		to address the alarm		

Table 47: HAZOP Study on Separator

10.4.Absorber:

Guide Word	Deviation	Causes	Consequences	Action	
Pressure					
HIGH More pressure		Gas flow high	Equipment damage	Install pressure	
			& safety hazard	gauge	
Temperature					

LOW	Low temperature	Decreased heat	Blockage due to	Increase heating
		input	heating	capacity
HIGH	More temperature	Increased,	Reduced efficiency	Adjust flowrate
		malfunction of	of absorption	by using a
		temperature		controller
		Level		
HIGH	High liquid level	Liquid flowrate	Risk of equipment	Level control,
		too high	damage	automatic
				shutdown system
LOW	Low efficiency of	Inadequate liquid	Reduced product	Modify packing
	absorption	gas contact	quality	and adjust
				flowrate

10.5.Storage Tank:

Guide Word	Deviation	Causes	Consequences	Action
No, Not, None	No Flow level	Failure of process flow inlet valves	Product offset	Installation check valves
Less, Low	More Flow level	Pump stops	Possible damage to pump	Pump shutdown automatically when level is too low
More, High	High Flow level	Failure of the level control system and pump stops	Overflow could cause. Overflow would be contained by secondary containment system	Inlet valve, level control system and pumps are inspected. There is a redundant level control system

10.6.Distillation Column:

Guide Word	Deviation	Causes	Consequences	Action
No, Not, None	No flow	Pipe blockage Control valve failure Pump Off	Column dry out Possible dangerous concentration No operation	Install low level alarm, Check maintenance procedure and schedule
Less, Low	Less flow	Pipe leakage Valve half open	Column dry out Changes in product quality	Install low level alarm Check maintenance procedure and schedule
	Low pressure	line leakage	Low efficiency of separation Loss of products	Install pressure indicator
More, High	More flow	Control valve is fully opened, Increase pumping capacity, Control valves failure	Flooding in the column	Install high level alarm
	High pressure	Pressure indicator controller fail	Low efficiency of separation Rupture of column or other related equipment Product loss	Install high pressure alarm Install pressure relief valve
	High temperature	High steam pressure, Instrumentation failure	Separation cannot be done Changes in product quality	Install temperature indicator

Table 49: HAZOP Study on Distillation Column

Chapter 11

Simulation

11.1.Properties:

11.1.1. Selected Components:

First of all, we select the components:

	Component ID	Туре	Component name	Alias
•	OXYGEN	Conventional	OXYGEN	02
•	ETHYLENE	Conventional	ETHYLENE	C2H4
•	ACETICAC	Conventional	ACETIC-ACID	C2H4O2-1
•	WATER	Conventional	WATER	H2O
•	CARBO-01	Conventional	CARBON-DIOXIDE	CO2
•	VINYL-01	Conventional	VINYL-ACETATE	C4H6O2-1
►				

Figure 15: Selected Components

11.1.2. Base Method:

Property methods & options						
Method filter	ALL 🝷					
Base method	NRTL-HOC -					
Henry components	-					
Petroleum calculatio	on options					
Free-water method	STEAM-TA 🔹					
Water solubility	3 -					
Electrolyte calculation options						
Chemistry ID	•					
Use true components						

• We use NRTL-HOC as a property package.

The decision to select the NRTL-HOC model was based on the composition of the liquid phase, which primarily consists of vinyl acetate (a polar), water (polar), and acetic acid (polar). Given that these compounds are well-known and interaction parameters are available, it was crucial to choose a model that could accurately represent their behavior. In this regard, extensive research, including consultation of the Alexandre D. Dimian book, was conducted, considering various models such as

NRTL, UNIQUAC, and their variations. Ultimately, the NRTL-HOC model was deemed the most appropriate choice to ensure precision when dealing with these specific components.

11.2.Simulation:

Figure 17: Flowsheet of VAM plant

11.2.1. Decanter:

Feed Specifications:

🕜 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ng	Comments	
 Specific 	Specifications								
Flash Type		Temperature	•	Pres	sure	•	Cor	mposition ———	
- State vari	ables —						Ma	ass-Flow	• kg/hr •
Temperat	ture		40	C	-			Component	Value
Pressure			1.01353	bar	•		►	OXYGEN	2.2276
Vapor fra	ction						Þ	ETHYLENE	239.898
Total flow	v basis	Mass	•				-	ACETICAC	111.362
Total flow	v rate		3651.41	kg/h	r •		-	WATER	598.831
Solvent					Ŧ		•	CARBO-01	187.682
Reference	Reference Temperature				_	•	VINYL-01	2511.07	
Volume f	Volume flow reference temperature								
	c · · ·							Tot	al 3651.07

Decanter Specifications:

Specifications	Key Co	omponents	Flash C	Options	Entrainment	
Flash specificatior Flash Type	ns ———	Temperatur	e 🔻	Pressur	e -	
Temperature			35	C	-	
Pressure			2	bar	•	
Duty				cal/sec	~	
Vapor fraction						

Stream Results of Decanter:

	Units	IN -	AQUEOUS -	ORG -	VENT -
- Mass Flows	kg/hr	3651.41	666.393	2528.25	456.768
OXYGEN	kg/hr	2.22781	0.0659158	0.0740883	2.0878
ETHYLENE	kg/hr	239.92	24.3946	27.4191	188.106
ACETICAC	kg/hr	111.373	46.5118	64.6398	0.22105
WATER	kg/hr	598.887	551.992	41.1393	5.75585
CARBO-01	kg/hr	187.7	18.745	21.0691	147.886
VINYL-01	kg/hr	2511.3	24.6843	2373.91	112.712

11.2.2. Separator:

Figure 18:Simulated Figure of Separator

Feed Specifications:

🧭 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ng	Comments	
Specifi	cations								
Flash Type	[Temperature	-	Pres	sure	•	Con	nposition —	
- State var	iables —				Ma	ss-Flow	▼ kg/hr ▼		
Tempera	ture		35.5	C	•			Component	Value
Pressure			4.81	bar	•		-	OXYGEN	447.501
Vapor fra	ction						-	ETHYLENE	7114.96
Total flow	v basis	Mass	•				-	ACETICAC	5186.47
Total flow	v rate		22496.1	kg/h	r •			WATER	598 524
Solvent					Ŧ		•	CARBO-01	6394.43
Referenc	e Temper	ature					Þ	VINYL-01	2514.75
Volume f	low refere	ence temperat	ure						
	С	T						Tot	tal 22256.6

Separator Specifications:

Specifications	Flash	Options	Entrainme	nt	PSD	Utility
Flash specification Flash Type	15	Tempera	iture 🔻	Pre	essure	•
Temperature			35.5	С		•
Pressure			4.81	ba	r	-
Duty				cal,	/sec	Ŧ
Vapor fraction						
Valid phases						
Vapor-Liquid			-			

Stream Results of Separator:

	Units	S1 -	S2 •	S3 •
- Mass Flows	kg/hr	22496.1	14266.7	8229.35
OXYGEN	kg/hr	452.315	447.033	5.28249
ETHYLENE	kg/hr	7191.51	6864.38	327.125
ACETICAC	kg/hr	5242.27	114.794	5127.48
WATER	kg/hr	604.963	37.6736	567.29
CARBO-01	kg/hr	6463.22	6174.91	288.319
VINYL-01	kg/hr	2541.8	627.947	1913.85

11.2.3. Distillation Column:

Figure 19:Simulated Figure of Distillation Column

Feed Specifications:

🥑 Mixed	Cl Solid	N	C Solid	Flash Opt	ions	EO Options	Costi	ng	Comments	
 Specifie 	ations									
Flash Type		Tem	perature	-	Pres	sure	-	Cor	nposition ———	
- State vari	ables							Ma	ass-Flow	▼ kg/hr ▼
Temperat	ture			34.5	С	•			Component	Value
Pressure				4	bar	•		•	OXYGEN	2.2273
Vapor fra	ction							•	ETHYLENE	239.895
Total flov	v basis		Mass	-				•	ACETICAC	11024.2
Total flov	v rate			14704.9	kg/h	r •		Þ	WATER	598.831
Solvent						Ŧ		•	CARBO-01	187.68
Referenc	e Temper	ature						Þ	VINYL-01	2650.12
Volume f	low refer	ence	temperat	ure						
	С		Ŧ				Tot	al 14703		

Distillation Column Specifications:

🕜 Specifi	cations	Calculation Options	Co	nvergence	Comments	
Column s O Numb O Reflux	specificatio per of stage ratio	s	A 9	Pressure — Condenser Reboiler	1.1 1.3	bar ▼ bar ▼
Key comp Light key Comp Recov Heavy ke	VINYL-01	overies • 0.96		Condenser Total co Partial co vapor d Partial co and liqu	specifications – ndenser ondenser with a istillate ondenser with v iid distillate	all vapor
Comp	ACETICA	-		Distillate va	apor fraction	0
Recov		0.04				

Stream Results of Separator:

	Units	INLET -	UP 🝷	BOTTOM -
- Mass Flows	kg/hr	14704.9	3683	11021.9
OXYGEN	kg/hr	2.22759	2.22759	9.68697e-10
ETHYLENE	kg/hr	239.926	239.926	0.000212031
ACETICAC	kg/hr	11025.7	441.026	10584.6
WATER	kg/hr	598.908	267.675	331.234
CARBO-01	kg/hr	187.704	187.704	5.89457e-05
VINYL-01	kg/hr	2650.46	2544.44	106.018

11.2.4. Mixer:

S18 Specifications:

🧭 Mixed	Cl Solid	NC Sc	lid Flash Opt	tions	EO Options	Costin	ng	Comments						
🔿 Specifi	Specifications													
Flash Type	Flash Type Temperature Pressure Composition													
- State var	iables —				Ma	ass-Flow	• kg/hr •							
Tempera	ture		35.5	C	•			Component	Value					
Pressure			4.81	bar	•		-	OXYGEN	2.2204					
Vapor fra	ction						•	ETHYLENE	239.896					
Total flow	v basis	Ma	ss •				-	ACETICAC	5115.55					
Total flow	v rate		8553.28	kg/h	r 🔻		-	WATER	239.896					
Solvent					Ψ.		•	CARBO-01	187.676					
Referenc	e Temper	ature					Þ	VINYL-01	2280.3					
Volume f	low refer	ence tem	perature											
	С		*			Tot	al 8065.54							

S19 Specifications:

🎯 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costin	ng	Comments	
Specifi	cations								
Flash Type		Temperature	-	Pres	sure	•	Con	position	
- State var	▼ kg/hr ▼								
Tempera	ture		53.2	C	•			Component	Value
Pressure			9.95	bar	•		-	OXYGEN	0
Vapor fra	ction						-	ETHYLENE	0
Total flow	v basis	Mass	•				-	ACETICAC	5908.7
Total flow	v rate		6151.61	kg/hr 🔹			-	WATER	13 2341
Solvent					-		-	CARBO-01	0
Reference	e Tempera	ature					Þ	VINYL-01	229.676
Volume	low refere	ence temperat	ure						
	С	T				Tota	d 6151.61		

Stream Results of Mixer:

	Units	S18 -	S19 -	S20 -
- Mass Flows	kg/hr	8553.28	6151.61	14704.9
OXYGEN	kg/hr	2.35467	0	2.35467
ETHYLENE	kg/hr	254.402	0	254.402
ACETICAC	kg/hr	5424.9	5908.7	11333.6
WATER	kg/hr	254.402	13.2341	267.636
CARBO-01	kg/hr	199.025	0	199.025
VINYL-01	kg/hr	2418.2	229.676	2647.87

11.2.5. Heat Exchanger:

Figure 21: Simulated figure of Heat Exchanger

Hot Stream Specifications:

🥑 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ng	Comments		
 Specific 	cations									
Flash Type		Temperature	-	Pres	sure	- T	Com	position —		
- State vari	ables —				Ma	ss-Flow	▼ k	g/hr •		
Temperat	ture		158.9	С	•			Compone	nt	Value
Pressure			6.2	bar	•		-	OXYGEN		447.501
Vapor fra	ction						Þ	ETHYLENE		7164.96
Total flov	v basis	Mass	-				•	ACETICAC		5386.47
Total flov	v rate		22496.1	kg/h	r •		•	WATER		598.524
Solvent					Ŧ		•	CARBO-01		6394.43
Reference	e Tempera	ature					•	VINYL-01		2504.75
Volume f	low refere	ence temperat	ure			1				
	С	T					Total	22496.6		

Cold Stream Specifications:

🧭 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ig	Comments	
 Specifie 	cations								
Flash Type		Temperature	-	Pres	sure	-	Con	position	· · · · · · · · · · · · · · · · · · ·
- State var	iables —						Мо	e-Flow •	kmol/hr
Tempera	ture		39.7	С	•			Component	Value
Pressure			8.825	bar	•		-	OXYGEN	
Vapor fra	iction							FTHYI ENF	13629.5
Total flow	w basis	Mass	•						
Total flow	w rate		13629.5	kg/h	r •		H	WATER	
Solvent					Ŧ		- P	WATER	
								CARBO-01	
Referenc	e Temper	rature						VINYL-01	
Volume f	flow refer	ence temperat	ure						
	С	T						Total	13629.5

Heat Exchanger Specifications:

Model fidelity	Hot fluid	Shortcut flow direction
Shortcut	🔘 Shell	Ountercurrent
🔘 Detailed	Tube	Cocurrent
🔘 Shell & Tube		Multipass, calculate number of shells
🔘 Kettle Reboile	er	Multipass, shells in series
Thermosypho	on	
🔘 Air Cooled		
O Plate		
Calculation mode	Design	•
Exchanger speci	ification	
Specification	Hot stream outlet tempe	rature -

Stream Results of Mixer:

	Units	HI •	ci 🔹	C0 -	но -
- Mass Flows	kg/hr	22496.1	13629.5	22496.1	13629.5
OXYGEN	kg/hr	447.49	0	447.49	0
ETHYLENE	kg/hr	7164.79	13629.5	7164.79	13629.5
ACETICAC	kg/hr	5386.34	0	5386.34	0
WATER	kg/hr	598.509	0	598.509	0
CARBO-01	kg/hr	6394.27	0	6394.27	0
VINYL-01	kg/hr	2504.68	0	2504.68	0

