PRODUCTION OF 3000 TPD OF BIO-ETHYLENE FROM ZEA-MAYS

Session 2019-2023

Supervised By

Engr. Usman Asghar

Group Members

Kashaf Tehreem	UW-19-CHE-BSc-008
Shehar Bano	UW-19-CHE-BSc-001
Abdullah Niaz	UW-19-CHE-BSc-020
Sami Jabbar	UW-19-CHE-BSc-010

Department of Chemical Engineering Wah Engineering College University of Wah, Wah Cantt Production of 3000 Tons/Day of Bio-Ethylene from Zea-Mays

This report is submitted to the Department of Chemical Engineering, Wah Engineering College, University of Wah for the partial fulfilments of the requirement for the

Bachelor of Science In Chemical Engineering

Internal Examiner

FYDP Evaluation Committee

Sign Sign: Sign:

Sign: Sign:

Department of Chemical Engineering, Wah Engineering College, University of Wah Wah Cantt.

PRODUCTION OF 3000 TPD OF BIO-ETHYLENE FROM ZEA-MAYS

Acknowledgement

We are grateful to **Almighty Allah** for giving us the strength, bravery, and insight so that we have been able to complete this final year project report, with the help of His assistance.

We also want to express our gratitude to our parents for their unconditional love, encouragement, and belief in our abilities. Your unwavering support and sacrifices has been the cornerstone of our success. We will always be grateful for their support.

We are thankful to the Dean Engineering **Dr. Adnan Tariq** and Head of Department **Dr. Khurram Shahzad Baig** for providing facilities and guidance. We are also thankful to project coordinator **Mr. Fazeel Ahmed** and other teachers for their earnest efforts and advice, which helped us greatly in accomplishing our objective.

We are thankful to our Project Supervisor, *Engr. Usman Asghar*, for his constant support, knowledge, observations, expertise and valuable insight throughout the entire duration of this project. His guidance and encouragement were instrumental in shaping the direction of our project and enhancing the quality of our work. Their passion for knowledge and dedication to their work has inspired us to strive for excellence.

PRODUCTION OF 3000 TPD OF BIO-ETHYLENE FROM ZEA-MAYS

Abstract

The nonrenewable nature of fossil fuels and their connection to the buildup of greenhouse gases in the atmosphere have been recognized for a long time. As a result, renewable methods have been developed that utilize both non-biomass sources like wind, solar, geothermal, and hydroelectric power, and biomass sources that can be directly combusted or converted into value-added products using various thermochemical processes or using microorganisms. This combination of microorganisms and biomass has paved the way for the creation of a bio-economy, enabling the commercial production of biofuels, bio-chemicals, and other miscellaneous materials. This study focuses on the production of bio-ethylene from Zea Mays (a waste biomass of corn). Ethylene is a key feedstock for various downstream chemical products like PET, ethylene oxide etc. It is responsible for the production of about half of all plastics produced globally (a fast-growing industry all over the world). Annually, over 140 million tons of ethylene are produced, and demand for it is expected to rise, particularly in developing economies. With its resemblance to ethylene in terms of chemical makeup, bio-ethylene can also be used to make plastics and other downstream products with the current machinery and production capacity. This study provides techno-economic analysis for the production of bio-ethylene from Zea Mays (corn stover). The production of bio-ethylene from biomass-based pathways involves two primary steps: fermentation to produce bioethanol from biomass, followed by the catalytic dehydration of bioethanol to bioethylene. This research work discusses all the technical aspects with the economic evaluation of the production process. All indicators of economic analysis (Net Present Worth, IRR etc.) shows the Bio-Ethylene from Zea Mays is economically viable (27.8% rate of return) to produce value added product (bio-ethylene) with least environmental implications.

Table of Contents

1	IN	TRO	ODUCTION	1
	1.1	Int	troduction:	1
	1.2	Phy	nysical Properties:	1
	1.3	The	nermodynamic Data:	2
	1.4	Rea	eactions of Ethylene:	2
	1.4	1.1	Hydrogenation of Ethylene:	2
	1.4	1.2	Addition Reaction of Ethylene:	2
	1.4	1.3	Hydroxylation of Ethylene:	2
	1.4	1.4	Ozonolysis Reaction:	2
	1.5	Ind	dustrial Applications:	3
	1.6	Sto	orage and Handling of the Product:	3
	1.7	Saf	ıfety Hazard:	4
	1.8	Mo	otivation:	4
2	PF	ROC	CESS SELECTION	5
	2.1	Glo	lobal Ethylene Production and Consumption:	7
	2.2	Eth	hylene Consumption and Production in Pakistan:	7
	2.3	Ma	arket Assessment:	8
	2.3	3.1	Corn Production in Pakistan:	8
	2.3	3.2	Worldwide Corn Production Data:	9
	2.3	3.3	Raw Material:	10
	2.3	3.4	Corn Silage Suppliers in Pakistan:	10
	2.4	Caj	apacity selection:	10
	2.5	Ma	anufacturing Processes:	11
	2.6	Pro	ocess Description:	11
3	M	ATE	ERIAL BALANCE	

	3.1	Introduction:	15
	3.2	Feed Composition:	15
	3.3	Material Balance on Mixer (M-101):	16
	3.4	Material Balance on Flash Separator (S-101):	17
	3.5	Material Balance on Pre-Hydrolysis Reactor (R-101):	18
	3.6	Material Balance on Neutralization Reactor (R-102):	19
	3.7	Material balance on Saccharification Reactor (R-103):	21
	3.8	Material Balance on Fermentation Reactor (R-104):	23
	3.9	Material Balance on Distillation Column (D-101):	24
	3.10	Material Balance on Distillation Column (D- 102):	26
	3.11	Material Balance on Reactor (R-105):	27
	3.12	Material Balance on Flash Separator (S-102):	29
4	EN	VERGY BALANCE	31
	4.1	General Equation of Energy Balance:	33
	4.2	Energy Balance on Pre-Heater (H- 101):	33
	4.3	Energy Balance on Reactor -101 (Pre-hydrolysis Reactor):	34
	4.4	Energy Balance on Flash Separator (S-101):	35
	4.5	Energy Balance on Waste Heat Boiler (H-102):	36
	4.6	Energy Balance on Reactor- 102 (Neutralizer):	37
	4.7	Energy Balance on Pre-Heater (H-103):	38
	4.8	Energy Balance on Reactor- 103 (Saccharification Reactor):	39
	4.9	Energy Balance on Fermentation Reactor (R- 104):	40
	4.10	Energy Balance on Heat Exchanger (H- 104):	41
	4.11	Energy Balance on Distillation Column (D- 101):	42
	4.12	Energy Balance on Distillation Column (D- 102):	43
	4.13	Energy Balance on Reactor- 105:	44

	4.14	Energy Balance on Waste Heat Boiler (WHB-105):	45
	4.15	Energy Balance on Flash Separator (S-102):	15
5	EQUI	PMENT DESIGN	17
	5.1 Re	eactor Design:	1 9
	5.1.1	Introduction:	1 9
	5.1.2	Principal Types of Reactors:	19
	5.1.3	Selection of Reactor:	19
	5.1.4	Design of Multi-Tubular Reactor (R-105):	50
	5.1.5	Design of Pre-Hydrolysis Reactor (R-101):	54
	5.2 Di	stillation Column Design:	50
	5.2.1	Introduction:	50
	5.2.2	Types of Distillation Column:	50
	5.2.3	Choice Between Packed and Plate Column:	50
	5.2.4	Choice of Plates in Column:	51
	5.2.5	Selection of Trays:	51
	5.2.6	Main Components of Distillation Column:	51
	5.2.7	Factors Affecting the Distillation Column Operation:	52
	5.2.8	Design calculations:	52
	5.2.9	Design Calculations:	53
	5.3 De	esign of Waste Heat Boiler (WHB-102):	71
	5.3.1	Introduction:	71
	5.3.2	Advantages:	71
	5.3.3	Design Calculations:	71
	5.4 De	esign of Heat Exchanger:	30
	5.4.1	Introduction:	30
	5.4.2	Basic Principle of Heat Exchangers:	30

	5.4	.3 Types of Flow Arrangements in Heat Exchangers:	30
	5.4	.4 Selection Criteria of Heat Exchanger:	30
	5.4	.5 Why Shell and Tube Heat Exchanger Is Selected:	30
	5.4	.6 Design Steps of Shell & Tube Heat Exchanger:	30
	5.4	Design of Heat Exchanger (H-103):	32
	5.5	Design of Flash Separator (S-102):	35
	5.6	Design of Spiral Tube Heat Exchanger:	39
6	M	ECHNICAL DESIGN9	93
	6.1	Mechanical Design of Pre-Hydrolysis Reactor (R-101):) 5
	6.2	Mechanical Design of Saccharification Reactor (R-103):	98
	6.3	Mechanical Design of Fermentation Reactor (R-104):)0
7	PC	OWER CALCULATIONS10)3
	7.1	Introduction:)5
	7.2	Design Calculations:)5
8	PR	ROCESS SIMULATION10)9
	8.1	Process Flow Diagram:	11
	8.2	Introduction to ASPEN HYSYS:	11
	8.3	Introduction to ASPEN Plus:	11
	8.4	Simulation of Dehydration Reactor:11	11
	8.5	Simulation of Fermenter:	14
	8.6	Simulation of Distillation Column (D-101):11	17
	8.7	Simulation of Distillation Column (D-102):	21
	8.8	Simulation of Heat Exchanger:12	27
9	CO	DST ESTIMATION17	74
	9.1	Economic Evaluation:	76
	9.2	Total Capital Investment:	76

9.2	2.1	Purchased Equipment Cost:	177
9.2	2.2	Direct Cost:	178
9.2	2.3	Indirect Cost:	179
9.3	Ope	erating Cost:	179
9.4	Tot	tal Production Cost:	179
9.4	4.1	Variable Cost:	179
9.4	4.2	Fixed Cost:	180
9.4	4.3	Direct Production Cost:	181
9.4	4.4	Overhead Charges:	181
9.5	Pro	fitability Analysis:	181
9.6	Fea	asibility Analysis:	182
9.0	6.1	Discounted Cash Flow:	182
9.0	6.2	Net Present Worth:	182
9.0	6.3	Cash Flow:	182
9.0	6.4	Internal Rate of Return:	182
9.7	Cur	mulative Cash Flow Diagram:	184
10 IN	ISTR	RUMENTATION AND PROCESS CONTROL	185
10.1	Iı	ntroduction:	187
10.2	Iı	mportance of Process Control:	187
10.3	Р	Process:	187
10).3.1	Reduce Variability:	188
10).3.2	Increase Efficiency:	188
10.4	Р	Process Control Terms:	188
10).4.1	Process Variable:	188
10).4.2	Set Point:	188
10).4.3	Measured Variables:	

10.4.4	Manipulated Variable:
10.5 H	Iardware Elements of Control System:
10.5.1	The Measuring Instruments or Sensors:
10.5.2	Transducers:
10.5.3	Transmission Line:
10.5.4	Controller:
10.5.5	The Final Controller Element:
10.6 C	Classification of Control Systems:
10.6.1	Backward Feed Control Loop:
10.6.2	Forward Feed Control Loop:
10.6.3	Ratio Control:
10.6.4	Split Range Loop:
10.6.5	Cascade Control Loop:
10.6.6	Control Schemes of Distillation Column:
10.7 C	Control Scheme:
	Control Scheme:
10.8 Ii	
10.8 Ii	nstrumentation and Control for Distillation Column:
10.8 Ii 10.8.1	nstrumentation and Control for Distillation Column:
10.8 In 10.8.1 10.8.2	nstrumentation and Control for Distillation Column:
10.8 H 10.8.1 10.8.2 10.8.3	nstrumentation and Control for Distillation Column:
10.8 H 10.8.1 10.8.2 10.8.3 10.8.4	nstrumentation and Control for Distillation Column:
10.8 h 10.8.1 10.8.2 10.8.3 10.8.4 10.8.5	Action:
10.8 h 10.8.1 10.8.2 10.8.3 10.8.4 10.8.5 10.8.6 10.8.7	Action:
10.8 h 10.8.1 10.8.2 10.8.3 10.8.4 10.8.5 10.8.6 10.8.7	Action:

	10.9.3	3 Pressure Control:	194
	10.9.4	4 Operation:	194
11	SAFI	ETY AND HAZOP STUDY	
	11.1	Introduction:	197
	11.2	Hazard and Operability Study:	197
	11.3	When is HAZOP Carried Out?	197
	11.4	Why is HAZOP Carried Out?	
	11.5	Benefits of HAZOP Study:	
	11.6	Success or Failure of the HAZOP:	
	11.7	Systematic Terms:	
	11.7.1	1 Study Nodes:	
	11.7.2	2 Intention:	
	11.7.3	3 Deviations:	
	11.7.4	4 Foundation:	198
	11.7.5	5 Consequences:	
	11.7.0	6 Guide Words:	199
	11.8	Steps for HAZOP Study:	199
	11.8.	1 Scope of Work:	199
	11.8.2	2 HAZOP Team:	
	11.8.3	3 Data Collection:	
	11.8.4	4 Operating Procedures:	
	11.8.5	5 Conduct the Study:	200
	11.9	Procedure:	
	11.10	HAZOP on Reactor:	202
	11.11	HAZOP on Heat Exchanger:	
	11.12	HAZOP on Distillation Column:	203

12	ENV	IRONMENTAL IMPACT ASSESSMENT	
	12.1	Introduction:	
	12.2	Safety and Environmental Factors:	
	12.2.1	1 Safety:	
	12.3	Environmental Impacts of Ethylene Plant:	209
	12.3.	1 Air Pollution:	
	12.3.2	2 Water Pollution:	
	12.3.3	3 Environmental:	
	12.4	Emissions:	210
	12.4.	1 GHG Emissions:	210
	12.4.2	2 Pollutant Emissions:	210
	12.4.3	3 Carbon Dioxide:	211
13	REF	ERENCES	212
14	APP	ENDICES	215
	14.1	Appendix-A:	216
	14.2	Appendix-B:	222

List of Figures

Figure 1.1: Chemical Reactions of Ethylene	3
Figure 1.2: Advantages of Bio-Ethylene Production	4
Figure 2.1: Ethylene Demand	7
Figure 2.2: Manpower Engaged with Plastic Sector	8
Figure 2.3: Pakistan Corn Production per Anum	9
Figure 2.4: Worldwide Corn Production	9
Figure 2.5: Raw Material Composition	10
Figure 3.1: Mixer (M-101)	
Figure 3.2: Flash Separator (S-101)	17
Figure 3.3: Pre-Hydrolysis Reactor (R-101)	
Figure 3.4: Neutralization Reactor (R-102)	19
Figure 3.5: Saccharification Reactor (R-103)	
Figure 3.6: Fermentation Reactor (R-104)	
Figure 3.7: Distillation Column (D-101)	24
Figure 3.8: Distillation Column (D-102)	
Figure 3.9: Reactor (R-105)	27
Figure 3.10: Flash Separator (S-102)	
Figure 4.1: Pre-Hydrolysis Reactor (R-101)	
Figure 4.2: Flash Separator (S-101)	35
Figure 4.3: Saccharification Reactor (R-103)	
Figure 4.4: Fermentation Reactor (R-104)	
Figure 5.1: Multi-Tubular Reactor (R-105)	
Figure 5.2: Pre-Hydrolysis Reactor (R-101)	54
Figure 5.3: Waste Heat Boiler (WHB-102)	71
Figure 5.4: Heat Exchanger (H-103)	
Figure 5.5: Flash Separator (S-102)	
Figure 6.1: Pre-Hydrolysis Reactor (R-101)	
Figure 6.2: Saccharification Reactor (R-103)	
Figure 6.3: Fermentation Reactor (R-104)	100
Figure 9.1: Cumulative Cash Flow Diagram for Breakeven	184
Figure 10.1: Instrumentation and Control for Distillation Column	
Figure 10.2: Instrumentation and Control on Reactor	
Figure 11.1: Guide Words for HAZOP	
Figure 11.2: Steps for HAZOP Study	
Figure 11.3: HAZOP Process Flow Chart	201

List of Tables

Table 1.1: Physical Properties of Ethylene	1
Table 1.2: Thermodynamic Properties of Ethylene	2
Table 3.1: Composition of Feed	
Table 3.2: Material Balance on Mixer (M-101)	16
Table 3.3: Material Balance on Flash Separator	17
Table 3.4: Material Balance on Pre-Hydrolysis Reactor (R-101)	19
Table 3.5: Material Balance on Neutralization Reactor	21
Table 3.6: Material Balance on Saccharification Reactor	22
Table 3.7: Material Balance on Fermentation Reactor	24
Table 3.8: Material balance on Distillation column	25
Table 3.9: Material Balance on Distillation column	27
Table 3.10: Material Balance on Reactor	
Table 3.11: Material Balance on Flash Separator	30
Table 4.1: Thermodynamic Data for Pre-Heater (H-101)	
Table 4.2: Energy Balance on Reactor -101	34
Table 4.3: Thermodynamic Data for Flash Separator -101	36
Table 4.4: Thermodynamic Data for WHB-102	
Table 4.5: Thermodynamic Data for R-102	37
Table 4.6: Thermodynamic Data for H-103	
Table 4.7: Thermodynamic Data for R-103	
Table 4.8: Thermodynamic Data for R-104	41
Table 4.9: Thermodynamic Data for H-104	
Table 4.10: Thermodynamic Data for D-101	
Table 4.11: Thermodynamic Data for D-102	44
Table 4.12: Thermodynamic Data for WHB-106	45
Table 4.13: Thermodynamic Data for S-102	46
Table 5.1: Feed Composition	63
Table 5.2: Product Conditions	
Table 5.3: Dimensions of Shell and Tube Side	
Table 7.1: Rule of thumb for locating the process equipment	106
Table 9.1: Purchased Equipment Cost for Plant	177
Table 9.2: Direct Cost of Plant	178
Table 9.3: Indirect Cost of Plant	179
Table 9.4: Fixed Operating Cost for Process Plant	180
Table 9.5: Discounted Cash Flow Analysis for Process Plant	183
Table 10.1: Elements of Control Loop for Feed of Distillation Column	192
Table 10.2: Elements of Control Loop for Distillation Column Top Section Pressure	192
Table 10.3: Control Loop Elements for Drum Level Control for Distillation Column	193
Table 11.1: HAZOP Study on Reactor	202
Table 11.2: HAZOP Study on Heat Exchanger	203
Table 11.3: HAZOP Study on Distillation Column	204

CHAPTER # 01 INTRODUCTION

1.1 Introduction:

Ethylene, also referred to as ethene (CH2=CH2), is the first alkene. It is a colorless gas with a commonplace boiling point of -103.7 °C and is just marginally soluble in water and alcohol. Due to its high activity, this substance reacts readily when combined with various chemical reagents [1]. Ethylene due to its simple molecular formula and composition serves as the basic raw material for Plastic and Polymer industry. Ethylene is the important feed stock used in the production of various valuable products like plastics, PET bottles, PVC pipes, ethylene glycol etc. Almost 60% of Ethylene is used in Polyethylene manufacturing. At the present time, Ethylene is being produced from the cracking of fossil fuel based raw materials like Naphtha, Natural gas, shale gas etc. As we know, fossil fuels are depleting day by day and their prices are on the rise which is causing ethylene to get more expensive and eventually affecting the polymer industry. A number of people are now interested in making plastics using non-renewable feedstock. Utilizing biomass to create usable goods contributes to the reduction of greenhouse gas emissions. [2].

In this project, we have designed a complete process for the sustainable production of Ethylene (also known as Bio-Ethylene due to its production from biomass) from a cheap waste material, i.e., Corn stover (Zea-Mays) which is the remaining of the corn crop. Farmer used to get rid of this waste (corn stover) by land filling or by burning it. This action involves the serious environmental impacts (emission of GHG from its burning is major impact). Our project is a value addition project (converting waste into valuable product) which contains following Commercial advantages over the existing process:

- i. Reducing Environmental Hazards
- ii. Raw material is inexpensive which will obviously drastically affect the selling price of Ethylene. The low-price Ethylene will give the boost to the polymer industry of Pakistan (as ethylene is feed stock for polymer industry)
- iii. This process is sustainable in term Ethylene production because the conventional production involves the fossil fuel based raw material which depleting day by day.
- iv. This process is the first step towards bio-refinery in Pakistan.

1.2 Physical Properties:

Description	Properties
Chemical Formula	C2H4
Molecular weight	28.05 g/mol
Boiling Point	-103.7 °C
Melting Point	-169.2 °C
Colour	Colourless
Odour	Odorless
PH	2.5
Specific gravity	0.9740

Table 1.1: Physical Properties of Ethylene

1.3 Thermodynamic Data:

Table 1.2: Thermodynamic Properties of Ethylene

Description	Properties
Heat capacity, Cp (gas)	42.9 J/mol K
Thermal conductivity	0.020 W/m°C
Specific volume	0.0247 m3/mol
Flash Point	137 K

1.4 Reactions of Ethylene:

1.4.1 Hydrogenation of Ethylene:

At normal temperature, it is easily hydrogenated under pressure while a platinum or palladium chemical catalyst is present. Under 200 to 300°C, nickel catalyst is used. Under normal conditions of pressure and temperature, raney nickel works well as a catalyst.

$$C_2H_4 + H_2 \rightarrow C_2H_6 \tag{1.1}$$

1.4.2 Addition Reaction of Ethylene:

Chlorine or bromine and $CH_2=CH_2$ combine to generate an addition compound. It joins with halogen acids to generate an addition complex. For instance, ethylene bromide is created when $CH_2=CH_2$ adds hydrogen bromide. The addition of halogen acids reacts in the following order: HI > HBr > HCl > HF. After absorbing concentrated sulfuric acid, it is hydrolyzed to produce ethanol.

$$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2 \tag{1.2}$$

1.4.3 Hydroxylation of Ethylene:

It is easily converted into glycols by adding hydroxyl groups to it. It is changed into cisethylene glycol by a cold, diluted alkaline permanganate solution. Osmium tetroxide quickly forms cyclic compounds like osmic ester when it reacts with CH₂=CH₂. 1,2-glycol is produced by refluxing osmic ester with ethanolic sodium hydrogen sulphate.

$$C_2H_4 + H_2O + KMnO_4 \rightarrow C_2H_6O_2 \qquad (1.3)$$

1.4.4 Ozonolysis Reaction:

To create an ozonide chemical, it adds ozone gas molecules. To create formic acid, the ozonide is oxidized using silver oxide, hydrogen peroxide, or peracids. Ozonide is reduced with zinc dust to produce formaldehyde. To provide the appropriate alcohol, reduction can alternatively be done using sodium borohydride or lithium aluminum hydride.

$$C_2H_4 + O_3 \rightarrow 2CH_2O \tag{1.4}$$

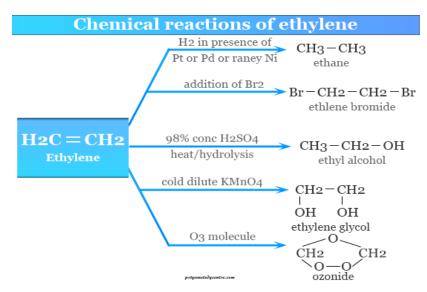


Figure 1.1: Chemical Reactions of Ethylene [3]

1.5 Industrial Applications:

There are many polymeric derivatives of ethylene that are employed in diverse contexts.

- ✓ Polyethylene is used to make packaging, stretch films, containers, barrels, pallets, and other goods.
- ✓ The manufacturing of polyester films, resins, and fibers all uses ethylene oxide.
- ✓ Polypropylene (PP) is used to make a variety of products, including films, sheets, foamed goods, industrial goods, reinforced goods, containers, etc.
- \checkmark The most common material used to make soda bottles and other packaging is polyethylene terephthalate (PET).
- ✓ PVC, a polymer of vinyl chloride, is used to produce bottles and packaging.
- ✓ The fabrication of electrical and electronic gadgets uses polystyrene (PS).

1.6 Storage and Handling of the Product:

Around -103°C is the typical storage temperature for liquid ethylene. The use of cryogenic tanks is prevalent. Transferring ethylene typically involves the use of pipelines. Trucks can also transport liquid ethylene. For low temperatures, these tanks are built of carbon steel or stainless steel. [4].

Before working with ethylene, one must receive training on how to handle and store it.

- ✓ An explosion could result from the combination of ethylene with trifluoro-methyl subfluoride, ozone, and nitrogen dioxide.
- ✓ The OXIDENTS (perchlorates, peroxides, permanganate, chlorate, nitrate, chlorine, bromine, and fluorine), Nitro-methane, strong acid (hydrochloric acid, sulfuric acid, nitric acid, etc.), and a chlorine rink are incompatible with ethylene.
- ✓ Store in an airtight container in a cool, well-ventilated place.
- ✓ Metal container for transporting ethylene must be grounded
- ✓ While opening and closing the ethylene container, only non-sparking tools and equipment should be used.

✓ Use electrical equipment and fittings that are explosion-proof where ethylene is used, processed, or manufactured.

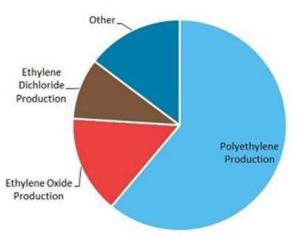
1.7 Safety Hazard:

- ✓ Inhaling ethylene gas can have an impact on you.
- ✓ Contact with liquid ethylene can cause frostbite on the skin..
- ✓ Ethylene exposure can result in headaches, vertigo, weariness, drowsiness, confusion, and unconsciousness.
- \checkmark Ethylene is one of the volatile compounds that can cause deadly flames and explosions.

1.8 Motivation:

- \checkmark A step towards bio refinery as we are using biomass for production of ethylene.
- \checkmark We are converting a waste into useful product hence it is a value addition.
- ✓ Biorefinery based ethylene is sustainable alternative to oil-based ethylene because it can reduce dependence on fossil fuels.
- ✓ Compared to fossil fuel-based ethylene, bio-ethylene can cut GHG emissions by 40%.

Figure 1.2: Advantages of Bio-Ethylene Production


CHAPTER # 02 PROCESS SELECTION

2.1 Global Ethylene Production and Consumption:

In 2021, the estimated value of the world's ethylene capacity was 216.35 mtpa. From 2021 to 2026, the market is anticipated to expand at an AAGR of more than 7%. The major nations in the globe, which together account for more than 50% of the world's ethylene capacity, are the US, China, Saudi Arabia, South Korea, and Iran. From 2020 to 2028, the demand for ethylene is anticipated to grow at a CAGR of 3.4%, reaching 233.9 million tons.

The expected increase in global ethylene usage from 2014 to 2020 is 4.3% per year. Additionally, estimates indicate that between 2020 and 2028, the growth rate of the world's ethylene consumption will climb by 3.4%.

The greatest user of ethylene worldwide, North America consumes 24% of the world's supply. 18% of the world's ethylene consumption is accounted for by China, the second-largest consumer. Third-largest user globally, the Middle East consumes 18% of the world's ethylene.

Global Ethylene Demand by Application

Figure 2.1: Ethylene Demand [5]

2.2 Ethylene Consumption and Production in Pakistan:

Almost 60% of ethylene is used in production of polyethylene. Pakistan's plastics sector is one of the nation's oldest, and evidence of its existence dates to 1947, the year Pakistan was founded. The years 1965 to 1975 marked a significant turning point in the usage of plastics in the country, when it became a powerful force with a sizable base.

Pakistan's plastics sector has made considerable progress toward success. Currently, plastics materials are the fourth most popular import, and this industry alone makes a considerable contribution to the national exchequer across multiple categories. The industry is expanding at a rate of 15% a year on average, and as it develops, it is outpacing all other industrial sectors. Over the past 15 years, the nation's per capita consumption has also increased.

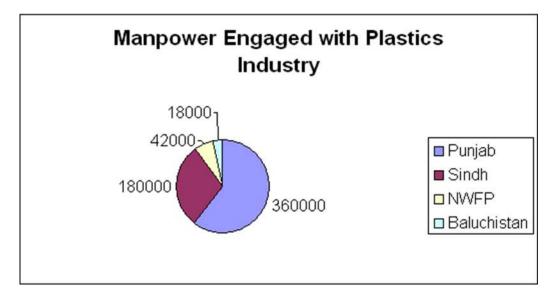


Figure 2.2: Manpower Engaged with Plastic Sector [2]

There are 6000 plastics processors operating in Pakistan now. The entire sector is a SME that is self-financing. Through customs duties, sales taxes, and income taxes, the sector gives the national exchequer about 8 billion rupees a year. There is a significant concentration of plastics processors in and around the industrial centres of Karachi, Lahore, Gujranwala, Peshawar, Faisalabad, Hyderabad, Rawalpindi, Gadoon, and Hattar, whether they be producers of woven, extruded, injection-molded, blow-molded, or tubular films.

Both the structured and un-organized sectors of the industry can be separated. The organized sector, which has between 600 and 700 units, is capable of manufacturing goods of high quality. Products of poor quality and low price are produced by the un-organized sector. Despite this, over the past 15 years, the un-organized sector has expanded more quickly than the structured sector.

2.3 Market Assessment:

The growth of the ethylene market is primarily being driven by the rising demand for polyethylene products across a variety of industries, while variables like the volatility of raw material costs could restrain market expansion. The going up demand for polyethylene products from a variety of industries, including consumer electronics, construction, and automotive, is one of the significant drivers fueling the expansion of the worldwide ethylene market. The market for polyethylene was estimated at USD 66.24 billion in 2021, and it is anticipated to expand at a CAGR of 3.7% over the next five years. The worldwide polyethylene market is also projected to be significantly impacted by the growing demand for plastic. [5].

2.3.1 Corn Production in Pakistan:

In Pakistan, maize has overtaken rice and wheat as the third-most important cereal crop, covering 1.3 million hectares. Pakistan's corn (maize) production increased by 7.79 percent between 2019 and 2020, reaching 7,800,000 tons. In 2020, maize production soared by 32.16 percent following a decline of 3.78 percent in 2017.

Presently, Pakistan's two most important provinces for corn production are Punjab and KPK. Nearly all of the country's maize (corn) production comes from these two provinces. In which KPK contributes 21% and Punjab contributes 76% of nation's grain production. In the provinces of Sindh and Baluchistan, maize (corn) grains are only produced by 2 to 3 percent. Azad Kashmir's 0.122 million hectares of land are used for maize (corn) production, which is also gaining prominence [6].

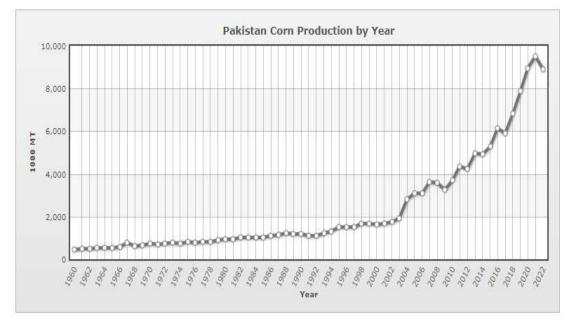


Figure 2.3: Pakistan Corn Production per Anum [7]

2.3.2 Worldwide Corn Production Data:

Worldwide, 1,060,247,727 tons of corn are produced each year. The largest maize producer in the world, the United States of America produces 384,777,890 tons of corn annually. China comes in second with a yearly production of 231,837,497 tons. China and the United States of America jointly create 58% of global output. [8].

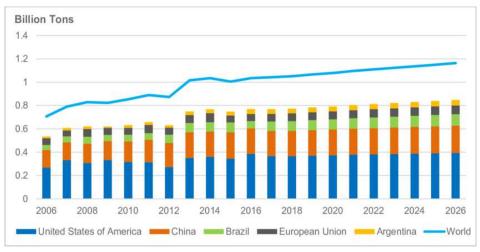


Figure 2.4: Worldwide Corn Production [12]

2.3.3 Raw Material:

As a raw material, zea mays, also known as corn stover, is utilized. The stalks, leaves, and husks that remain after harvesting corn are called stover. It is mostly made of cellulose, lignin, and water.

Compound	Modeled As	wt%
Cellulose	Cellulose	49. <mark>2</mark>
Water	Water	20
Sucrose	Sucrose	0.6
Lignin	Vanillin	13.1
Ash	Calcium Oxide	6.7
Acetate	Acetic Acid	1.5
Extractives	Glucose Oligomer	8.9

Figure 2.5: Raw Material Composition

2.3.4 Corn Silage Suppliers in Pakistan:

There are some companies that supply corn stover in all over Pakistan.

- Agri-complex Pakistan private limited
- Four Brothers Group Pakistan
- King Silage (Pvt) Ltd
- AIMS Agro Feeds
- A2ZEE Corporation

2.4 Capacity selection:

Corn production in Pakistan (2022 - 2023) = 8.9 million Tones

Punjab takes 76% part in corn production per year = 6.76 million Tones

2kg of corn stover contain 1kg of corn = 13.4 million Tons of Corn Stover

It is premised that we will safely and conveniently collect 40% of that waste

= 5.3 million Tones

Production of Bio-Ethylene = 3000 Tones / day

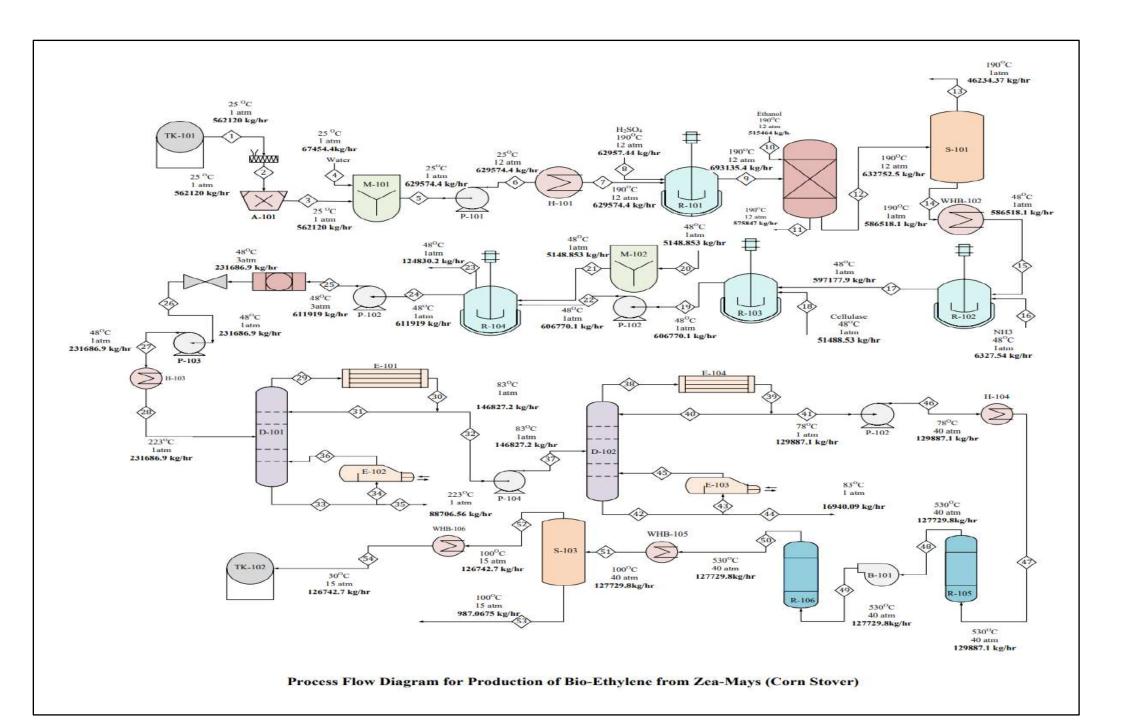
2.5 Manufacturing Processes:

The division occurring about because of the refining of gaseous petrol and oil are broken to produce ethene.

The processes are:

- \checkmark The steam cracking of ethane and propane.
- ✓ The steam cracking of naphtha from crude oil
- ✓ The catalytic cracking of gas oil from crude oil.

Availability, pricing, and other products from cracking that are required will all affect the feedstock choice. Steam cracking is the primary method of ethene production.


✓ Ethylene can also be produces by biomass such as sugarcane, wood waste, corn stover etc.

2.6 Process Description:

This procedure involves two main steps: firstly, production of bioethanol from maize stover and secondly production of ethylene from bioethanol. The procedure involves four basic stages:

- Pre-treatment of Raw Material
- Saccharification and Fermentation
- Purification of Bioethanol
- Conversion of Bioethanol to Bio-Ethylene

The physical and chemical processing of raw materials is the first phase. Corn stover is then ground to a thickness of 0.2 mm. To release hemicellulose sugars and break down biomass, maize stover is first processed with diluted sulfuric acid in the pre-treatment and conditioning unit [2]. Ammonia is then added to the pre-treated slurry to alter its acidity to be acceptable for enzymatic hydrolysis. The subsequent step involves sending the hydrolysate to an enzymatic hydrolysis and fermentation unit, where a cellulase enzyme is utilized for the enzymatic hydrolysis process. The cellulose in the hydrolyzed slurry is then fermented to create bioethanol. Using glucose as the main carbon source, an enzyme manufacturing unit on-site produces the necessary cellulase enzyme. The produced beer is then divided into bioethanol, water, and residual solids in a production recovery section using distillation and solid-liquid separation [9]. A wastewater treatment unit collects and treats wastewater streams produced during the synthesis of bioethanol using anaerobic and aerobic digestion. To form HP steam, which is utilized to produce electricity and meet the demand for process heat, solids and biogas from the product recovery unit and wastewater treatment unit are burned. Bioethanol made from maize stover is first dehydrated to produce ethylene, water, and other by-products in the ethylene manufacturing process. The dehydration reactor effluent is then pressurized and quenched. In an ethylene purification unit, the effluent is finally divided into ethylene, water, and other components [4].

CHAPTER # 03 MATERIAL BALANCE

3.1 Introduction:

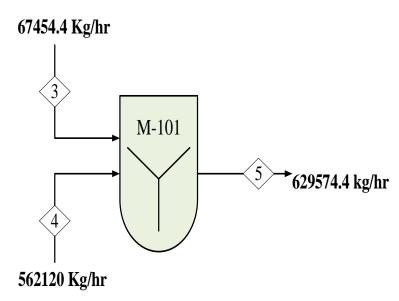
The quantities of all materials entering and leaving any system or process are calculated deploy on the "law of conversation of mass". This law states that the creation or destruction of matter has no effect on the overall mass.

The basic idea behind material balancing calculations is to formulate and resolve several independent equations with several compositional and mass flow rate unknowns that are frequently seen in engineering and environmental investigations.

To develop chemical reactors, investigate substitute chemical production methods, model pollutant dispersion, and other physical system processes, for example, the mass balance theory is applied. Three complementary analysis tools are the material balance, energy balance, and the slightly more complex entropy balance. Several methodologies are required for comprehensive design and research of systems like the refrigeration cycle.

General Equation of Material Balance:

(Rate of Mass Input) - (Rate of Mass Output) + (Rate of Mass Generation) – (Rate of Mass Consumption) - (Rate of Mass Accumulation) = 0


Basis: 1 hour of operation Assumption: Steady state conditions. Capacity of plant: 3000 tons /day Reactant supplied: 14871.3 tons/ day Yield: 21%

3.2 Feed Composition:

Components	Composition %	Mass Flow Rates (Kg/hr)
Cellulose	49.2	276563.04
Water	20	112424
Sucrose	0.6	3372.72
Lignin	13.1	73637.72
Ash	6.7	37662.04
Acetic acid	1.5	8431.8
Glucose Oligomer	8.9	50028.68
Total	100	562120

Table 3.1: Composition of Feed

3.3 Material Balance on Mixer (M-101):

Figure 3.1: Mixer (M-101)

60% of original amount of water is added in mixture Composition of water = 112424

 $= (112424 \times 0.60)$ = 67454.4 kg/hr

 Table 3.2: Material Balance on Mixer (M-101)

	Material Input (Kg/hr)		Material Output (Kg/hr)
Components	Stream-03	Stream-04	Stream-05
Cellulose	-	276563.04	276563.04
Water	67454.4	112424	179878.4
Sucrose	-	3372.72	3372.72
Lignin	-	73637.72	73637.72
Ash	-	37662.04	37662.04
Acetic Acid	-	8431.8	8431.8
Glucose Oligomer	-	50028.68	50028.68
TOTAL	629574.4 kg/hr		629574.4 kg/hr

3.4 Material Balance on Flash Separator (S-101):

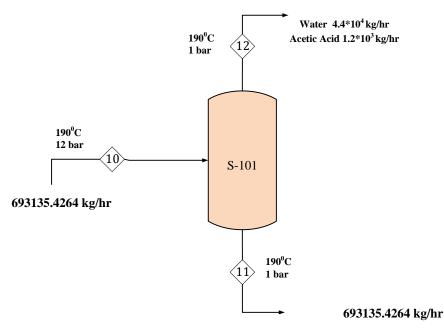


Figure 3.2: Flash Separator (S-101)

25% of water is removed in flash separator.

Composition of water = 179878.4 kg/hr

 $=(179878.4 \times 0.25)$

= 44969.6 kg/hr

15% of acetic acid is removed in flash separator.

Composition of acetic acid = 8431.8 kg/hr

= 1264.77 kg/hr

 Table 3.3: Material Balance on Flash Separator

	Material Input (Kg/hr)	Material O	utput (Kg/hr)
Components	Stream-9	Stream-10	Stream-11
Cellulose	257442.63	-	257442.63
Water	179878.4	44969.6	134908.8
Sucrose	3372.72	-	3372.72
Lignin	73637.72	-	73637.72
Acetic Acid	8431.8	1264.77	7167.03
Glucose oligomer	50028.68	-	50028.68
H_2SO_4	1935.9413	-	1935.9413
Glucose	19359.413	-	19359.413
TOTAL	693135.4264 kg/hr	693135.4	264 kg/hr

3.5 Material Balance on Pre-Hydrolysis Reactor (R-101):

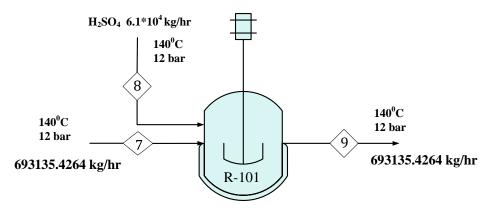


Figure 3.3: Pre-Hydrolysis Reactor (R-101)

10% of H_2SO_4 is added in reactor.

Flowrate of $H_2SO_4 = 62957.44$ kg/hr

Reactions:

$(C_6H_{10}O_5)n \longrightarrow$	$C_{6}H_{10}O_{5}$	X = 0.07	(3.1)

$C_6H_{10}O_5 \longrightarrow C$	$C_6H_{12}O_6$	X = 0.9	(3.2)
----------------------------------	----------------	---------	-------

Calculations:

Compositions of cellulose = 276563.04

Molar mass = 162.1406

$$Moles = \frac{Moles}{Molar mass}$$
$$= \frac{276563.04}{162.1406}$$

= 1705.6986 moles

 $=(1705.6986 \times 0.07)$

Cellulose reacted = 119.5025 kmoles/ hr

Cellulose reacted = 19120.41 kg/hr

Cellulose unreacted = $(1705.6986 \times 162.14)$

= 276561.971 kg/hr

= 276561.971 - 19120.41

Cellulose unreacted = 257442.6 kg/hr

Cellulose reacted = Glucolig produced

Glucolig produced = 19376.14 kg/hr

Reacted glucolig = moles \times conversion

 $= 119.5025 \times 0.9$

=107.5525 kmoles/ hr

Glucolig reacted = 107.5523 kmol/hr

Glucose produced = (107.5523×180)

= 19359.414 kg/hr

Glucose produced = 19359.414 kg/hr

```
Glucolig unreacted = 119.5025-107.5523
```

= 11.95025 k mol/hr

Glucolig unreacted = 1935.941 kg/hr

 Table 3.4:
 Material Balance on Pre-Hydrolysis Reactor (R-101)

	Material Input (Kg/hr)		Material Output (Kg/hr)
Components	Stream-07	Stream-08	Stream-09
Cellulose	276563.04	-	257442.63
Water	179878.4	-	179878.4
Sucrose	3372.72	-	3372.72
Lignin	73637.72	-	73637.72
Ash	37662.04	-	37662.04
Acetic Acid	8431.8	-	8431.8
Glucose Oligomer	50028.68	-	50028.68
H_2SO_4	0	62957.44	1935.9413
Glucolig	0	-	61386.08
Glucose	0	-	19359.413
TOTAL	693135.4264 kg/hr		693135.4264 kg/hr

3.6 Material Balance on Neutralization Reactor (R-102):

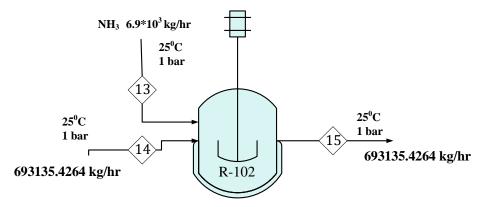


Figure 3.4: Neutralization Reactor (R-102)

Material balance

1% NH₃ is added in neutralization reactor

NH₃ = 6931.354 kg/hr

Reactions:

$CH_3COOH + NH_3 \longrightarrow$	NH ₄ COOCH ₃	Conversion=100%	(3.3)
$H_2SO_4 + 2NH_3 \longrightarrow$	$(NH_4)_2SO_4$	Conversion=100%	(3.4)

Reaction # 01:

CH ₃ COOH + NH ₃	→	NH ₄ COOCH ₃	Conversion=100%
		11140000113	

Limiting reactant = CH_3COOH

Flowrate of $CH_3COOH = 7164.568 \text{ kg/hr}$

Molar mass of $CH_3COOH = 60$

 $Moles = \frac{Mass}{Molar mass}$ $= \frac{7164.568}{60}$

CH₃COOH reacted = 119.4505 kmol/ hr

CH₃COOH reacted = 7167.03 kg/hr

NH₄COOCH₃ produced = 7167.03×77 NH₄COOCH₃ produced = 9197.6885 kg/hr Reaction # 02: H₂SO₄ + 2NH₃ \longrightarrow (NH₄)₂SO₄

Conversion=100%

Limiting reactant = NH_3

 NH_3 unreacted = 2×144.45

= 288.2762 kmol/hr

NH₃ unreacted = 4900.6958 kg/hr

 $(NH_4)_2SO_4$ produced = 288.2762 × 132.14

(NH₄)₂SO₄ produced = 38092.8170 kg/hr

 H_2SO_4 unreacted = 338.1124 kmol/hr

H₂SO₄ unreacted = 33135.01 kg/hr

	Material Input (Kg/hr)		utput (Kg/hr)
Components	Stream-9	Stream-10	Stream-11
Cellulose	257442.63	-	257442.63
Water	179878.4	44969.6	134908.8
Sucrose	3372.72	-	3372.72
Lignin	73637.72	-	73637.72
Ash	37662.04	-	37662.04
Acetic Acid	8431.8	1264.77	7167.03
Glucose oligomer	50028.68	-	50028.68
H_2SO_4	1935.9413	-	1935.9413
Glucolig	61386.08	-	61386.08
Glucose	19359.413	-	19359.413
TOTAL	693135.4264 kg/hr	693135.4	1264 kg/hr

 Table 3.5: Material Balance on Neutralization Reactor

3.7 Material balance on Saccharification Reactor (R-103):

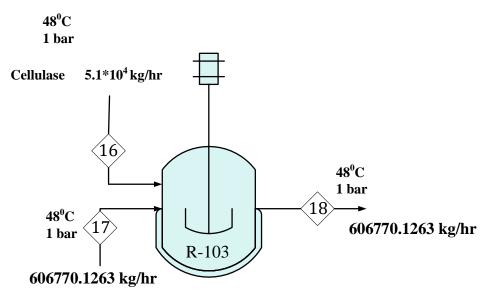


Figure 3.5: Saccharification Reactor (R-103)

Reactions:

$(C_6H_{10}O_5)n \longrightarrow$	$C_{6}H_{10}O_{5}$	X = 0.07	(3.5)
$C_6H_{10}O_5$ \longrightarrow	$C_6H_{12}O_6$	X = 0.9	(3.6)

Calculations:

Composition of cellulose = 257442.63

Molar mass of cellulose = 162.14

 $\frac{Mass}{Moles = Molar mass \times conversion}$

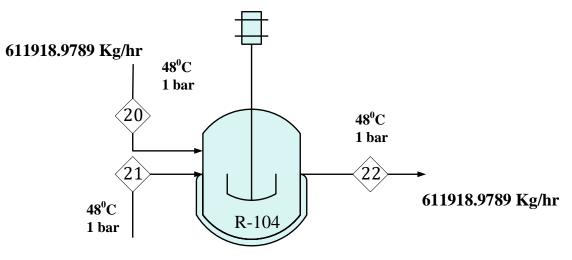
Cellulose reacted = 1430.237 kmol/ hr

Glucolig produced = (1430.237×162.14)

Glucolig produced = 231898.6272 kg/hr

Cellulose unreacted = 257442.6 - 231898.62

Cellulose unreacted = 25744.26 kg/hr


Glucolig reacted = moles \times conversion **Glucolig reacted = 1370.078 kmol/hr** Glucose produced = 1370.078 \times 162.14

Glucose produced = 246614 kg/hr Water unreacted = 6745.44 kg/hr

Table 3.6: Material Balance on Saccharification Reactor

Components	Input	Input (Kg/hr)	
	Stream-16	Stream-15	Stream-17
Cellulose	-	257442.63	25744.263
H ₂ O	-	134908.8	6745.44
Sucrose	-	3372.72	3372.72
lignin	-	73637.72	73637.72
Ash	-	37662.04	37662.04
Acetic Acid	-	0	0
Glucose Oligomer	-	50028.68	50028.68
H_2SO_4	-	1935.9413	11691.811
Glucolig	-	33135.01	33135.01
Glucose	-	19359.413	265973.41
$(NH_4)_2SO_4$	-	9197.6885	9197.6885
NH ₄ COOCH ₃	-	38092.82	38092.82
Cellulase	51488.52646	-	51488.526
TOTAL	606770.1	263 kg/hr	606770.1263 kg/hr

3.8 Material Balance on Fermentation Reactor (R-104):

Zymo 5.1*10³ kg/hr

Reaction:

Conversion = 0.95 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ (3.7)**Calculations:** Mass Moles = Molar mass Glucose = 1477.63 kmol/hrMoles = 1477.63×0.95 Glucose reacted = 1418.525 kmol/hr Glucose unreacted = 1477.63 - 1418.525 = 59.105 k mol/hr Glucose unreacted = 10638.94 kg/ hr Ethanol produced = 2×1419.36 Ethanol produced = 2837.05 kmol/hr Ethanol produced = 130504.3 kg/hr Carbon- dioxide produced = 124830.2 kg/hr

	Input (H	Output (Kg/hr)	
Components	Stream-20	Stream-18	Stream-21
Cellulose	25744.263	0	25744.263
H ₂ O	6745.44	-	6745.44
Sucrose	3372.72	-	3372.72
Lignin	73637.72	-	73637.72
Ash	37662.04	-	37662.04
Acetic Acid	0	-	0
Glucose Oligomer	50028.68	-	50028.68
Glucolig	11691.811	-	11691.811
H_2SO_4	33135.01	-	33135.01
Glucose	265973.41	-	10638.936
NH ₄ COOCH ₃	9197.6885	-	9197.6885
$(NH_4)_2SO_4$	38092.82	-	38092.82
Ethanol	0	-	130504.29
CO_2	0	-	124830.19
Cellulase	51488.526	-	51488.526
Zymo	0	5148.8526	5148.8526
TOTAL	611918.97	89 Kg/hr	611918.9789 Kg/hr

 Table 3.7: Material Balance on Fermentation Reactor

3.9 Material Balance on Distillation Column (D-101):

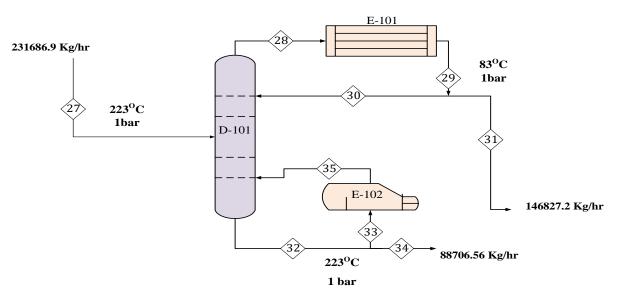


Figure 3.7: Distillation Column (D-101)

 $\mathbf{F} = \mathbf{D} + \mathbf{W}$

(3.8)

Overall material balance on distillation column

Component balance (ethanol):

 $= \frac{0.572215 - 0.23}{0.77 - 0.23}$ D = 0.63373F D = 0.6337 ×(231686.9) D = 146827.2 kg/ hr F = D+W 231686.9 = 146827.2 +W W = 84859.7 kg/hr F = D+W 231686.9 = 146827.2 +84859.7 231686.9 = 231686.9 Table 3.8: N

Table 3.8: Material balance on Distillation column

Components	Input(kg/hr)	%	Distillate(kg/hr)	%	Bottoms(kg/hr)	%
H ₂ O	6745.44	2.9576351	30833.711	21	56772.198	64
Sucrose	3372.72	1.4788176	0		887.0656	1
H2SO4	33135.01	14.528522	0		1774.1312	2
Glucose	10638.936	4.6647945	0		1774.1312	2
Ammonium Suphate	38092.82	16.702344	0		3548.2624	4
Ethanol	130504.29	57.22148	113056.94	77	20402.509	23
NH ₄ COOCH ₃	9197.6885	4.0328587	2936.5439	2	3548.2624	4
Total	231686.9 Kg/hr	101.58645	146827.2 Kg/hr	100	88706.56 Kg/hr	100

3.10 Material Balance on Distillation Column (D- 102):

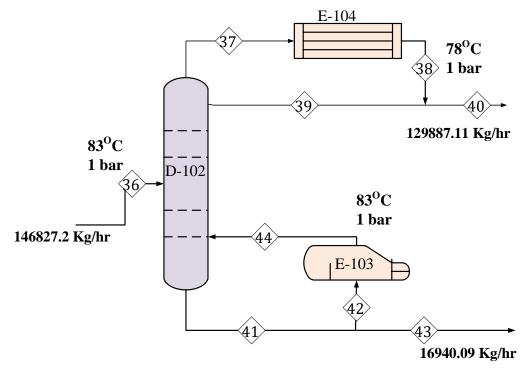


Figure 3.8: Distillation Column (D-102)

Overall material balance on distillation column

$\mathbf{F} = \mathbf{D} + \mathbf{W}$

Component balance (ethanol):

$$=\frac{0.87-0.01}{0.99-0.01}$$

D = 0.87755F
= 0.87755×(146827.2)
129887.12 kg/ hr
F = D+W
146827.2 = 12988.1 +W

W = 16940.09 kg/hr

$$F = D + W$$

146827.2 = 129887.1 + 16940.09

(3.9)

Components	Input(kg/hr)	%	Distillate(kg/hr)	%	Bottoms(kg/hr)	%
Ethanol	113056.94	87.693315	128588.23	99	419.8116	1
Water	30833.711	23.916359	1298.8711	1	37573.138	89.5
NH4COOCH3	2936.5439	2.2777485	0	0	3988.2102	9.5
Total	146827.2 Kg/hr		129887.11 Kg/hr		16940.09 Kg/hr	100

 Table 3.9: Material Balance on Distillation column

3.11 Material Balance on Reactor (R-105):

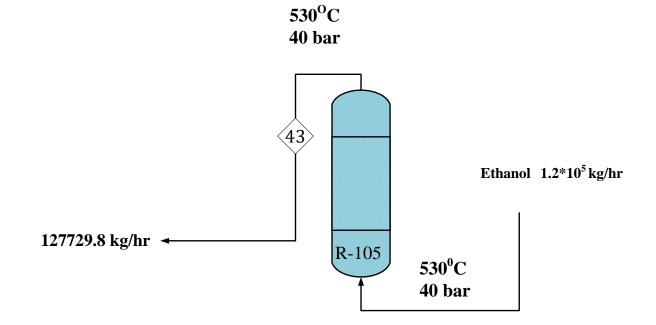


Figure 3.9: Reactor (R-105)

Reactions:	
C₂H₅OH	

C ₂ H ₅ OH	>	$H_2O+C_2H_4$	(3.10)
2C ₂ H ₅ OH		$H_2 + (C_2H_5)_2O$	(3.11)

C2H5OH	>	$H_2 + C_2 H_4 O$	(3.12)

$$2H_2 + C_2H_5OH \longrightarrow H_2O + 2CH_4$$
(3.14)

$$H_2O + C_2H_5OH \longrightarrow CH_3COOH + H_2$$
(3.15)

$$H_2 + C_2 H_5 OH \longrightarrow C_2 H_6 + H_2$$

$$(3.16)$$

Calculations:

The selectivity of the reactions was 98%.

Flowrate of Ethanol = 1.1×10^5 kg/hr Ethylene Produced = 126016.5 Kg/hr Unreacted Ethanol = 126016.5/46Unreacted Ethanol = 2571.765 Kg/hr Unreacted Ethanol = 55.90793 Kmoles/hr Ethanol Reacted = 55.90793×0.7 Ethanol Reacted = 39.1355 Kmoles/hr H₂O Produced = 39.1355 Kmoles/hr Unreacted Ethanol = 55.90793 – 39.1355 Unreacted Ethanol = 16.77238 Kmoles/hr Ethanol Reacted = 16.77238×0.5 Ethanol Reacted = 8.386189 Kmoles/hr Diethyl Ether Produced = 8.3861×74.2 **Diethyl Ether Produced = 622.2486 Kg/hr** Unreacted Ethanol = 8.386189 Kmol/hr H_2 Produced = 8.386189 Kmoles/hr Ethanol Reacted = 8.3861×0.08 Ethanol Reacted = 0.67088 Kmoles/hr H₂ Produced = 0.67088 Kmoles/hr Unreacted Ethanol = 8.3861 - 0.67088Unreacted Ethanol = 7.638141 Kmoles/hr Ethanol Reacted = 7.638141×0.01 Ethanol Reacted = 0.670895 Kmoles/hr Acetaldehyde Produced = 29.55 Kg/hr H_2 Reacted = 0.09051 Kmoles/hr H_2O Produced = 0.09051×18×0.5 H₂O Produced = 0.04528 Kmoles/hr Unreacted $H_{2O} = 39.18084$ Kmoles/hr Ethanol Reacted = 10.84×0.025 Ethanol Reacted = 0.1905 Kmoles/hr

H₂ Produced = 0.190954 Kmoles/hr

Unreacted Ethanol = 342.2281 Kg/hr

H₂ Reacted = 0.009157 Kmoles/hr

Ethane Produced = 0.274729 Kg/hr

H₂O Produced = 0.009157 Kmoles/hr

Total $H_2O = 687.7885$ Kg/hr

Total H₂ = 9.1574 Kg/hr

Component	Input (kg/hr)	Output(kg/hr)
Ethanol	128588.235	342.22806
Ethylene	0	126016.47
Diethyl-Ether	0	622.255241
Acetaldehyde	0	29.5529308
Methane	0	1.4491335
Ethane	0	0.27472401
Acetic Acid	0	11.4572117
H2	0	18.2966192
H ₂ O	0	687.788491
TOTAL	128588.2 kg/hr	127729.8 kg/hr

3.12 Material Balance on Flash Separator (S-102):

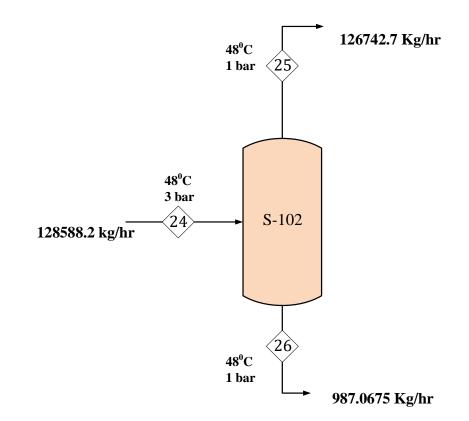


Figure 3.10: Flash Separator (S-102)

82.3% of Ethanol is removed

Composition of ethanol = 342.22806

= (342.22806 ×0.82)

Ethanol Removed = 281.6537 Kg/hr

100% of Acetaldehyde is removed

Composition of acetaldehyde = $29.5529308 = (29.5529308 \times 1)$

Acetaldehyde Removed = 29.55293 Kg/hr

96.6% of water is removed

Composition of water = 687.788491 = (687.788491×0.96)

Water Removed = 664.4037 Kg/hr

100% of Acetic Acid is removed

Composition of acetic acid = $11.4572117 = (11.4572117 \times 1)$

Acetic Acid Removed = 11.4572117 Kg/hr

Table 3.11: Material Balance on Flash Separator

Components	Input(kg/hr)	Output(kg/hr)		
	Stream-47	Stream-48	stream-49	
Ethanol	342.22806	60.5743666	281.653693	
Ethylene	126016.47	126016.47	0	
Diethyl-Ether	622.255241	622.255241	0	
Acetaldehyde	29.5529308	0	29.5529308	
Methane	1.4491335	1.4491335	0	
Ethane	0.27472401	0.27472401	0	
Acetic Acid	11.4572117	0	11.4572117	
H2	18.2966192	18.2966192	0	
H ₂ O	687.791192	23.3848087	664.406383	
TOTAL		126742.7 Kg/hr	987.0675 Kg/hr	
TOTAL	128588.2 kg/hr	127729.7725kg/hr		

CHAPTER # 04 ENERGY BALANCE

4.1 General Equation of Energy Balance:

(Rate of Heat In) - (Rate of Heat Out) \pm (Generation / Consumption) = 0

4.2 Energy Balance on Pre-Heater (H- 101):

 $T_{in}=25^{0}C$ $T_{out}=190^{0}C$ Heat Duty $Q = mC_{p}\Delta T$ $Q = 2.3 \times 10^{5} \text{ MJ/hr}$

Steam Requirement

Saturated steam

P = 5 bar

 $T = 152^{\circ}C$

Steam flow rate

 $\boldsymbol{Q}=\boldsymbol{m}\boldsymbol{\lambda}$

 $m=1.141{\times}10^5\,kg/hr$

Components	Flow rates (kg/hr)	Cp (kJ/kg.ºC)
Corn Stover	2.7×10 ⁵	1.37
Water	1.7×10^{5}	1.84

4.3 Energy Balance on Reactor -101 (Pre-hydrolysis Reactor):

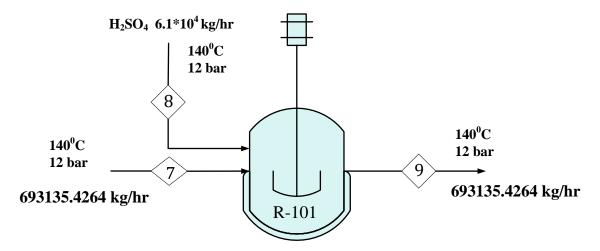


Figure 4.1: Pre-Hydrolysis Reactor (R-101)

Reaction:

$$(C_6H_{10}O_5)_n \longrightarrow C_6H_{10}O_6 \tag{4.1}$$

 $\Delta Hr_{25} = 3.9 \times 10^5 \text{ kJ/hr } \Delta \hat{H}_{r, 190}$

$$= \Delta \hat{H}_{r,25} + \int_{25}^{190} [(nCp)P - (nCp)R] dT$$
(4.2)

 $\Delta Hr_{190}=3.9{\times}10^5\,kJ/hr$

Rate of heat in – Rate of heat out – Consumption of heat = Q

Q = 57.6 MJ/hr (Endothermic Reaction)

Steam Requirement:

Saturated steam

P = 5 bar

T=152°C

Steam flow rate

$$Q = m\lambda$$

 $m = 2.7 \times 10^4 \text{ kg/hr}$

 Table 4.2: Energy Balance on Reactor -101

Components	Heat In (kJ/hr)	Heat Out (kJ/hr)	Cp (kJ/kg.ºC)
Corn stover	1.648×10 ⁸	2.17×10^{8}	1.37
H_2SO_4	1.246×10^7	1.246×10 ⁷	9.54

(4.3)

H ₂ O	9.9×10 ⁷	9.9×10 ⁷	3.36
Glucose	-	5.77×10^{6}	1.5
Total	2.77×10 ⁸	3.35×10 ⁸	16.67

4.4 Energy Balance on Flash Separator (S-101):

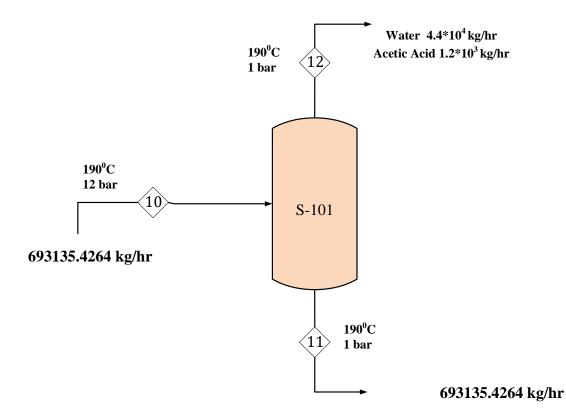


Figure 4.2: Flash Separator (S-101)

Rate of heat in = 2.78×10^5 MJ/hr Vapor outlet: Latent heat of vaporization for water = 2250 kJ/kgLatent heat of vaporization for acetic acid = 870.94 kJ/Kg Weighted $\lambda = 693 \text{ KJ/kg}$ $Q = m\lambda$ $Q = 3.2 \times 10^4 MJ/hr$ Liquid outlet Rate of heat outlet = $1.775 \times 10^8 \text{ kJ/hr}$ Rate of heat in - Rate of heat out = Q (4.4) $Q = 1 \times 10^5 M J/hr$ **Steam Requirement** Saturated steam P = 5 bar $T = 152^{\circ}C$ $Q = m\lambda$

$m=4.8\times\!10^4\,kg/\,hr$

Components	Flow Rates (kg/hr)	Cp (kJ/kg.ºC)
Cellulose	2.5×10 ⁵	1.8
Water	1.7×10 ⁵	3.36
Sucrose	3.3×10 ³	0.42
Ash	3.7×10 ⁴	1.5
Acetic Acid	8.4×10^{3}	9.54
H_2SO_4	6.1×10 ³	0.11
Glucolig	1.9×10 ⁴	11.2
Glucose	1.9×10 ⁴	0.219

 Table 4.3:
 Thermodynamic Data for Flash Separator -101

4.5 Energy Balance on Waste Heat Boiler (H-102):

Temperature input $=T_{in} = 190^{\circ}C$

Temperature output $=T_{out} = 25^{\circ}C$

Weighted Cp = 9.672 KJ/kg. K

Heat duty = $Q = mCp\Delta T$

 $Q=8.96{\times}10^5\,MJ/hr$

Production of Saturated steam

P = 5atm

$$T = 152^{\circ}C$$

$$\mathbf{m} = \frac{Q}{Cp\Delta T + \lambda} \tag{4.6}$$

 $m=3.3{\times}\,10^5\,kg/hr$

Table 4.4: Thermodynamic Data for WHB-102

Components	Flow Rates (kg/hr)	Cp (kJ/kg.°C)
Cellulose	2.5×10 ⁵	1.5
Water	1.3×10 ⁵	3.36
Sucrose	3.3×10 ³	0.42

(4.5)

Ash	3.7×10^4	
Acetic Acid	7.1×10^3	9.54
Glucose oligomer	5.0×10^4	0.2
H_2SO_4	1.9×10^{3}	0.13
Glucolig	1.6×10^4	185.33
Glucose	1.9×10^{4}	0.2

4.6 Energy Balance on Reactor- 102 (Neutralizer):

Temperature input $=T_{in} = 25^{\circ}C$	
Temperature output $=T_{out} = 25^{\circ}C$	
Temperature reference $=T_{ref} = 25^{\circ}C$	
Reactions	
$CH_3COOH + NH_3 \longrightarrow NH_4COOCH_3$	(4.7)
$H_2SO_4 + 2NH_3 \longrightarrow (NH_4)_2SO_4$	(4.8)
$\Delta Hr_{25} = -5.783 \times 10^7 \text{ kJ/hr}$	
Rate of heat in – Rate of Heat out + Heat generation - $Q = 0$	
$Q = -5.7 \times 10^4 $ MJ/hr (Exothermic Reaction)	
Cooling requirement:	
$Q = mC_p \Delta T$	(4.9)
$\mathbf{m} = \frac{Q}{Cp\Delta T}$	(4.10)
5.783×10^{7}	
m = (4.2)(20)	
$m = 6.98 \times 10^5 \text{ kg/hr}$	

Components	Flow rates (kg/hr)	Cp (kJ/kg.ºC)
Cellulose	2.5×10^{5}	1.3
Water	1.3×10^{5}	1.86
Sucrose	3.3×10 ³	1.24
Acetic Acid	7.1×10^{3}	18.72
Glucose oligomer	5.0×10^4	0.4
Glucolig	1.9×10^{3}	185.3
H_2SO_4	6.1×10^4	2.96
Glucose	1.9×10^4	0.4

4.7 Energy Balance on Pre-Heater (H-103):

Process Stream

Temperature input $=T_{in} = 25^{\circ}C$

Temperature output $=T_{out} = 48^{\circ}C$

Weighted Cp = 2.0675 kJ/Kg. k

Heat duty

 $\boldsymbol{Q} = \boldsymbol{m}\boldsymbol{C}\boldsymbol{p}\Delta\boldsymbol{T}$

 $Q=2.8{\times}10^4~\text{MJ/hr}$

Saturated steam at

P = 5 bar

T=152°C

$$Q = m\lambda$$

 $m=1.36{\times}~10^4\,kg/hr$

Table 4.6: Thermodynamic Data for H-103

Components	Flow Rates (Kg/hr)	Cp (kJ/kg.ºC)
Cellulose	2.5×10 ⁵	1.3
Water	1.3×10 ⁵	4.18
Sucrose	3.3×10 ³	1.23
Ash	3.7×10^4	1.24
Glucose oligomer	5.0×10 ⁴	0.4
Glucolig	1.9×10 ³	185.3
H_2SO_4	3.3×10 ⁴	0.13
Glucose	1.9×10^4	0.4
NH ₄ COOCH ₃	9.1×10 ³	7.6
$(NH_4)_2SO_4$	3.8×10 ⁴	1.423

(4.11)

4.8 Energy Balance on Reactor- 103 (Saccharification Reactor):

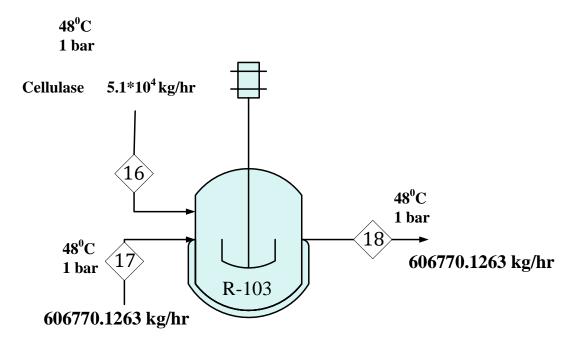


Figure 4.3: Saccharification Reactor (R-103)

Temperature input $=T_{in} = 48^{\circ}C$

Temperature output $=T_{out} = 48^{\circ}C$

Temperature reference $=T_{ref} = 25^{\circ}C$

Reaction

$$(C_6H_{10}O_5)_n + H_2O \longrightarrow C_6H_{12}O_6$$

$$(4.12)$$

 $\Delta Hr_{25} = 399026 \text{ kJ/hr}$

 $\Delta Hr_{48}\,{=}\,3.9{\times}10^5\,kJ/hr$

Rate of heat in

Weighted Cp = 2.0675 kJ/kg.k

$$Q = mCp\Delta T$$

 $Q = 2.8 \times 10^4 \text{ MJ/hr}$

Rate of heat out

 $Q = mCp\Delta T$

 $Q = (606770) \times (1.2719) \times (23)$

Q = 17.7 MJ/hr

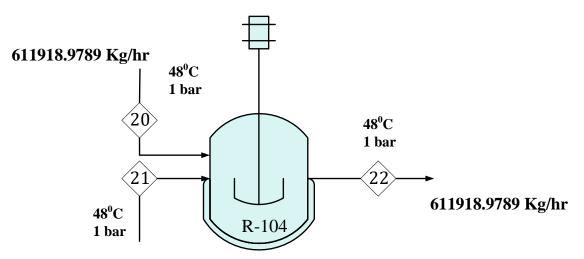
Rate of heat in – Rate of Heat out – Consumption + $Q = 0$		
$Q = 1.1 \times 10^4 \text{ MJ/hr}$	(Endothermic Reaction)	

(4.13)

Saturated steam at

P = 5bar

T =152°C


 $Q = m\lambda$

 $m = 5.4 \times 10^3 \text{ kg/hr}$

Table 4.7: Thermodynamic Data for R-103

Components	Flow Rates (Kg/hr)	Cp (kJ/kg.ºC)
Cellulose	2.5×10 ⁵	2.0
Water	1.3×10^{5}	1.84
Sucrose	3.3×10^{3}	0.42
Ash	3.7×10^4	1.26
Glucose oligomer	5.0×10^4	0.21
Glucolig	1.9×10^{3}	185.3
H_2SO_4	3.3×10^4	0.13
Glucose	1.9×10^{4}	0.21
NH ₄ COOCH ₃	9.1×10 ³	7.2
(NH ₄) ₂ SO ₄	3.8×10^4	1.42

4.9 Energy Balance on Fermentation Reactor (R- 104):

Zymo 5.1*10³ kg/hr

Figure 4.4: Fermentation Reactor (R-104)

Reaction

$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$	(4.15)
$\Delta Hr_{25} = -2.634 \times 10^8 \text{ kJ/hr}$	
$\Delta Hr_{48} = -2.61 \times 10^8 kJ/hr$	
Rate of heat in	
Weighted $Cp = 1.2719 \text{ kJ/kg.k}$	
$Q = mCp\Delta T$	(4.16)
$Q = 1.7 \times 10^4 MJ/hr$	
Rate of heat out	
$Q = mCp\Delta T$	
$Q = 1.6 \times 10^4 \text{MJ/hr}$	
Rate of heat in – Rate of Heat out + generation - Q = 0	(4.17)
$Q = -2.2 \times 10^5 $ MJ/hr (Exothermic Reaction)	
Cooling Water Flowrate	
0	(1.10)

$$m = \frac{Q}{mCp\Delta T}$$

$$m = 2.7 \times 10^{6} \text{ kg/hr}$$
(4.18)

Table 4.8: Thermodynamic Data for R-104

Components	Flow Rates (Kg/hr)	Cp (kJ/kg.ºC)
Cellulose	2.5×10^{5}	2.0
Water	6.7×10 ⁵	4.2
Sucrose	3.3×10 ³	0.42
Ash	3.7×10 ⁴	1.25
Glucose oligomer	5.0×10^4	0.21
Glucolig	1.1×10^{3}	185.3
H_2SO_4	3.3×10^4	0.13
Glucose	2.6×10^4	0.21
NH ₄ COOCH ₃	9.1×10 ³	7.26
$(NH_4)_2SO_4$	3.8×10 ⁴	1.42

4.10 Energy Balance on Heat Exchanger (H- 104):

Temperature input = $T_{in} = 40^{\circ}C$

Temperature output = T_{out} =223°C Heat duty $Q = mCp\Delta T$ (4.19) $Q = 1 \times 10^5 \text{ MJ/hr}$ Saturated Stream P = 5bar T = 152°CSteam flow rate $Q = m\lambda$ $m = 5 \times 10^4 \text{ kg/hr}$

Table 4.9: Thermodynamic Data for H-104

Components	Flow rates (kg/hr)	Cp (kJ/kg.°C)
Ethylene	1.2*10 ⁵	2.98
Di-Ethyl-Ether	6.8*10 ²	0.24
H ₂	$1.8^{*}10^{1}$	14.71

4.11 Energy Balance on Distillation Column (D- 101):

Steam is saturated liquid at its bubble point i.e 223°C

Condenser duty

Dew point = $83^{\circ}C$

Weighted Cp = 3.4791 kJ/Kg. k

Weighted $\lambda = -1225.8 \text{ kJ/kg}$

$$Q=mCp\Delta T+m\lambda$$

 $Q = -1 \times 10^5 \text{ MJ/hr}$

Cooling water requirement

 $Q = mCp\Delta T$

 $m=1.2\times\!10^6\,kg/hr$

Re-boiler duty:

 $Q = m\lambda$

Weighted $\lambda = 1806.17 \text{kJ/kg}$

(4.20)

Energy balance

$$Q = 1.6 \times 10^5 \text{ MJ/hr}$$

Saturated Steam

P = 5bar

 $T = 152^{\circ}C$

 $Q = m\lambda$

 $m=7.6{\times}10^4\,kg/hr$

Components	Flow Rates (Kg/hr)	Cp (kJ/kg.ºC)	
Water	6.7×10^5	4.2	
Sucrose	3.3×10^{3}	0.42	
H_2SO_4	3.3×10 ⁴	0.12	
Glucose	2.6×10^4	0.219	
NH ₄ COOCH ₃	9.1×10 ³	6.5	
$(NH_4)_2SO_4$	3.8×10 ⁴	1.42	
Ethanol	1.3×10 ⁵	5.0	

 Table 4.10:
 Thermodynamic Data for D-101

4.12 Energy Balance on Distillation Column (D- 102):

Steam is saturated liquid at its bubble point i.e 83°C

Condenser duty

Dew point = $78^{\circ}C$

Weighted Cp = 0.025 kJ/Kg. k

Weighted $\lambda = -926.182 \text{ kJ/kg}$

 $Q = mCp\Delta T + m\lambda$

 $Q = \text{-}1.2 \times 10^5 \text{ MJ/hr}$

Cooling water requirement

$$Q = mCp\Delta T$$

 $m=1.42\times\!10^6\,kg/hr$

Re-boiler duty

 $Q = m\lambda$

Weighted λ = 2517.5 kJ/kg

 $Q = 4.2 \times 10^4 \text{ MJ/hr}$

Steam at

P = 5bar

 $T = 152^{\circ}C$

(4.21)

$\boldsymbol{Q}=\boldsymbol{m}\boldsymbol{\lambda}$

 $m=5.20{\times}10^4\,\text{kg/hr}$

Components	Flow Rates (Kg/hr)	Cp (kJ/kg.ºC)
Water	3.0×10^4	15
NH ₄ COOCH ₃	2.9×10 ³	6.5
Ethanol	1.1×10^5	2.4

4.13 Energy Balance on Reactor- 105:

$C_2H_5OH \longrightarrow H_2O + C_2H_4$	(4.22)
$2C_2H_5OH \longrightarrow H_2 + (C_2H_5)_2O$	(4.23)
$C_2H_5OH \longrightarrow H_2 + C_2H_4O$	(4.24)
$2H_2 + C_2H_5OH \longrightarrow H_2O + 2CH_4$	(4.25)
$H_2O + C_2H_5OH \longrightarrow CH_3COOH + H_2$	(4.26)
$H_2 + C_2H_5OH \longrightarrow C_2H_6 + H_2$	(4.27)

Reactions

 $\Delta Hr_{25}\,{=}\,2.05{\times}10^8\,kJ/hr$

 $\Delta Hr_{530}{=}~2.924{\times}10^8\,kJ{/hr}$

Rate of heat in

 $Q = mCp\Delta T$

 $Q=4\times\!10^4~\text{MJ/hr}$

Rate of heat out

 $Q = mCp\Delta T$

 $Q = 1.922 \times 10^5 \text{ MJ/hr}$

Rate of heat in - Rate of Heat out - Consumption + Q = 0

$$Q = 21.4 \times 10^4 MJ/hr$$

Steam Flow-rate:

Saturated steam at

P = 5bar

 $T = 152^{\circ}C$

$$Q = m\lambda$$

 $m=1{\times}10^5\,kg/hr$

4.14 Energy Balance on Waste Heat Boiler (WHB-105):

Temperature input $=T_{in} = 530^{\circ}C$

Temperature output $=T_{out}=100^{\circ}C$

Heat duty

 $Q=mCp\Delta T+m\lambda$

 $Q = 4.6 \times 10^3 \text{ MJ/hr}$

Saturated Stream

P = 5bar $T = 152^{\circ}C$

Steam flow rate

 $Q = mCp\Delta T + m\lambda$

$$m = \frac{Q}{Cp\Delta T + \lambda}$$

m = 1745.2 kg/hr

 Table 4.12:
 Thermodynamic Data for WHB-106

Components	Flow rates (kg/hr)	Cp (kJ/kg.ºC)
Ethanol	$6.0*10^{1}$	4
Ethylene	1.2*10 ⁵	2.98
Di-ethyl-ether	$6.2*10^2$	0.24
Methane	1.4	4.7
Ethane	2.7*10 ⁻¹	3.2
H ₂	$1.8*10^{1}$	14.71
H ₂ O	$2.3*10^{1}$	10

4.15 Energy Balance on Flash Separator (S-102):

Feed

Weighted Cp = 1.754 kJ/Kg. k

 $Q = mCp\Delta T$

 $Q=16.8 \times 10^3 \text{ MJ/hr}$

Vapor outlet

 $Q = m\lambda$

 $Q = 6.1 \times 10^4 \text{ MJ/hr}$

Liquid outlet

Weighted Cp = 3.63 kJ/Kg. k

 $Q = mCp\Delta T$

Q = 243 MJ/hr

Rate of heat out = 6.17×10^7 kJ/hr

Rate of heat in - Rate of heat out = Q

Q = -44670 MJ/hr

Cooling requirement

 $Q = mCp\Delta T$ $m = \frac{Q}{Cp\Delta T}$

 $m=5.2{\times}10^5\,kg/\;hr$

Components	Flow rates (kg/hr)	Cp (kJ/kg.ºC)	
Ethanol	6.0*10 ¹	6	
Ethylene	1.2*10 ⁵	2.98	
Di-ethyl-ether	6.2*10 ²	0.24	
Methane	1.4	4.7	
Ethane	2.7*10 ⁻¹	3.2	
H ₂	$1.8^{*}10^{1}$	14.71	
H ₂ O	2.3*10 ¹	10	

CHAPTER # 05 EQUIPMENT DESIGN

5.1 Reactor Design:

5.1.1 Introduction:

The heart of a chemical reaction is the reactor. Reactor design is an essential part of the process' overall design because it is the only area where raw materials are transformed into finished goods. The industrial chemical reactor's design must adhere to the some of the requirements:

- The chemical factors: The design must permit the desired reaction to progress to the necessary degree of conversion by allowing enough residence time.
- Transfer factors of mass: In heterogeneous reactions, the diffusion rate of the species that are reacting must in control of the reaction rate rather than chemical kinetics.
- Transfer factors of heat: the reduction or addition of reaction heat.
- The safety factors: the containment of potentially dangerous reactants and products, as well as the regulation of reaction and process conditions.