	Total	Units	In	Out	Relative difference
۲	Mole	kmol/hr	1052.52	1052.52	0
Þ	Mass	kg/hr	36125.6	36125.6	0
Þ	Enthalpy	cal/sec	-4.72901e+06	-4.72901e+06	0

11.2.6. Reactor:

Feed Specification:

🥑 Mixed	Cl Solid	NC Solid	Flash Opt	ions	EO Options	Costir	ting Comments				
Specifi	Specifications										
Flash Type	e To	emperature	-	•	Com	position					
⊂ State va	riables —						Ma	ss-Flow •	kg/hr 🔹		
Tempera	ture		147.4	С	•			Component	Value		
Pressure	:		8.74	bar	-		Þ	OXYGEN	1120.99		
Vapor fra	action						•	ETHYLENE	7979.35		
Total flo	w basis	Mass	-				•	ACETICAC	6935.68		
Total flo	w rate		22496.1	kg/h	r 🔻		•	WATER	0		
Solvent					~		•	CARBO-01	6204.35		
Reference Temperature							•	VINYL-01	0		
Volume flow reference temperature											
C								Total	22240.4		

Reactor Specification:

Specifications		Configuration	Streams	Reactions				
Reactor type Reactor with specified temperature								
Operating co	onditio	on						
Constant at specified reactor temperature 158.9 C								
Temperature profile								

Reactor Configuration:

Specifications	Configuration	Strea	ams	0	Reactions
Multitube reactor	n Number of	tubes			2500 🚔
Diameter varies a	long the length of	the rea	ctor		
Tube dimensions –					
Length	9.9044	meter		•	
Diameter	0.26	meter		•	
Elevation					
Reactor rise	0	meter	Ŧ		
Reactor angle	0	deg	Ŧ		
Valid phases					
Process stream	Vapor-Only				-

Reactions:

Specifications	Configuration	Streams	Reactions
Reactive system Select reaction set(s) to be included in t	he model –	
Available reaction :	sets > Se >> < < New	lected react	ion sets

Coefficient and Exponent:

	Edit	Reaction	
v	Luit	Reaction	

✓ Edit Reaction 2											
Re	eact	ion No. 🥑 1	•		F	React	ion type	Kinet	ic	•	
٢	Rea	ctants			ה ר	- Pro	ducts —				
		Component	Coefficient	Exponent			Compor	nent	Coefficient	Exponent	
		ETHYLENE	-1	1			VINYL-0	1	1		
		ACETICAC	-1	1			WATER		1		
		OXYGEN	-0.5	-0.5							

Stoichiometry of Reactor:

0	Stoichiom	etry 🕜 Kine	tic Equ	uilibrium	Activity	Comments	
	New	Edit	Cor	у	Paste)	
	Rxn No.	Reaction	type	Stoichio	metry		Delete
Þ	1	Kinetic		ETHYLE	NE + ACETI	CAC + 0.5 OXYGEN> VINYL-01(MIXED) + WATER(MIXED)	×

Kinetic of Reactor:

Stoichiometry	⊘ Kinetic	Equilibrium	Activity	Commer	nts	
1) ETHYLENE + AC	ETICAC + 0.5	OXYGEN>	VINYL-01(I	MIXED) + V	V, -	
Reacting phase	Vapor	•	Rate	basis	Reac	(vol) -
Power Law kinetic	expression —			.(F/R)[1/T-	1/Tol	
If To is specified If To is not specifie	Kinetic fa d Kinetic fa	actor =k actor =kT ⁿ	с(I/Io)'' е е -E/RT	-(L/1/)[1/1-	1/10]	Edit Reactions
k	0.07	73				
n		0				Solids
E	1(00 kcal/kmo	d	•		
То	100	00 C		•		
[Ci] basis	Molarity			-		

Stream Results:

Material	Heat Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	s	
					Units	IN	•	OUT	•
•	Mass Flows			kg/hr		224	96.1		22496.3
•	OXYGEN			kg/hr		113	3.88		0
Þ	ETHYLENE			kg/hr		807	1.09		6082.55
•	ACETICAC			kg/hr		701	5.42		2758.7
•	WATER			kg/hr			0		1276.98
•	CARBO-01			kg/hr		627	5.69		6275.69
•	VINYL-01			kg/hr			0		6102.36

Chapter 12

Layout

The lucrative erection and performance of a process unit based on how good the plant equipment are defined on the process flow sheet. The primary elements to be appraised are following that must be in mind in designing plant layout are as follows:

- Economic compensation; erection and operation cost
- > The process prerequisites
- ➢ Ease of operation
- Ease of maintenance
- Safety
- Future expansion

12.1.Economic Compensation:

The price of erection could be decreased by selecting an arrangement that provides the smallest path of joining pipes across instruments and by selecting minimum price of steel art. That would not be the primarily ideal joining for functioning and preservation.