5.1.2 Principal Types of Reactors:

Reactor designs are typically categorized using the following features:

- Batch or continuous operating modes.
- Homogeneous or heterogeneous **phases** are observe.
- Geometry of the reactor: The flow pattern and the method of contacting the phases

Reactors are classified in the following broad category:

- Stirred tank reactor
- Tubular reactor
- Packed bed, stationary and mobile

There are further varieties, such as fluidized beds and micro channel reactors, in addition to these. The interaction of the reactor design with the other process processes must not be disregarded while choosing the reactor conditions, especially the conversion, and optimizing the design.

The size and expense of any equipment required to separate and recycle unreacted materials will depend on the degree of conversion of the reactor's input materials. In these situations, it is necessary to optimize the reactor as a whole with the supporting machinery.

5.1.3 Selection of Reactor:

There are many factors to take into account while choosing the reactor type for a particular procedure.

- Temperature and pressure is mandatory for chemical reaction.
- The requirement for the reactants and products to be removed or added.
- Reaction Phase.
- The required product delivery strategy.
- The use of catalysts should take into consideration aspects like the need for solid catalyst particles and contact with fluid reactants and products.

• Reactor Relative cost.

The design of the reactor must Adhere the following requirements:

- i. **Chemical factors:** Enough residence time must be allowed in the design for the desired reaction to proceed to the necessary level of conversion.
- **ii. Mass transfer factors:** For instance, in heterogeneous reactions, the rates of diffusion of the species that are reacting may be in control of the reaction rate rather than chemical kinetics.
- iii. Heat transfer factors: Taking away or adding heat from the reaction.
- iv. **Safety factors:** The containment of potentially harmful reactants and products, as well as the regulation of reaction and process conditions.

5.1.4 Design of Multi-Tubular Reactor (R-105):

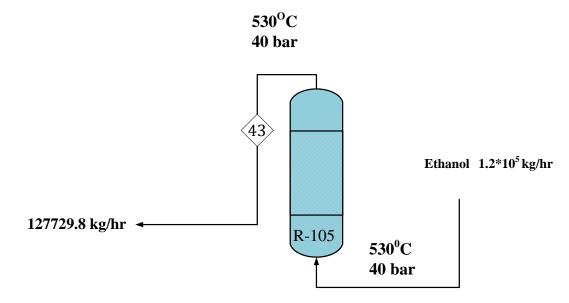


Figure 5.1: Multi-Tubular Reactor (R-105)

For fixed-bed catalytic reactor, multi-tubular reactors are frequently used in the chemical and refining sectors. In the reactor, a gas phase reaction is taking place. Since the dehydrogenation of ethanol is a strongly endothermic reaction, steam must be added to the reactor to keep it at a constant temperature, necessitating the use of a shell and tube configuration.

C ₂ H ₅ OH	\longrightarrow	$H_2O+C_2H_4$	(5.1)

$$2C_2H_5OH \longrightarrow H_2 + (C_2H_5)_2O$$
(5.2)

$$C_2H_5OH \longrightarrow H_2 + C_2H_4O$$
(5.3)

$$2H_2 + C_2H_5OH \longrightarrow H_2O + 2CH_4$$
(5.4)

$$H_2O + C_2H_5OH \longrightarrow CH_3COOH + H_2$$
(5.5)

$$H_2 + C_2 H_5 OH \longrightarrow C_2 H_6 + H_2$$
(5.6)

Rate Equation:

$$\begin{aligned} & -r_{A} = k^{*}((P_{e})/(P_{e} + (K_{w}/K_{a})^{*}P_{w} + (K_{aw}/K_{a})^{*}P_{e}^{*}P_{w})) \tag{5.7} \\ & n = 1 \ , \, k = 1500 \ hr^{-1} \\ P_{e} = 4048 \ kPa \ , \ P_{w} = 4.053 \ kPa \\ & (K_{w}/K_{a}) = 0.63 \ , \, (K_{aw}/K_{a}) = 0.2 \\ & -r_{A} = 828.16 \ kPa/hr \\ & -r_{A} = 125.69 \ kmol/m^{3}hr \end{aligned}$$

Design Equation:

$$W/F_{AO} = \int_0^{0.5} dX A / -rA$$
 (5.8)

Weight of Catalyst:

W = 1760 kg

Volume of Catalyst:

$$\mathbf{V}_{c} = \mathbf{W}/\rho_{\text{bulk}} \tag{5.9}$$

 $V_c = 2.2 \text{ m}^3$

Volume of Reactor:

$$\mathbf{V}_{\mathrm{r}} = \mathbf{V}_{\mathrm{c}}/1\text{-}\varepsilon \tag{5.10}$$

$$V_r = 3 m^3$$

Space Time:

$$\tau = V_r / V_o \tag{5.11}$$

$$\tau = 3.3 \text{ s}$$

Tube Dia:

L = 16 ft or 4.86 m

Tube dia = $D_t = 0.12 \text{ m}$

Particle size = $D_p = 0.0014 \text{ m}$

$$D_t/D_p = 85.7$$

 $N_t = 56 \text{ tubes}$

Volume of Tube:

$V_t = \pi D_t^2 L/4$	(5.12)
$V_t = 0.054m^3$	
No. of Tubes:	
$N_t = V_r / V_t$	

Shell Dia:

$$\begin{split} N_t &= ((D_s - k_1)^{2*} \, \pi/4 + k_2) - P_t^* (D_s - k_1)^* (nk_3 + k_4))/1.223 \, P_t \eqno(5.13) \\ k_1 &= 1.080 \end{,} \quad k_2 &= -0.9000 \end{,} \quad k_3 &= 0.690 \end{,} \quad k_4 &= -0.8000 \\ D_s &= 0.26 \, m \\ \\ \textbf{Shell Height:} \\ L_t &= 4.8 \, m \\ L_s &= 40\% \end{,} \quad of \ L_t + L_t \\ L_s &= 6.8 \, m \\ \\ \textbf{Pressure Drop:} \\ \Delta P/L &= [(150^* \mu^* (1 \ensure 6)^{2*} G)/(\epsilon^{3*} D_p^{-2*} \rho)] + [(1.75^* (1 \ensure 6)^{2*} G)/(\epsilon^{3*} D_p^{**} \rho)] \end{,} \quad (5.14) \\ \mu &= 9.135^* \, 10^{-6} \, \text{kg/ms} \\ \rho &= 800 \, \text{kg/m}^3 \\ D_p &= 0.0014 \, m \\ G &= 146 \, \text{kg/sm}^2 \end{split}$$

 $\Delta P = 5.29 \text{ psi}$

SPECIFICATION SHEET				
Identification				
Item	Reactor			
Item no.	R-105			
No. required	2			
Operation	Continuous			
Туре	Multi Tubular Packed Bed Reactor			
Catalyst	Al ₂ O ₃			
Function				
Dehydration of Ethanol to Ethylene				
Chemica	l Reactions			
C ₂ H ₅ OH	\rightarrow H2O + C ₂ H ₄			
$2C_2H_5OH \rightarrow H_2 + (C_2H_5)_2O$				
$C_2H_5OH \rightarrow H_2 + C_2H_4O$				
$2H_2 + C_2H_5OH \longrightarrow H_2O + 2CH_4$				
$\rm H_2O + C_2H_5OH \rightarrow CH_3COOH + H_2$				
$H_2 + C_2H_5OH \longrightarrow C_2H_6 + H_2$				
Weight of bed	1760 Kg			
Volume of Catalyst	2.2 m^3			
Volume of Reactor	3 m^3			
Space Time	3.3 sec			
Diameter of tube	0.12 m			
Number of Tube	56			
Shell Diameter	0.26 m			
Pressure Drop	5.29 psi			

5.1.5 Design of Pre-Hydrolysis Reactor (R-101):

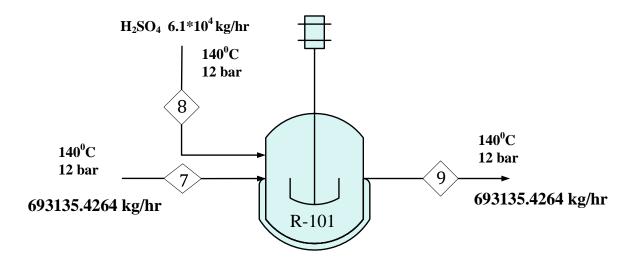


Figure 5.2: Pre-Hydrolysis Reactor (R-101)

In the pre-hydrolysis reactor, the slurry of maize stover is treated with diluted sulfuric acid to dissolve the lignin shield and expose the cellulose for additional enzymatic hydrolysis. The following factors led to the selection of the continuous stirred tank reactor.

- ✓ Reaction That Is Moderately Endothermic
- ✓ Accurate Temperature Regulation
- ✓ Superior heat and mass transmission rates.
- ✓ Reduced labor requirements
- \checkmark Effective for delayed reactions that require a lot of hold time
- ✓ Spread of the Catalyst
- ✓ To Control Liquid-Gas Systems

Reaction:

$(C_6 \Pi_{10} O_5) \Pi \longrightarrow C_6 \Pi_{12} O_6 \qquad Conversion = 0.07 \qquad (3.1)$	(C ₆ H ₁₀ O ₅)n	$\longrightarrow C_6H_{12}O_6$	Conversion = 0.07	(5.15)
---	---	--------------------------------	-------------------	--------

$-r_A = k C_c$	(5.16)
n = 1 , $k = 9.8$ hr ⁻¹	
$-\mathbf{r}_{\mathrm{A}} = \mathbf{k} \ \mathbf{C}_{\mathrm{co}} \ (1 - \mathbf{X}_{\mathrm{c}})$	
$X_c=0.07$, $C_{co}=2.6\ \text{kmol/m}^3$	
$-r_{\rm A} = 24.5 \text{ kmol/m}^3 \text{hr}$	
Design Equation:	
$V/F_{co} = \Delta X_c / -r_A$	(5.17)
Valence Calenda Const	

Volume Calculations:

 $F_{co} = 1705.7 \ kmol/hr$

V = 5 m³ 5% Safety allowance V = 5.1 m³ τ = 28 s L/D = 1.2 L= 2 m , D = 1.74 m Impeller Design:

Pitched blade turbine is selected because:

- i. For mixing of slurries
- ii. Viscosity is moderately high
- iii. Maximum Radial Flow
- iv. No back mixing
- v. Promote Heat Transfer

• Impeller Specifications:

Dia of impeller = $D_a = 0.58 \text{ m}$

Height of impeller = W = 0.11 m

Length of impeller = $L_a = 0.145 \text{ m}$

Distance of impeller from bottom = E = 0.58 m

Thickness of Baffles = J = 0.145 m

• Power Requirements:

Agitator Speed= n = 100 rpm

Re = 9768

Np = 1.5

 $r = 1088.8 \text{ kg/m}^3$

 $P = (Np)^{*}(D_a)^{5*}(r)^{*}(n)^{3}$

P = 5.7 hp

Jacket Selection:

Dimple Jacket is selected because

- i. High pressure steam
- ii. Induce turbulence
- iii. Low pressure drop
- iv. Cost effective

La = 0.145 m, Da = 0.58 m

n = 100 rpm

(5.18)

 $Tr = 140^{\circ}C$ $Ts = 152^{\circ}C$ $\rho = 1088.8 \text{ kg/m3}$ $\mu = 0.06 \text{ kg/m s} \qquad k = 0.0316 \text{ W/m K}$ Cp = 1.37 KJ/kg K $Re = (La2*n*r)/\mu$ (5.19) Re = 610 $j_{h} = 15$ $h_i = j_h * (k/D_a) * ((c_p * \mu)/k)^{1/3}$ (5.20) $h_i=3.327\ W/m^2K$ $h_o=8520\ W/m^2K$ $U_c = (h_i * h_o)/(h_i + h_o)$ $U_{c} = 3.325 \ W/m^{2}K$ $R_{d} = 0.003$ $1/U_{\rm d} = (1/U_{\rm c}) + R_{\rm d}$ $U_d = 3.27 \ W/m^2 K$ Jacket Covers 95% of reactor area

 $A{=}~0.95{*}(\pi D_L + \pi D^2{\!/}4) = 13~m^2$

SPECIFICATION SHEET			
	Identif	ication	
Ite	em	Reactor	r
Item	i no.	R-104	
No. re	quired	3	
Oper	ation	Continuc	ous
Ту	pe	Continuous stirred	type reactor
Function			
Fermentation of Glucose to Ethanol			
Chemical Reaction			
$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$			
Reactor Specifications		Jacket Specifications	
Length of Reactor	2 m	Process Fluid Temp	48°C
Diameter of Reactor	1.36 m	t_1	25°C
Volume of Reactor	3.05 m^3	t ₂	45°C
Speed of Impeller	100 rev/min	hi	$4.26 \text{ W/m}^2\text{K}$
Length of Impeller	0.1125 m	ho	$1.61 \text{ W/m}^2\text{K}$
Diameter of Impeller	0.45 m	Ud	$1.15 \text{ W/m}^2\text{K}$
Power	6.46 hp	Area	9.5 m^2

SPECIFICATION SHEET				
Identification				
Ite	em	Reactor	r	
Item	i no.	R-103		
No. re	quired	1		
Oper	ation	Continuc	ous	
Ту	pe	Continuous stirred	type reactor	
Function				
Hydrolysis of Cellulose to Glucose				
Chemical Reaction				
$(C_6H_{10}O_5) n + H_2O \rightarrow C_6H_{12}O_6$				
Reactor Specifications		Jacket Specifications		
Volume of Reactor	1.2 m^3	Jacket Type	Dimple Jacket	
Diameter of Reactor	1 m	Steam Temperature	152°C	
Length of Reactor	1.5 m	Steam Pressure	5 bar	
Type of Impeller	Rushton Impeller	hi	3.927 W/m ² K	
Speed of Impeller	100 rev/min	ho	8520 W/m ² K	
Diameter of Impeller	0.33 m	Ud	$3.72 \text{ W/m}^2\text{K}$	
Power	1.3 hp	Area	5 m^2	

SPECIFICATION SHEET				
Identification				
I	tem	React	or	
Ite	m no.	R-10	1	
No. 1	required	1		
Ope	eration	Continu	ious	
7	уре	Continuous stirre	d type reactor	
Function				
Pre-Hydrolysis of Cellulose to Glucose				
Chemical Reaction				
$(\mathrm{C}_6\mathrm{H}_{10}\mathrm{O}_5) \mathrm{n} \rightarrow \mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6$				
Reactor Specifications Jac		Jacket Speci	ifications	
Volume of Reactor	5.1 m^3	Jacket Type	Dimple Jacket	
Diameter of Reactor	1.7 m	Steam Temperature	152°C	
Length of Reactor 2 m		Steam Pressure	5 bar	
Type of Impeller Pitched Blade Impeller		hi	$3.327 \text{ W/m}^2\text{K}$	
Speed of Impeller	Speed of Impeller 100 rev/min		8520 W/m ² K	
Diameter of Impeller	0.58 m	Ud	$3.27 \text{ W/m}^2\text{K}$	
Power 5.7 hp		Area	13 m^2	

5.2 Distillation Column Design:

5.2.1 Introduction:

In industry it is common practice to separate a liquid mixture by distilling the components, which have lower boiling points when they are in pure condition from those having higher boiling points. This process is accomplished by partial vaporization and subsequent condensation.

"It is a process in which a liquid or vapor mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat".

The creation or addition of another phase in distillation is obtained by the repeated vaporization and condensation of the fluid. The separation process exploits the differences in vapor pressure of key components in the mixture initiate the separation.

The advantages of distillation are its simple flow sheet, low capital investment and low risk. The separation process can handle wide ranges of feed concentrations and throughputs while producing a high purity product.

5.2.2 Types of Distillation Column:

Distillation columns come in a variety of forms, most of which is created to carry out a particular kind of separation and varies in complexity.

- Batch columns
- Continuous columns

Batch Columns:

In a batch operation, the feed is introduced to the column in batches. For more information, the distillation process is carried out once the column is charged with a "batch" of material. A new batch of feed is supplied once the product has undergone the necessary level of purification.

Continuous Columns:

In contrast, a continuous feed stream is processed by continuous columns. Unless there is a problem with the column or nearby process units, there are no interruptions. They are the more prevalent of the two varieties and are able to manage high throughputs. We will solely focus on this category of columns.

5.2.3 Choice Between Packed and Plate Column:

The mass transfer of vapors and liquids can be done in a packed column or a plate column. These two separate sorts of operations are very dissimilar. a selection process that takes into account the elements under four areas,

- ✓ Scale, foaming, pressure loss, and liquid holdup are factors that rely on the system.
- ✓ Elements that are affected by the fluid flow moment.
- ✓ Factors that depend on the column's internal structure and physical properties, such as cost, size, weight, and side stream.

✓ Factors that are affected by the mode of operation, such as batch and continuous distillation turndown, and intermittent distillation.

Following are the advantages of plate over packed column:

- 1. Plate columns are used to manage dispersion issues when liquid flow rates are lower than gas flow rates.
- 2. For large columns, the packed column weighs more than the plate column.
- 3. Manholes shall be fed for cleaning if recurring maintenance is necessary. Before cleaning packed columns, packaging must be taken out.
- 4. The plate column is ideal for non-foaming systems.
- 5. Compared to packed columns, design information for plates columns is more accessible and trustworthy.
- 6. To reduce the temperature of a reaction or solution in a plate column, inter-stage cooling can be offered.
- 7. Packing may be harmed when there is a temperature fluctuation.

5.2.4 Choice of Plates in Column:

In distillation column, Four main tray types, the bubble cap, sieve tray, ballast or valve trays and the counter flow trays are used.

I have selected sieve tray because:

- ✓ They are lighter in weight and less expensive. Easily install.
- ✓ Cleaning is so much easy as compared to other types of trays so maintenance cost is reduced as compared to others.

5.2.5 Selection of Trays:

Cost:

Cost of plate depends upon material of construction used.

Valve plate : Sieve plate : Bubble-cap plate

1.5 : 3 : 1.0

Operating Range:

Comparison of operating range flexibility is,

Bubble cape tray > Valve tray > Sieve tray

Sieve plates provide a reasonable operating range with good design.

Pressure Drop:

Bubble-cap tray > valve tray > sieve tray

5.2.6 Main Components of Distillation Column:

- 1. Column internals such as trays/plates and/or packaging which are utilized to enhance component separations.
- 2. A reboiler to supply the required vaporization for the distillation process. The liquid taken out of the reboiler is referred to as bottoms, or just bottoms.

3. A condenser that will cool and condense the vapor that is leaving the column's top. The distillate, referred as the top product, is the condensed liquid that is taken out of the system.

5.2.7 Factors Affecting the Distillation Column Operation:

- 1. **Foaming:** The term foaming describes how a liquid expands when a vapor or gas passes through it. Excessive foaming frequently causes liquid to accumulate on trays even if it offers high interfacial liquid-vapor contact. Foaming can occasionally get so terrible that it mixes with the liquid in the tray above. The physical characteristics of the liquid mixtures have the most role in determining whether foaming will happen, but tray designs and conditions can also play a role.
- 2. Entrainment: Once more, entrainment is brought on by high vapor flow rates and refers to the liquid that the vapor carries up to the tray above. It is harmful because tray efficiency is decreased and less volatile material is transferred to a plate holding a more volatility. High purity distillate might also become contaminated. Over-entrainment might result in floods.
- 3. Weeping/Dumping: Low vapor flow is the cause of this condition. The liquid on the tray cannot be supported by the vapor's pressure alone. Liquid begins to leak as a result through perforations. Weeping too much will result in dumping. In other words, a domino effect will cause the liquid on all trays to crash (dump) through to the base of the column, necessitating a restart of the column.
- 4. **Flooding:** Excessive vapor flow causes liquid to be entrained in the vapor up the column, which results in flooding. An increase in liquid holdup on the plate above results from the pressure buildup brought on by too much vapor, which also backs up the liquid in the down comer. The column's maximum capacity may be significantly lowered depending on the level of flooding. Sharp rises in column differential pressure and a sizable decline in separation efficiency are indicators of flooding.
- 5. **Feed Conditions:** The operating lines and, thus, the number of stages needed for separation are influenced by the state of the feed mixture and feed composition. The position of the feed tray is also impacted. Trays and packaging condition: Keep in mind that the effectiveness of the plate determines the precise number of trays needed for a given separation duty. Therefore, any elements that lower tray efficiency will also affect how well the column performs. The rates at which fouling, wear and tear, and corrosion affect tray efficiency vary on the characteristics of the liquids being processed.
- 6. **Column Diameter:** Column diameter affects vapor flow velocity. Column capacity is calculated by weeping, which establishes the minimal vapor flow necessary, and flooding, which establishes the highest vapor flow permitted. As a result, the column will not function effectively if the column diameter is not sized properly.

5.2.8 Design calculations:

- 1. Designing steps of distillation column:
- 2. Bubble point and dew point calculations.
- 3. Key components selection.
- 4. Determining the Minimum number of stages.(N min).
- 5. Minimum Reflux Ratio (Rm) calculations.

- 6. Determining the Actual Reflux Ratio R.
- 7. Calculate the theoretical number of stages and actual number of stages.
- 8. Establishing the physical characteristics of the top and bottom products.
- 9. Calculating the column's diameter.
- 10. Calculation of entrainment, weeping point, etc.
- 11. Calculating pressure drop.
- 12. Determining the column's height.

5.2.9 Design Calculations:

Temperature of feed = $83^{\circ}C$

Temperature of top product = 78° C

Temperature of bottom product = $83^{\circ}C$

Heavy Key Component = Water

Light Key Component = Ethanol

Table 5.1: Feed Composition

Components	Feed (X _f) %	Distillate (X _d) %	Bottom (X _b) %	Relative Volatility
Ethanol	77	99.5	0.005	1
Water	21	0.5	90.5	0.969
Ammonium Acetate	2	-	9.8	5.4226

Calculation of Minimum Reflux Ratio R_m

We are using Underwood equation,

$$\frac{x_{fA} \propto_A}{\propto_A - \theta} + \frac{x_{fB} \propto_B}{\propto_B - \theta} + \frac{x_{fC} \propto_C}{\propto_C - \theta} = 1 - q$$
(5.21)

As feed is entering as its boiling point so, q = 1

By trial, $\theta = 0.9757$

We are using eq. of min. reflux ratio,

$$\frac{x_{fA} \propto_A}{\propto_A - \theta} + \frac{x_{fB} \propto_B}{\propto_B - \theta} + \frac{x_{fC} \propto_C}{\propto_C - \theta} = R_m - 1$$
(5.22)

Putting all values $R_m = 2.6907$

Actual Reflux Ratio

We follow the rule of thumb is:

$$R = (1.2 - 1.5) R_{min}$$

$$R = 3.2284$$

Minimum No. of Plates

For minimum no. of stages N_{min} is obtained.

Using Fenske relation which is,

$$N_{min} = \frac{\log\left[\left(\frac{x_B}{x_C}\right)_D\left(\frac{x_C}{x_B}\right)_B\right]}{\log(\alpha_{BC})_{avg}}$$
(5.23)

Theoretical No. of Plates

For theoretical number of plates,

$$\frac{N - N_{min}}{N - 1} = 0.75 \left[1 - \left(\frac{R - R_{min}}{R - 1}\right)^{0.566} \right]$$
(5.24)

Theoretical no. of stages to be,

N = 24 trays

We removed One plates for Re-boiler, so

N = 24 - 1 = 23 trays

 $N_{min} = 10$

Location of Feed Plate

$$\log \frac{N_D}{N_B} = 0.206 \log \left[\left(\frac{B}{D} \right) \left(\frac{x_{HK}}{x_{LK}} \right) \left(\frac{(x_{LK})_B}{(x_{HK})_D} \right)^2 \right]$$
(5.25)

$$N_D = 0.27 N_B$$

$$N_A = N_D + N_R$$

Number of Plates above the feed tray $N_R = 26$

Number of Plates below the feed tray $N_D = 8$

So, the feed enters at 9th plate

Actual Number of Stages

$$N_{A} = 34 \text{ trays}$$

$$Eo = \frac{\text{Number of thoretical stages}}{\text{Actual number of stages}}$$
(5.26)

Eo = 70%

Determination of the Column Diameter

5

Top Conditions	Bottom Conditions
4	4
$L_{n} = 34.9 \times 10^{4} \text{ Kg/hr}$	$L_{m} = 49.6 \times 10^{4} \text{ Kg/hr}$
$V_{n} = 47.9 \times 10^{4} \text{ Kg/hr}$	$V_{\rm m} = 47.9 \times 10^4 {\rm Kg/hr}$
Average mol.wt = 46.07 g/mol	Average mol.wt = 77.01 g/mol
$T = 78^{\circ} C$	$T = 83^{\circ} C$
$\rho V = 3.134 \text{ Kg/m}^3$	$\rho V = 1.57 \text{ Kg/m}^3$
$\rho L = 701.4 \text{ Kg/m}^3$	$\rho L = 950.1 \text{ Kg/m}^3$

Flow Parameters

Liquid and vapor flow rates are larger at bottom so based upon bottom flow rates.

$$F_{LV} = \left(\frac{L_m}{V_m}\right) \left(\frac{\rho_v}{\rho_L}\right)^{0.5}$$
(5.27)

 F_{LV} = Liquid Vapor Factor = 0.0420

Capacity Parameter

Assumed tray spacing = 14 in. = 0.3 m

 $C_{sb(20)} = 0.061 \text{ m/Sec}$ (Capacity parameter for liquids ($\sigma = 20 \text{ dynes/cm}$))

Surface tension of system = α = 27.3 dynes/Cm

$$C_{sb} = C_{sb(20)} \left(\frac{\alpha}{20}\right)^{0.2}$$
(5.28)
= 0.103 m/s
$$U_{nf} = C_{sb} \left(\frac{\rho_L - \rho_v}{\rho_v}\right)^{0.5}$$
= 1.41 m/s

Tray Selection

We have selected single cross flow sieve tray with segmental down comer.

Down comer area = $A_d = 0.12 A_T$

Weir length = $L_w = 0.77 D_T$

weir height $= h_w = 50 \text{ mm}$

Hole size (range 1/8" to $\frac{1}{2}$ ") = 1/8" = 3.015 mm

Spacing between trays = 14 in. = 0.3 m

Tower Diameter

Let flooding = 80% (by trial) $F^* = 0.8$ $U_n^* = U_{nf} \times F^* = 1.128$ m/Sec

Net area.

Net Area = [column area (cross sectional) - (Down-comer area)]

```
A_n = A_T - A_d = 0.88 A_T
                                                                                                          (5.29)
A_T = \frac{A_n}{0.88} = \frac{Q_v}{0.88U_n}
A_T = 2.45 \text{ m}^2
A_{T} = (\pi/4)^{*}D^{2}
D = 1.76 m
Tower area = A_T = 2.45 \text{ m}^2
Net area
            = A_n = 0.88 A_T
                 = 2.156 \text{ m}^2
Down comer area = A_d = 0.12 A_T
                            = 0.294 \text{ m}^2
Hole area = A_h = 0.1 A_T
                   = 0.245 \text{ m}^2
Flooding Check
 V_{max} = K_1 \sqrt{\rho L - \rho v / \rho v}
                                                                                                           (5.30)
V_{max} = 1.09
F = \frac{Un}{Uf} \times 100
 F = 78%
Calculation of Entrainment
As FLV = 0.042
F = 80%
```

 $\psi = 0.06$

Since $\psi < 0.1$, process is satisfactory

Tray Pressure Drop

Ht = Hd + (Hw + How) + Hr

(5.31)

$H_w = 50 \text{ mm}$	
Dry Tray Pressure drop	
$H_d = 51 (U_h/Co)^2 (\rho_V / \rho_L)$	(5.32)
$U_h = Hole \ velocity = Q_v / A_h$	
$U_h = Q_v / A_h = 11.40 \text{ m/sec}$	
Using Fig, we find "C _o "	
$C_{o} = 0.80$	
$H_d = 51^* (Uh/Co)^{2*} (\rho_v / \rho_L)$	
$H_d = 17.11 \text{ mm}$	
Weir Crest	
$H_{ow} = 750 (L_w/\rho_L* l_w)^{2/3}$	(5.33)
$L_{\rm w}=0.77D_{\rm T}$	
$L_{\rm w} = 1.35 \ {\rm m}$	
$H_{ow} = 750 (L_w/\rho_L* l_w)^{2/3}$	
$H_{ow} = 18.61 \text{ mm}$	
Residual Head (Hr)	
$H_r = \left(\frac{12.5 \times 10^3}{\rho_L}\right)$	(5.34)
$H_r = 17.83 \text{ mm}$	
$H_t = H_d + (H_w + H_{ow}) + H_r$	
= 17.11 + 50 + 18.61 + 17.83	
= 103 mm	
Total Pressure Drop	
$P_t = (9.81 \times 10^{-3} \ 10) \ H_t \times \rho_L$	
$= 9.81 \times 10^4 \times 78.9 \times 701$	
= 708 Pa	
= 0.1 psi	
Estimation of Weep point	
$\overline{U}_{h(min)} = \frac{K_2 - [0.90 - (25.4 - d_h]}{\left(\rho_V\right)^{0.5}}$	(5.35)

 $H_W = 25.4 \text{ mm}$ $H_{OW} = 18.61 \text{ mm}$

 $H_W + H_{OW} = 25.4 + 18.61 = 44.18 \text{ mm}$ Using graph, $K_2 = 30.2$ $Uh_{(min)} = 9.2 \text{ m/sec}$ Actual Min. Vapour Velocity $\geq Uh_{(min)}$ No Weeping. Total no. of holes Total no. of holes = A_h/a_h Diameter of 1 hole = 5mm = 0.005 mArea of one hole = $(3.14 \times 2.5 \times 10^{-5})/4$ $= 1.96 \times 10^{-5} \text{ m}^2$ Total no. of holes = A_h/a_h Total number of holes = 12500**Height of Distillation Column** No. of plates = 34Tray spacing = 0.30m Distance between 12 plates = $0.30 \times 34 = 10.2$ m Tray thickness = 3 mm/plateTotal Height of column = $[(34-1) \times 0.3] + 0.5$ = 10 m

SPECIFICATION SHEET			
	Ide	ntification	
Item		Distillation column	
Item no		D-102	
No of required		2	
Туре		Multi- components	
	Ca	lculations	
No of plates	34	Tray spacing	0.3m
Height of column	10m	Efficiency	70%
Flooding	80%	Hole area	$1.96 \times 10^{-5} \text{ m}^2$
Weeping	No weeping	Hole size	3.175 mm
Fractional entrainment	0.06	Pressure drop	0.1 psi
Reflux ratio	3.22	Diameter of column	1.76 m

SPECIFICATION SHEET				
	Ide	ntification		
Item		Distillation column		
Item no		D-101		
No of required		2		
Туре		Multi- components		
Calculations				
No of plates	16	Tray spacing	0.3m	
Height of column	5.43m	Efficiency	68%	
Flooding	75%	Hole area	$1.96 \times 10^{-5} \text{ m}^2$	
Weeping	No weeping	Hole size	3.175 mm	
Fractional entrainment	0.04	Pressure drop	0.09 psi	
Reflux ratio	0.712	Diameter of column	1.01 m	

5.3 Design of Waste Heat Boiler (WHB-102):

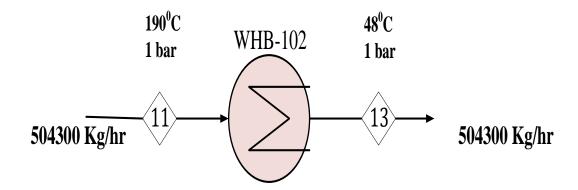


Figure 5.3: Waste Heat Boiler (WHB-102)

5.3.1 Introduction:

A waste heat boiler converts heat generated as a byproduct of another operation, heat that would otherwise be squandered, into steam. Steam may be used to power turbines that generate energy. The boiler can also be used to merely heat water or other types of fluid. A waste heat boiler, also known as a waste heat recovery boiler, can lower a system's fossil fuel consumption and operating costs by recycling part of the energy utilized. This also implies that less greenhouse gases enter the atmosphere.

A waste heat boiler with a water-tube design can handle significantly greater steam pressures than a boiler with a fire-tube design, but it is more complicated to build and install. The tubes in this type of boiler are thinner than those in a fire-tube boiler, and they hold water rather than hot gases. Waste heat, in the form of hot gases or furnace flames, surrounds the water-filled tubes in a reversal of the system within a fire-tube boiler. To prevent the boiler tubes from flame damage, insulating materials are utilized. A water-tube waste heat boiler can withstand high pressures while also responding swiftly to variations in heat input.

We have selected water tube waste heat boiler due to following reasons

5.3.2 Advantages:

- ✓ Working pressures is high
- ✓ Superheated steam generation
- ✓ Heat recovery is faster
- ✓ Better turn down

5.3.3 Design Calculations: Heat Duty

Temperature Input=190°C

Temperature Output = $48^{\circ}C$

As the relation for latent heat is given as

 $Q=8.96{\times}10^5\,MJ/hr$

Steam Requirement Pressure = 5 bar $m = 3.3 \times 10^5 \text{ kg/hr}$ Energy required and heat production 2% heat loses \checkmark Using the relation for energy required and heat loss $Q_T = Q_u + 0.02Q_T$ (5.36)Rearranging the above the equation and putting values $Q_T = 9.14 \times 10^7 \text{ kg/hr}$ Water Requirement Mass of Feed water $(M_F) = Mass of Stream(M_F) + Blow - down(M_B)$ (5.37)Blow-down up to 10% (Proposefull discharge) $M_{F} - 0.1M_{F} = M_{S}$ $M_{\rm S} = 36.6 \times 10^4 \, \rm kg/hr$ $M_{\rm S} = 101.6 \, \rm kg/sec$ **Estimation of Surface Area** For system having heavy organics assume $U_D = 700 - 1140$ So assuming, $U_D = 1140 \text{ W/m}^2 \text{k}$ $U_D = 4104 \text{ kJ/hr.m}^2 \text{k}$ **LMTD** Calculations $\Delta T_{ln} = \frac{(T_1 - t_1) - (T_2 - t_2)}{l_n \left(\frac{T_1 - t_1}{T_2 - t_2}\right)}$ (5.38) $\Delta T_1 = 38^{\circ}C$ $\Delta T_2 = 23^{\circ}C$ $LMTD = 30^{\circ}C$ **Correction Factor**

$$R = \frac{T_a - T_b}{t_b - t_a} = 1.11$$
$$S = \frac{t_b - t_a}{T_a - T_a} = 0.139$$
$$F_{LMTD} = 0.91$$

 $\Delta T_c = LMTD \times F_{LMTD}$

(5.39)

 $\Delta T_c = 301 k$

Applying Correction factor

$$A = \frac{Q}{U\Delta T_{ln}f}$$
$$A = 74 \text{ m}^2 = 796 \text{ ft}^2$$

Tube Dimensions:

Length of tube = 16 ft = 4.87 m

Tube outer diameter $=\frac{3}{4}$ in = 0.019m

Tube inner diameter = 0.620in = 0.016m

BWG = 16

Tube side (Process Slurry)

No of tubes

$$N_{t} = \frac{A}{\pi d_{o}L}$$

$$N_{t} = 254$$
Tube outer dia = $\frac{3}{4}in = 0.019$ m
1 shell and 2 passes
Triangular pitch
Inner diameter of shell = 19.25in = 0.488m

Bundle diameter

$$K_1 = 0.249$$

 $n_1 = 2.207$

$$D_{b} = d_{o} \left(\frac{N_{t}}{k_{1}}\right)^{\frac{1}{n_{1}}}$$

 $D_b = 0.44m$

Tube cross-sectional area

Cross – sectional area = $\frac{\pi d_0^2}{4}$

Cross sectional area = $2.8 \times 10^{-4} \text{m}^2$

Tube per passes

For 2 passes

$$N_t = 127$$

Area per passes = tube per area \times cross-sectional area

(5.41)

$$= 0.03 \text{ m}^2$$

Volumetric flow rate:

Volumetric flow rate =
$$\frac{\text{Feed flowrate}}{\text{Density of water}}$$
 (5.42)

$$= 0.11 \text{ m}^3/\text{s}$$

Tube velocity:

Tube velocity =
$$\frac{\text{volumetric flow rate}}{\text{Area per passes}}$$
 (5.43)

$$G_t = 3.3 \text{ m/s}$$

Reynold Number:

Reynold Number =
$$\operatorname{Re} = \frac{\rho u d_i}{\mu}$$
 (5.44)

$$Re = 14671.8$$

Prandtl number:

Prandtl number =
$$\Pr = \frac{\mu C_p}{k}$$
 (5.45)
 $\Pr = 224$

$$\frac{L}{D_i} = \frac{4.87}{0.019} = 256$$

From graph,

$$j_{\rm H} = 1.9 \times 10^{-3}$$

Tube side coefficient:

$$h_{i} = \frac{k}{d_{i}} j_{H} \operatorname{Re}(\operatorname{Pr})^{0.33} \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$
(5.46)
$$h_{i} = 1837 \text{ W/m}^{2} \text{k}$$

Shell side (Water)

Shell diameter

For fixed tube, diametrical clearance

$$= 13 \times 10^{-3} m$$

Shell diametr = Db + diametrical clearance

Ds = 0.45m

Ideal cross flow coefficient (H_{oc})

Tube pitch = $P_t = 1.25$ do

 $P_t = 0.024m$

Area of shell:

$$As = \left(\frac{\rho_t - d_o}{\rho_t}\right) (D) (L_B)$$

$$L_B = \frac{d_s}{5} = 0.1m$$

$$As = 0.01 m^2$$
(5.47)

Shell side velocity

Shell velocity =
$$\frac{\text{flow rate}}{\text{Area}}$$
 (5.48)

$$G_t = 706 \text{ kg/m}^2 \text{s}$$

Reynold Number

Reynold Number = $\text{Re} = \frac{\text{Gsd}_0}{\mu}$

$$Re = 31008$$

Prandtl number

Prandtl number = $\Pr = \frac{\mu C_p}{k}$ $\Pr = 3.5$

Shell side coefficient:

$$h_{oc} = \frac{k}{d_o} j_H \text{Re}(\text{Pr})^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
$$h_{oc} = 4460 \text{ w/m}^2 \text{/s}$$

Tube row correction factor (Fn):

Tube vertical pitch = Pt' = 0.87pt

Pt' = 0.02m

Baffle height cut = baffle cut \times D_s

hc = 0.12m

Height b/w baffle cut = shell $ID-2 \times hc$

$$= 0.25m$$

 $N_{cv} = \frac{\text{height between baffle cut}}{\text{tube vertical pitc}}$

$$N_{cv} = 12.5$$

From fig, 12.32 we get value of Fn

Fn = 1.04

 $j_{\rm H} = 3.0 \times 10^{-2}$

75

(5.49)

Window correction factor:

$$H_{b} = \frac{Db}{2} - D_{S} (0.5 - B_{c})$$
(5.50)

 $H_{b} = 0.11m$

Bundle cut:

$$B_{b} = \frac{H_{B}}{Db} = 25\%$$

From fig, 12.41 Ra = 0.19

Tube in one window area:

 $Nw = Nt \times Ra$

= 48

Tube in cross flow area

$$Nc = Nt-2Nw$$

$$Rw = \frac{2 \times Nw}{Nt} = 0.37$$

From Figure, 12.33 Fw = 1.03

Bypass correction:

$$\begin{split} A_{\rm B} &= l_{\rm b} \times ({\rm D}_{\rm S} - {\rm D}_{\rm b}) \\ A_{\rm B} &= 2.2 \times 10^{-3} {\rm m}^2 \\ F_{\rm B} &= \exp[-\alpha \times \frac{{\rm A} {\rm b}}{{\rm A} {\rm s}} \left(1 - \left(\frac{2{\rm N} {\rm s}}{{\rm N} {\rm cv}}\right) 0.33\right] \end{split} \tag{5.51}$$

$$F_{\rm B} &= 0.99$$

Leakage correction:

Ct =
$$7 \times 10^{-4}$$
m
Cs = 4.7×10^{-3} m
A_{tb} = $\frac{Ct \pi Do}{2} \times (Nt-Nw)$ (5.52)
A_{tb} = 4.2×10^{-3} m²
A_{sb} = $\frac{CsDs}{2} (2\pi - Qb)$
A_{sb} = 3.8×10^{-3}
A_L = A_{tb} + A_{sb}
A_L = 7.8×10^{-3}
From fig, $\beta_1 = 0.43$

$$F_{\rm L} = 1 - \beta_{\rm l} \; (\frac{A_{\rm tb} + 2A_{\rm sb}}{A_{\rm L}})$$

 $F_{\rm L} = 0.5$

Shell side coefficient:

$$H_{S} = H_{oc} + F_{L} + Fw + Fn + Fb$$
(5.53)

$$H_{S} = 2364 \text{ W/m}^{2}\text{s}$$

Overall heat transfer coefficient:

$$\begin{pmatrix} 1\\ U_{o} \end{pmatrix} = \begin{pmatrix} 1\\ h_{o} \end{pmatrix} + \begin{pmatrix} 1\\ h_{od} \end{pmatrix} + \begin{pmatrix} 4\\ a \end{pmatrix} + ln \begin{pmatrix} 4\\ a \end{pmatrix} + \begin{pmatrix} 4\\ a \end{pmatrix} \begin{pmatrix} 1\\ h_{id} \end{pmatrix} + \begin{pmatrix} 4\\ a \end{pmatrix} \begin{pmatrix} 1\\ h_{i} \end{pmatrix}$$
(5.54)

$$h_{od} = 5000 \text{ w/m}^2$$

$$Kw = 16 \text{ W/m}^2 \text{s}$$
Putting values

$$U_D = 940 \text{ W/m}^2 \text{s}$$
Pressure Drop:
Tube Side (Heavy Organic)
No of tubes = 254
1 shell and 2 passes
ID of tube = 0.016m

$$U_t = 3.3 \text{ m/s}$$

$$J_f = 1.9 \times 10^{-3}$$

$$\Delta P_t = N_P \left[8 J_f \frac{1}{D_t} \left(\frac{\mu}{\mu w} \right)^{0.14} + 2.5 \right] \frac{\rho U_t}{2}$$
(5.55)

$$\Delta P_t = 8 \text{ psi}$$
Shell Side (Water)

$$\Delta P_t = 2 \Delta P_e + \Delta P_c (N_b - 1) + N_b \Delta P_w$$
(5.56)
Cross flow zone

$$J_h = 8.3 \times 10^{-3}$$

$$\mu = 0.7 \text{ m/s}$$

$$\Delta P_i = 8 J_f N_{cv} \equiv \frac{(us)2}{2}$$

$$\Delta P_i = 158$$

$$F'_B = \exp[-\alpha \times \frac{Ab}{As} \left(1 - \left(\frac{2Ns}{N_{cv}}\right) 0.33 \right]$$

$$\begin{split} F_{B} &= 1.00 \\ From figure, \beta_{I} &= 0.66 \\ F_{L} &= 1 - \beta_{I} \left(\frac{A_{tb} + 2A_{sb}}{A_{L}}\right) & (5.57) \\ F'_{L} &= 0.06 \\ \Delta P_{c} &= F'_{B} \Delta P_{I} F'_{L} \\ \Delta P_{c} &= 10.45 \\ \textbf{Window zone} \\ A_{w} &= \left(\frac{\pi (Ds)^{2}}{4} \times Ra\right) - (Nw \times \frac{\pi (Do)^{2}}{4}) \\ A_{w} &= 9.1 \times 10^{-3} \\ Nw &= 10 \\ \Delta P_{w} &= 2.35 \\ \Delta P_{e} &= \Delta P_{I} \frac{Nw + Ncv}{Nw} \times F'_{b} & (5.58) \\ \Delta P_{e} &= 316 \\ \Delta P_{s} &= 2 \Delta P_{e} + \Delta P_{c} (Nb - 1) + Nb \Delta P_{w} & (5.59) \\ \Delta P_{s} &= 0.10 psi \end{split}$$

SPECIFICATION SHEET			
	Identific	cation	
]	tem	Waste Heat	Boiler
Item no.		WHB- 102	
No. of required		3	
]	уре	1-2 horizontal he	at exchanger
Operation		Continuous	
Utilization of extra heat in output gases by generating steam			am
Heat Duty = $8.9 \times 10^5 \frac{\text{MJ}}{\text{hr}}$			
Heat Transfer area = 74 m^2			
Operating Pressure	1 bar	Operating Pressure	1 bar
Temperature In/ out	21- 152 °C	Temperature In/ out	190- 48 °C
Diameter	0.45m	Tube inner Diameter	0.016
Passes	1	No of tubes	254
Shell Diameter	0.488 m	Tube outer Diameter	0.019 m
Pressure Drop	0.10 Pa	Pressure Drop	8 Pa

5.4 Design of Heat Exchanger:

5.4.1 Introduction:

A Heat Exchanger is a heat transfer device that is used for transfer of internal thermal energy between two or more fluids available at different temperatures. In most of the exchangers the fluids are separated by a heat transfer surface and ideally don't mix with each other.

5.4.2 Basic Principle of Heat Exchangers:

The main principle of a heat exchanger is the exchange of thermal energy on the basis of thermal gradients between two bodies (fluids). The mechanism of heat transfer in heat exchangers is the combination of the basic heat transfer mechanisms. The basic heat transfer mechanisms are:

- ✓ Conduction
- ✓ Convection
- ✓ Radiation

5.4.3 Types of Flow Arrangements in Heat Exchangers:

One of the following flow types may be used in a heat exchanger, which is the most typical in practice.

- ✓ Parallel flow
- ✓ Counter-flow
- ✓ Crossflow

5.4.4 Selection Criteria of Heat Exchanger:

Proper selection of heat exchanger depends upon following factors:

- ✓ Heat transfer rate
- ✓ Operating temperature
- ✓ Cost
- ✓ Pumping power
- ✓ Material of construction
- ✓ Flow rates
- ✓ Flow arrangements
- ✓ Phases of fluids

5.4.5 Why Shell and Tube Heat Exchanger Is Selected:

The reasons of selection of this heat exchanger are as follows:

- ✓ Easy maintenance
- ✓ Having great heat transfer
- ✓ Well-proven design procedures.
- \checkmark Can be built from a variety of materials.
- ✓ Applicable for large heat transfer coefficients

5.4.6 Design Steps of Shell & Tube Heat Exchanger:

In designing the shell and tube heat exchanger the following steps are involved.

- 1. Q is available from energy balance so with heat balance the flow rate of utility and process stream determined by heat balance.
- 2. Calculate log mean temperature difference i.e.

$$LMTD = \frac{\Delta T_2 - \Delta T_1}{\log \frac{\Delta T_2}{\Delta T_1}}$$
(5.60)

 $\Delta T_2 = T_2 - t_1 \qquad ; \qquad \Delta T_1 = T_1 - t_2$

3. Then calculate R & S for FT i.e.

$$R = \frac{T_1 - T_2}{t_2 - t_1}, \qquad S = \frac{t_2 - t_1}{T_1 - t_1}$$

- 4. Get F_T from Fig.
- 5. True temperature difference by multiplying F_T & LMTD.
- 6. When there is no available exchanger and only the process conditions are known Q and true temperature difference are fixed by the process conditions
- 7. Only A and U_D are unknown
- 8. If U_D is considered to have a trial value and A can be determined to have a trial value
- i. $A = Q/U_D$. ΔTt
- 9. For trial value of U_D see Appendix Table 8
- 10. U_D is related to U_c by a reasonable dirt factor R_d
- 11. The criterion of performance R_d was then obtained from U_D and U_c
- 12. Except where both coefficient are approximately equal, the lower film coefficient determines the range of U_c and U_D
- 13. From fluid flow conditions h_o , h_{io} , U_c , and pressure drops were calculated
- 14. The tube counts in Appendix Table 9 become a list of all conceivable exchanger shells when the value of A is paired with tube length and pitch.
 - 15. Having decided which fluid will flow in the tubes and which one in shell the trial number of tube passes and number shell passes can be approximated.
 - 16. Then get internal diameter of shell and the internal diameter of tubes from table 9 according number tubes and equivalent diameter from figure 28 according taking square pitch. The outer diameter of tube is selected from table 10.
 - 17. The length of tubes range up to 16 in.ft. The BWG is up to 16".
 - 18. After getting all calculate the area of shell and tube side.
 - 19. The mass velocity is also calculated for both sides.
 - 20. Then calculate the equivalent diameter of both sides.
 - 21. Reynolds number across shell side and tube side
- 22. Calculating Prandtl's number
- 23. Calculating factors for heat transfer coefficients
- 24. Individual heat transfer coefficients calculation for both sides
- 25. Then overall clean coefficients i.e.

$$U_c = \frac{h_{io}h_o}{h_{io} + h_o} \tag{5.61}$$

26. Dirt factor calculations i.e.

$$R_d = \frac{U_c - U_D}{U_c U_D}$$
81

27. Pressure drop calculations are also done for shell side and tube side.

5.4.7 Design of Heat Exchanger (H-103):

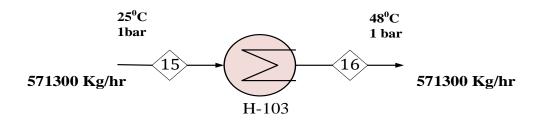


Figure 5.4: Heat Exchanger (H-103)

Steam:

Temperature = 152° C Pressure = 5 bar Shell side

Aqueous solution is used on shell side because it is less corrosive.

Tube Side

Steam is used on tube side as it is corrosive in nature.

Calculation of Heat Duty:

Aqueous solution:

Q = mass flow rate \times specific heat \times temperature difference

 $Q = m C_p \Delta T$

 $= 1.0 \times 10^8 \text{ Btu/hr}$

Steam:

Q	=	mλ
Q	=	1.0*10 ⁸ BTU/hr

 C_p = mass heat capacity

Calculation of LMTD:

 $LMTD = \{\Delta T_2 - \Delta T_1\} / \ln (\Delta T_2 / \Delta T_1)$

(5.62)

 $LMTD = 186^{\circ}F$ **Heat Transfer Area** $Q = UA \Delta T$ Where, Heat transfer coefficient $U_D =$ 680 BTU/hrft²F = Assumed U_D [From table 8] (Range = 200-700 BTU/hrft²F)Heat transfer area, $A = 790 \text{ ft}^2$ **Tube specification:** 16 BWG Outside Diameter = OD = 1.5 in Inside Diameter = ID = 1.37 in Length of Tube = L = 16 ft Pitch = 15/8 (square) Passes = 1(Triangular pitch) Correction of Heat transfer Area and U_D: **Corrected Area:** $A = N_t x L x a$ $A_c = 823 \ ft^2$

Corrected Coefficient UD:

 $U_D = 653 \text{ BTU/hrft}^2 \text{F}$

Number of Tubes N_t:

Number of Tubes $= N_t = A/L^*a$

(5.63)

Shell Side	Tube Side
ID =29 in	N _t =131
Baffle =5.8 in	Length =16 ft
Passes =1	OD =1.5 in
Clearance =1.8 in	16 BWG
	Pitch =15/8 (square)
	Passes =1

Shell and tube side's calculations:

Shell side (Aqueous solution)	Tube side (steam)	
Flow area:	Flow area:	
$a_s = ID^*C^*B/144P_t$	$a_t = N_t * A_t / 144n$	
= 1.2 ft ²	$= 1.3 \text{ ft}^2$	
Mass velocity:	Mass velocity:	
$G_s = w/a_s$	$G_t = w/a_t$	
$= 425000 \text{ lb/hr ft}^2$	$= 84615 \text{ lb/hrft}^2$	
$Re = D_e * G_s / \mu$	$\mathbf{Re} = \mathbf{D}_i \mathbf{G}_t / \mu$	
$D_e = 0.018m$	$D_i = 0.015m$	
Re _s =106250	Re _t =38782	
J _H Factor [From Fig 8]	J _H Factor	
$J_{H} = 220$ From Figure k= 0.06 BTU/hr ft ² F Cp=0.57 BTU/lb F (Cp μ/k) ^{1/3} =1.6 Shell Side Coefficient (h _o) h ₀ = J _h .k/D _e (C _p μ/k) ^{1/3} . = 176 BTU/hr ft ² F	Tube Side Coefficient (h_i) $h_{io} = 1500 \text{ Btu/hrft}^{2o}\text{F}$	

Clean Overall Coefficient:

This is very close to the assumed value. Thus, the Design is Satisfactory.

Pressure Drop Calculations:

Shell Side (Aqueous Solution)	Tube Side (Steam)
$\Delta Ps = fG_s^2(N+1)Ds/5.22x10^{10}De\Phi s$ Ret=106250 $f = 0.0013$ nb+1=12*L/B=33 $\Delta P_s = fG^2 d_s(n_b+1)/7.50*10^{12}D_e 2\Phi s$ $\Delta P_s = 0.028 \text{ psi}$	Re _t = 38782 $F=0.4137 \text{Re}^{-0.2585}$ F= 0.02 SG=0.0931 $\Delta P_t=fn_p LG^2/7.50*10^{12} D_i \partial \Phi_t$ $\Delta P_t= 0.03 \text{ psi}$

5.5 Design of Flash Separator (S-102):

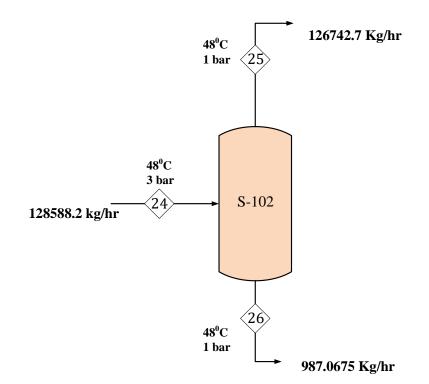


Figure 5.5: Flash Separator (S-102)

A flash separator is a tool used in chemical engineering to divide a vapor-liquid mixture into its component phases. It can function as a two-phase or three-phase separator and can be a vertical or horizontal tank.

The terms flash drum, break pot, knock-out pot, compressor suction drum, suction scrubber or compressor inlet drum, or vent scrubber are also used to describe vapor-liquid separators. It is frequently referred to as a demister when used to remove suspended water droplets from streams of air.

Gravity is used in vapor-liquid separators to induce the less dense fluid (vapor) to be removed from the top of the vessel while the denser fluid (liquid) settles to the bottom of the vessel.

A typical liquid separator will not work in low gravity settings like a space station since gravity is ineffective as a separation mechanism. In this scenario, liquid must be forced toward the outer edge of the chamber for removal using centrifugal force in a rotating centrifugal separator. Gaseous parts go inward, toward the center.

Vertical Flash Separator is selected because:

L/d ratio is less than 5 E = 128110.8 km/hm	
F = 128119.8 kg/hr	
D = 127072.4 kg/hr	
W = 1047.408 kg/hr	
Vapor Velocity	
$V_v = K_v ((\rho_L - \rho_v) / \rho_v)^{0.5}$	(5.65)
$S = (D/W)^* (\rho_V / \rho_L)^{0.5}$	
S = 1.1	
$K_v = 0.12$	
$V_v = 0.5 \text{ m/s}$	
Vapor Flow Rate	
$V = D/\rho_V$	(5.66)
$V = 0.07 \text{ m}^3/\text{s}$	
Vapor Cross Sectional Area	
$A_v = V/V_v$	(5.67)
$A_v = 0.14 m^2$	
• Diameter	
$d=(4*A_v/\pi)$	(5.68)
d = 0.42 m	
Liquid Flow Rate	
$L = W / \rho_L$	
$L = 3.12 * 10^{-4} m^{3}/s$	

Allow a hold up time of 10 min	
Volume Holdup	
$V_{L} = L*10*60$	(5.69)
$V_L = 0.187 \text{ m}^3$	
Vessel Cross Sectional Area	
$\mathbf{A} = (\pi^* \mathbf{d}^2 / 4)$	(5.70)
$A = 0.11 m^2$	
Vessel Height	
$L_v = V_L / A$	(5.71)
$L_v = 1.7 m$	
Increase 0.3 m to allow space for positioning	
$L_{t} = L_{v} + 0.3$	
$L_t = 2 m$	

• L/d Ratio

L/d = 4.7 m

SPECIFICATION SHEET			
Identification			
Item	Flash Tank		
Item no.	S-102		
No. required	1		
Operation	Continuous		
Туре	Vertical Flash Separator		
Function			
Separation of Ethylene			
Vapor Velocity	0.5 m/s		
Vessel Cross Sectional Area	0.11 m ²		
Diameter	0.42 m		
Liquid Holdup	0.187 m^3		
Vessel Height	2 m		
L/D Ratio	4.7		

5.6 Design of Spiral Tube Heat Exchanger:

The design of spiral tube heat exchangers consists of many tubes arranged in multiple layers of helical coils, around a center pipe. This tube bundle is fitted in a cylindrical pressure vessel. The fluid on the shell as well as tube side flows in opposite directions, making the equipment a true countercurrent heat exchanger.

Shell side

The high turbulence flow is created by the patented design of the tube coils. The variation of the fluid velocity between the tubes creates a pulse-surge collision flow regime increasing subsequently the heat exchange coefficient outside the tubes.

The possibility of fouling is greatly limited by the non-baffle design, the turbulence of the fluid and the very low surface roughness of the tubes.

Tube side

The helix-pattern flow in the tubes creates, thanks to the centrifugal forces, a secondary flow consisting of a pair of vortices enhancing the coefficient of heat transfer at the peripheral of the tubes.

Spiral tubes are coiled layer by layer in opposite direction to have a homogeneous heat transfer all along the exchanger.

• Selection of Appropriate Type

Spiral tube heat exchanger is selected so here is the reason behind selection:

- ✓ It is effective for slurries, sludges and viscous liquids
- ✓ Highly resistant to thermal and hydraulic shock
- \checkmark Suitable for fluids that tend to cause fouling because of
 - Continuous Curving
 - High Turbulence
 - High shear stress
- ✓ Self-cleaning ability

Hot Fluid (Steam)

 $T_1 = 152 \ ^{\circ}C$ $T_2 = 152 \ ^{\circ}C$

• Cold Fluid (Process Slurry)

```
t_1 = 25 \text{ °C} 	 t_2 = 140 \text{ °C}
OD of tube = d<sub>o</sub> = 19 mm
Thickness of tube = 2.7 mm
ID of tube = d<sub>i</sub> = 13.5 mm
Number of Spiral Coils = n = 3
Number of Turns = N = 4
Spiral Pitch = P = 25 mm
```

ID of Spiral = $D_i = 114.02 \text{ mm}$	
OD of Straight Tube = $d_{ho} = 27 \text{ mm}$	
ID of Straight Tube = $d_{hi} = 25 \text{ mm}$	
Shell Inside Dia	
$D_{is} = 2*(R_o + Rh_o)$	(5.72)
$D_{is} = 261 \text{ mm}$	
Length of Shell	
$L_{s} = (R_{o}^{2} - R_{i}^{2})/a$	(5.73)
$a = P\pi/4$	
$L_{s} = 332 \text{ mm}$	
Curvature Ratio	
$\partial = d_i/D_i$	
2 = 0.087	
Developed length of spiral	
$L_o = 3.14*n (R_o + R_i)$	(5.74)
$L_{o} = 1639 \text{ mm}$	
Total Length	
$L_t = N_t * L_o$	
$L_t = 6556 \text{ mm}$	
Area	
$A_{s} = n^{*}\pi^{*}d_{o}^{*}L_{o}$	(5.75)
$A_{s} = 0.185 \text{ m}^{2}$	
$LMTD = (\Delta t_1 - \Delta t_2)/\ln(\Delta t_1 / \Delta t_2)$	
$LMTD = 49 \circ C$	
LMTD = 322 K	
Steam Heat Transfer Coefficient	
$h_o = 8520 \text{ W/m}^2\text{K}$	
Slurry Heat Transfer Coefficient	
Mass Velocity	
$G = m/A_s$	
$G = 940 \text{ kg/sm}^2$	
Reynolds Number	
$Re = G^*d_i / \mu$	(5.75)
Re = 3666	
Equivalent Diameter:	

 $D_e = R_e \left(r_i / R_i \right)^{1/2}$ $D_e = 1261 \text{ mm}$ **Nusselt Number:** $N_u = 0.836 * D_e^{0.5*} Pr^{0.1}$ $N_u = 61.2$ $h_i = 278 \text{ W/m}^2 \text{K}$ **Clean Overall Heat Transfer Coefficient:** $U_c = (h_i * h_o)/(h_i + h_o)$ (5.76) $U_{c} = 269 \text{ W/m}^{2}\text{K}$ **Design Overall Heat Transfer Coefficient :** $1/U_d = (1/U_c) + R_d$ $U_{d} = 148 \text{ W/m}^{2}\text{K}$ Area: $A = A_{so} + A_{si}$ $A = [n^* \pi^* d_o^* L_o + n_1^* \pi^* dh_o^* L_t] + [n^* \pi^* d_i^* L_o + n_1^* \pi^* dh_i^* L_t]$ (5.77) $A = 2.5 m^2$ For Steam: $\Delta P = \ [(0.0789*(L/\rho_h))*(m_h/H*dh_o)*((1.3*(\mu h)^{0.33})/(dh_o+0.032))*(H/m_h)^{0.33}+1.5+16/L]$ $\Delta P = 0.0154$ bar $\Delta P = 0.22 \text{ psi}$ For Slurry: $\Delta P = [(0.0789^{*}(L/\rho_{c}))^{*}(m_{c}/H^{*}dh_{i})^{*}((1.3^{*}(\mu c)^{0.33})/(dh_{i}+0.032))^{*}(H/m_{c})^{0.33}+1.5+16/L]$

 $\Delta P = 0.382$ bar

 $\Delta P = 5.5 \text{ psi}$

SPECIFICATION SHEET				
Identification				
Item		Heat Exchanger		
Item no.		H-101		
No. rec	No. required 1			
Opera	Operation Continuous		ous	
Туре		Spiral Tube		
Function				
Pre-heating of corn stover slurry				
Heat Duty		9.9*10 ⁴ MJ/hr		
Heat Transfer Area		2.5 m^2		
Shell Side (Steam)		n) Tube Side (Slurry)		
Steam Temperature	2 m	t ₁	25°C	
Steam Pressure	1.36 m	t ₂	140°C	
h _o	8520 W/m ² K	hi	278 W/m ² K	
Pressure Drop	0.22 psi	Pressure Drop	5.5 psi	

CHAPTER # 06 MECHNICAL DESIGN

6.1 Mechanical Design of Pre-Hydrolysis Reactor (R-101):

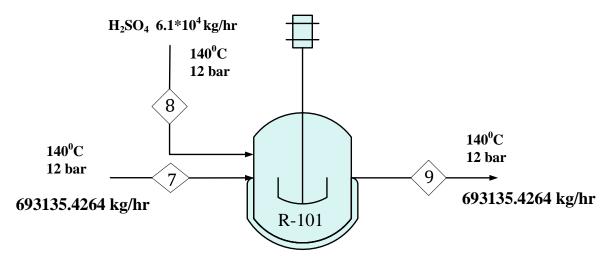


Figure 6.1: Pre-Hydrolysis Reactor (R-101)

Material Selection:

Austenitic Stainless-Steel Grade 304 is selected because of :

- ✓ High strength
- ✓ Resistant to scaling at high temperatures
- ✓ Resistant to corrosion
- \checkmark Used for high pressure reactors

Chemical Composition:

 $Cr = 24\text{-}26\% \qquad \qquad Ni = 19\text{-}23\% \qquad \qquad C = 0.25\%$

Baffle Spacing:

4 radial baffles are used

$$B = \pi D_t / 4$$
 (6.1)
 $B = 1.36 \text{ m}$
 $J = D_t / 12$ (6.2)
 $J = 0.145 \text{ m}$
Distance from bottom = $D_t / 2$

E = 0.87 m

Minimum Practical Wall Thickness

As vessel diameter is between 1-2 mm so minimum practical thickness is 7mm

Vessel diameter (m)	Minimum thickness (mm)					
1	5					
1 to 2	7					
2 to 2.5	9					
2.5 to 3.0	10					
3.0 to 3.5	12					

Wall Thickness

 $D_i = 1.744 \ m$

L = 2 m

 $P_i = 12 \text{ bar or } 1.32 \text{ N/mm}^2$

Corrosion allowance = 2 mm

Stress Factor = $S = 135 \text{ N/mm}^2$

Joint Efficiency = E = 1

Table 13.2. Typical design stresses for plate (The appropriate material standards should be consulted for particular grades and plate thicknesses)

Material	Tensile										
	strength (N/mm ²)	0 to 50	100	150	200	250	300	350	400	450	500
Carbon steel											
(semi-killed or											
silicon killed)	360	135	125	115	105	95	85	80	70		
Carbon-manganese steel (semi-killed or											
silicon killed)	460	180	170	150	140	130	115	105	100		
Carbon-molybdenum steel, 0.5											
per cent Mo	450	180	170	145	140	130	120	110	110		
Low alloy steel											
(Ni, Cr, Mo, V)	550	240	240	240	240	240	235	230	220	190	170
Stainless steel											
18Cr/8Ni											
unstabilised (304)	510	165	145	130	115	110	105	100	100	95	90
Stainless steel 18Cr/8Ni											
Ti stabilised (321)	540	165	150	140	135	130	130	125	120	120	115
Stainless steel											
18Cr/8Ni											
Mo 21 per cent											
(316)	520	175	150	135	120	115	110	105	105	100	95

 $t = (D_i * P_i) / (2SE-P_i)$

t = 8.24 mm

t = 10.24 mm

Outer Diameter of Shell

$$D_o = D_i + 2t$$

(6.4)

(6.3)

$D_{o} = 1.764 \text{ m}$	
Ellipsoidal Heads	
$t = (D_i * P_i) / (2SE-0.2P_i)$	(6.5)
t = 8.21 mm	
t = 10.2 mm	
Vessel Support	
For reactors we use bracket supports	
Weight Loads	
$W_v = 240 * C_v * D_i * (L+0.8(D_i) * t)$	(6.6)
$W_v = 15.65 N$	
Wind Loads	
$F = P_w * D_o$	(6.7)
F = 1816.92 N/m	
Longitudinal Stress	
$\sigma_h = (P_i * D_i)/2t$	(6.8)
$\sigma_{\rm h} = 112 \ { m N/mm}^2$	
Circumferential Stress	
$\sigma_L = (P_i * D_i)/4t$	
$\sigma_L = 56.29 \text{ N/mm}^2$	
Dead Weight Stress	
$\sigma_L = W/p^*(D_i + t)^*t$	(6.9)
$\sigma_L = 0.27 \text{ N/mm}^2$	
Radial Stress	
$\sigma_d = P_i/2$	
$\sigma_d = 0.66 \text{ N/mm}^2$	
Bending Moment	
$M_x = F^*H$	
$M_x = 1816.92 \text{ N/m}$	
Bending Stress	
$\sigma_b = (M_x/Iv)^*((D_i/2)+t)$	(6.10)
$\sigma_b = 0.15 \text{ N/mm}^2$	

6.2 Mechanical Design of Saccharification Reactor (R-103):

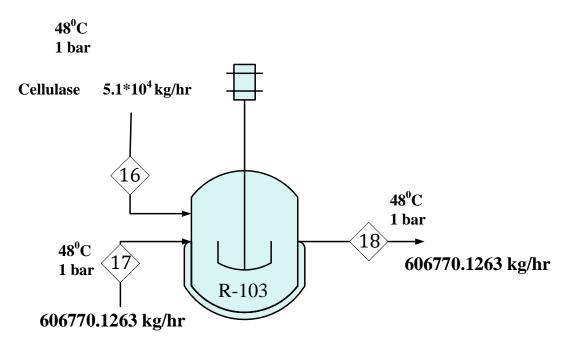


Figure 6.2: Saccharification Reactor (R-103)

Material Selection

- ✓ Austenitic Stainless-Steel Grade 304 is selected because of:
- ✓ High strength
- ✓ Resistant to scaling at high temperatures
- ✓ Resistant to corrosion
- ✓ Used for high pressure reactors

Chemical Composition

Cr = 24-26% Ni = 19-23% C = 0.25%

Baffle Spacing

4 radial baffles are used

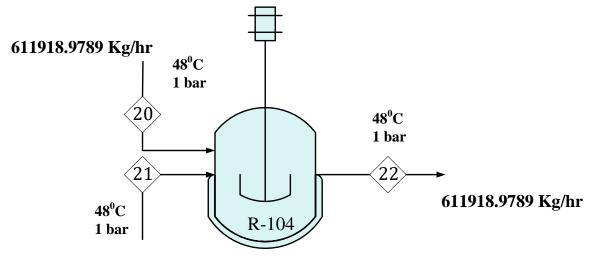
- B = pDt/4
- B = 0.785 m
- J = Dt/12
- J = 0.08 m

Distance from bottom = Dt/2

E = 0.5 m

Minimum Practical Wall Thickness

As vessel diameter is 1 mm so minimum practical thickness is 5 mm


Vessel diameter (m)	Minimum thickness (mm)					
1	5					
1 to 2	7					
2 to 2.5	9					
2.5 to 3.0	10					
3.0 to 3.5	12					

Wall Thickness

$D_i = 1 m$	
L = 1.5 m	
$P_i = 1 \text{ bar or } 0.11 \text{ N/mm}^2$	
Corrosion allowance = 2 mm	
Stress Factor = $S = 135 \text{ N/mm}^2$	
Joint Efficiency = $E = 1$	
$t = (D_i * P_i)/(2SE-P_i)$	(6.11)
t = 0.40 mm	
t = 2.4 mm	
Outer Diameter of Shell	
$D_o = D_i + 2t$	
$D_0 = 1 m$	
Ellipsoidal Heads	
$t = (D_i * P_i)/(2SE-0.2P_i)$	(6.12)
t = 0.40 mm	
t = 2.4 mm	
Vessel Support	
For reactors we use bracket supports	
Weight Loads	
$W_v = 240 * C_v * D_i * (L+0.8(D_i)) * t$	(6.13)
$W_v = 1.43 N$	
Wind Loads	
$F = P_w * D_o$	
F = 1030 N/m	

Longitudinal Stress	
$\sigma_h = (P_i^* D_i)/2t$	(6.14)
$\sigma_h = 22.9 \ N/mm^2$	
Circumferential Stress	
$\sigma_L = (P_i * D_i)/4t$	(6.15)
$\sigma_L = 11.4 \text{ N/mm}^2$	
Dead Weight Stress	
$\sigma_L = W/p^*(D_i + t)^*t$	(6.16)
$\sigma_L = 0.189 \text{ N/mm}^2$	
Radial Stress	
$\sigma_d = P_i/2$	
$\sigma_d = 0.055 \text{ N/mm}^2$	
Bending Moment	
$M_x = F^*H$	
$M_x = 515 \text{ N/m}$	
Bending Stress	
$\sigma_b = (M_x/I_v)^*((D_i/2) + t)$	(6.17)
$\sigma_b = 0.059 \text{ N/mm}^2$	

6.3 Mechanical Design of Fermentation Reactor (R-104):

Zymo 5.1*10³ kg/hr

Figure 6.3: Fermentation Reactor (R-104)

Material Selection

- ✓ Austenitic Stainless-Steel Grade 304 is selected because of :
- ✓ High strength
- ✓ Resistant to scaling at high temperatures
- \checkmark Resistant to corrosion
- ✓ Used for high pressure reactors
 Chemical Composition

Cr = 24-26% Ni = 19-23% C = 0.25%

Baffle Spacing

4 radial baffles are used

B = pDt/4

B = 1.06 m

J = Dt/12

J = 0.11m

Distance from bottom = Dt/2

E = 0.68 m

Minimum Practical Wall Thickness

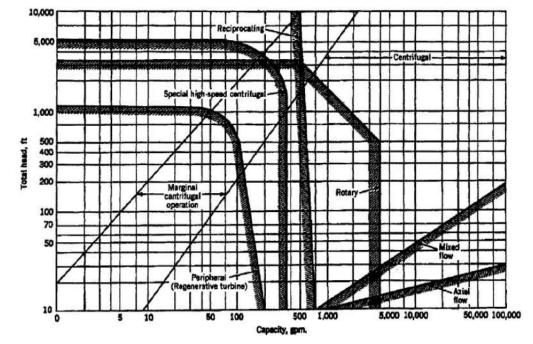
As vessel diameter is between 1-2 mm so minimum practical thickness is 5 mm

Vessel diameter (m)	Minimum thickness (mm)
1	5
1 to 2	7
2 to 2.5	9
2.5 to 3.0	10
3.0 to 3.5	12

Wall Thickness

 $D_{i} = 1.36 \text{ m}$ L = 2 m $P_{i} = 1 \text{ bar or } 0.11 \text{ N/mm}^{2}$ Corrosion allowance = 2 mm Stress Factor = S = 135 N/mm^{2}
Joint Efficiency = E = 1 $t = (D_{i}*P_{i})/(2SE-P_{i})$ t = 0.55 mm t = 2.55 mm

101


(6.18)

Outer Diameter of Shell	
$D_o = D_i + 2t$	
$D_{o} = 1.36 \text{ m}$	
Ellipsoidal Heads	
$t = (D_i * P_i) / (2SE-0.2P_i)$	(6.19)
t = 0.55 mm	
t = 2.55 mm	
Vessel Support	
Weight Loads	
$W_v = 240 * C_v * D_i * (L+0.8(D_i) * t)$	(6.20)
$W_v = 2.77 N$	
Wind Loads	
$F = P_w * D_o$	
F = 1400.8 N/m	
Longitudinal Stress	
$\sigma_h = (P_i^* D_i)/2t$	(6.21)
$\sigma_h = 29.3 \ N/mm^2$	
Circumferential Stress	
$\sigma_L = 14.6 \text{ N/mm}^2$	
Dead Weight Stress	
$\sigma_L = W/p^*(D_i + t)^*t$	(6.22)
$\sigma_L = 0.25 \text{ N/mm}^2$	
Radial Stress	
$\sigma_d = P_i/2$	
$\sigma_d = 0.055 \ N/mm^2$	
Bending Moment	
$M_x = F^*H$	
$M_x = 1400.8 \text{ N/m}$	
Bending Stress	
$\sigma_b = (M_x/I_v)^*((D_i/2) + t)$	(6.23)
$\sigma_b = 0.059 \ N/mm^2$	

CHAPTER # 07 POWER CALCULATIONS

7.1 Introduction:

The liquid's mechanical energy is increased by centrifugal action in centrifugal pumps. In a correctly working pump, the liquid enters by a suction connection that is centered on the excess of the impeller, a high-speed rotating element; the distance between the vanes is totally filled with a liquid that is flowing without cavitation. The fluid that exits the impeller's outer perimeter is gathered in a spiral casing known as the volute and is discharged from the pumps through a tangential discharge connection. The liquid's velocity head from the impeller is changed into pressure head in the volute. Single-stage or multistage, propeller, mixed-flow, and peripheral centrifugal pumps are all possible.