12.2.Process Pre-requisite:

The necessary equipment must be installed ideally in the process. Even the fitting of the small accessories should be in such manner that they will cover the minimum space.

12.3.Ease of operation:

Equipment which are necessary for operation must be present at suitable position. Necessary valves and instruments should also be at ease position and height. Enough place for work should be provide so that the excess on equipment is easy.

12.4.Ease of Maintenance:

For maintenance all the equipment sited properly for example distillation columns have re-boilers and condensers which can be replaced in case of any failure. Similarly, other equipment's which are needed to be maintained such as heat exchangers and pumps, compressors should be present at ease position.

12.5.Safety:

Protective restrictions should be designed necessarily for separating the risky appliances for lessen the effect any discharge. Minimum three emergency exists should be installed to the explosive process site. Highly hazardous storage must be well protective.

12.6. Future Expansion:

Equipment should be located so that it can be conveniently tied in with any future expansion of the process. Space should be left for the pipes for future needs, and service pipes over-sized to allow for future requirements to control and for safety issues.

Figure 22: Layout display of VAM plant

Chapter 13

Sustainability Development Goals

The United Nation 17 Sustainability development goals are given as:

The Sustainable Development Goals (SDGs) are a set of laws and regulations that attempt to achieve various development objectives for the benefit of the planet and its inhabitants. Industries have a great deal of potential to support a variety of SDGs through their core business operations by offering products and services that support the SDGs both domestically and internationally. Some of the few SDGs that will be met by our initiative:

Sr.No	Goal	SDGs	Related to our project
1	Goal 1: No Poverty.	The objective is to remove poverty	Unemployment and poverty is reduced by installation of these types of chemical Plants. Chemical process industries play a critical role in Job creation.
2	Goal 8: Decent work and economic growth	The objective is to create favorable conditions that promote the availability of quality jobs, which in turn stimulate economic growth.	Our project will follow this goal as an entrepreneurial opportunity creates more job opportunities for society, and economic growth will be improved by ensuring: - Youth employment and training of low-wage employees will boost economic growth. - Improving workforce training will boost the plant's overall output. - Moreover, higher grade machinery will be used to increase production.
3	Goal 9: Industry innovation and infrastructure.	This objective is to encourage fair and sustainable industrial growth, with a focus on increasing employment opportunities and contributing to the overall economic growth of a country. It includes	This objective is critical to the project since exporting VAM will attempt to enhance the country's economy and grow GDP. - Productivity can be increased by creating a strong and resilient infrastructure of the

Table 50: Sustainability development goals

		specific targets such as	industry, it will promote			
		doubling the industrial	economic growth and			
		sector's share of	improve access to			
		employment and GDP,	enterprises			
		particularly in	- Moreover.			
		underdeveloped nations.	improvement in			
		under de verope d'indiens.	infrastructure and			
			enhancement in			
			research could be			
			implemented for better			
			implemented for better			
			sustainability and			
	<u> </u>	a	economic growth.			
	Goal 12:	Sustainable	Sustainable consumption and			
	Responsible	consumption and	production are a main goal that			
	consumption	production aim to	the project relates to.			
	and	achieve better and more	Responsible consumption of			
	production.	efficient use of	energy and raw material will			
		resources while	implement this goal. Heat &			
		reducing environmental	energy integration research of			
		impacts. It involves the	the entire plant will decrease			
4		use of environmentally	the cost needed for energy and			
		friendly products and	improve the resource			
		services and promoting	efficiency. The cost saved can			
		lifestyles that are	be utilized in further research.			
		sustainable and less	Separation and purification of			
		wasteful.	the raw material (in our case,			
			oxy acetylation) will further			
			improve resource efficiency			
			and sustainability.			
	Goal 17:	In order to achieve	Partnerships with various firms			
	Partnerships	sustainable	in several countries help			
	for the goals.	development, the	improve exports and trades of			
	8	declaration emphasizes	the product. Since VAM			
5		the necessity of	market will grow at 4-5%			
		enhancing	(CAGR) the demand of VAM			
		implementation	will increase and by increasing			
		mechanisms and inter-	partnerships export of VAM			
		notional collaboration It	will increase Global trade of			
		duarra attention to the	Will increase. Global trade of			
		aignificance of alabel	vAlvi will target the GDP of			
		significance of global	rakistali and will promote			
		support and investments	economic growth.			
		for the advancement of				
		new technologies.				