We have selected centrifugal pumps for a process because of the following advantages:

- \checkmark They are easy in operation and cheep
- ✓ Fluid is transferred at uniform pressure without shocks or pulsation
- ✓ No valves involved in pump operation
- ✓ They operate at high speed (up to 4000 rpm) so they can be coupled linerly to an electric motor.
- \checkmark Without altering the pump, the discharge pipe can be totally or partially closed off.
- ✓ Compared to other kinds of pumps, this one requires less maintenance.

7.2 Design Calculations:

Design steps for pump sizing:

✓ Define the flow system, i-e locate points 1 and 2. The pressures P₁ and P₂ will be known at these points.

- \checkmark Position the process equipment follows to the rules-of-thumbs.
- ✓ Estimate Z_1 and Z_2 .
- ✓ Estimate Frictional pressure losses E_D and E_S .
- ✓ Determine Pump Work.
- ✓ Find out Pump shaft horsepower & estimate its Efficiency.

Step 1: Pressure at suction and Discharge of the pump:

Inlet pressure= $P_1 = 1.3$ bar

Outlet pressure= $P_2 = 8.2$ bar (required)

Step 2: Rule of thumbs for locating the process equipment:

Table 7.1: Rule of thumb for locating the process equipment

Process equipment	Location above ground level, ft
Pumps	0
Condensers	20
Reflux drums	10
Phase Separators	3 to 5
Skirt height for Columns	3 to 6
Heat Exchangers	1 to 4

As the discharge of our pump is at the top of absorber so we take skirt height within the range given above.

Height of skirt = 4ft = 1.21m

Step 3: Estimate Z₁ and Z₂ that is height at suction and discharge:

Suction height = $Z_1 = 0$ ft = 0m (As by rule of thumb pump will always consider at ground level) **Discharge height** = Z_2 = height of equipment + skirt height = 10+1.21 = 11.21m

Step 4: Estimate Frictional pressure losses E_D and E_S.

Flow system components	Pressure drop (bar)
Pipeline	0.35
Control valve	0.70
Interchanger	0.35
Air cooler	0.60
Surge vessel	Small

So $E_D = 0.35 + 0.70 + 0.35 = 1.40$ bar

Step 5: Calculate Pump Work: Density = 1024 kg/m^3

$$W = \frac{g}{g_c}(z_1 - z_2) + \frac{p_1 - p_2}{\rho} - (E_s + E_D)$$

$$W = 9.8(0 - 11.21) + \frac{(1.3 - 8.82) \times 10^5}{1024} - \frac{(0.35 + 0.35 + 0.70) \times 10^5}{1024}$$

$$W = (109.85) - (734.37) - (136.71) = -980.93 \frac{N-m}{kg}$$

The negative sign shows that the work is done on the system.

Step 6: Pump Power Calculations:

Flow rate = m = 4050 Kg/hr = 1.125 kg/s

Pump efficiency = $\eta = 0.45$ $P_P = \frac{m \times W}{\eta}$ $P_p = \frac{1.125 \times 980.93}{0.45}$ $P_p = 2452.32$ Watt

$P_{p} = 3.26 hp$

Step 7: Calculate electric-motor horsepower & estimate its Efficiency:

An induction motor with an efficiency of motor is selected to be 86%.

$$P_{E} = \frac{P_{P}}{\eta}$$
$$P_{E} = \frac{3.26}{0.86}$$
$$P_{E} = 3.79 hp$$

Safety factor: A safety factor of 10% is taken

Safety factor = 1.1

So
$$P_E = 3.79 \times 1.1 = 4.16$$
 hp

Select a standard electric-motor horsepower

The standard motor selected is of 5 hp.

Net Positive Suction Head:

We know that

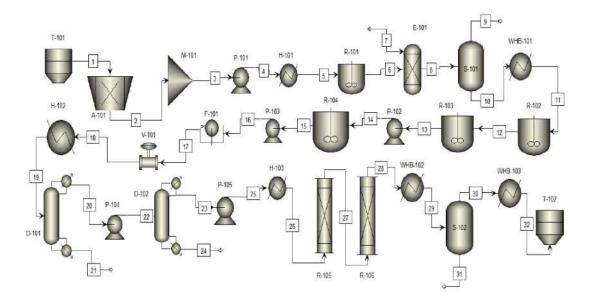
NPSH =
$$\frac{1}{g} \left(\frac{P_a - P_V}{\rho} - h_{fs} \right) - Z_a$$

Where,

 $H_{fs} = friction in suction line = 0bar$

$$Z_a = 0$$

 P_a = 1.3atm = 130000 Pa Vapor pressure: Process stream at 116 °C = 94392.2 Pa


So, by putting the values, we get

NPSH =
$$\frac{1}{9.8} \left(\frac{130000 - 94392.2}{1024} - 0 \right) - 0 = 3.24 \text{ m}$$

Specification Sheet P-101				
Total Mass flow rate	405056 kg/hr			
Discharge height = Z ₂	12 m			
Work required by pump	980.93 N-m/kg			
Pump Power	3.26 hp			
Electric-motor Power	5 hp			
NPSH	3.24m			

CHAPTER 8 PROCESS SIMULATION

8.1 Process Flow Diagram:

8.2 Introduction to ASPEN HYSYS:

Aspen HYSYS (or simply HYSYS) is a chemical process simulator currently developed by Aspen Tech used to mathematically model chemical processes, from unit operations to full chemical plants and refineries. HYSYS is able to perform many of the core calculations of chemical engineering, including those concerned with mass balance, energy balance, vapor-liquid equilibrium, heat transfer, mass transfer, chemical kinetics, fractionation, and pressure drop. HYSYS is used extensively in industry and academia for steady-state and dynamic simulation, process design, performance modeling, and optimization

8.3 Introduction to ASPEN Plus:

ASPEN PLUS allows you to create your own process model, starting with the flow sheet, then specifying the chemical components and operating conditions. ASPEN PLUS will take all of your specifications and, with a click of the mouse button, simulate the model. The process simulation is the action that executes all necessary calculations needed to solve the outcome of the system, hence predicting its behavior. When the calculations are complete, ASPEN PLUS lists the results, stream by stream and unit by unit, so you can observe what happened to the chemical species of your process model.

8.4 Simulation of Dehydration Reactor:

Selection and addition of the components of the process.

- ✓ Ethanol
- ✓ Ethylene
- ✓ Water

ce Databank: HYSYS				Select	Pure Compone	ents -	Filter	All Families	-
Component	Type	Group		Search for:	h20		Search by	Full Name/Synonym	
Ethanol	Pure Component			-				1	
Ethylene	Pure Component			Simul	otion Name	Full Nam	e / Synanym	Formula	
H2O	Pure Component		× Add		H202		H202	H20	22
					H25203		H25203	H2S20	23
					H2504		H2504	H250	м
	Tephne		CetylCTcryla	Hexadecane_2-N	tethyl_Propenoic_A_	. C20H390	22		
			Cety/C1cryla	Hexadiacyl_2-f	dethyl-2-Propenoate	C20H380	72		
					Caprolatian	Has	abydro-2-Azipinone	C6H1IN	i0
			Ranque		14-CC5DiCtol	Hexahydro-2-Oxo	-1.4_Cyclohexaned	C8H150	12
					Caprolactem	Hexabyo	no-2H-Azepin-2-one	CEHTIN	0

Selection of the proper fluid package. In our case we have selected NTRL as fluid package.

Noskepe Type: HVSVS	Corre	count List Selection	Component List - 1 (HVSYS Databanks)	· Ves	á 📄	
Property Package Selection	Activity Nodel Specification					
Che	Yasour Model Density Method UNEXC Entimation Temp Use Reyming Connection	ideal Costeld 25.0000 C				
Grupper Sonnet JAPOS (197 Riodal Dannes Lee Hafter Riotern HOM Joacom Mill Ang Riotecon Mill Ang Riote	Ne financtos regulad for the sole	rted Property Peckage.				

Establish reactions. Click Add after going to the Reactions folder. This will produce Set-1

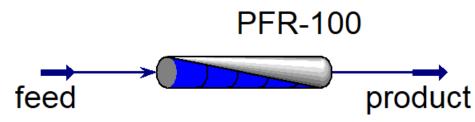
a new reaction set. Select Add Reaction and Hysys, Conversion in Set 1. Rxn-1 will be a novel reaction that results from this. To open the Rxn-1 window, double-click on the Rxn-1 icon. Enter the information below. When finished, close this window. We now need to connect the reaction set to the fluid package in Set-1. To add Basis-1 to your FP, click the Add to FP button. Now, the response system ought to be prepared.

perfect Transition Sec Sec (🔒 Knetic Reaction Ros	91								1
Read of the set of				Strichtmetry and Ra	na inito				- fatt -				
Set Info Set Type Knot Soler Method Auto	sciented •		Acot to FP Detech from FP Advanced	Composent Ethanol Ethylene H2O **Réd Comp**	Mole Wt. 46.070 28.054 18.015	1,000	First Order 1.00 0.00 remptys	Rev Dräter 4.00 1,00 Kempty -	Rea Phe Min. Te	orquiet de riperatue riperatue		Land -17	funt/
									Ee6	is this	kprole/si	1	- 24
Active Reactions	Type	Configured	Operations Attached						Fat	te Units	kgmola/m3	14	
Ru	a-1 Knet	c 4	PER-100						Forward Re	action	Reve	rse Reaction	4
									A L	2.9500 9.00000 9.00000			(1772)
Aud Neucion *		Capy Reaction		-					i Equation to $i = i^{10} \text{B}$ $k = A^{10}$ $K = A^{10}$	0.00000 0.00000 etp adk) - K**(18.akk) exp { -E / R0 }+* mp { -E / R0 }+*	e e		empty
App Reaction • Properties Stendartics	Deste Reactor.	Deate Set	Copy Set	linc		Bisinet First Reaction He		0,0000 4Seri4ku/kgmole	f f f f f f f f f f	0.00000 0.00000 etp adk) - K**(18.akk) exp { -E / R0 }+* mp { -E / R0 }+*	e e		empty empty empty
Properties	A66 •	Delete Set	toy Set				#1250	4.Sevi)4 kulkgmole	E b focurion for $t = t^{+} t^{0}$ $k = A^{+} t^{-}$ $\xi = A^{-} t^{-}$ T is Notice	0.00000 0.00000 etp adk) - K**(18.akk) exp { -E / R0 }+* mp { -E / R0 }+*	e e		empty

Go to the simulation environment and select a PFR-100 and add to worksheet. By double clicking on the PFR a window will open.

Plug Fl	iow React	DOR: PFR-100	- Set-1					-		×
Pesign	Reaction	is Rating	Worksheet	Performance	Dynamics					
Desig	'n		Name	PFR-100						
ionnect aramet	ers	Inlets	rvaure							
leat Tra			feed							
lser Var lotes	ables		<empty></empty>							
						Outlet	•			
			-	→([1)>				
			Energ	y (Optional)		Fluid Package				
					*	Basis-1	•			
De	lete	14							I Ign	2

Go to the reactions tab in the already opened window and insert the required data.


eactions Reaction Info Nerrall Reaction Set Set-1	an Read	ctions Rating Wo	rksheet Performance	Dynamics		
Averall Reaction Set Verall Reaction Set Initialize segment reactions from: Initialize segment reactions from: Initialize segment reactions from: Integration Information Integration Information Number of Segments Initialize segments 20 Minimum Step Fraction 1.0e-06 Minimum Step Length 6.800e-006 m Particle Diameter 1.000e-003 m Particle Sphericity 1.000	and the second s		instruct protocolitation	cynomics		
Details Results Initialize segment reactions from: Current Previous Re-init Integration Information Number of Segments Number of Segments Number of Segments Cotalyst Data Particle Diameter Particle Diameter 1.000e-003 m Particle Diameter			[mark			
Results Initialize segment reactions from: Current Previous Re-init Integration Information Number of Segments 20 Minimum Step Fraction 1.0e-06 Minimum Step Length 6.800e-006 m Cotalyst Data Particle Diameter 1.000e-003 m Particle Diameter 1.000e 100 m		Reaction Set	Set-1			
Current Previous P		Initialize segment	reactions from:			
Number of Segments 20 Minimum Step Fraction 1.0e-06 Minimum Step Length 6.800e-006 m Cotalyst Data	19996			C Re-init		
Number of Segments 20 Minimum Step Fraction 1.0e-06 Minimum Step Length 6.800e-006 m Catalyst Data				5		
Minimum Step Length 1.0e-06 Minimum Step Length 6.800e-006 m Cotalyst Data		Integration Inform	ation			
Minimum Step Length 1.0e-06 Minimum Step Length 6.800e-006 m Catalyst Data		Number of Sean	neats	20		
Minimum Step Length 6.800e-006 m Catalyst Data Particle Diameter Particle Sphericity 1.000						
Particle Diameter 1.000e-003 m Particle Sphericity 1.000				6.800e-006 m		
Particle Diameter 1.000e-003 m Particle Sphericity 1.000		U.				
Particle Sphericity 1.000		Catalyst Data		1		
		Particle Diamete	n -	1.000e-003 m		
Solid Density 2500 kg/m3		Particle Sphericit	ty	1.000		
		Solid Density		2500 kg/m3		
Bulk Density 1775 kg/m3						
Solid Heat Capacity 250.0 kJ/kg-C		Solid Heat Capa	city	250.0 kJ/kg-C		
		1.2				

Click on the worksheet tab and enter the data of the temperature and pressure of both input and output streams.

Design React	ons Rating Worksheet Performance	Dynamics		
Worksheet	Name	feed	product	
Conditions	Vapour	1.0000	1.0000	
Properties	Temperature [C]	530.0	530.0	
Composition	Pressure (kPa)	4000	4000	
PF Specs	Molar Flow (kgmole/h)	2791	2791	
	Mass Flow [kg/h]	1.286e+005	1.286e+005	
	Std Ideal Liq Vol Flow [m3/h]	161.5	161.5	
	Molar Enthalpy [kJ/kgmole]	-1.845e+005	-1.845e+005	
	Molar Entropy [ki/kgmole-C]	221.1	221.1	
	Heat Flow (kl/h)	-5.149e+008	~5.149e+008	

Go to the ratings tab in the already opened window.

The PFR is simulated and should look like this now.

8.5 Simulation of Fermenter:

Selection and addition of the components of the process

✓ Glucose

Design	Reactions	Rating	Worksheet	Performance	Dynamics	
Rating	Tube D	imension	15			
Sizing	Total	Volume			3.000 m3	
Nozzles	Leng	th			6.800 m	
	Diam				0.1002 m	
		ber of Tu			56	
	Wall	Thicknes	s		5.000e-003 m	
	Tube Pa	acking				
	Void	Fraction	Q		0.290	
	Void	Volume			0.8700 m3	

- ✓ Ethanol
- ✓ CO₂

ource Databank HYSYS				Select	Pure Components	•	Filter;	All Families	•
Component	Туре	Group		Search for	l		Search by:	Full Name/Synonym	•
Glucose*	User Defined Hypothe	HypoGroup4				1 M 11 1 10 1 10			
Ethanol	Pure Component			Simul	ation Name	Full Name	/ Synonym	Formula	
002	Pure Component		< Add .		Methane		c	1 CH4	
					Ethane		C	2 C2H6	
					Propane		C	3 C3H8	
			Reptor		i-Sutane		÷C	4 C4H10	
					n-Butane		n-C	4 C4H10	
					Pentane		iΩ	5 C5H12	
			Aamove		n-Pentane		n-C	5 C5H12	
					n-Hexane		c	6 C6H14	
					n-Heptane		C	7 C7H15	
					n-Octane		C	a cente	
					n-Nonane		C	9 C9H20	
					n-Decane		C1	0 C10H22	
					n-C11		C1	1 C11H24	

Up Binary Coeffs Sta	abTest Pha	se Order Tabular Notes				
kage Type: Hysys	on	Co	mponent List Selection	Component List - 1 [HYSYS Databanks]	*	View
ISME Steam Iraan K10 IWRS Chao Seader Chien Mall	-	Vapour Model Density Method UNIFAC Estimation Temp Use Poynting Correction	Ideal Costald 25.0000 C			
Clean Fuels Pkg CPA Esso Tabular Extended NRTL GCEOS General NRTL Glycal Package	Щ.	No Parameters required for the s	elected Property Package.	4		
Srayson Streed IAPWS-IF97 Kobadi-Danner Lee-Kester-Plocker MBWR NBS Steam NBT						

Selection of the proper fluid package. In our case we have selected NTRL as fluid package.

Establish reactions. Click Add after going to the Reactions folder. This will produce Set-1, a new reaction set. Select Add Reaction and Hysys, Conversion in Set 1. Rxn-1 will be a novel reaction that results from this. To open the Rxn-1 window, double-click on the Rxn-1 icon. Enter the information below. When finished, close this window. We now need to connect the reaction set to the fluid package in Set-1. To add Basis-1 to your FP, click the

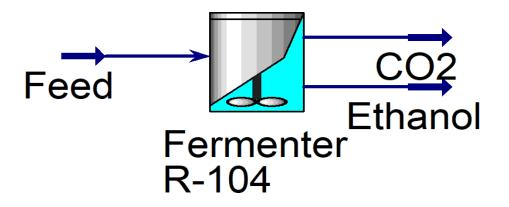
	ate Infra				Bassis		
Companient:	Mole WI.	Strich Coeff	Fwed Order	Rev Orcher	Basis	Molar Conce	
Glucose*	180.000	-1.000	1.00	0.00	Base Component	Glucour*	
Ethanol	46.070	2.000	0.00	2.00	Rxn Phase	LiquidPhase	
CO2	44.010	1.996	0.00	2.00	Min. Temperature	-273.1 C	
"Add Comp**				19875	Max Temperature	3000 C	
					Basis Units	kgmole/m3 =]
					Rate Units	kgmole/m3-s -	
					- Forward Reaction	-Reverse Reaction	
					A 2.9500	A' sma	aty->
					E 0.00000	E square	xty>
					0.00000	b' vern	xt)/>
					Equation Help		
					$r = k^{\alpha}f(Bases) - k^{\alpha}f(Bases)$		
					k = A* exp (-E / HT) *T *		
					$K = A^* \exp\left(-E/RT\right)^*T$		
						- P	
					T in Kehin		
		Ralamor From					
Balance		Balance Error Reaction Hea		cemptyo			

Add to FP button. The reaction set should now be ready.

lesign Rea	ctions Rating Worksh	eet Dynamics					
teactions	Reaction Information						
Details Results	Reaction Set	et-1	* Reaction	Rxn-1	•		
	Specifics 🛛 🖲 S	toichiometry	Basis	View Reaction			
	Stoichiometry						
	Compon	ient.	Mole Wt.	Stoich Coeff			
		Glucose*	180.000	-1.000			
		Ethanol	46.070	2.000			
		CO2	44.010	1,996			
		*Add Comp**					
	L	8	alance Error	0.0000	0		
		B	saction Heat (25 C)	cempty	-		

Go to the simulation environment and select Fermenter R-101 by double clicking a window will open label the input and output streams.

a tan	Description	Destaur	HINGS AND AND	Durantiza				
esign	Reactions	Rating					 	
Desig onnect aramet lser Var lotes	tions ers	inlets	Nam	Feed	Vapour Outlet	→ ・		
		Energy	(Optional)		Liquid Outlet Ethanol			
		1-		Fluid Packa	ge Basis-1	•		
D	elete				OK		Ignore	a

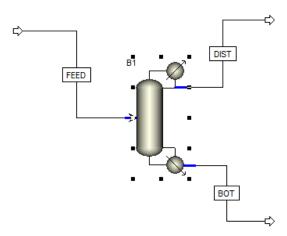

Click on the worksheet tab and enter the data of the temperature and pressure of both input and output streams.

esign Reac	tions Rating Worksheet Dynamics					
Norksheet	Name	Feed	Ethanol	CO2		
onditions	Vapour	0.0000	0.0000	1.0000		
roperties	Temperature [C]	48.00	48.00	48.00		
omposition	Pressure [kPa]	100.0	100.0	100.0		
F Specs	Molar Flow [kgmole/h]	1477	2837	2837		
	Mass Flow [kg/h]	2.659e+005	1.307e+005	1.249e+005		
	Std Ideal Liq Vol Flow [m3/h]	170.4	164.2	151.3		
	Molar Enthalpy [kJ/kgmole]	1.731e+004	-2.746e+005	-3.929e+005		
	Molar Entropy [kl/kgmole-C]	4344	34.36	213.9		
	Heat Flow (kJ/h)	2.557e+007	-7.790e+008	-1.115e+009		

Click on the ratings tab in the already opened window.

sign Re	actions Rating Wo	orksheet Dynamics			
lating	Geometry				
zing		Orientation: 💿 Vertical	Horizontal		
ozzies	Cylinder	Volume [m3]	3.000		
at Loss	Sphere	Diameter [m]	1.366		
	-16	Height [m]	2.048		
	This reactor has	a boot			
	This reactor has	a boot			
	This reactor has	a boot			

The Fermenter Reactor should be simulated now and look like this.


8.6 Simulation of Distillation Column (D-101):

	ponents - S Selection	Petroleur	· ·	Enterprise Database	Comments	
ele	ct compone	ents		·	· · · · · · · · · · · · · · · · · · ·	
	Compor	nent ID	Тур	e	Component name	Alias
Þ	ETHANOI	L	Conventional		ETHANOL	C2H6O-2
Þ	WATER		Conventional		WATER	H2O
۲	AMMON	-01	Conventional		AMMONIUM-ACETATE	C2H7NO2
Þ						
	Find	Elec	Wizard SFE Assis	tant User Defin	ed Reorder R	eview

Click on the Methods in the navigation pane. Select NTRL as the Base Method.

	lowsheet	Sections	Referenced	Comments			
Property met	thods & o	ptions		Method nan	ne		
Method filte	r	COMMON	-	NRTL	-	Method	ls Assistant
Base method	I I	NRTL	-				
Henry comp	onents		-	- Modify	·		
Petroleum	calculatio	n options -		Vapor EOS		ESIG	-
Free-water		•	-	Data set			1 🚔
Water solu	bility	3	-	Liquid gan	nma	GMRENON	-
L	-			Data set			1 🔿
Electrolyte		n options -		Liquid mo	lar enthalpy	HLMX86	-
Chemistry	ID		-	Liquid mo	lar volume	VLMX01	-
🔽 Use true	e compon	ents		🔽 Heat of	fmixing		
				🗌 Poyntii	ng correction		
				Use liq	uid reference	state enthalpy	,

Click a DSTWU block onto the flowchart in the Columns area of the Model Palette, then link the FEED stream to the input of column. Create a bottoms stream and a distillate stream. Your flow-sheet should resemble the illustration below.

Now in the configuration tab add your desired data.

Configuration	Streams	Pressure	Condenser	🕜 Reboiler	3-Phase	Comments	
Setup options —							
Calculation type		£	quilibrium	-			
Number of stages				34 🗘	Stage	Wizard	
Condenser		1	fotal			-	
Reboiler		1	(ettle			-	
/alid phases		١	/apor-Liquid			•	
Convergence		5	Standard			•	
Operating specific	ations						
Distillate rate		- 1	Mass	▼ 12	9887 kg	ı/hr	•
Reflux ratio		-	Vass	•	3.22		Ŧ
Free water reflux r	atio		0			Feed B	asis

In the Streams Tab give the Feed at stage 9 and also give the remaining data.

0	Configuration	Streams 🎯	Pressure	⊘Condenser		8-Phase Con	ments			
ee	ed streams									
	Name	Stage		Convention						
•	FEED		9 Above-	Stage						
oro	oduct streams -									_
ro	oduct streams - Name	Stage	Pha	se E	Basis F	ow I	Jnits Flov	v Ratio	Feed Specs	
ro		-	Pha	se E Mole	Basis F	ow kmol		v Ratio	Feed Specs Feed basis	
)ro	Name	1			Basis F		/hr	v Ratio	•	
>	Name DIST	1	Liquid	Mole	lasis F	kmol	/hr	v Ratio	Feed basis	

In the Pressures Tab give the pressure for condenser.

Choose the Flash Type variables to be Pressure and Temperature.

🕜 Mixed 🛛 🔇	CI Solid	NC Solid	Flash Opt	ions	EO Options	Costi	ina 🗍	Comments	
	Jibona	ite bolla	riusii opt		Lo options	1 0050	ing [connents	
Specificat	tions								
Flash Type	Ter	nperature	•	Press	ure	-	Com	position	
							Ma	ss-Frac 🔹	
- State variak									
Temperatu	re		83	С	-			Component	Value
Pressure			1	bar	•		•	ETHANOL	0.77
Vapor fract	ion						•	WATER	0.21
Total flow b	oasis	Mass	-					AMMON-01	0.02
Total flow r	ate		146827	kg/hr	-			AMMON-01	0.02
Solvent					~				
	. .								
Reference									
Volume flo	w reference	e temperati	ire						
	С	~							
Componen	it concentr	ration refere	ence temp	erature					
	С							Total	

		(Results \times	+
Pressure	⊘Condenser	🕜 Reboiler	3-Phase	Comments
	•			
1	l bar	•		
	bar	•		
	bar	T		
tional) —				
	bar	•		
	bar	Ŧ		
	1	1 bar bar bar ional)	bar •	1 bar • bar • bar •

Run the simulation.

1aterial	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids	Status 🏈
				Units	S2	-
Descr	iption					
From					B1	
То						
Stream	m Class				CON	IVEN
Maxir	num Relative Erro	r				
Cost I	Flow		\$/	hr		
— мр	XED Substream					
	Phase				Liqu	iid Phase
	Temperature		C			78.4706
	Pressure		ba	r		1
	Molar Vapor Frac	tion				0
	Molar Liquid Fra	tion				1
	Molar Solid Fract	ion				0
	Mass Vapor Fract	ion				0
	Mass Liquid Frac	tion				1
	Mass Solid Fracti	on				0
	Molar Enthalpy		ca	l/mol		-63980.9

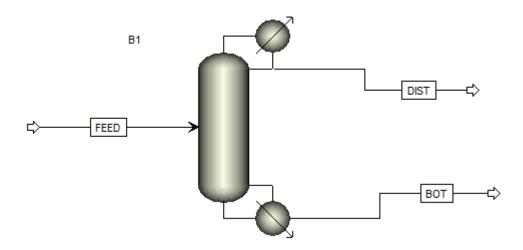
Material	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids	Status 🖉	
				Units	S2	-	
	Molar Enthalpy		cal	/mol		-63980.9	
	Mass Enthalpy		cal	/gm		-1568.24	
-	Molar Entropy		cal,	/mol-K		-59.6001	
	Mass Entropy		cal,	/gm-K		-1.46086	
	Molar Density		mo	l/cc		0.0181434	
	Mass Density		gm	/cc		0.740214	
	Enthalpy Flow		cal,	/sec	-	1.77725e+06	
	Average MW					40.798	
	Mole Flows		km	ol/hr		100	
	ETHANOL		km	ol/hr		77	
	WATER		km	ol/hr		21	
	AMMON-01		km	ol/hr		2	
-	Mole Fractions						
	ETHANOL					0.77	
	WATER					0.21	
	AMMON-01					0.02	
-	Mass Flows		kg,	/hr		4079.8	

Main Flowsheet × S1 (MATERIAL) × S2 (MATERIAL) - Results (Default) × +

Material	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids	Status	
				Units	S2	-	
▶ — I	Mass Flows		kg/l	hr		4079.8	
•	ETHANOL		kg/h	nr		3547.32	
•	WATER		kg/h	nr		378.321	
•	AMMON-01		kg/h	nr		154.166	
▶	Mass Fractions						
•	ETHANOL					0.869482	
•	WATER					0.0927302	
•	AMMON-01					0.0377877	
N	Volume Flow		l/mi	n		91.8608	
- 1	Liquid Phase						
•	Molar Enthal	ру	cal/r	mol		-63980.9	
•	Mass Enthalp	у	cal/g	gm		-1568.24	
•	Molar Entrop	У	cal/r	nol-K		-59.6001	
•	Mass Entropy	,	cal/g	gm-K		-1.46086	
•	Molar Density	/	mol,	/cc		0.0181434	
•	Mass Density		gm/	cc		0.740214	
•	Enthalpy Flov	v	cal/s	ec	-1	.77725e+06	

T	1	Aterial) × S2	· · · · ·	-	-	· ·		+	
Material	Vol.% Curves	Wt. % Curves	Petrole	um	Polymers	Sol	lids	🥝 Status	
4					Units		S2	-	
•	- Mole Flows			kmo	/hr			100	
•	ETHANOL			kmol	/hr			77	
•	WATER			kmol	/hr			21	
•	AMMON	01		kmol	/hr			2	
•	- Mole Fractio	ns							
•	ETHANOL							0.77	
•	WATER							0.21	
•	AMMON	01						0.02	
Þ	- Mass Flows			kg/h	r			4079.8	
Þ	ETHANOL			kg/hr	r			3547.32	
Þ	WATER			kg/hr	r			378.321	
Þ	AMMON	01		kg/hi	r i i i i i i i i i i i i i i i i i i i			154.166	
•	- Mass Fraction	ıs							
Þ	ETHANOL							0.869482	
Þ	WATER							0.0927302	
•	AMMON	01						0.0377877	
<add p<="" td=""><td>roperties></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></add>	roperties>								

8.7 Simulation of Distillation Column (D-102):


In the Components Specifications selection tab, enter the components needed for this simulation.

	Selection Pet	troleum	Nonconventional	Enterprise Database	Comments	
le	ct components					
2	Component	ID	Тур	e	Component nam	e Alias
►	ETHANOL	C	onventional		ETHANOL	C2H6O-2
Þ	SUCROSE	C	onventional		SUCROSE	C12H22O11
Þ	H2SO4	C	onventional		SULFURIC-ACID	H2SO4
Þ	GLUCOSE	C	onventional		DEXTROSE	C6H12O6
Þ	AMMON-01	C	onventional		AMMONIUM-SULFATE	(NH4)2SO4
Þ	AMMON-02	C	onventional		AMMONIUM-ACETATE	C2H7NO2
Þ	WATER	C	onventional		WATER	H2O
Þ						

Click on Methods in the navigation pane. Select NTRL as the Base Method.

	Sections	Referenced	Comments		
Property methods & d	options —		Method name		
Method filter	COMMON	-	NRTL	- Method	ls Assistant
Base method	NRTL	•			
Henry components		-	Modify —		
Petroleum calculatio	on options -		Vapor EOS	ESIG	-
Free-water method		-	Data set		1
Water solubility	3	-	Liquid gamma	GMRENON	-
,			Data set		1
Electrolyte calculation	on options -		Liquid molar enthalpy	HLMX86	-
Chemistry ID		-	Liquid molar volume	VLMX01	-
Use true compor	nents		Heat of mixing		
			Poynting correction	n	
			Use liquid reference	e state enthalpy	

In the Columns section of the Model Palette, insert a DSTWU block onto the flowsheet and connect the FEED stream to the column input. Make a distillate stream and a bottoms stream. Your flowsheet should look like the example below.

Now in the configuration tab add your desired data.

Main Flowsheet × DIST (MATERIAL) - Input	B1 (RadFrac) × FEED (MATERIAL)	X DIST (MATERIAL) - Results (Default) X +
Configuration Streams Pressure	Condenser CReboiler 3-Pha	ase Comments
Setup options		
Calculation type	Equilibrium 👻	
Number of stages	16 🚭 🛛 Sta	age Wizard
Condenser	Total	-
Reboiler	Kettle	-
Valid phases	Vapor-Liquid	-
Convergence	Standard	-
Operating specifications		
Distillate rate 🔹	Mass • 146827	kg/hr 🔹
Reflux ratio 👻	Mole • 0.71205	-
Free water reflux ratio	0	Feed Basis
Design and specify column internals		

In the Streams Tab give the Feed at stage 9 and give the remaining data.

Configuration	Streams 🎯	O Pi	ressure	Condenser	Reboiler 3	-Phase Cor	nments					
d streams												
Name	Stage			Convention								
FEED		12	Above-Sta									
duct streams												
duct streams – Name	Stage		Phase	Ba	sis Flo	w	Jnits	Flow	Ratio		Feed Specs	
		Liqu		Ba Mole	sis Flo	w kmol		Flow	Ratio		Feed Specs Feed basis	
Name	1	Liqu	id		sis Flo		/hr	Flow	Ratio			
Name DIST BOT	1		id	Mole	sis Flo	kmol	/hr	Flow	Ratio		Feed basis	
Name DIST	1	Liqu	id	Mole Mole	sis Flo	kmol	/hr /hr	Flow	Ratio	und	Feed basis	Units

Choose the Flash Type variables to be Pressure and Temperature.

Main Flowsheet ×	DIST (MATERIAL)	- Input ×⁄F	FEED (MATERIA	L) × [DIST	(MATERIAL) - Results (Default) × 🕂
Mixed CI Solid	NC Solid Fla	ash Options	EO Options	Costin	g	Comments	
 Specifications 							
Flash Type	Temperature	- Pres	sure	•	Com	position	
State variables —					Ma	ss-Frac 🔹	T
Temperature		223 C	•			Component	Value
Pressure		1 bar	•		Þ	ETHANOL	0.45
Vapor fraction					þ.	SUCROSE	0.0146
Total flow basis	Mass	•			- P-	H2SO4	0.143
Total flow rate	2	31687 kg/h	ır ▼		•	GLUCOSE	0.0459
Solvent			Ŧ		•	AMMON-01	0.164
Reference Tempera	ature				•	AMMON-02	0.0397
Volume flow refere	ence temperature				•	WATER	0.0291
С	Ŧ						
Component conce	entration reference	e temperatur	e				

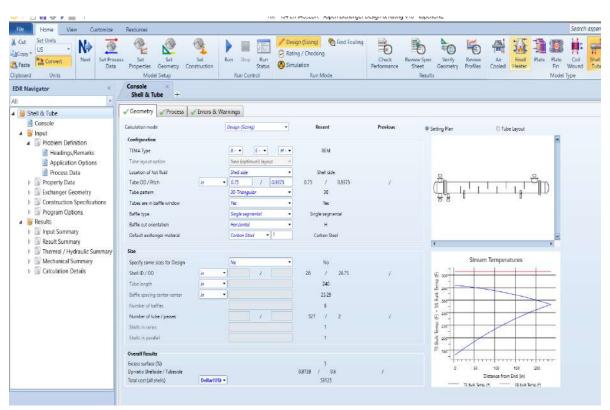
Run the simulation

1	Mai	n Flows	heet × 🏹 DIST ((MATERIAL) - Inp	ut × T	B1 (Ra	dFrac) × F	EED (N	/ATEF	rial) ×	D	IST (MATERIAL) - Results (Default) ×	Ð
	Ma	terial	Vol.% Curves	Wt. % Curves	Petrole	eum	Polymers	Solid	ls	🕜 Status			
							Units	[DIST		•	-	
		Descrip	tion										
		From						В	1				
Γ	-	То											
		Stream	Class					C	ONV	EN			
		Maximu	um Relative Erro	r									
)	-	Cost Flo	w			\$/hr							

Main Flowsheet × DIST (MATERIAL) - Input × B1 (RadFrac) × FEED (MATERIAL) × DIST (MATERIAL) - Results (Default) × +

Material	Vol.% Curves	Wt. % Curves	Petrole	eum	Polymers	So	ids	🕜 Status	
					Units		DIST	•	•
- міх	ED Substream								
► F	Phase						Liqui	d Phase	
•	Temperature			С				79.6509	
•	Pressure			bar				1	
Þ	Molar Vapor Frac	tion						0	
•	Molar Liquid Frac	tion						1	
•	Molar Solid Fracti	ion						0	
•	Mass Vapor Fracti	ion						0	
•	Mass Liquid Fract	tion						1	
•	Mass Solid Fraction	on						0	
•	Molar Enthalpy			cal/n	nol			-73414.6	
•	Mass Enthalpy			cal/g	m			-1597.91	

Main Flows	sheet × DIST	(MATERIAL) - Inpu	ut × B1 (Ra	adFrac) × F	EED (MA	ATERIAL)	×⁄⁄dist	(MATERIA	L) - Results	(Default)	×
Material	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids	🕝 Stat	tus				
				Units					_		
1					DI	ST	-		•		
► — M	Nole Fractions										
•	ETHANOL					0.7990	003				
Þ	SUCROSE					9.21761e	-24				
Þ	H2SO4					0.06886	685				
•	GLUCOSE					1.25273e	-18				
•	AMMON-01				5	5.26552e-2	276				
)-	AMMON-02				2	2.18507e-2	276				
Þ	WATER					0.132	129				
<u> </u>	Asee Flowe		ka/k			1460	277				


laterial	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids	Status 🖉
				Units	DIS	-
- 1	Mass Flows		kg/h	ır		146827
	ETHANOL		kg/h	r		117634
	SUCROSE		kg/h	r	1	.00833e-17
	H2SO4		kg/h	r		21586.1
	GLUCOSE		kg/h	r		7.2125e-13
	AMMON-01		kg/h	r	2.	22358e-270
	AMMON-02		kg/h	r	5	5.3827e-271
	WATER		kg/h	r		7607
- 1	Mass Fractions					
	ETHANOL					0.801174
	SUCROSE				6	5.86743e-23
	H2SO4					0.147017
	GLUCOSE				4	l.91224e-18
	AMMON-01				1.	51442e-275
	AMMON-02				3.	66601e-276
	WATER					0.0518092

Main Flow	sheet × DIST ((MATERIAL) - Inp	ut × 🏳	31 (Ra	dFrac) × F	FEED	(MAT	erial) ×⁄d	IST (MATERIAL	.) - R
Material	Vol.% Curves	Wt. % Curves	Petrole	eum	Polymers	Sol	ids	🕜 Status		
					Units		DIST	-		-
► - I	iquid Phase									
•	Molar Enthalp	у		cal/n	nol			-73414.6		
•	Mass Enthalp	у		cal/g	jm			-1597.91		
•	Molar Entropy	У		cal/n	nol-K			-71.0903		
•	Mass Entropy	,		cal/g	jm-K			-1.54732		
•	Molar Density	/		mol/	'cc			0.0175737		
•	Mass Density			gm/e	cc			0.807411		
•	Enthalpy Flow	v		cal/s	ec		-6.	51712e+07		
•	Average MW							45.9442		
•	- Mole Flows			kmo	l/hr			3195.77		
•	ETHANOL	_		kmo	l/hr			2553.43		
•	SUCROSE			kmo	l/hr		2	.94574e-20		
•	H2SO4			kmo	l/hr			220.088		
•	GLUCOSE			kmo	l/hr		4	.00344e-15		
•	AMMON	-01		kmo	l/hr		1.6	i8274e-272		
•	AMMON	-02		kmo	l/hr		6.9	8298e-273		

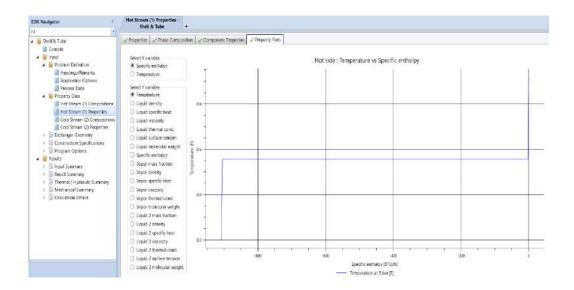
Main Flow	sheet × DIST	(MATERIAL) - Inp	ut × B1 (R	adFrac) × 🏹	FEED (MATERIAI	.) × DIST (MATERIAL) - R
Material	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids 🔗	itatus	
				Units	DIST	•	•
•	- Mole Fractio	ns					
•	ETHANO	L			0.7	99003	
•	SUCROSE				9.2176	i1e-24	
•	H2SO4				0.06	88685	
•	GLUCOSE				1.2527	'3e-18	
•	AMMON	-01			5.26552	le-276	
•	AMMON	-02			2.18507	'e-276	
•	WATER				0.1	32129	
•	- Mass Flows		kg/	hr	14	46827	
•	ETHANO	L	kg/ł	nr	1	17634	
•	SUCROSE		kg/ł	ır	1.0083	3e-17	
•	H2SO4		kg/ł	ır	2	1586.1	
•	GLUCOSE		kg/ł	nr	7.212	5e-13	
•	AMMON	-01	kg/ł	nr	2.22358	e-270	
•	AMMON	-02	kg/ł	nr	5.3827	'e-271	
•	WATER		kq/ł	ır		7607	

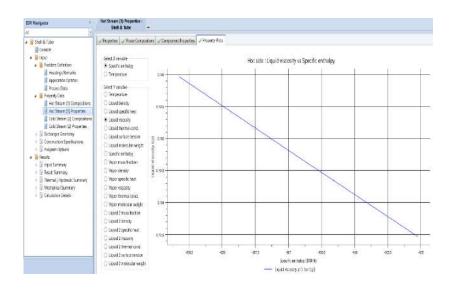
/laterial	Vol.% Curves	Wt. % Curves	Petroleun	Polymers	Solids	🔇 Status		
				Units	DIST	•	•	
,	 Mass Fraction 	15						
	ETHANOL					0.801174		
	SUCROSE				6	i.86743e-23		
	H2SO4					0.147017		
	GLUCOSE				4	.91224e-18		
	AMMON-	01			1.3	51442e-275		
	AMMON-	02			3.	56601e-276		
	WATER					0.0518092		

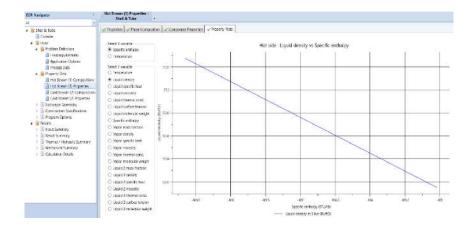
8.8 Simulation of Heat Exchanger:

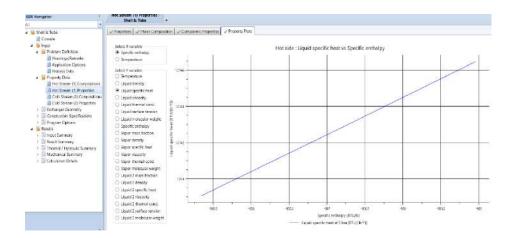
📄 Console					ColdSide	Rece	nt	Prev	ious
🖌 🧕 Input				Hotside	ColdSide	Hotside	ColdSide	Hotside	ColdSide
Problem Definition	Calculation mode		L	lesign (Sizing)					
Headings/Remarks	Process Conditions								
Application Options	Mass flow rate	lb/h			507055	54127	507055		
Process Data	Inlet pressure	bar	-	5	40	5	40		
Property Data	Outlet pressure	bar	_	4.85	39.5	4,74821	39,70002		
Exchanger Geometry	Pressure at liquid surface in column	bar	Ŧ						
Construction Specifications	Inlet Temperature	°C		152	78	152	78		
Program Options	Outlet Temperature	۰ ۳	-	152	140	151.98	140		
Results	and the second second second	r.		152	140				
Input Summary	Inlet vapor mass fraction		3			1	0		
Result Summary	Outlet vapor mass fraction					2.217096E-16	0		
Thermal / Hydraulic Summary	Heat exchanged	BTU/h	•			48882097			
Mechanical Summary Calculation Details	Process Input								
	Allowable pressure drop	psi	•	3.75	7.25	3.75	7.25		
	Fouling resistance	ft ² -h-F/BTU			0	0	0		
	rouling resistance	π-η-ηστυ	_	v	U	0			
	Calculated Results								
	Pressure drop	psi	•			3.65	4.35		

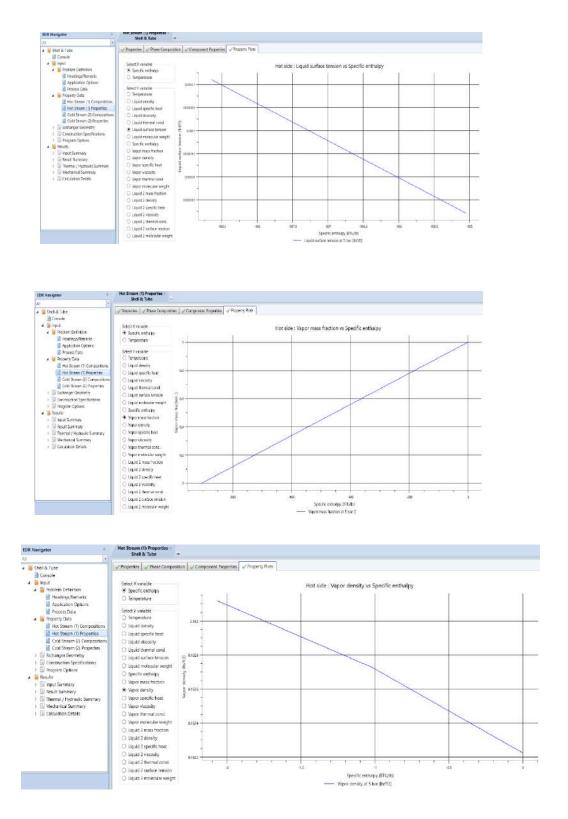
Chapter # 08

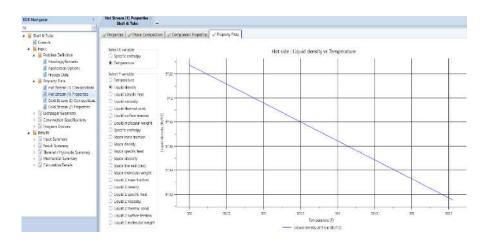

Process Simulation

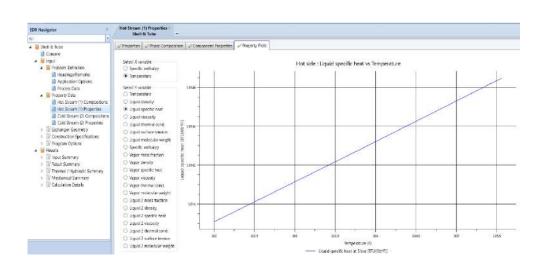

Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties	Mole Fractions Nu Temperature °F + 309.2	mber of Compon Liquid	Steam	essure 5 bar	
 Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions 	°F +	Liquid			
 Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions 	°F +	Liquid			
Process Data Property Data Hot Stream (1) Compositions	-		Vapor	Liquid 2	
Property Data Hot Stream (1) Compositions	200.2				
Hot Stream (1) Compositions	509.2	0	1	D	-
Hot Stream (1) Properties	307.4	0	1	0	
	305.6	D	1	D	
Cold Stream (2) Compositions	305.56	0	1	D	
Schuld Stream (2) Properties	305.56	1	1	0	
Construction Specifications	303.8	1	0	0	
Program Options	302	1	0		=
Results Results Result Summary Resu					

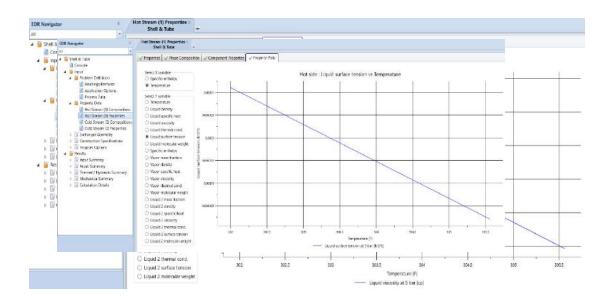

🗑 Shell & Tube	Composition Property Methods Ir	nteraction Parameters NRI	L Uniquac		
Console	Physical property package	B-JAC	B-JAC -		
Input Problem Definition		(
Headings/Remarks	Hot side composition specification	Weight flowrate or %	•		
Application Options	BJAC Components	BIAC Composition	Component type		
🔺 📔 Property Data	1 Steam	1	Program		
Hot Stream (1) Compositions	2				
Hot Stream (1) Properties	3				
Cold Stream (2) Compositions	4				
Cold Stream (2) Properties Exchanger Geometry					
Construction Specifications	5				
 Program Options 	6				
🔺 🧧 Results	7				
Input Summary	8				
Result Summary	9		1.1		
Image: Thermal / Hydraulic Summary Image: Summary S	10		1		
Mechanical Summary Calculation Details					
Calculation Details	11 Search Databank Delete Row	1			

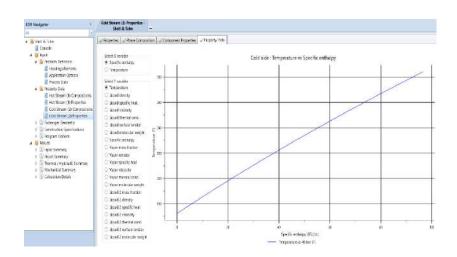

EDR Nevigator	Hot Stream (1) Propo Shell & Tube	rties +								
A8	C1007711716-									
Shel & Tube Console Console Console Modern Definition Heading/Remarks Acolication Options	Properties Fhose	e Composition	× 500	ponent Properties	Property Plots					
	Get Properties	Temperature	Points		Pressure Levels					
	Cverwrite Properties	Number	5		E	eaures ter •				
	Resture Defaults	Temperatures	Specify	rango -	Actd Set					
Process Data	-	Range.	154	150 °C -	Dates Set					
4 🦉 Property Data	Pixon Table				E					
Hot Steam (1) Properties			1	1	1	3	- 4	5	6	7
Cold Stream (2) Properties	Temperature	4		309.2	307.4	305.6	305.56	105.96	303-8	x
Exchanger Geometry	Locast density	ity/tf	(+					57 115	57,171	- 37.2
B Construction Specifications B Program Options	tiquid spectic beat	BTUAR-P)					1.0145	1.0143	1.013
a Bresult	Linked viscosity	ap.						0.1935	0.1947	0.15
F 🗐 Input Summary	Liquet mennel cond	BTUAR N	(1) ~					0.398	0.398	0.35
Result Summary	Light sortane remains	100/10	.*			11		0.00958	0.00033	0.003
 Thermal / Hydroutic Summary Mechanical Summary 	Louid molecular weigh							18.00999	18,00999	18.0099
> 🔟 Calculation Details	Specific enthality	87U/Ib		0	-1	-2	21	-905	-406.8	-908
C. W. DEAR OVER BUSIN	Vapor mass traction			1	E.	1		0	0	
	Veper strendy	15y/tr ²		0.162	0.1EX	0.153	.0.1E3			
	Vapor specific heat	BTUAD-P		0.5651	0.5672	0.5693	0.5693			
	Vepor veccosity	cp.		0,0143	0.0142	0.0142	0.0142	1		
	Vapor thirrmal cond	STLAT-N	4 -	0.917	0.017	0.017	0.017		1	
	Unput tradectilat weigh			10.00999	SCOULEF	10.00999	18,00999			
	10-110-10-10-10-10-10-10-10-10-10-10-10-			-						

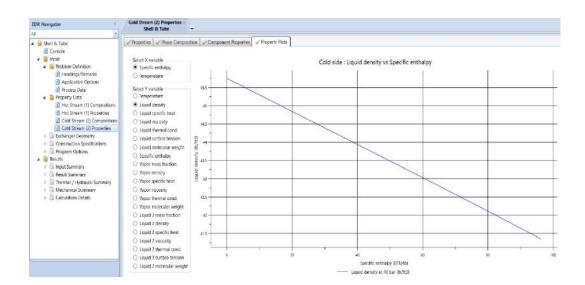

DR Navigator	He	shell & Tube	erties +						
🖥 Shell & Tube		roperties 🛛 🖉 Pha	R Composition	Component Prop	erties Propert	y Plots			
Console		Gosponeth.	Motocolar weight	Citikal pressure	Critical temperature	Liquid rodar solume at 39	Normal footing	Austria factor	Dipole moment, detree
 Problem Definition Headings/Remarks 	1.4			pai -	4F - 7	ft ³ /lbmole -	作 ==		
Application Options	1	Steam	18,00099	3206.2	705.43	0.301	212	6.345378	
Process Data Process Data	2								
Hot Stream (1) Compositions	3								
Hot Stream (1) Properties	4								
Cold Stream (2) Composition									
Exchanger Geometry	0	1							
Construction Specifications	7	-							
Program Options	8								
Results Im Input Summary	9								
Besuit Summary	12			-	2				
• 🔛 Thermal / Hydraulic Summary	11			-					
 B Mechanical Summary Colculation Details 	12								
P La Calcunctr Decars	13								
	14				3			7	
	45								
	16	6						Û	
	17		-	-	1 1				
	18								
	19				1 10				

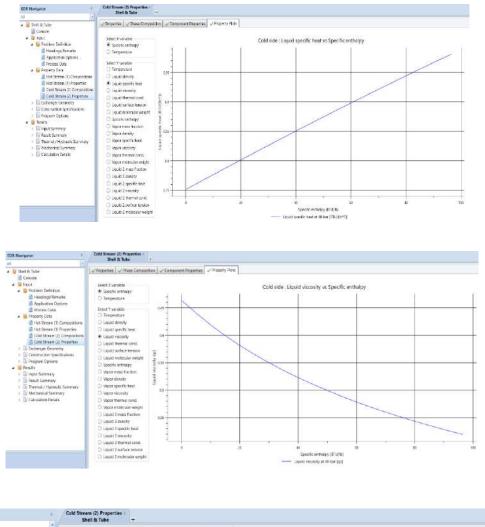


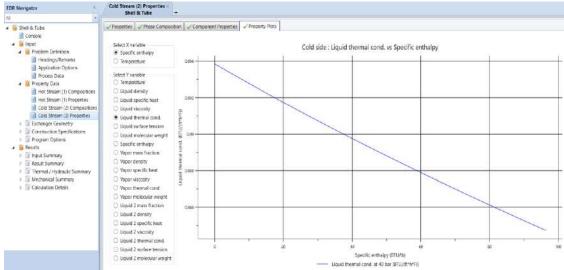


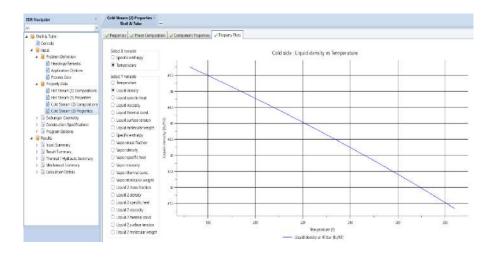


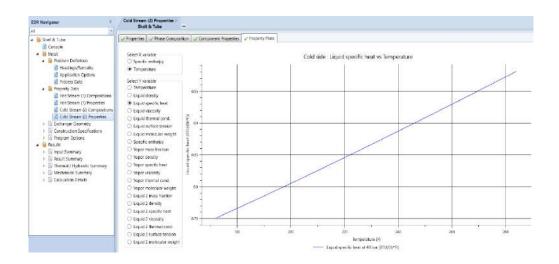


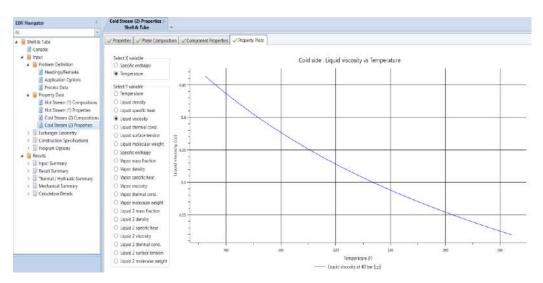

132

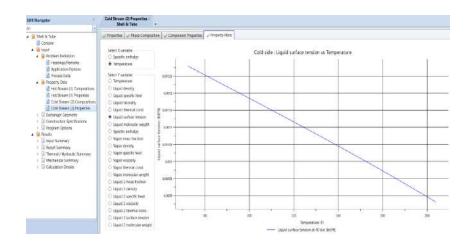

All		Shell & Tube +		
🔺 📑 She			Interaction Parameters	TL Uniquer
	Console	a company distances		and
4 🛐		Physical property package	B-JAC	•
	Problem Definition	Cold side composition specification	Weight flowrate or %	•
	Headings/Remarks	Cold side composition specification		•
	Application Options	BJAC Components	BIAC	Component type
	Process Data		Composition	
4	Property Data	1 Ethanol	0.99	Program *
	Hot Stream (1) Compositions	2 Water	0.01	Program +
	Hot Stream (1) Properties	3		
	Cold Stream (2) Composition	4		
. 1	Exchanger Geometry	5		
	Construction Specifications			
	Program Options	6		
4 🙀		7) · · · ·
2	🕼 Input Summary	8		
	Result Summary	9		
	🛿 Thermal / Hydraulic Summary			
P	🛿 Mechanical Summary	10		
Console Generate Generate Generate Generate Generate	Select X variable O Specific entitialpy	Hot side : Liqu	id molecular weight vs Temperati	ze
Consile Consile Problem Definition Hexalings/Remarks Nerigeter		Hot side : Liqu	id molecular weight us Temperati	2e
▲ Stoput ▲ Stoplarn Seturition	Specific enthalpy Temperature Hot Stream (1) Properties =		id molecular weight us Temperati	ure
Concile Conci	O Specific anthalop # Immorrance Hot Stream (I) Peoperties + Shell & Tube + Properties / Phase Composition / Comp		id molecular weight us Temperati	ure
Concie C	Specific anthlapy There are an	conent Properties v Property Rob	id molecular weight vs Temperati	uze
Concele Vingut	O Specific anthalop # Immorrance Hot Stream (I) Peoperties + Shell & Tube + Properties / Phase Composition / Comp	conent Properties v Property Rob		
Console C	Specific entitigy Transmanne Hord Sensen (1) Progenese Smell & Tube - Properse @ Phase Composition @ Comp Seciel entitigy Separate entitigy Separate	conent Properties v Property Rob		
Concile C	Beyoffic antilage Tone common Hot Steemen (1) Progenies Steel & Tube Steel & Tube Steel & Kuntols Steel & Steel Steel Steel & Steel Steel Steel & Steel Steel	conent Properties v Property Rob		
Create Areator Schrinton Areator Schrinton Areator Schrinton Areator Schrinton Shell Si Note Create Inpath Proctem Schrinton Hedding/Remarks Apolarise Options Proctem Bula Property Dau Areator () Compatibility	Beycht onthage Toncomme Hot Sereem (1) Properties Shell & Table Properties Phase Composition Steck X unishle Steck K unishle Steck K unishle Steck Y unishle Steck Y unishle Diguid dendy	conent Properties v Property Rob		
Conscie C	Beyoffic antilage Tone common Hot Steemen (1) Progenies Steel & Tube Steel & Tube Steel & Kuntols Steel & Steel Steel Steel & Steel Steel Steel & Steel Steel	conent Properties v Property Rob		xe
Circle Construction Index Construction Index Construction Index Construction Index Construction Index I	Boyottic antulary Toncomme Hiel Stream (1) Properties Shell & Tube Properties Shell & Tube Properties Properies	conent Properties v Property Rob		
Innoise I	Beyoffic antilage Tonceman Hot Steem (1) Properties Shell & Table Shell Shell & Table Shell Shell & Table Shell & Table Shell Shell & Table Shell Shell & Table Shell Shell Shell & Table Shell She	conent Properties v Property Rob		
Innoise I	Boyottic entuigy Toncomme Het Steeren (1) Properties Steel K unkloh Seleck K unkloh S	conent Properties v Property Rob		xe
Consider Schonon Prot Pro	Boyottic entuigy Toncomme Het Steeren (1) Properties Steel K unkloh Seleck K unkloh S	conent Properties v Property Rob		
Connex Prot Pro Prot Prot Prot Prot Prot Prot	Boyottic antulary Tronscreamer Hiel Stream (1) Properties Stell & Tuble Phone test Stell & Tuble Stell Stell & Tuble Stell Stell & Tuble Stell Stell	conent Properties v Property Rob		
Concele Impel Provident Catentinon President Catentino	Beyofte antilage Tonceman Hot Steem (1) Properties Shell & Table Shell Sh	conent Properties v Property Rob		
Connice Production Scheman Production Scheman Production Scheman Product Scheman Sinel & Tube Consult Product Scheman Consult Product Scheman Consult Product Scheman Consult Product Scheman	Boychic entuisy Toncoman Het Steers (1) Properties Shell K unish Sh	conent Properties v Property Rob		
Innoise I	Boychic entuisy Toncome Boychic entuisy Toncome Boychic entuisy Toncome Seck X unish Share X unish Sh	conent Properties v Property Rob		
Conscience Vinget Vi	Boyorite antilage Toncomme Heit Stream (1) Properties Steel & Tube Steel	conent Properties v Property Rob		
Conscient Scheman Conscient Scheman See 5 Note	Boyottic antilage Tonceman Hot Steam (1) Progense Stead & Table Stead Stead & Table Stead &	conent Properties v Property Rob		
Conscience Vinget Vi	Boyorite antilage Toncomme Heit Stream (1) Properties Steel & Tube Steel	conent Properties v Property Rob		
Connice Production Scheman Production Scheman Production Scheman Product Scheman Sinel & Tube Consult Product Scheman Consult Product Scheman Consult Product Scheman Consult Product Scheman	Boychie antulage Tongomene Heit Steeren (1) Progenetes Shell A Tube Phose Composition Pho	conent Properties v Property Rob		

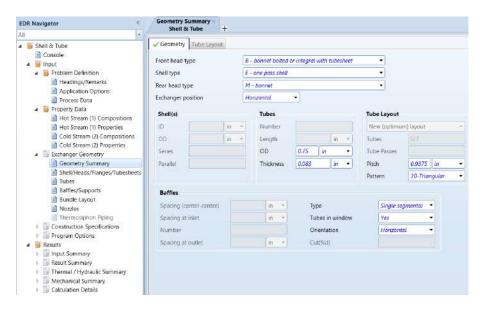

OR Navigator 5	Cold Stream (2) Pro Shell & Tube						
uli 📑 Shell & Tube	Properties V Pha	se Composition	Component Proj	perties 📿 Propert	y Plots		
🔝 Console	Mole Fractions No	mber of Componer	ts Pre	ssure 40 bar			
Input Problem Definition			Ethanol			Water	
Headings/Remarks	Temperature	Liquid			Liquid	Vapor	
Application Options Process Data	°F -						
A B Property Data	172.4	0.9748122	0	D	0.0251878	0	- (
Hot Stream (1) Compositions	178.6	0.9748122	0	0	0.0251878	0	9
Hot Stream (1) Properties Cold Stream (2) Compositions	184.8	0.9748122	0	D	0.0251878	0	
Cold Stream (2) Properties	191	0.9748122	0	0	0.0251878	0	, y
Exchanger Geometry	197.2	0.9748122	Ó	0	0.0251878	0	
Construction Specifications	203.4	0.9748122	0	D	0.0251878	0	
Program Options Besults	209.6	0.9748122	0	0	0.0251878	0	
Input Summary	215.8	0.9748122	0	D	0.0251878	0	5)
Result Summary	222	0.9748122	0	0	0.0251878	0	
 III Thermal / Hydraulic Summary III Mechanical Summary 	228.2	0.9748122	0	0	0.0251878	0	
Calculation Details	234.4	0.9748122	0	D	0.0251878	0	1
	240.6	0.9748122	0	0	0.0251878	0	
	246.8	0.9748122	0	D	0.0251878	0	2
	253	0.9748122	0	0	0.0251878	0	
	259.2	0.9748122	0	0	0.0251878	0	
	265.4	0.9748122	0	D	0.0251878	0	X
	271.6	0.9748122	0	D	0.0251878	0	
	277.8	0.9748122	0	D	0.0251878	0	

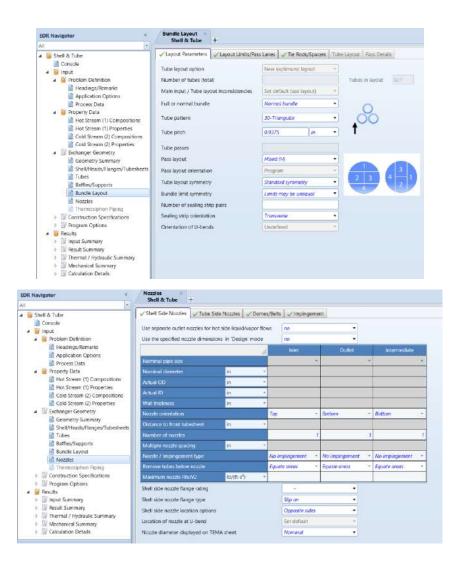

	(in			Comment Bar	ative Conservation				
🛯 🗑 Shell & Tube	W.FI	roperties 🖌 Pha	se Composition	Component Prope	anez Anobert	PIDE			
Console		Components	Molecular weight	Critical pressure	Critical temperature	Liquid molar volume at 8P	Normal boiling point	Acentric factor	Dipole moment, debye
🔺 📓 Problem Definition				psi •	Υ <u>.</u>	ft*//bmole *	φ +		
Headings/Remarks	1	Ethanol	46.06999	924	469.93	1.01	173.1	0.6579895	
Process Data	2	Water	18.00999	3206.2	705.43	0.301	212	0,346378	
🛦 🦉 Property Data	3								
Hot Stream (1) Compositions	4								
Hot Stream (1) Properties Cold Stream (2) Compositions	5								
Cold Stream (2) Properties	6							-	
Exchanger Geometry	7		-						
Construction Specifications	8		-						
 Program Options Besults 	9						2 () ()		
5 🗊 Input Summary							2		
Result Summary	10								
Thermal / Hydraulic Summary	11								
Mechanical Summary	12								
Calculation Details	13								










EDR Navigator <		ds/Flange hell & Tub	s/Tubesheets ×	+					
All 👻	-		2	1		10			
 a Shell & Tube a Console ∠ a put a Problem Definition a Headings/Remarks a Application Options a process Data a Property Data 	Shell/Hea	1	overs V Tube	sheets 4	Flanges	nnet bolted or integ			
Hot Stream (1) Compositions		type					rai with tubesh	, e1	-
Hot Stream (1) Properties	Shell type				E - one	e pass shell			•
Cold Stream (2) Compositions	Rear head	type			M - bo	innet			
Cold Stream (2) Properties A Stream Cold Stream (2) Properties	Exchanger	position			Horizo	ntal	•		
Geometry Summary	Location of	front head	for vertical uni	ts	Set de	fault			
Shell/Heads/Flanges/Tubesheets	"E" shell fic	w direction	n (inlet nozzle lo	cation)	Near	ear head	•		
Tubes Baffles/Supports Bundle Layout		e or hairpi	n unit shell pitcl		Set de		n *		
Nozzles	Flow within	i multi-tub	e hairpin (M-sh	ell)	Set de	fault			
Thermosiphon Piping Construction Specifications Program Options	Overall flow	v for multij				ercurrent	•		
🔺 📴 Results	1		ID		OD	Thickness	Series	Parallel	
Input Summary		in '							
Result Summary	Front head	in 🤉							
Thermal / Hydraulic Summary	Rear head	in :	8						
 Wechanical Summary Calculation Details 	Kettle	in 🦂	1						


All +	
▲ Shell & Tubesheets ↓ Flanges	
Console	
a 📴 Input Front cover type Ellipsoidal 🔻	
Problem Definition Front cover welded to a cylinder Yes	
Headings/Remarks	
Application Options	
Process Data	
Property Data Rear cover type Ellipsoidal (M.P.S.T.W types)	
Hot Stream (1) Compositions	
Hot Stream (1) Properties Rear cover welded to a cylinder Yes -	
Cold Stream (2) Compositions	
Cold Stream (2) Properties	
Exchanger Geometry	
Geometry Summary Shell cover type Set default	
Shell/Heads/Flanges/Tubesheets Tubes	
Baffles/Supports	
Banles/Supports	
Nozzies	
Distance from U-bend center to shell cover in v	
R Construction Specifications	
Dependence of the second secon	
A Results	
Input Summary	
Result Summary	
👂 🔛 Thermal / Hydraulic Summary	
D Wechanical Summary	
Q Calculation Details	

EDR Navigator	Shell/Heads/Flanges/Tubesheets × Shell & Tube	+
All		
A 🗟 Shell & Tube	Shell/Heads Covers Tubesh	ieets 🗸 Flanges
Console	Tubesheet type	
Problem Definition	Normal	•
Headings/Remarks	Front tubesheet thickness	in *
Application Options		
Process Data	Rear tubesheet thickness	in 🔹
Property Data Hot Stream (1) Compositions	Tube to tubesheet joint	
Hot Stream (1) Properties	Expanded only (2 grooves)(App.A 'i')	
Cold Stream (2) Compositions	Tube projection from front tubesheet	0.125 in 👻
Cold Stream (2) Properties	Tube projection from rear tubesheet	0.125 in 🔻
Exchanger Geometry	Tube projection non real tubesheet	
Geometry Summary	Include expansion joint	None 🔹
Shell/Heads/Flanges/Tubesheets		
Baffles/Supports		
Bundle Layout		
Nozzles		
Thermosiphon Piping		
 Construction Specifications Program Options 		
A Results		
Input Summary		
Result Summary		
👂 🕎 Thermal / Hydraulic Summary		
 Thermal / Hydraulic Summary Mechanical Summary 		
👂 🕎 Thermal / Hydraulic Summary		
Thermal / Hydraulic Summary Mechanical Summary Calculation Details R Navigator	Shell/Heads/Flanges/Tubeshee Shell & Tube	ets× +
	Shell & Tube	
Definition of the second s	Shell & Tube	+
	Shell & Tube	+ Tubesheets / Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details R Navigator Shell & Tube Console Input Problem Definition Headings/Remarks 	Shell & Tube	+ Tubesheets / Flanges
	Shell & Tube	+ Tubesheets / Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details R Navigator Shell & Tube Console Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data 	Shell & Tube	+ Tubesheets / Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details R Navigator Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details R Navigator Shell & Tube Console Shell & Tube Console Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (2) Properties Cold Stream (2) Properties 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (2) Compositions Cold Stream (2) Compositions Cold Stream (2) Compositions Cold Stream (2) Properties Exchanger Geometry Shell/Heads/Flanges/Tubesheets 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details R Navigator Shell & Tube Console Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Process Data Property Data Hot Stream (1) Properties Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Shell/Heads/Flanges/Tubesheets Tubes 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Mechanical Summary Calculation Details R Navigator Shell & Tube Console Shell & Tube Console Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Shell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details R Navigator Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Shell/Heads/Flanges/Tubesheets Tubes Baffles/Supports 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details R Navigator Shell & Tube Console Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Shell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout Nozzles Themosiphon Piping Construction Specifications 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Mechanical Summary Calculation Details R Navigator Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Process Data Property Data Gold Stream (1) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Bell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping Construction Specifications Program Options 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Calculation Details Calculation Details R Navigator Shell & Tube Console Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Property Data Property Data Hot Stream (1) Compositions Hot Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Shell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping Construction Specifications Program Options 	Shell & Tube	+ Tubesheets Flanges
 Thermal / Hydraulic Summary Mechanical Summary Mechanical Summary Calculation Details R Navigator Shell & Tube Console Input Problem Definition Headings/Remarks Application Options Process Data Process Data Property Data Gold Stream (1) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Cold Stream (2) Properties Bell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping Construction Specifications Program Options 	Shell & Tube	+ Tubesheets Flanges

EDR Navigator <	Tubes × Shell & Tube +		
All			
Shell & Tube Console		Inserts KHT Twisted Tubes	Internal Enhancements
 Input Problem Definition Headings/Remarks Application Options Process Data Property Data Hot Stream (1) Compositions Hot Stream (1) Properties Cold Stream (2) Compositions Cold Stream (2) Properties Exchanger Geometry Geometry Summary Shell/Heads/Flanges/Tubesheets 	Number of tubes (total) Number of tubes plugged Tube length Tube type Tube outside diameter Tube wall thickness Wall specification Tube pitch Tube pattern Tube material	In Plain O.75 In O.083 In Average O.9375 In 30-Triangular Carbon Steet 1	•
 Sitel/Heads/rianges/fubesheets Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping Construction Specifications Program Options Results Input Summary Result Summary Thermal / Hydraulic Summary Mechanical Summary Calculation Details 	Tube surface Tube wall roughness Tube cut angle (degrees)	Smooth	

DR Navigator	Baffles/Supports × Shell & Tube +						
I 👘 👔 Shell & Tube	Baffles Tube Supports Longitudina	l Baffles 🖌 🗸 Varial	ble Baffle Pitch	es 🛛 🗸 Deres	onating Baffle	s	
Console Co	Baffle type Tubes are in baffle window Baffle cut % - inner/outer/intermediate:	Single segmenta Ves		- -			
 Property Data Hot Stream (1) Compositions Hot Stream (1) Properties 	Align baffle cut with tubes Multi-segmental baffle starting baffle	Ves Set default		•			
 Cold Stream (2) Compositions Cold Stream (2) Properties Exchanger Geometry 	Baffle cut orientation Baffle thickness Baffle spacing center-center	Horizontal	in	•			
Geometry Summary Shell/Heads/Flanges/Tubesheets Tubes Tubes	Baffle spacing at inlet Number of baffles		in	• at outlet		In	*
Baffles/Supports Bundle Layout Nozzles	End length at front head (tube end to close		[] in	*		
Thermosiphon Piping Construction Specifications Difference Outline	End length at rear head (tube end to closes Distance between baffles at central in/out f			in in	-		
Program Options Besults Input Summary	Distance between baffles at center of H she Baffle OD to shell ID diametric clearance	1		în În	•		
Result Summary Thermal / Hydraulic Summary Mechanical Summary	Baffle tube hole to tube OD diametric clear.	ance		in	•		

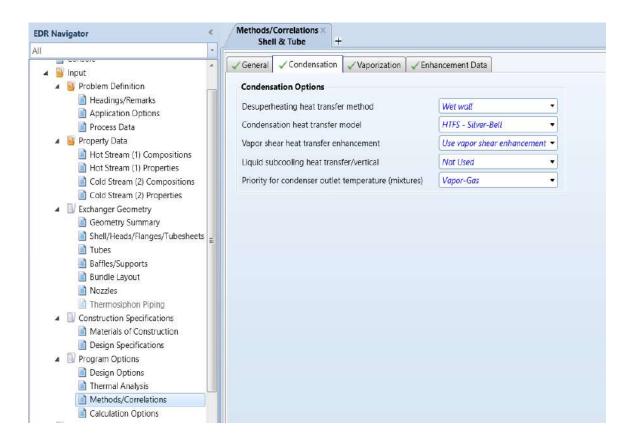
EDR Navigator <	Materials of Construction × Shell & Tube	+			
4 📓 Shell & Tube	Vessel Materials	ing/Gasket Materials 🖌 Tube Properties			
Console Console Console Console Problem Definition Process Data Process Data Process Data Hot Stream (1) Compositions Hot Stream (1) Properties Cold Stream (2) Properties Cold Stream (2) Properties Consolid S	Default exchanger material	Carbon Steel			
	Cylinder - hot side	Carbon Steel	• 1		
	Cylinder - cold side	Carbon Steel	• 1		
	Tubesheet	Carbon Steel			
	Double tubesheet (inner)	Set Default	v 0		
	Baffles	Carbon Steel	• 1		
	Tube material	Carbon Steel	- 1		
Geometry Summary Geome	Fin material	Set Default Databank Search	- 0		
Construction Specifications Materials of Construction Construction Construction Program Options Results Program Options Results Result Summary Result Summary Construction C					

DR Navigator <	Design Specifications × Shell & Tube	+					
Shell & Tube	✓ Design Specifications						
Console Console Figure 1 Console C	Codes and Standards Design Code	ASME C	ode Sec VIII Div 1	T			
Headings/Remarks Application Options	Service class	Normal					
Application Options Process Data	TEMA class	R - refinery service ASME					
A 🧧 Property Data	Material standard						
 Hot Stream (1) Compositions Hot Stream (1) Properties 	Dimensional standard	ANSI - A	merican	•			
Cold Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Geometry Geometry Geometry Summary	Design Conditions				Shell Side Hot Side	Tube Side Cold Side	
Shell/Heads/Flanges/Tubesheets	Design pressure (gauge)		psi 🔹	80		640	
Tubes	Design temperature		°F 🔹	370		350	
Baffles/Supports Bundle Layout	Vacuum design pressure	(gauge)	psi 🔹				
Nozzles	Test pressure (gauge)		psi 🔹				
Thermosiphon Piping	Corrosion allowance		in 🔻	0.125		0.125	
Construction Specifications Materials of Construction	Radiography			Spot		Spot •	
 Design Specifications Program Options 							