Chapter 14

Appendix

Appendix A: LMTD correction factors for 1-2 exchangers

3⁄4 in. (OD tuk	pitch	1-in. t 1	riangu	lar
Shell ID, in.	1-P	2-P	4-P	6-P	8-P
$ \begin{array}{r} 8\\ 10\\ 12\\ 1314\\ 1514\\ 1514\\ 1714\\ 1714\\ 2114\\ 2314\\ 25\\ 27\\ 29\\ 31\\ 33\\ 35\\ \end{array} $	$\begin{array}{r} 37\\61\\92\\109\\151\\203\\262\\316\\384\\470\\559\\630\\745\\856\\970\end{array}$	30 52 82 106 138 196 250 302 376 452 534 604 728 830 938	$\begin{array}{r} 24\\ 40\\ 76\\ 86\\ 122\\ 178\\ 226\\ 278\\ 352\\ 422\\ 488\\ 556\\ 678\\ 774\\ 882\end{array}$	$\begin{array}{r} 24\\ 36\\ 74\\ 82\\ 118\\ 172\\ 216\\ 272\\ 342\\ 394\\ 474\\ 538\\ 666\\ 760\\ 864\end{array}$	70 74 110 166 210 260 328 382 464 508 640 732 848
37 39	$1074 \\ 1206$	1044 1176	$ 1012 \\ 1128$	986 1100	870 1078

Appendix B: Tube sheet layouts Triangular Pitch

Tube OD, in. BW	DWG	Wall thick- ness, in.	ID, in. Flow area per tube, in. ³	Surface pe	Weight		
	BWG			in. ³	Outside	Inside	lb steel
3⁄2	12 14 16 18 20	0.109 0.083 0.065 0.049 0.035	0.282 0.334 0.370 0.402 0.430	0.0625 0.0876 0.1076 0.127 0.145	0.1309	0.0748 0.0874 0.0969 0.1052 0.1125	0.493 0.403 0.329 0.258 0.190
34	10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.134\\ 0.120\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.058\\ 0.049 \end{array}$	$\begin{array}{c} 0.482\\ 0.510\\ 0.532\\ 0.560\\ 0.584\\ 0.606\\ 0.620\\ 0.634\\ 0.652\\ \end{array}$	0.182 0.204 0.223 0.247 0.268 0.289 0.302 0.314 0.334	0.1963	$\begin{array}{c} 0.1263\\ 0.1335\\ 0.1393\\ 0.1466\\ 0.1529\\ 0.1587\\ 0.1623\\ 0.1660\\ 0.1707\\ \end{array}$	$\begin{array}{c} 0.965\\ 0.884\\ 0.817\\ 0.727\\ 0.647\\ 0.571\\ 0.520\\ 0.469\\ 0.401\\ \end{array}$
1	8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.165\\ 0.148\\ 0.134\\ 0.120\\ 0.109\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ \end{array}$	$\begin{array}{c} 0.670\\ 0.704\\ 0.732\\ 0.760\\ 0.782\\ 0.810\\ 0.834\\ 0.856\\ 0.870\\ 0.884\\ 0.884\\ 0.902 \end{array}$	$\begin{array}{c} 0.355\\ 0.389\\ 0.421\\ 0.455\\ 0.479\\ 0.515\\ 0.546\\ 0.576\\ 0.594\\ 0.613\\ 0.639 \end{array}$	0.2618	$\begin{array}{c} 0.1754\\ 0.1843\\ 0.1916\\ 0.1990\\ 0.2048\\ 0.2121\\ 0.2183\\ 0.2241\\ 0.2277\\ 0.2314\\ 0.2361\\ \end{array}$	$\begin{array}{c} 1.61 \\ 1.47 \\ 1.36 \\ 1.23 \\ 1.14 \\ 1.00 \\ 0.890 \\ 0.781 \\ 0.710 \\ 0.639 \\ 0.545 \end{array}$
11/4	8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.165\\ 0.148\\ 0.134\\ 0.120\\ 0.109\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ \end{array}$	$\begin{array}{c} 0.920 \\ 0.954 \\ 0.982 \\ 1.01 \\ 1.03 \\ 1.06 \\ 1.08 \\ 1.11 \\ 1.12 \\ 1.13 \\ 1.15 \end{array}$	0.665 0.714 0.757 0.800 0.836 0.884 0.923 0.960 0.985 1.01 1.04	0.3271	$\begin{array}{c} 0.2409\\ 0.2498\\ 0.2572\\ 0.2644\\ 0.2701\\ 0.2775\\ 0.2839\\ 0.2896\\ 0.2932\\ 0.2969\\ 0.3015 \end{array}$	2.09 1.91 1.75 1.58 1.45 1.28 1.13 0.991 0.900 0.808 0.688
11⁄2	8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.165\\ 0.148\\ 0.134\\ 0.120\\ 0.109\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ \end{array}$	$1.17 \\ 1.20 \\ 1.23 \\ 1.26 \\ 1.28 \\ 1.31 \\ 1.33 \\ 1.36 \\ 1.37 \\ 1.38 \\ 1.40$	1.075 1.14 1.19 1.25 1.29 1.35 1.40 1.44 1.47 1.50 1.54	0.3925	$\begin{array}{c} 0.3063\\ 0.3152\\ 0.3225\\ 0.3299\\ 0.3356\\ 0.3430\\ 0.3492\\ 0.3555\\ 0.3555\\ 0.3587\\ 0.3623\\ 0.3670\\ \end{array}$	2.57 2.34 2.14 1.98 1.77 1.56 1.37 1.20 1.09 0.978 0.831