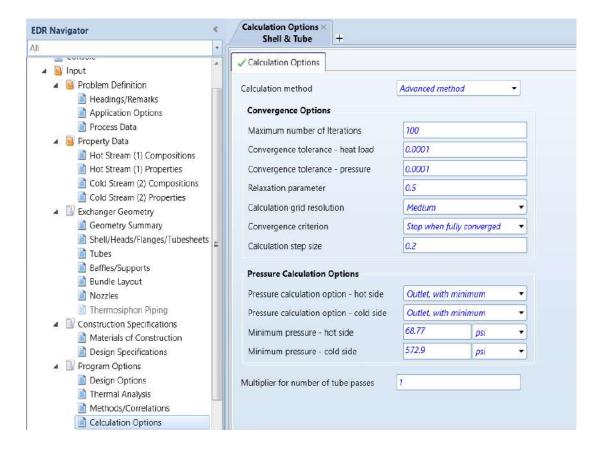
DR Navigator <	Design Options × Shell & Tube	+			
	Geometry Options	Geometry Limits	✓ Process Limits	✓ Optimization Options	
Problem Definition Headings/Remarks	Geometry Options				
Application Options	Use shell ID or OD a	is reference		Inside diameter	•
Process Data	Shell side nozzle loc	ation options		Opposite sides	
🔺 🧧 Property Data	Location of nozzle a	it U-bend		Set default	
Hot Stream (1) Compositions Hot Stream (1) Properties	Allow baffles under	nozzles		No	•)
Cold Stream (2) Compositions	Use proportional ba	iffie cut		Yes	•
Cold Stream (2) Properties	Number of tube row	vs between sealing str	ips	6	
Exchanger Geometry Geometry Summary	Percent of tubes to	be plugged		0	
 Shell/Heads/Flanges/Tubesheets Tubes Baffies/Supports Bundle Layout Nozzles 		ent Options apor disengagement s neter for disengageme	••••••••••••••••••••••••••••••	oorator No	•
Thermosiphan Piping	Variable Baffle Pito	h Options			
Construction Specifications Materials of Construction	Number of regions	for variable baffle pitcl	h	One region	•
Design Specifications Program Options	Variable baffle pitch	: First to last pitch ration	0	1.5	
Design Options Thermal Analysis Methods/Correlations Calculation Options					

		Shell & Tube	+					
4	S Input	- Geometry Options	🖌 Geometry Limits	🗸 Pro	cess Lir	nits 🛛 🗸 Optimiza	tion Options	
	A 📴 Problem Definition	Geometry Limits						
	Headings/Remarks					Increment	Minimum	Maximum
	Application Options Process Data	Shell diameter		in	•	1	6	100
- 22	🔺 🧧 Property Data	Tube length		in	•	24	48	240
	Hot Stream (1) Compositions	Tube passes				7,2,4,6 •	1	8
	Hot Stream (1) Properties Cold Stream (2) Compositions	Baffle spacing		in	•		2	30
	Cold Stream (2) Properties	Baffle cut (% of diar	neter)				10	40
3	A 🗍 Exchanger Geometry	Shells in series					1	6
	Geometry Summary	Shells in parallel					1	10
	Shell/Heads/Flanges/Tubesheets Tubes	Use pipe for shells I	alour this diamator				24	in
	Baffles/Supports	Use pipe for shells i	below this diameter				57	un
	Bundle Layout							
	Nozzles							
	Thermosiphon Piping							
8	Construction Specifications							
	Materials of Construction							
	Design Specifications							
8	A Program Options							
	Design Options							
	Thermal Analysis							
	Methods/Correlations Calculation Options							

EDR Navigator <	Design Options × Shell & Tube	+				
II.	-		1			
4 🧕 Input	Geometry Options	Geometry Limits Verocess Limits	Optimization Op	otions		
Problem Definition	Process Limits					
Headings/Remarks					Hot Side	Cold Side
Application Options	Minimum fluid veloc	ity	(m)	- 1	Hot side	2.0
Process Data			ft/s			0.03
🔺 🧧 Property Data	Maximum fluid veloc	aty	ft/s	•		328.08
Hot Stream (1) Compositions	Target % pressure d	ron in nozzles		1	5	15
Hot Stream (1) Properties	100				-	1/1
Cold Stream (2) Compositions	Maximum exit entra	inment ratio (mass liquid/vapor) (pool bo	ilers only)			0.02
Cold Stream (2) Properties	Allow local tempera	ture cross				Ves
🔺 🔝 Exchanger Geometry						
Geometry Summary						
Shell/Heads/Flanges/Tubesheets =						
Tubes						
Baffles/Supports						
Bundle Layout						
Nozzles						
Nozzles						
Nozzles Thermosiphon Piping						
 Nozzles Thermosiphon Piping Construction Specifications 						
 Nozzles Thermosiphon Piping Ocnstruction Specifications Materials of Construction 						
 Nozzles Thermosiphon Piping Ocnstruction Specifications Materials of Construction Design Specifications 						
 Nozzles Thermosiphon Piping Construction Specifications Materials of Construction Design Specifications Program Options 						
 Nozzles Thermosiphon Piping Construction Specifications Materials of Construction Design Specifications Program Options Design Options 						


DR Navigator K	Design Options × Shell & Tube	+			
a Console	Geometry Options	Geometry Limits V Process Limits	✓ Optimization C	ptions	
	Optimization Option Design search thore Basis for design opt Highest cost or area Minimum % excess Show units that meet Show units that meet Show units that meet	ons oughness options imization	atio ure drop ratio	Normal Minimum cost 1.25 0 0.9 1.5 1.5 1200	
Construction Specifications Materials of Construction Construction Program Options Design Options Design Options					
Thermal Analysis Methods/Correlations					

R Navigator <	Thermal Analysis × Shell & Tube +			
1 · · · · · · · · · · · · · · · · · · ·		-		
A B Input	Veat Transfer Veressure Drop Velta T Venuing	F.		
A S Problem Definition	Heat Transfer Options			
Headings/Remarks			Hot Side	Cold Side
Application Options	Liquid heat transfer coefficient	BTU//h-ft •	They brace	
Process Data	Elquid heat transfer coefficient	BI0/(n-n •		
🔺 🧕 Property Data	Two phase heat transfer coefficient	BTU/(h-ft ▼		
Hot Stream (1) Compositions	Vapor heat transfer coefficient	BTU/(h-ft •		
Hot Stream (1) Properties	Liquid heat transfer coefficient multiplier	Canada and	-	1
Cold Stream (2) Compositions				
Cold Stream (2) Properties	Two phase heat transfer coefficient multiplier		1	1
A D Exchanger Geometry	Vapor heat transfer coefficient multiplier		1	1
Geometry Summary	U-bend area will be considered effective for heat transfer		Set default 💌	
Shell/Heads/Flanges/Tubesheets	O-bend area will be considered effective for heat transfer		Set delault	
Tubes	Fraction of tube area submerged for shell side condensers			
Baffles/Supports	Weir height above bundle for kettle reboiler			in
Bundle Layout				1.64
Nozzles				
Thermosiphon Piping				
Construction Specifications				
Materials of Construction				
Design Specifications				
Program Options				
Design Options				
Thermal Analysis				
Methods/Correlations				
Calculation Options				


EDR Navigator K	Thermal Analysis × Shell & Tube +		
All			
▲ S Input	✓ Heat Transfer ✓ Pressure Drop ✓ Delt	a T 🗸 Fouling	
Problem Definition Beadings/Remarks	Pressure Drop Options	Hot Side	Cold Side
Application Options	Pressure drop multiplier	1	1
🔺 📴 Property Data	Pressure drop: friction / gravity, hot side	friction only	friction only
Hot Stream (1) Compositions Hot Stream (1) Properties	Pressure change: acceleration	during heat transfer 🔹 🔻	during heat transfer
Cold Stream (2) Compositions Cold Stream (2) Properties Exchanger Geometry Geometry Summary Shell/Heads/Flanges/Tubesheets Tubes Baffies/Supports Bundle Layout Nozzles Thermosiphon Piping Construction Specifications Materials of Construction Design Specifications Materials of Construction Design Options Thermal Analysis Methods/Correlations Calculation Options			

EDR Navigator <	Thermal Analysis × Shell & Tube +
All	
A B Input	Heat Transfer VPressure Drop VDelta T VFouling
🖌 😼 Problem Definition	Temperature Difference Options
 Headings/Remarks Application Options Process Data 	Minimum allowable MTD Ft correction factor 0.7
 Property Data Hot Stream (1) Compositions Hot Stream (2) Compositions Cold Stream (2) Properties Cold Stream (2) Properties Exchanger Geometry Geometry Summary Shell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping Construction Specifications Materials of Construction	
Design Specifications	
Program Options	
Design Options	
Methods/Correlations	
Calculation Options	
EDR Navigator <	Thermal Analysis × Shell & Tube +
All	
▲ S Input	✓ Heat Transfer ✓ Pressure Drop ✓ Delta T ✓ Fouling
A B Problem Definition	Fouling Calculations
Headings/Remarks	
Application Options	Fouling calculation options Adjust both sides based on fouling input
Process Data	Hot Side Cold Side
🔺 🧧 Property Data	Fouling layer thickness
Hot Stream (1) Compositions	Fouling thermal conductivity BTU/(ft-h-F)
Hot Stream (1) Properties	
Cold Stream (2) Compositions	
Exchanger Geometry	
Geometry Summary	
📄 Shell/Heads/Flanges/Tubesheets 🛓	
Tubes	
Baffles/Supports	
Bundle Layout	
Nozzles Thermosiphon Piping	
Construction Specifications	
Materials of Construction	
Design Specifications	
4 🕒 Program Options	
Design Options	
Thermal Analysis	
Methods/Correlations	
Calculation Options	

-	Shell & Tube +	
linput	General Condensation Vaporizatio	n 🖌 Enhancement Data
A B Problem Definition	Vibration Analysis Options	
Headings/Remarks Application Options	Vibration analysis method	Full HTFS analysis
Process Data	Tube axial stress	psi
 Property Data Hot Stream (1) Compositions 	Effective cross flow fraction	
📄 Hot Stream (1) Properties	Single phase tubeside heat transfer method	HTFS recommended method
Cold Stream (2) Compositions Cold Stream (2) Properties	Lowfin tube calculation method	HTFS / ESDU -
 Exchanger Geometry Geometry Summary Shell/Heads/Flanges/Tubesheets Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping 	Viscosity method for two liquid phases	HTFS selected method •
Construction Specifications Materials of Construction Design Specifications		
Program Options Design Options Thermal Analysis		
Inernal Analysis		

EDR Navigator	Methods/Correlations × Shell & Tube +	
All		
4 🔯 input	General Condensation Vaporization	Enhancement Data
🖌 😼 Problem Definition	Vaporization Options	
Headings/Remarks Application Options	Subcooled boiling accounted for in	Heat transfer & pressure drop 🔻
Process Data	Post dryout heat transfer determined	yes 🔹
 Property Data Hot Stream (1) Compositions 	Boiling Curve Correction	
Hot Stream (1) Properties	Heat flux reference point	BTU/(h-ft²) *
Cold Stream (2) Compositions	Temperature difference (Delta T) reference point	°F ▼
Schanger Geometry	Boiling curve exponent on Delta T	
Geometry Summary Shell/Heads/Flanges/Tubesheets	Correction to boiling curve	Boiling curve not used
 Tubes Tubes Baffles/Supports Bundle Layout Nozzles Thermosiphon Piping 	Falling film evaporation method	HTFS recommended method
Construction Specifications Materials of Construction Design Specifications		
 Program Options Design Options Thermal Analysis 		
Methods/Correlations		
Calculation Options		

R Navigator <		She	ll & Tube	+																	
with the acceleration (eq. is respect to be	1																				
4 📳 Exchanger Geometry	0	ptimizati	ion Fath									_									
Geometry Summary					Tutelength				:Dep		Gaffe		Tuh				14		Operational Iss.		
Shell/Heads/Flanges/Tubesheets		ten			Int	Ammo		Do Reto	Tiller	Dy Refe			Tube Pas	Na				Winter	Rhs-V-Sq	Unapported terrenth	Design Satu
Tubes			n 1			(And a complete	25 7	i sement	DS *		n +			10			OctariUSI *			auce qu	
Baffles/Supports	1		23.25	20	21,3212	0.94 *	445	1.81	6.86	0.95	23.25			396		1	475261/6	8	No	No	Near
Bundle Lavout	2	2	34	20	10.3171	0.98*	423	1.3	5.66	0.75	23.25	8		41	1	1	47657 16	в	No	No	Near
Nozzles	3	-	25	-20	19,9225	1	395	1.05 *	5,19	672	325	. 8	1 2	472		1	4951410	65	No.	No	New
Thermosiphon Piping	4	4	26	-20	19,0834	1.05	- 36	0,97	435	6,6	2325	E	2	- 52î	1	1	53125 %	e	No	No	(38)
Construction Specifications	5	85	- 27	20	18,4187	1.09	3.3	0.91	374	0.52	23.25	8	2	(58)	1	1	57113 %	e	ND	No	(OK
Materials of Construction	8	6	28	- 29	18.0558	1,11	3.0	6,92	343	647	- 325		2	616	- 1		59730 %	-	No	No	(DK)
	7	- 7	28	18	17,441	1.28	354	0.94	277	0.38	2325	6	2	678	- 1	- 1	6232514	-	No	Ne	(DK
Design Specifications	В	8	- 4	20	22,05%	0,91 *	28	0,61	8.71	45	23	E	1	1425	1	1	116361/12	-	No	No	New
Program Options	9	- 9	्रस	- 29		0.32 *	219	0.98	0,7	4.1	23	6		1508		1	121464 10		No	No	Near
📄 Design Options	10		4	20	21,513	0.95*	23	0,56	0.7	61	З	8		1516		1	126367176	-	ND	No	Near
Thermal Analysis	П	- 11	43	20	21.1854	0.94 *	234	0.62	0.69		23	<u> </u>	1	1667	1	1	13244514		No	No	Near
Methods/Correlations	12	12	.44	20	20.9731	0,95*	219	1.59	0.69	6.09	23			1736	1	1	13779614		No	No	Nest
Calculation Options	13		-45	20	20,7167	0.97*	2:5	1157	0.68	6.09	23		1	1829	1	1	14839		No	No	Nesr
🖌 🦉 Results	14		4	20		6.96 ×	208	0.55	0.68	0.09	23		1	1925		1	150719/4		No	No	Near
A Dirput Summary	15		47	20	203156	0,98*	207	0.55	0,67	0.09	23		1	1983		1	156861 Pc		ND	No	Near
	16	-	48	19	10.0328	1*	2.03	0.54	0.67	0.09	25	2 - 2	1	2101		1	163754 Pc	10220	ND	No	Near
Input Summary	17	17	4	19	19,8064	1.01	1.95	053	0.67	6.09	23		1	2199	_	1	169990 20	1946-19	No	No	(04)
🔺 📄 Result Summary	18	15	50	20	1.00.00	148	1.87	0.5	0.66	6.39	23		1	2271	_	1	177134 Pc		No	No	(08)
Warnings & Messages	19		51	20	19,4874	1.03	204	0.54	0.66	0.09	22.75		1	2580	1	1	183946 74		ND	No	(DK)
Optimization Path	20	100	52	20	6 0.225.0	104	4	0.53	0.66	0.09	22.75			2481		1	190910 Pc		ND	No	(DK)
Recap of Designs	D	100	10	20	22,1568	0.9*	1.59	UST	0.56	0.06	23.25	_		682	2	1	122172 %	222.20	NO	No	Near
TEMA Sheet	22		28	20	a denta de la	0.92.*	13	0.15	0.55	6.06	2125			727	2	1	126722 4		Na	No	Near
Overall Summary	23		30	20		0.94 *	13	0.35	0.54	6.07	2325		1	787	- 1	1	137760 20		NO	No	Netr
	24		57	20	20,8974	0.95 *	123	8.9	0.53	0.07	23.25		1	851	- 2		14525074		NC	No	Near
Thermal / Hydraulic Summary	5		12	-20	20,6081	0,97 *	17	8.51	0.53	0.07	23.25			901	2		15251274		NO	No	Near
Mechanical Summary	26	-	33	20	20,2255	0.99 *	1.5	0.51	0.52	0.07	23.25	8		911	2	1	1614752	¥.0	NC .	No	Near
Calculation Details	IJ		ч	M	19.9616	1	1.05	0.16	0.51	6.57	23.25	-	11	1022	2		168824.20	San 201	NC	No	(CK
	- 28		35	20		122	1.05	6.26	0.51	6.37	2325	1		1099	2	1	178424.20	112200-	No	No	(OK)
	29		×	20	19,3421	1.08	1.01	0.21	0.51	0.07	23	-	1	1163	2	1	187418/2		No	No	(OK
	30 31		57 23,25	20	19,1236	1.05	1 1 1	025	0.5 0.88	6.07	23 23.25			1222	2	1	197338 PC	1990-01-1	NO	No	(OK) Near

EDR Navig	ator		
All			

Recap of Designs × Shell & Tube

<

+

.

🔄 cola occam (c) i roperac 🔺 🗻 Exchanger Geometry Geometry Summary Shell/Heads/Flanges/Tubesheets 📄 Tubes Baffles/Supports 📄 Bundle Layout 📄 Nozzles 📄 Thermosiphon Piping ▲ □ Construction Specifications Materials of Construction

Design Specifications

- 🔺 🔟 Program Options
 - 📄 Design Options
 - 📄 Thermal Analysis
 - Methods/Correlations
 - Calculation Options

4 📑 Results

- 🔺 🗻 Input Summary
- 🔲 Input Summary ▲ 🔝 Result Summary
- 📃 Warnings & Messages
 - 🔜 Optimization Path
 - Recap of Designs
 - TEMA Sheet
 - Overall Summary
- Thermal / Hydraulic Summary
- Mechanical Summary

Recap of Design

+

А

Current selected case

	А	
Shell ID	in 👻	26
Tube length - actual	ft 🔹	20
Tube length - required	ft 👻	19.0834
Pressure drop, SS	psi 🗾	3.65
Pressure drop, TS	psi 👻	4.35
Baffle spacing	in 🔹	23.25
Number of baffles		8
Tube passes		2
Tube number		527
Number of units in series		1
Number of units in parallel		1
Total price	Dollar(US) -	53125
Program mode	Design	(Sizing)
Calculation method	Advanced	method
Area Ratio (dirty)	- *	1.05
Film coef overall, SS	BTU/(h-ft²-F) 🔹	3017.99
Film coef overall, TS	BTU/(h-ft²-F) -	580.95
Heat load	BTU/h - 48	882100
Recap case fully recoverable		Yes

EDR Navigator	٤	TEMA Sheet Shell & Tube	+					
WI	• (F							
A Exchanger Geometry		TEMA Sheet						
📄 Geometry Summary	6			Heat Excha	nger Specificatio	n Sheet		
Shell/Heads/Flanges	s/Tubesheets	1 Company:						
Tubes		2 Location:						
Baffles/Supports		3 Service of Unit		Reference:				
Bundle Layout		4 Item No.:	15,2762	Reference:				
Nozzles		5 Date: 6 Size : 26 -		No.:	Horizontal	C		
Thermosiphon Pipin	-	6 Size : 26 - 7 Surf/unit(eff.)	- F (S) (F)	Type: BEM ft ² Shells/u		Connected in		series 117.8 ft ²
Construction Specificati	- 1 C C	8	2017.0	2010/2010	RMANCE OF ONE I		nen(en.) 20	11/10 16
Materials of Construction Design Specification		9 Fluid allocation	1			ll Side	Tube	Side
 Design specification Program Options 	15	10 Fluid name						
Design Options		11 Fluid quantity,	Total	lb/h	54	127	5070	155
Thermal Analysis		12 Vapor (In/C	Dut)	lb/h	54127	0	0	0
Methods/Correlation	ns	13 Liquid		lb/h	0	54127	507055	507055
Calculation Options		14 Nonconde	nsable	lb/h	0	0	0	0
A 📓 Results		15 16 Temperature (I	n (Out)	٥r	305.6	305.56	172,4	284
🖌 🗍 Input Summary	=	16 Temperature (I 17 Bubble / D		*F *F	305.56 / 305.56	305.56 / 305.56	1/2.4	/
🛄 Input Summary		18 Density	Vapor/Liquid	lb/ft ³	0.163 /	/ 57.115	/ 45.754	/ 41.34
🔺 🔟 Result Summary		19 Viscosity	16 TO 16	cp	0.0142 /	/ 0.1935	/ 0.4634	/ 0.2195
🛄 Warnings & Messag	jes	20 Molecular wt, 1	HI 18.1A		18.01			
Optimization Path		21 Molecular wt, I	NC					010103000-
Recap of Designs		22 Specific heat	1		0.5693 /	/ 1.0146	/ 0.7514	/ 0.9812
TEMA Sheet		23 Thermal condu 24 Latent heat	uctivity	BTU/(ft-h-F) BTU/Ib	0.017 / 903	/ 0.398	/ 0.094	/ 0.085
University Coverall Summary		25 Pressure (abs)	1	bi U/ID psi	72.52	68.87	580.15	575.8
 Image: Thermal / Hydraulic Sur Image: Mechanical Summary 	mmary	26 Velocity (Mean	/Max)	ft/s		/ 87.31	6.6 /	
 Calculation Details 		27 Pressure drop,		psi	3.75	3.65	7.25	4.35
, B current permit		28 Fouling resista	nce (min)	ft ² -h-F/BTU	0		0 0	Ao based
		29 Heat exchange		BTU/h	2	MTD (cor	Contraction of the second s	۴F
		30 Transfer rate, S	Service 410.84		Dirty 430.58	Cle	an 430.58	BTU/(h-ft ² -F)
31		CONSTRUCTION	ON OF ONE SHEL	L			Sketch	
32			Shell Side	-	Tube Side			
32 22 Design (/acuum /test)	proceuro	nai (Shell Side		Tube Side			
33 Design/Vacuum/test	pressure	1	30 / /	640	/ /	_		
33 Design/Vacuum/test p34 Design temperature		psi 8 °F	30 / / 370		/ /			٩
33 Design/Vacuum/test		1	30 / /		/ /			.
33 Design/Vacuum/test p34 Design temperature		1	30 / / 370		/ /	ļ		
33 Design/Vacuum/test p34 Design temperature35 Number passes per sl		°F	30 / / 370 1		/ / 350 2	- -		
 33 Design/Vacuum/test p 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 	hell	°F in in 1	30 / / 370 1 0.125 14 /	- 1	/ / 350 2 0.125 8 /	- -		ŢŢŢ
 33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 	hell In Out	•F in in 1	30 / / 370 1 0.125	- 1 - 1	/ / 350 2 0.125	- -		T T
 33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 	hell In Out Intermediate	°F in in 1 e 1	30 / / 370 1 0.125 14 / 3 / /	- 1 - 1 - 1 - 1	/ / 350 2 0.125 8 / 8 / 8 /	-		
 33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 	hell In Out	°F in in 1 e 1 Tks. Average	30 / / 370 1 0.125 14 / 3 / / e 0.083 in	- 1 - 1 - 1 Length:	/ / 350 2 0.125 8 / 8 / 8 / 240 in	- Pitch: 0.9375	in Tub	ee pattern: 30
 33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 	hell In Out Intermediat OD: 0.75	°F in in 1 re 1 Tks. Average Insert: No	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne	- 1 - 1 - 1 Length: Fin#	/ / / 350 2 0.125 8 / 8 / 8 / 240 in	- Pitch: 0.9375 #/in Mate		
 33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 	hell In Out Intermediate	°F in in 1 re 1 Tks. Average Insert: No	30 / / 370 1 0.125 14 / 3 / / e 0.083 in	- 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 240 in	- Pitch: 0.9375 #/in Mate	in Tub	
 33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 	hell In Out Intermediat OD: 0.75	°F in in 1 re 1 Tks. Average Insert: No D 26	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne	- 1 - 1 - 1 Length: Fin#	/ / / 350 2 0.125 8 / 8 / 8 / 240 in	- Pitch: 0.9375 #/in Mate	in Tub	
 33 Design/Vacuum/test p 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 	hell Out Intermediat OD: 0.75	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75	- 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 240 in : n Shell cover Channel co	- Pitch: 0.9375 #/in Mate	in Tub rial: Carbon Ste	
 33 Design/Vacuum/test p 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 	hell Out Intermediat OD: 0.75	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne	- 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 240 in :	- Pitch: 0.9375 #/in Mate wer floating	in Tub rial: Carbon Ste - -	
 33 Design/Vacuum/test p 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 	hell Out Intermediat OD: 0.75 IE Carbon Carbon -	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 -	640 - 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 2240 in 240 in 5 Channel co Tubesheet- Impingement	- Pitch: 0.9375 #/in Mate ver -floating ent protection	in Tub in Tub rial: Carbon Ste - - - None	
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 	hell Out Intermediat OD: 0.75 IE Carbon Carbon -	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta	640 - 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 240 in :	Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin	in Tub rial: Carbon Ste - - None g: c/c 23.25	
 33 Design/Vacuum/test p 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 	hell Out Intermediat OD: 0.75 IE Carbon Carbon -	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 -	640 - 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 2240 in 240 in 5 Channel co Tubesheet- Impingement	- Pitch: 0.9375 #/in Mate ver -floating ent protection	in Tub in Tub rial: Carbon Ste - - - None	
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 	hell Out Intermediat OD: 0.75 IE Carbon Carbon -	°F in in 1 e 1 Tks. Average Insert: No D 26 Steel Steel Type Seal	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta	640 - 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 2240 in 240 in 5 Channel co Tubesheet- Impingement	- Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet	in Tub rial: Carbon Ste - - None g: c/c 23.25	
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 47 Baffle-long - 	hell In Out Intermediat OD: 0.75 IE Carbon Carbon - Steel	°F in in 1 e 1 Tks. Average Insert: No D 26 Steel Steel Type Seal	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta I Type 0	640 - 1 - 1 - 1 Length: Fin#	/ / 350 2 0.125 8 / 8 / 8 / 240 in 240 in 5 Channel co Tubesheet- Impingeme 40.87 Typ	- Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet	in Tub in Tub erial: Carbon Ster - - None g: c/c 23.25 35.625	
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 47 Baffle-long - 48 Supports-tube 49 Bypass seal 	hell In Out Intermediat OD: 0.75 IE Carbon Carbon - Steel	°F in in 1 e 1 Tks. Average Insert: No D 26 Steel Steel Type Seal	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta I Type 0	- 1 - 1 - 1 Length: i Cut(%d)	/ / 350 2 0.125 8 / 8 / 7 240 in 	- Pitch: 0.9375 #/in Mate wer floating ent protection H(Spacin Inlet pe	in Tub in Tub erial: Carbon Ster - - None g: c/c 23.25 35.625	
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 	hell Out Out Intermediat OD: 0.75 IE Carbon Carbon Carbon Steel U-benc	°F in in 1 e 1 Tks. Average Insert: No D 26 Steel Steel Type Seal	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta I Type 0	- 1 - 1 - 1 Length: i U U U U U U U U U U U U U U U U U U	/ / 350 2 0.125 8 / 8 / 7 240 in 	- Pitch: 0.9375 #/in Mate wer floating ent protection H(Spacin Inlet pe	in Tub in	el
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 	hell In Out Out Intermediat OD: 0.75 IE Carbon Carbon Carbon Steel U-benc -	°F in in 1 e 1 Tks. Average Insert: No D 26 Steel Steel Type Seal	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta 1 Type 0 Tube- Bundle entrance	- 1 - 1 - 1 Length: Fin# i U Cut(%d) - - tubesheet joint Type No 954	/ / 350 2 0.125 8 / 8 / 7 240 in 	Pitch: 0.9375 #/in Mate wer floating ent protection H Spacin Inlet pe ed only (2 groov	in Tub in	el
 33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 52 Gaskets - Shell side 	hell In Out Intermediat OU: 0.75 IC Carbon Carbon Carbon Steel U-benc 1512 -	°F in in 1 e 1 Tks. Average Insert: No D 26 Steel Steel Type Seal	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta 1 Type 0 Tube- Bundle entrance	- 1 - 1 - 1 Length: Fin# i U Cut(%d)	/ / 350 2 0.125 8 / 8 / 7 240 in 	Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet pe ed only (2 groov	in Tub in	el
33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-cross Carbon 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 52 Gaskets - Shell side 53 Floating heat	hell In Out Intermediat OD: 0.75 Carbon Carbon Carbon Steel U-benc 1512 - ad -	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta Type 0 Tube- Bundle entrance Tul	640 - 1 - 1 - 1 Length: Fin# i i Lubesheet joint Type No 954 be side	/ / 350 2 0.125 8 / 8 / / 240 in - - - - - - - - - - - - -	Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet pe ed only (2 groov le exit 7 Flat Metal Jacke	in Tub in	el
33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-long - 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 52 Gaskets - Shell side 53 Floating heat 54 Code requirements	hell In Out Intermediat OU: 0.75 Carbon Carbon Carbon Carbon Steel U-benc 1512 - ad - ASME C	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel Steel Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta Type 0 Tube- Bundle entrance Tul	640 - 1 - 1 - 1 Length: Fin# i Lubesheet joint Type No 954 be side TEMA c	/ / 350 2 0.125 8 / 8 / / 240 in - - - - - - - - - - - - -	Pitch: 0.9375 #/in Mate wer floating ent protection H Spacin Inlet pe ed only (2 groov	in Tub in	el
33 Design/Vacuum/test µ 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 52 Gaskets - Shell side 53 Floating heat	hell In Out Intermediat OD: 0.75 Carbon Carbon Carbon Steel U-benc 1512 - ad -	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel Steel Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta Type 0 Tube- Bundle entrance Tul	640 - 1 - 1 - 1 Length: Fin# i i Lubesheet joint Type No 954 be side	/ / 350 2 0.125 8 / 8 / / 240 in - - - - - - - - - - - - -	Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet pe ed only (2 groov le exit 7 Flat Metal Jacke	in Tub in	el
33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-long - 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 52 Gaskets - Shell side 53 Floating heat 54 Code requirements	hell In Out Intermediat OU: 0.75 Carbon Carbon Carbon Carbon Steel U-benc 1512 - ad - ASME C	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel Steel Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta Type 0 Tube- Bundle entrance Tul	640 - 1 - 1 - 1 Length: Fin# i Lubesheet joint Type No 954 be side TEMA c	/ / 350 2 0.125 8 / 8 / / 240 in - - - - - - - - - - - - -	Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet pe ed only (2 groov le exit 7 Flat Metal Jacke	in Tub rial: Carbon Ster - - None g: c/c 23.25 35.625 ves)(App.A 'i')	el
33 Design/Vacuum/test j 34 Design temperature 35 Number passes per sl 36 Corrosion allowance 37 Connections 38 Size/Rating 39 Nominal 40 Tube #: 527 41 Tube type: Plain 42 Shell Carbon Steel 43 Channel or bonnet 44 Tubesheet-stationary 45 Floating head cover 46 Baffle-tong - 47 Baffle-long - 48 Supports-tube 49 Bypass seal 50 Expansion joint 51 RhoV2-Inlet nozzle 52 Gaskets - Shell side 53 Floating heat 54 Code requirements 55 Weight/Shell	hell In Out Intermediat OU: 0.75 Carbon Carbon Carbon Carbon Steel U-benc 1512 - ad - ASME C	°F in in 1 re 1 Tks. Average Insert: No D 26 Steel Steel Steel Steel Steel	30 / / 370 1 0.125 14 / 3 / / e 0.083 in ne OD 26.75 - Single segmenta Type 0 Tube- Bundle entrance Tul	640 - 1 - 1 - 1 Length: Fin# i Lubesheet joint Type No 954 be side TEMA c	/ / 350 2 0.125 8 / 8 / / 240 in - - - - - - - - - - - - -	Pitch: 0.9375 #/in Mate wer floating ent protection H: Spacin Inlet pe ed only (2 groov le exit 7 Flat Metal Jacke	in Tub rial: Carbon Ster - - None g: c/c 23.25 35.625 ves)(App.A 'i')	

Navigator	Shell & Tube +									
🔄 o congri opecinicamono	Overall Summary									
A Program Options	Overall Summary									
Design Options										
Thermal Analysis	1 Size 26	X 240	in	Туре	BEM H	20	Connected in 1	parallel	1 series	
Methods/Correlations	2 Surf/Unit (gross/eff/finne		2069.5	/ 201	7.8 /		i ^z Shells/unit 1			
Calculation Options	3 Surf/Shell (gross/eff/finne	ed)	2069.5	/ 201			t ²			
A S Results	4 Design (Sizing)				ERFORMANC					
-	5			ell Side		be Side	Heat Transfer Paramet	iers		
4 🔝 Input Summary	6 Process Data		In	Out 1127	In	Out 055	Total heat load		8TU/h 4	00158884
Input Summary	7 Total flow 8 Vapor	lb/h lb/h	54127	0	0	000	Eff. MTD/ 1 pass MTD Actual/Regd area ratio	EX.Weine	-1- 58.97 1.05	/ 59.01
A D Result Summary	9 Liquid	lb/h	0	54127	507055	507055	wornanuncele eize iaria -	· iouico/cican	1405	r 1.02
🛄 Warnings & Messages	10 Noncondensable	lb/h	0		0.0000	301033	Coef./Resist.	RTI MIL-H	2-F) ft2-h-F/BTU	8
Optimization Path	11 Cond /Evan	lb/h		177	ů.		Overall fouled	430.58	0.0023	
Recap of Designs	12 Temperature	*F	305.6	305.56	172.4	284	Overall clean	430.58	0.0023	
TEMA Sheet	13 Bubble Point	٩F	305.56	305.56			Tube side film	580.95	0.0017	74.12
Overall Summary	14 Dew Point	۴	305.56	305.56			Tube side fouling		O	Ø
🔺 🛄 Thermal / Hydraulic Summary	15 Vapor mass fraction		1	0	0	0	Tube wall	3706.16	0.0003	11.62
Performance	16 Pressure (abs)	psi	72.52	68,97	580.15	575.8	Outside fauling		0	Ø
Heat Transfer	17 DeltaP allow/cal	psi	3.75	3.65	7,25	4.35	Outside film	3017.99	0.0003	14.27
	18 Velocity	ft/s	78.2	0.22	6.22	7.02				
Pressure Drop	19 Liquid Properties			-			Shell Side Pressure Dr	op	psi	%
Flow Analysis	20 Density 21 Viscosity	lb/ft*		57.115 0.1935	45.754 0.4634	41.34 0.2195	Iniet nozzle		0.26	6.86 15.67
Vibration & Resonance Analysis 🛓	100 000 M	ep BTU/(16-F)		1.0146	0.4634	0.2195	InletspaceXflow Battle Xflow		2.14	15.67
🛄 Methods & Convergence	22 Specific heat 23 Therm. cond.	BTU/(ft-h-F)		0.398	0.094	0.085	Baffle window		0.59	15.6
Mechanical Summary	24 Surface tension	bro/(st-n-r)		0.350	0.054	0.005	OutletspaceXflow		0.05	1.42
Exchanger Geometry	25 Molecular weight	log it.		18.01	45.36	45.36	Outlet nozzle		0.15	3.87
🔜 Setting Plan & Tubesheet Layout	26 Vapor Properties						Intermediate nozzles			
Cost / Weights	27 Density	lb/ft ^a	0.163				Tube Side Pressure Dr	op	psi	%
Calculation Details	28 Viscosity	φ	0.0142				Inlet nozzle		0.37	8.69
Analysis along Shell	29 Specific heat	BTU/(lb-F)	0.5693				Entering tubes		0.2	4.7
Analysis along Tubes	30 Therm. cond.	BTU/(ft-h-F)	0.017				Inside tubes		3.19	73.93
Analysis along tubes	31 Molecular weight		18.01				Exiting tubes		0.33	7.65
	32 Two-Phase Properties						Outlet nozzle		0.22	5.03
	33 Latent heat	BTU/Ib	903	903			Intermediate nozzles			

34	Heat Transfer Parameters							Velocity	/ Rho*V2			ft/	's	lb/	(ft-s	²)
35	Reynolds No. vapor		83268	28				Shell noz	zle inlet			96.	27		151	2
36	Reynolds No. liquid				6110.12	44486.24	95738.59	Shell bur	dle Xflow		78.2	2	0.22			
37	Prandtl No. vapor		1.13	}				Shell baf	fle window		87.3	1	0.25			
38	Prandtl No. liquid				1.19	8.98	6.15	Shell noz	zle outlet			5.1	3		150)2
39	Heat Load			BTI	U/h	BT	U/h	Shell noz	zle interm							
40	Vapor only			-61	150	0						ft/	's	lb/	(ft-s	²)
41	2-Phase vapor			0		0		Tube noz	zle inlet			8.8	36		359	13
42	Latent heat			-4887	75960	0		Tubes			6.22	2	7.02			
43	2-Phase liquid			0		0		Tube noz	zle outlet			9.8	31		397	6
44	Liquid only			0		4888	2100	Tube noz	zle interm							
45	Tubes					Baffles			Nozzles: (No	5./OD)						
46	Туре				Plain	Туре	Single seg	mental			Shell	Side		Tu	be S	ide
47	ID/OD	in	0.584	/	0.75	Number		8	Inlet	in '	1	/	14	1	/	8.625
48	Length act/eff	ft	20	/	19.5	Cut(%d)	40.87		Outlet		1	/ 3	3.5	1	/	8.625
49	Tube passes		2			Cut orienta	ition	Н	Intermediate			/			/	
50	Tube No.		527			Spacing: c/	'c ir	n 23.25	Impingemen	t protect	tion		None			
51	Tube pattern		30			Spacing at	inlet ir	n 35.625								
52	Tube pitch	in	0.9375			Spacing at	outlet ir	a 35.625								
53	Insert				Non	2										
54	Vibration problem (HTFS / TEMA)		Yes	5	/				RhoV2 violat	ion						Yes

OR Navigator <	Shell & Tube +					
Congrispectite	Overall Performance Resistance Distr	ibution Shell b	y Shell Conditions	Hot Stream Composition	Cold Stream Cor	mposition
Design Options	Design (Sizing)		She	I Side	Tube	e Side
📄 Thermal Analysis	Total mass flow rate	lb/h	54	127	507	055
Methods/Correlations	Vapor mass flow rate (In/Out)	Ib/h	54127	0	0	0
Calculation Options	Liquid mass flow rate	lb/h	0	54127	507055	507055
🖌 😼 Results	Vapor mass fraction		1	0	0	0
🔺 🗍 Input Summary	Temperatures	۰F	305.6	305.56	172.4	284
🛄 Input Summary	Bubble / Dew point	۰F	305.56 / 305.56	305.56 / 305.56	1	/
Result Summary	Operating Pressures	psī	72.52	68.87	580.15	575.8
Warnings & Messages	Film coefficient	BTU/(h-ft ² -F)	301	7.99	580).95
Optimization Path	Fouling resistance	ft ² -h-F/BTU	0		0	
Recap of Designs	Velocity (highest)	ft/s	87	.31	7.	02
TEMA Sheet	Pressure drop (allow./calc.)	psi	3.75	/ 3.65	7.25	/ 4.35
Overall Summary	Total heat exchanged	BTU/h	48882100	Unit BEM	2 pass 1	ser 1 pa
Thermal / Hydraulic Summary	Overall clean coeff. (plain/finned)	BTU/(h-ft ² -F)	430.58 /	Shell size 26	- 240 in	Hoi
Performance	Overall dirty coeff. (plain/finned)	BTU/(h-ft ² -F)	430.58 /	Tubes Plain		
Heat Transfer	Effective area (plain/finned)	ft ²	2017.8 /	Insert None		
Pressure Drop	Effective MTD	°F	58.97	No. 527	OD 0.75 T	ks 0.083 i
Flow Analysis	Actual/Required area ratio (dirty/clean)		1.05 / 1.05	Pattern 30	Pitch	0.9375 in
Vibration & Resonance Analysis	Vibration problem (HTFS)		Yes	Baffles Single s	egmental (Cut(%d) 40.87
	RhoV2 problem		Yes	Total cost	53125	Dollar(US)
Methods & Convergence			ñ.			
Mechanical Summary	Heat Transfer Resistance					
Exchanger Geometry	Shell side / Fouling / Wall / Foulir	ng / Tube side				
Setting Plan & Tubesheet Layout	Shell Side	197				Tube Si
Cost / Weights						_