Appendix C: Heat Exchanger and Condenser tube data

Appendix E: Flooding velocity, sieve plates

ppendix D: Design vapour velocity factor for vertical separators

Appendix F: Selection of liquid-flow arrangement

Appendix G: Entrainment correlation for sieve plates

Appendix H: Weep-point correlation

Appendix I: Relation between downcomer area and weir length

Appendix J: Relation between angle subtended by chord,

Appendix K: Relation between hole area and pitch

Appendix L: Discharge coefficient, sieve plates

Material	f_m
Carbon steel	1.0
Aluminum and bronze	1.07
Cast steel	1.1
304 stainless steel	1.3
316 stainless steel	1.3
321 stainless steel	1.5
Hastelloy C	1.55
Monel	1.65
Nickel and Inconel	1.7

Appendix M: Materials cost factors, fm, relative to plain carbon steel

Equipment type	Installation factor			
Compressors	2.5			
Distillation columns	4			
Fired heaters	2			
Heat exchangers	3.5			
Instruments	4			
Miscellaneous equipment	2.5			
Pressure vessels	4			
Pumps	4			

Appendix N: Installation factors proposed by Hand (1958)

Agitators and mixers Propeller driver power, kW Spiral ribbon mixer driver power, kW	5.0 5.0 1.0	75 35 50	17,000 30,800	1130	1.05	
Propeller driver power, kW Spiral ribbon mixer driver power, kW	5.0 5.0 1.0	75 35 50	17,000 30,800	1130 125	1.05	
Spiral ribbon mixer driver power, kW	5.0	35 50	30,800	125		
	1.0	50			2.0	
Static mixer liters/s	5000		570	1170	0.4	
Boilers	5000					
Packaged, 15 to 40 bar kg/h steam	5000	200,000	124,000	10.0	1.0	
Field erected, 10 to 70 bar kg/h steam	20,000	800,000	130,000	53	0.9	
Centrifuges						
High-speed disk diameter, m	0.26	0.49	57,000	480,000	0.7	
Atmospheric suspended basket power, kW	2.0	20	65,000	750	1.5	
Compressors						
Blower m ³ /h	200	5000	4450	57	0.8	
Centrifugal driver power, kW	75	30,000	580,000	20,000	0.6	
Reciprocating driver power, kW	93	16,800	260,000	2700	0.75	
Conveyors						
Belt, 0.5 m wide length, m	10	500	41,000	730	1.0	
Belt, 1.0 m wide length, m	10	500	46,000	1320	1.0	
Bucket elevator, 0.5 m bucket height, m	10	30	17,000	2600	1.0	
Crushers						
Reversible hammer mill t/h	30	400	68,400	730	1.0	
Pulverizers kg/h	200	4000	16,000	670	0.5	
Jaw crusher t/h	100	600	-8000	62,000	0.5	
Gyratory crusher t/h	200	3000	5000	5100	0.7	
Ball mill t/h	0.7	60	-23,000	242,000	0.4	
Crystallizers						
Scraped surface crystallizer length, m	7	280	10,000	13,200	0.8	
Distillation columns						
See pressure vessels, packing, and trays						
Dryers						
Direct contact rotary area, m ²	11	180	15,000	10,500	0.9	1
Atmospheric tray batch area, m ²	3.0	20	10,000	7900	0.5	
Spray dryer evap rate kg/h	400	4,000	410,000	2200	0.7	
Evaporators						
Vertical tube area, m ²	11	640	330	36,000	0.55	
Agitated Falling film area, m ²	0.5	12	88,000	65,500	0.75	2

Appendix O: Purchased equipment cost for common plant equipment

Continued

Equipment	Units for size, S	Slower	Supper	a	b	21	Note
Exchangers							
U-tube shell and tube	area, m ²	10	1000	28,000	54	1.2	
Floating head shell and tube	area, m ²	10	1000	32,000	70	1.2	
Double pipe	area, m ²	1.0	80	1900	2500	1.0	
Thermosiphon reboiler	area, m ²	10	500	30,400	122	1.1	
U-tube Kettle reboiler	area, m ²	10	500	29,000	400	0.9	
Plate and frame	area, m ²	1.0	500	1600	210	0.95	2
Filters							
Plate and frame	capacity, m ³	0.4	1.4	128,000	89,000	0.5	
Vacuum drum	area, m ²	10	180	-73,000	93,000	0.3	
Furnaces							
Cylindrical	duty, MW	0.2	60	80,000	109,000	0.8	
Box	duty, MW	30	120	43,000	111,000	0.8	
Packings							
304 ss Raschig rings	m ³			0	8000	1.0	
Ceramic Intalox saddles	m ³			0	2000	1.0	
304 ss pall rings	m ³			0	8500	1.0	
PVC structured packing	m ³			0	5500	1.0	
304 ss structured packing	m ³			0	7600	1.0	3
Pressure vessels							
Vertical, cs	shell mass, kg	160	250,000	11,600	34	0.85	4
Horizontal, cs	shell mass, kg	160	50,000	10,200	31	0.85	4
Vertical, 304 ss	shell mass, kg	120	250,000	17,400	79	0.85	4
Horizontal, 304 ss	shell mass, kg	120	50,000	12,800	73	0.85	4
Pumps and drivers							
Single-stage centrifugal	flow liters/s	0.2	126	8000	240	0.9	
Explosion proof motor	power, kW	1.0	2500	-1100	2100	0.6	
Condensing steam turbine	power, kW	100	20,000	-14,000	1900	0.75	
Reactors							
Jacketed, agitated	volume, m ³	0.5	100	61,500	32,500	0.8	2
Jacketed, agitated, glass lined	volume, m ³	0.5	25	12,800	88,200	0.4	
Tanks							
Floating roof	capacity, m ³	100	10,000	113,000	3250	0.65	
Cone roof	capacity, m ³	10	4000	5800	1600	0.7	
Trays							
Sieve trays	diameter, m	0.5	5.0	130	440	1.8	5
Valve trays	diameter, m	0.5	5.0	210	400	1.9	
Bubble cap trays	diameter, m	0.5	5.0	340	640	1.9	
Equipment	Units for size, S	Slower	Supper	а	b	n	Note
Utilities							
Cooling tower and pumps	flow liters/s	100	10,000	170,000	1500	0.9	6
Packaged mechanical refrigerator	evaporator duty, kW	50	1,500	24,000	3500	0.9	
Water ion exchange plant	flow m ³ /h	1	50	14,000	6200	0.75	

Chapter 15

References

REFERENCES

- Luyben, M.L. and B.D. Tyréus, *An industrial design/control study for the vinyl acetate monomer process*. Computers & Chemical Engineering, 1998. 22(7-8): p. 867-877.
- Yan, F.-W., et al., Vinyl acetate formation in the reaction of acetylene with acetic acid catalyzed by zinc acetate supported on porous carbon spheres. Russian Journal of Physical Chemistry A, 2010. 84: p. 796-801.
- Machida, Y., et al., Vinyl Acetate Monomer (VAM) Plant Model: A New Benchmark Problem for Control and Operation Study. IFAC-PapersOnLine, 2016. 49: p. 533-538.
- 4. <chemical-process-design-alexandre.pdf>.
- 5. LaBelle, E.V. and H.D. May, *Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate*. Front Microbiol, 2017. **8**: p. 756.
- 6. Dimian, A.C. and C.S. Bildea, *Chemical process design: Computer-aided case studies*. 2008: John Wiley & Sons.
- Trotus, I.-T., T. Zimmermann, and F. Schuth, *Catalytic reactions of acetylene: A feedstock for the chemical industry revisited*. Chemical reviews, 2014. **114**(3): p. 1761-1782.
- Luyben, W.L., *Design and control of a modified vinyl acetate monomer process*.
 Industrial & engineering chemistry research, 2011. 50(17): p. 10136-10147.
- 9. Barroso Rodríguez, P., Simulación dinámica y control de una planta de producción de Isooctano. 2011.
- Cps, C., Process safety leading and lagging metrics. Center for Chemical Process Safety. AIChE, New York, <u>http://www</u>. aiche. org/sites/default/files/docs/pages/CCPS. ProcessSafety-Lagging_2011-2-24. pdf (accessed 07.06. 15), 2011.
- Willey, R.J., D.A. Crowl, and W. Lepkowski, *The Bhopal tragedy: its influence on process and community safety as practiced in the United States.* Journal of loss prevention in the process industries, 2005. 18(4-6): p. 365-374.
- 12. Rogers, R.L., B. Broeckmann, and N. Maddison. *Explosion safety document for the ATEX 137 Directive-new name for a fire and explosion hazard assessment?*

in *INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES*. 2003. Institution of Chemical Engineers; 1999.

- Maguire, S. and C. Hardy, Organizing processes and the construction of risk: A discursive approach. Academy of Management Journal, 2013. 56(1): p. 231-255.
- 14. Malça, J. and F. Freire, *Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues.* Renewable and sustainable energy reviews, 2011. **15**(1): p. 338-351.
- Cai, H., et al., Decarbonization potential of on-road fuels and powertrains in the European Union and the United States: a well-to-wheels assessment. Sustainable Energy & Fuels, 2022. 6(19): p. 4398-4417.