EDR Navigator	Performance × Shell & Tube +					
	Overall Performance Resis	tance Distribution	Shell by Shell Conditions	Hot Stream	n Composition	Cold Stream Compositio
 Program Options Design Options 	Overall Coefficient / Resist	ance Summary		Clean	Dirty	Max Dirty
Thermal Analysis	Area required (tube OD base	and the second	ft ²	1925.3	1925.3	2017.8
Methods/Correlations	Area ratio: actual/required			1.05	1.05	1
Calculation Options	Overall coefficient		BTU/(h-ft ² -F)	430.58	430.58	410.84
🔺 📓 Results	Overall resistance		ft²-h-F/BTU	0.0023	0.0023	0.0024
🔺 🔝 Input Summary	Shell side fouling		ft ² -h-F/BTU	0	0	0.0001
Input Summary	Tube side fouling			0	0	0.0001
🔺 🗍 Result Summary	Resistance Distribution	BTU/(h-ft ² -F)	ft²-h-F/BTU	%	%	%
Warnings & Messages	Shell side film	3017.99	0.0003	14.27	14.27	13.61
Optimization Path	Shell side fouling		0		0	2.29
Recap of Designs	Tube wall	3706.16	0.0003	11.62	11.62	11.09
TEMA Sheet	Tube side fouling *		D		0	2.29
Overall Summary	Tube side film *	580.95	0.0017	74.12	74.12	70.72
Thermal / Hydraulic Summary						
Performance	* Based on outside surface	- Area ratio: Ao/Ai =	1.28			
Heat Transfer	Heat Transfer Resistanc	e				
Pressure Drop	Shell side / Fouling / V	-	side			
Flow Analysis	Shell Side	rent i coning i cobo				Tube
Uibration & Resonance Analysis	Silen Side					Tube 3
Enclose a fill						

🔜 Methods & Convergence 🔺 🧻 Mechanical Summary Euchanaac Gaamata

EDR Navigator	Performance × Shell & Tube +	l.				
		sistance Distribution	Shell by Sh	ell Conditions	Hot Stream Composition	Cold Stream Compositio
Program Options		sistance bisanoution	5.10.09.5.	en concerno	not off composition	Cold Sitean compositio
Design Options Thermal Analysis Methods/Correlations		11		Shell 1		
Calculation Options	Shell heat load	BTU/h	-	48882100		
A 📴 Results	Shell inlet temperature	"F	-	305.6		
🔺 🗍 Input Summary	Shell outlet temperatur	e ^e F	-	305.56		
Input Summary	Tube inlet temperature	°F	-	172.4		
Result Summary	Tube outlet temperatur	e "F	-	284		
Warnings & Messages Optimization Path	Shell inlet vapor fraction	h i		1		
Recap of Designs	Shell outlet vapor fracti	n		0		
TEMA Sheet	Tube inlet vapor fractio			0		
Overall Summary	Tube outlet vapor fracti	on	-	0		
🔺 🔄 Thermal / Hydraulic Summary	Shell inlet pressure	psi	*	72.52		
Performance	Shell outlet pressure	psi	1.00	68.88		
Heat Transfer	Tube inlet pressure	psi	-	580.15		
Pressure Drop	Tube outlet pressure	psi	*	575.8		
I Flow Analysis Vibration & Resonance Analysis 😑	Shell pressure drop	psi	*	3.64		
Vibration & Resonance Analysis =	Tube pressure drop	psi	-	4.35		
Mechanical Summary	Mean shell metal tempe	erature °F		305.56		
Exchanger Geometry	Mean tube metal temp	erature "F		293.41		
Setting Plan & Tubesheet Layout	Minimum tube metal te	mperature °F		274.28		
Cost / Weights	Maximum tube metal te	mperature °F	-	299.35		
Calculation Details	Termination of the second second	and southern to the second sec				
Analysis along Shell						
Analysis along Tubes +						

Performance X	
Shell & Tube	+

	1				<i>[</i>		
Program Options	Overall Performance Resis	tance Distribution	Shell by Sh	ell Conditions	Hot Stream Con	nposition Cold Stream Comp	positior
Design Options				Total	Comp 1		
Thermal Analysis	Stream mass fractions			1	1		
Methods/Correlations	Liquid mass fractions at in	at .		0	100		
Calculation Options	Liquid mass fractions at ou	220		1	1		
A 🛐 Results	Vapor mass fractions at inl	2018-2.		1	1		
Input Summary	Vapor mass fractions at ou			0			
Input Summary	Liquid 2 mass fractions at i	2112					
🔺 📃 Result Summary	Liquid 2 mass fractions at a		-				
Warnings & Messages	Stream mole fractions			1	1		
Optimization Path	Liquid mole fractions at in	et		0			
Recap of Designs	Liquid mole fractions at ou	and the second se		1	1		
TEMA Sheet	Vapor mole fractions at inl	2000/02	1	1	1		
Overall Summary	Vapor mole fractions at ou	tlet		0			
🔺 🔝 Thermal / Hydraulic Summary	Liquid-2 mole fractions at	inlet	E.				
Performance	Liquid-2 mole fractions at	outlet					
🛄 Heat Transfer	Stream mass flow	lb/h	-	54127	54127		
Pressure Drop	Liquid mass flow at inlet	lb/h		0	0		
Flow Analysis				-	5.1107		
🛄 Vibration & Resonance Analysis 🛓	Liquid mass flow at outlet	lb/h	*	54127	54127		
Methods & Convergence	Vapor mass flow at inlet	lb/'n	-	54127	54127		
🔺 🔝 Mechanical Summary	Vapor mass flow at outlet	lb/h	-	0	0		
Exchanger Geometry	Liquid 2 mass flow at inlet	lb/h					
Setting Plan & Tubesheet Layout Cost / Weights	Liquid 2 mass flow at outle	t Ib/h	+				
Calculation Details							

Analysis along Shell

DR Navigator	Performance X Shell & Tube	+					
o congri opecificationo	Overall Performance	Resistance Distribution	Shell by Sh	ell Conditions	Hot Stream C	omposition	Cold Stream Composit
Program Options					1		
Design Options				Total	Comp 1	Comp 2	
Thermal Analysis	Stream mass fractio	ns		1	0.99	0.01	-
Methods/Correlations	Liquid mass fraction	s at inlet		1	0.99	0.01	- C - C - C - C - C - C - C - C - C - C
Calculation Options	Liquid mass fraction	s at outlet		1	0.99	0.01	
A BResults	Vapor mass fraction	s at inlet		0			
4 🔄 Input Summary	Vapor mass fraction	s at outlet		0			
Input Summary	Liquid 2 mass fraction						
Result Summary	Liquid 2 mass fraction						
Warnings & Messages	Stream mole fractio	ns		1	0.97	0.03	4
Optimization Path	Liquid mole fraction	s at inlet		1	0.97	0.03	
Recap of Designs	Liquid mole fraction			1	0.97	0.03	
TEMA Sheet	Vapor mole fraction	s at inlet		0			_
Overall Summary	Vapor mole fraction			0			
Thermal / Hydraulic Summary	Liquid-2 mole fracti						
Performance	Liquid-2 mole fracti	ons at outlet					
Heat Transfer	Stream mass flow	lb/h	7	507055	501984	5071	
Pressure Drop	Liquid mass flow at	inlet lb/h		507055	501984	5071	
Flow Analysis Vibration & Resonance Analysis	Liquid mass flow at	outlet lb/h		507055	501984	5071	1
Vibration & Resonance Analysis Methods & Convergence	Vapor mass flow at	inlet Ib/h	-	0	0	ſ	
Mechanical Summary	Vapor mass flow at			0	0	6	
Exchanger Geometry			-	0	U	L	1
Setting Plan & Tubesheet Layout	Liquid 2 mass flow a	nt inlet b/h	*				
Cost / Weights	Liquid 2 mass flow a	it outlet lb/h	-				
Calculation Details							

Navigator	\$	Sh
		-
Program Options	*	Heat Tra
Design Options		Film co

Transfer × hell & Tube +

Heat Transfer Coefficien	ts MTD & Flux	Duty Distribution				
Film coefficients	BTU	/(h-ft²-F)	Shell Bare area (OD) /	I Side Finned area	Tube Bare area (OD)	e Side / ID area
Overall film coefficients			3017.99 /	1	580.95	746.09
Vapor sensible			4011.55 /	(3	6
Two phase			3018.43 /	,		6
Liquid sensible			1813.21 /	r.	580.95	746.09
Heat Transfer Paramete	:15		In	Out	In	Out
Prandtl numbers	Vapor		1.13			
	Liquid			1.19	8.98	6.15
Reynolds numbers	Vapor Nominal		83268.28			
	Liquid Nominal			6110.12	44486.24	95738.59

Fin Efficiency

Methods & Convergence 4 🔲 Mechanical Summary

Vibration & Resonance Analysis

TEMA Sheet Overall Summary 🔺 🗍 Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Elow Analysis

EDR Navigator All

> 🔺 🥫 Results 🔺 🛐 Input Summary 🔲 Input Summary 🖌 🔄 Result Summary Warnings & Messages Optimization Path Recap of Designs

📄 Thermal Analysis Methods/Correlations Calculation Options

1.00

EDR Navigator	Heat Transfer × Shell & Tube +					
🔺 🔄 Program Options	Heat Transfer Coefficients MTD & Flux Duty Dis	Indution				
Design Options						
📄 Thermal Analysis	Temperature Difference	۴	Heat Flux (based on tube O.D)			BTU/(h-ft²)
Methods/Correlations	Overall effective MTD	58.97	Overall flux			25391.1
Calculation Options	One pass counterflow MTD	59.01	Critical heat flux (at highest ratio)			
🔺 📴 Results	LMTD based on end points	61.34	Highest local flux			45599.7
🔺 🗐 Input Summary	Effective MTD correction factor	0.96	Highest local/critical flux			
Input Summary	Wall Temperatures	٩F				
4 🗍 Result Summary	Shell mean metal temperature				305.56	
Warnings & Messages	Tube mean metal temperature				293.41	
Optimization Path	Tube wall temperatures (highest/lowest)			299.35	1	27428
Recap of Designs						
TEMA Sheet						
Overall Summary						
4 🔄 Thermal / Hydrautic Summary						
Performance						
Heat Transfer						
Pressure Drop						
Flow Analysis						
Vibration & Resonance Analysis						
Methods & Convergence						

DR Navigator	Heat Transfer X Shell & Tube +				
51.					
Program Options Design Options		stribution			
Thermal Analysis	Heat Load Summary	Shell S	ide	Tube S	ide
Methods/Correlations		BTU/h	% total	BTU/h	% total
Calculation Options	Vapor only	-6150	0.01	0	0
A 📓 Results	2-Phase vapor	0	٥	0	0
A 🗍 Input Summary	Latent heat	-46875960	99.99	0	0
Input Summary	2-Phase liquid	0	0	0	0
50	Liquid only	0	0	48882100	100
	Total	-48882100	100	48882100	100
Warnings & Messages	Effectiveness		0.87	I	
Continuation Path Continuation Path Continuation Path Continuation Co					
Pressure Drop					

	Shell & Tube +						
A D Program Options	Pressure Drop Thermosiphon Pip	ing Thermosiphon Piping	Elements				
Design Options	Pressure Drop psi	Sh	ell Side		Tul	se Side	
📄 Thermal Analysis	Maximum allowed		3.75		1 m	7.25	
Methods/Correlations	Total calculated		3.65		1	4.35	
Calculation Options	Gravitational		0			0	
🖌 😼 Results	Frictional		3.77			4.31	
🔺 🔝 Input Summary	Momentum change		-0.12			0.04	
Input Summary		ft/s	psi	%dp	ft/s	psi	%dp
A B Result Summary	Pressure drop distribution	Near Inlet Near Outlet			Near Inlet Near Outlet		
Warnings & Messages	inlet nozzle	96.27	0.26	6.86	8.86	0.37	8.69
Optimization Path	Entering bundle	76,48			6.22	0.2	4.7
Recap of Designs	Inside tubes				6.22 7.02	3.19	73,93
TEMA Sheet	Inlet space Xflow	67.15	0.59	15.67			
Overall Summary	Bundle Xflow	78.2 0.22	2.14	56.58			
4 📳 Thermal / Hydraulic Summary	Baffle windows	87.31 0.25	0.59	15.6			
Performance	Outlet space Xflow	0.19	0.05	1.42			
Heat Transfer	Exiting bundle	0.35			7.02	0.33	7.65
Pressure Drop	Outlet nozzle	5.13	0.15	3.87	9.81	0.22	5.03
Flow Analysis	Liquid outlet nazzle						
Vibration & Resonance Analysis	Vapor outlet nozzle						
Methods & Convergence	Intermediate nozzles						
Mechanical Summary							
Exchanger Geometry							

-	Shell & Tube +					
Congri opecinications A Program Options	Flow Analysis Thermosiphons and K	ettles				
 Design Options Thermal Analysis 	Shell Side Flow Fractions	iniet	Middle	•	Outlet	Diameter Clearance
Methods/Correlations	Crossflow (B stream)	0.76	0.63		0.72	
Calculation Options	Window (B+C+F stream)	0.89	0.76		0.91	
🔺 😼 Results	Baffle hole - tube OD (A stream)	0.05	0.12		0.04	0.0156
4 🗊 Input Summary	Baffle OD - shell ID (E stream)	0.06	0.12		0.05	0.1875
🛄 Input Summary	Shell ID - bundle OTL (C stream)	0.13	0.13		0.19	1
🔺 🗍 Result Summary	Pass lanes (F stream)	0	0		0	
🛄 Warnings & Messages		19. 			- 2	
Optimization Path	Rho*V2 Analysis	Flow Area	Velocity	Density	Rho*V2	TEMA limit
Recap of Designs	The FL Philipsis	in ²	ft/s	lb/ft ²	lb/(ft-s²)	lb/(ft-s ²)
III TEMA Sheet	Shell inlet nozzle	137,886	96,27	0.163	1512	1500
Overall Summary	Shell entrance	179,951	73.76	0.163	888	4000
4 🕘 Thermal / Hydraulic Summary	Bundle entrance	173.554	76,48	0.163	954	4000
Performance	Bundle exit	107,519	0.35	57.115	7	4000
Heat Transfer	Shell exit	13.767	2.75	57.115	433	4000
Pressure Drop	Shell outlet nozzle	7.393	5.13	57,115	1502	
Flow Analysis		in ²	ft/s	lb/ft ³	lb/(ft-s²)	lb/(ft-s ²)
Vibration & Resonance Analysis	Tube inlet nozzle	50.027	8,96	45.754	3593	5999
Methods & Convergence	Tube inlet	71.252	6.22	45.754	1771	
Mechanical Summary	Tube outlet	69.913	7.02	41.34	2036	
Exchanger Geometry	Tube outlet nozzle	50.027	9.81	41.34	3976	
Setting Plan & Tubesheet Layout		50,000	563376		All	
Cost / Weights						
Cost / Weigns						

Vibration & Resonance Analysis × Shell & Tube +

¢

• 7

*	Fluid Elastic Instabi	lity (HTFS)	Resonance Analysis (HTFS)	Simple Fluid Elastic Ir	istability (TEMA) Simple	Amplitude and	d Acoustic An	alysis (TEM
	Shell number:	Shell 1 •							
	Fluid Elastic Inst	ability Ana	lysis						

Vibration tube number			1	2	4	5	0	
Vibration tube location			Inlet row,	MIDCOM	Baffle overlap	Bottom Row		Outer window, top
Vibration			Possible	Yes	No	No	Possible	Yes
W/Wc for heavy damping (LDec=0.1)			0.33	0.77	0.18	0.18	0.33	0.7
W/Wc for medium damping (LDec=0.			0.6	1.41 *	0.32	0.33	0.6	1.38
W/Wc for light damping (LDec=0.0	l)		1.04 *	2.44 *	0.56	0.58	1.04 *	2.39
W/Wc for estimated damping			0.68	1.59 *	0.31	0.38	0.68	1.56
Estimated log Decrement			0.02	0.02	0.03	0.02	0.02	0.0
Tube natural frequency	cycle/s	×	34.28	34.28	87.7	34.28	34.28	34.2
Natural frequency method			21.27.67.01A0 0	Exact Solution	Exact Solution	Exact Solution	Exact Solution	Exact Solution
Dominant span								
Tube effective mass	lb/ft	*	0.82	0.82	0.82	0.82	0.82	0.8

Note: W/Wc = ratio of actual shellside flowrate to critical flowrate for onset of fluid-elastic instability

Tube material density	lb/ft3	489.544	
Tube axial stress	psi	2921	
Tube material Young's Modulus	psi	28459016	
U-bend longest unsupported length	in		

Setting Plan & Tubesheet Layout
 Cost / Weights
 Calculation Details
 Analysis along Shell
 Analysis along Tubes

I Exchanger Geometry

Vibration & Resonance Analysis
 Methods & Convergence
 Mechanical Summary

EDR Navigator

Results
 Input Summary
 Input Summary
 Result Summary
 Warnings & Messages
 Optimization Path
 Recap of Designs
 TEMA Sheet
 Overall Summary
 Thermal / Hydraulic Summary
 Performance
 Heat Transfer
 Pressure Drop
 Flow Analysis

Crear options
 Program Options
 Design Options
 Thermal Analysis
 Methods/Correlations
 Calculation Options

All

Vibration & Resonance Analysis × Shell & Tube +

Fluid Elastic Instability (HTFS)	Resonance Analysis (HTFS)	Simple Fluid Elastic Instability (TEMA)	Simple Amplitude and Acoustic Analysis (TEMA)

Shell number:	Shell 1 🔻
	onen i

		_												
Vibration tube number			1 .	1	2	2 2	2	4	4	4	5	5	5	
Vibration tube location		Inlet row centre	Inlet row, centre	Inlet row, centre	Outer window, bottom	Outer window, bottom	Outer window, bottom	Baffle overlap	Baffle overlap		1	Bottom Row	Bottom Row	Inlet row, end
Location along tube		Inlet	Midspace	Outlet	Inlet	Midspace	Outlet	Inlet	Midspace	Outlet	Inlet	Midspace	Outlet	Inlet
Vibration problem		Possible	Possible	No	No	No	Yes	No	Possible	No	No	Possible	No	Possible
Span length	in	- 35.6	25 46.5	58.875	58.875	i 46.5	35.625	35.625	23.25	35.625	58.875	46.5	35.625	35.625
Frequency ratio: Fv/Fn		16.	51 1.72	2 0.35	8.15	i 3.95	0.92 *	3.59	1.74	0.35	1.92	0.93 *	0.08	16.5
Frequency ratio: Fv/Fa		1.	0.29	0.24	0.65	i 0.68	0.63	0.73	0.76	0.61	0.15	0.16	0.05	1.3
Frequency ratio: Ft/Fn		10.	51 1.11	• 0.22	5.23	3 2.54	0.59	2.31	1.12 *	0.22	1.24	1.13 *	0.05	10.6
Frequency ratio: Ft/Fa		0.84	* 0.19	0.15	0.42	2 0.43	0.41	0.47	0.49	0.39	0.1	0.19	0.03	0.84
Vortex shedding amplitude	in	Ŧ					0.1127	7				0.0021		
Turbulent buffeting amplitude	in	-	0.000	7								0.0004	-	
TEMA amplitude limit	in	Ŧ	0.015	5			0.015					0.015		
Natural freq., Fn	cycle/s	- 34.	34.28	34.28	34.28	34.28	34.28	87.7	87.7	87.7	34.28	34.28	34.28	34.2
Acoustic freq., Fa	cycle/s	- 430.	200.5	49.74	430.86	5 200.57	49.74	430.86	200.57	49.74	430.86	200.57	49.74	430.8
Flow velocity	ft/s	- 76	18 18.63	1.6	37.74	42.77	4.24	42.58	48.24	4.13	8.92	10.1	0.35	76.4
X-flow fraction			1 0.8	8.0	0.8	8.0	0.8	8.0	0.8	0.8	0.8	0.8	1	0.
RhoV2	lb/(ft-s2)	- 9	51 107	/ 105	232	2 563	736	i 295	717	698	13	31	5	95
Strouhal No.		0.4	6 0.46	i 0.46	0.46	ō 0.46	0.46	i 0.46	0.46	0.46	0.46	0.46	0.46	0.4
		4												

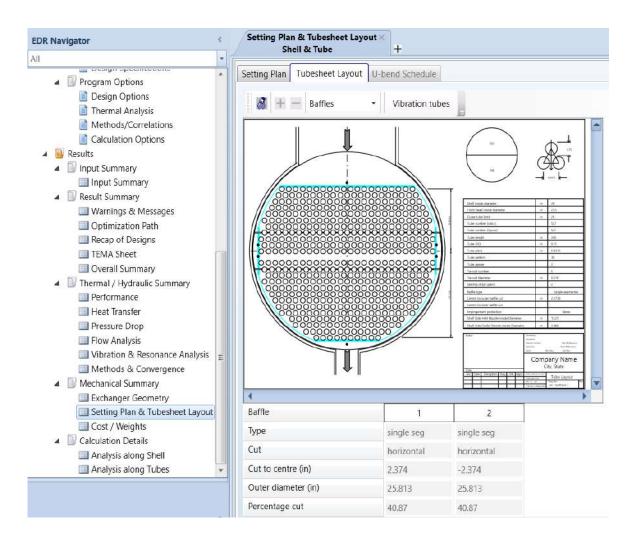
Hot Side	
Hot Side	Cold Side
No	No
No	No
No	No
friction only	friction only
Advanced	l method
Wet	wall
HTFS - Si	ilver-Bell
Ye	s
Not	Jsed
Heat transfer &	pressure drop
N	5
Boiling curv	/e not used
HTFS recomme	ended method
HTFS recomme	ended method
HTFS /	ESDU
	No No

R Navigator <	Exchanger Geometry × Shell & Tube +							
Design operations	Basic Geometry Tubes Baff	fles Supports-Mise	r. Baffles Bundle	Enhancement	s Thermosipho	on Piping		
4 🔛 Program Options	- Longer Long					1.2		
Design Options	Unit Configuration							
Thermal Analysis	Exchanger type		BE	M Tube number				527
Methods/Correlations	Position		н	or Tube length a	actual	f	t	20
Calculation Options	Arrangement	1	parallel 1 ser	ANTA A STREET STREET				2
A B Results	Baffle type		Single segmen	Service and the service of the servi				Plain
Input Summary	Baffle number		8			ir		0.75
Input Summary	Spacing (center-center)	in	23.			ir	1	0.9375
A 🔄 Result Summary	Spacing at inlet	in	35.6	25 Tube pattern				30
Warnings & Messages			Shell	Kettle		head	Rear Head	7
Optimization Path	Outside diameter	in	26.75	Kettie		.nead .75	26.75	
Recap of Designs	Outside diameter		20.73		20	6. 2	20,75	
TTAAA Charak	Inside diameter	in	26		25	1.4	25.5	
TEMA Sheet	Inside diameter	in	26		25	5.5	25.5	
Overall Summary	Inside diameter	in	26	Shell Side	25		25.5 ube Side	
Overall Summary Thermal / Hydraulic Summary		in		11	25	1	ube Side	
Overall Summary Thermal / Hydraulic Summary Performance	Nozzle type	in	26 Inlet	Shell Side Outlet	25			
Overall Summary Determine (Hydraulic Summary Performance Heat Transfer	Nozzle type Number of nozzles		Inlet 1	Outlet 1		Inlet	ube Side Outle	et 1
Overall Summary Deverall Summary Deveral / Hydraulic Summary Performance Heat Transfer Pressure Drop	Nozzle type Number of nozzles Actual outside diameter	in *	inlet. 1 14	Outlet 1 3.5		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
Overall Summary Formal / Hydraulic Summary Ferformance Heat Transfer Fressure Drop Fisoure Drop Flow Analysis	Nozzle type Number of nozzles		Inlet 1	Outlet 1		Inlet 8	ube Side Outle	et 1
Overall Summary Formance Heat Transfer Fressure Drop Flow Analysis Vibration & Resonance Analysis	Nozzle type Number of nozzles Actual outside diameter	in *	inlet. 1 14	Outlet 1 3.5		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
 Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence 	Nozzle type Number of nozzles Actual outside diameter Inside diameter	in * in *	Inlet 1 14 13.25	Outlet 1 3.5 3.068		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
Overall Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence Mechanical Summary	Nozzle type Number of nozzles Actual outside diameter Inside diameter Height under nozzle	in * in * in *	Inlet 1 14 13.25	Outlet 1 3.5 3.068		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence	Nozzle type Number of nozzles Actual outside diameter Inside diameter Height under nozzle Dome inside diameter	in * in * in *	Inlet 1 14 13.25	Outlet 1 3.5 3.068		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
Overall Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layout Cost / Weights	Nozzle type Number of nozzles Actual outside diameter Inside diameter Height under nozzle Dome inside diameter Vapor belt inside diameter	in * in * in * in * in *	Inlet 1 14 13.25	Outlet 1 3.5 3.068		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
Overall Summary Overall Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Wibration & Resonance Analysis Methods & Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layout Cost / Weights Calculation Details	Nozzle type Number of nozzles Actual outside diameter Inside diameter Height under nozzle Dome inside diameter Vapor belt inside diameter Vapor belt inside width Vapor belt inside width	in * in * in * in * in * in *	Inlet 1 14 13.25	Outlet 1 3.5 3.068		Inlet 8	Ube Side Outle 1 .625	et 1 8.625
 Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layout Cost / Weights 	Nozzle type Number of nozzles Actual outside diameter Inside diameter Height under nozzle Dome inside diameter Vapor belt inside diameter Vapor belt inside width	in * in * in * in * in * in *	iniet 1 14 13.25 4.5679	Outlet 1 3.5 3.068 1.3203		Inlet 8	Ube Side Outle 1 .625	et 1 8.625

• 9	Shell & Tube +					
Orogram Options	Basic Geometry Tubes Baff	les Supports-Misc, Baffles	Bundle Enhar	cements Thermosiphon Pipin	9	
Design Options	Tubes					
Thermal Analysis	Туре		Plain	Total number of tubes		527
Methods/Correlations	Outside diameter	în	0.75	Number of tubes plugged		0
Calculation Options	Inside diameter	în	0.584	Tube length actual	ft	20
a 🧕 Results	Wall thickness	in	0.083	Tube length effective	ft	19.5
🔺 🗍 Input Summary	Area Ratio Ao/Ai		1.284247	Front tubesheet thickness	in	2.875
Input Summary	Pitch	in	0.9375	Rear tubesheet thickness	in	2.875
🔺 🗍 Result Summary	Pattern		30	Material		Carbon Steel
🛄 Warnings & Messages	External enhancement			Thermal conductivity	BTU/(ft-h-F)	28.974
Optimization Path	Internal enhancement					
Recap of Designs	Low fins			Longitudinal fins		
III TEMA Sheet	Fin density	¥∕in		Fin number		0
Overall Summary	Fin height	in		Fin thickness	în	
Thermal / Hydraulic Summary	Fin thickness	în		Fin height	in	
Performance	Tube root diameter	in		Fin spacing	in	
Heat Transfer	Tube wall thickness under fin	in		Cut and twist length	in	
Pressure Drop	Tube inside diameter under fins	i în				
Elow Analysis	Other (high) fins					
Vibration & Resonance Analysis =	High Fin Type		Default	High Fin Thick	in	
Methods & Convergence	High Fin Tip Diameter	în		High Fin Frequency	#/in	
Mechanical Summary						

EDR Navigator	Exchanger Geo Shell & T		+									
All Program Options	Basic Geometry	Tubes	Baffles	Supports-Mi	sc. Baffles	Bundle	Enhancements	Thermos	iphon	Piping		
Design Options	Baffles											
Thermal Analysis	Туре			Single	segmental	Baffle cu	t: inner/outer/inter	m				
Methods/Correlations	Tubes in window	v			Yes	Actual (9	6 diameter)		1	40.87	1	
Calculation Options	Number				8	Nominal	(% diameter)		1	40	1	
A 🧧 Results	Spacing (center-	center)		in	23.25	Actual (%	6 area)		1	38.44	1	
Input Summary	Spacing at inlet			in	35.625	Cut orier	ntation					н
🛄 Input Summary	Spacing at outle	t		in	35.625	Thicknes	5			in		0.375
Result Summary	Spacing at cente	ar in/out fo	r G,H,I,J	in		Tube rov	vs in baffle overlap					5
Warnings & Messages	Spacing at center	er for H she	:11	in		Tube rov	vs in baffle window					7.5
Optimization Path	End length of th	e front hea	d	in	38.625	Baffle ho	le - tube od diam	clearance		in		0.0156
Recap of Designs	End length of th	e rear heai	i	in	38.625	Shell id -	tube od diam clea	irance		in		0.1875
I TEMA Sheet												
Overall Summary	Variable Baffle	Spacings										
Thermal / Hydraulic Summary	Baffle spacin	a		in								
Performance	Baffle cut pe	-	oe .			-						
Heat Transfer	Baffle cut pe					-						
Pressure Drop	Number of b											
Flow Analysis	Baffle region			in								
Vibration & Resonance Analysis	Baffle cut are		OUTEC			-						
Methods & Convergence	Baffle cut are					-						
Mechanical Summary												
Exchanger Geometry												
Setting Plan & Tubesheet Layout												
Cost / Weights												
and the second												
Calculation Details												

R Navigator	< Exchanger Geometry ×					
	shell & Tube +					
	Basic Geometry Tubes Baffles Supports-M	fisc. Baffles B	undle Er	hancements Thermosiphon Piping		
Program Options						
Design Options	Bundle			-		2
Thermal Analysis Methods/Correlations	Shell ID to center 1st tube row	in	45070	Tube passes	Dishaa /a	-
Calculation Options	From top From bottom		4.5679 1.3203	Tube pass layout Tube pass orientation		ingle band) (horizontal)
Results	From right		0.9062	U-bend orientation	Stanuaru	Undefined
Input Summary	From left		0.9062	Horizontal pass lane width	in	0.75
Input Summary	Impingement protection		None	Vertical pass lane width	in	
Result Summary	Impingement plate clearance to tube edge	in		interpass tube alignment		No
Warnings & Messages	Impingement plate diameter	in		Deviation in tubes/pass		0.95
Optimization Path	Impingement plate width	in		Outer tube limit	in	25
Recap of Designs	Impingement plate length	in		Shell id - bundle otl diam clearance	in	1
TEMA Sheet	Impingement plate thickness	in		Tie rod number		6
Cverall Summary	Gross surface area per shell	ft²	2069.5	Tie rod diameter	in	0.376
Thermal / Hydraulic Summary	Effective surface area per shell	ft²	2017.8	Sealing strips (pairs)		2
Performance	Bare tube area per shell	ft²	2017.8	Tube to Tubesheet joint		Exp. 2 grv
Heat Transfer	Finned area per shell	π² • 2	0	Tube projection from front tsht	in	0,125
Pressure Drop	U-bend area per shell	ſt²	0	Tube projection from rear tsht	in	0.125
Flow Analysis						
🛄 Vibration & Resonance Analysis	E					
Methods & Convergence						
🔺 🔄 Mechanical Summary						
Exchanger Geometry						
■ Setting Plan & Tubesheet Layout						
OR Navigator	Setting Plan & Tubesheet Layout ×					
	Shell & Tube +					
💼 olongri opecificationo		Name and American				
Program Options	Setting Plan Tubesheet Layout U-bend S	chedule				
Decian Ontions						
Design Options	Views on arrow A			2012427 0		
Thermal Analysis				293.1875 Overall 234.0		
Thermal Analysis Methods/Correlations	Vielis on arrow A A	312575				_1
Thermal Analysis		11		234,0		
Thermal Analysis Methods/Correlations		11		234,0		
Thermal Analysis Methods/Correlations Calculation Options Calculation Options		11		234,0		
Thermal Analysis Methods/Correlations Calculation Options Calculation Options Calculation Options Imput Summary		11	12	234,0	1	
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary 		11		234,0		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Result Summary 		11		234,0		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages 				234,0		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages 				234,0		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary 			20-	2340		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Performance 			23 <u>-1</u> -1-2	2340	7890	
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis 			20	2340	2.0 (1) (2) (2) (2) (2) (2) (2) (3) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5	
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Input Summary Input Summary Results Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Performance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis 				2340		
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence Methods Summary 			Fixed	2340 2195	Sliding	
 Thermal Analysis Methods/Correlations Calculation Options Results Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Methods & Convergence Mechanical Summary 			Fixed	2340 2195 1400 1440		
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Results Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Thermal / Hydraulic Summary Thermal / Hydraulic Summary Flow Analysis Vibration & Resonance Analysis Wibration & Convergence Methods & Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layou 		Decomberson	Fixed Units psi	234.0 219.5 144.0 144.0	Sliding Campany Loosen Seven stütt	2) filters
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Results Uarmary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Exchanger Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layou Cost / Weights 		Design Data 450 3122 450 Ceston Pressor Ceston Revenues Design Data Ceston Revenues	Fixed Units gsi 7	2340 2195 1400 1440	Sliding	Du Masan
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Results Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Heat Transfer Preformance Heat Transfer Pressure Drop Flow Analysis Vibration & Resonance Analysis Wibration & Resonance Analysis Methods & Convergence Methods & Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layou Cost / Weights Calculation Details 		Devine Data Devine Data Devin	Fixed Units gsi 7	2340 2195 1440 1440 1440	Sliding Corpusy Locate Series at Use Bets Bets Bets Bets Bets Bets Bets Be	Your Reference In You: Jub No.:
 Thermal Analysis Methods/Correlations Calculation Options Calculation Options Input Summary Input Summary Result Summary Warnings & Messages Optimization Path Recap of Designs TEMA Sheet Overall Summary Thermal / Hydraulic Summary Thermal / Hydraulic Summary Flow Analysis Vibration & Resonance Analysis Methods & Convergence Mechanical Summary Exchanger Geometry Setting Plan & Tubesheet Layou Cost / Weights 		Dating Lass Design Tessars Design Tessars D	Fixed Units gsi 7	2340 2195 1410 1440 1440	Sliding Corpusy Locate Series at Use Bets Bets Bets Bets Bets Bets Bets Be	Your Farlenine


Chie

Setting Plan

Internal Vol

- 6 Analysis along Shell
- 🛄 Analysis along Tubes

160

All

Program Options

Design Options

EDR Navigator

- Thermal Analysis
 Methods/Correlations
- Calculation Options
- Results
 Input Summary
 - Input Summary
 Input Summary
 Warnings & Messages
 Optimization Path
 Result Summisses
 - Recap of Designs
 TEMA Sheet
 - Overall Summary
 - W Thermal / Hydraulic Summary
 Performance
 Heat Transfer
 Pressure Drop
 Flow Analysis
 Vibration & Resonance Analysis
 - Methods & Convergence
 - Exchanger Geometry
 Setting Plan & Tubesheet Layout
 Cost / Weights

Cost / Weights × Shell & Tube +

.

Weights	lb	Cost data	Dollar(US
Shell	2574.9	Labor cost	3781
Front head	1101	Tube material cost	7719
Rear head	790.3	Material cost (except tubes)	759
Shell cover			
Bundle	7432.1		
Total weight - empty	11898.4	Total cost (1 shell)	53125
Total weight - filled with water	16335.6	Total cost (all shells)	5312

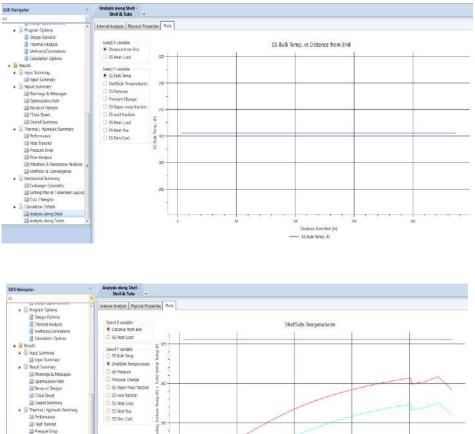
161

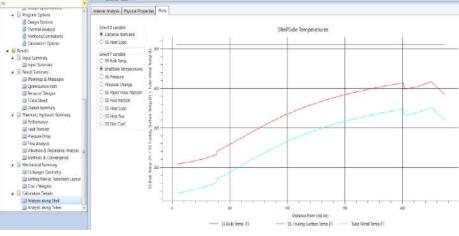
EDR Navigator

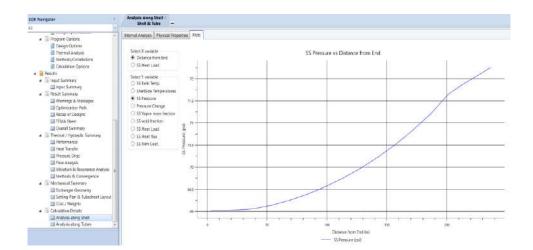
Analysis along Shell

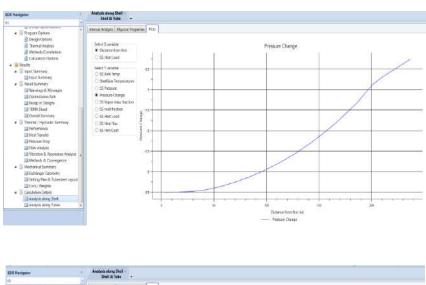
All

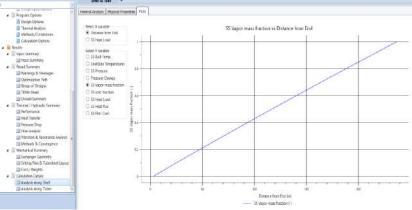
162

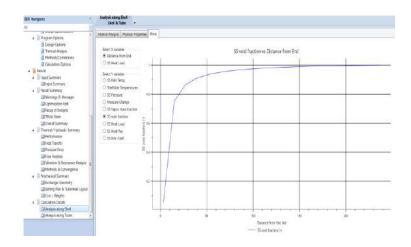

Ť		Shell &	Tube	+												
a serigi operatorio	Interval	Analysis	Physi	cal Properties	Plots											
Program Options Design Options Thermal Analysis Methods/Correlations	Poin No.	Shell No.	Shell Pass No.	Distance from End	SS Bulk Temp.	SS Fouling Surface Temp	Tube Metal Temp	SS Pressure	SS specific enthalpy	SS Vapor mass fraction	SS void fraction	SS Heat Load	SS Heat flux	SS Film Coef.	SS Cond. Coef.	SS flow patter
Calculation Options		1		in *	чр. ж	۹F =	*F *	psi *	BTU/Ib +			BTU/h *	U/(h-ti *	J/(h-ft ² *	J/(h-ft ² *	2
🔺 📓 Results		1 0	1	236.766	305.56	299.22	296.03	72.26	-2,8	1	1	-45810	-23662.2	3732.7	3732.69	Spray
4 💽 Input Summary	1	2 1	1	225.047	305.56	300.86	297.54	72.06	-45.8	0.95	্ৰ	-2372031	-24550.9	5219.51	5219.52	Spray
Input Summary		3 1	1	213.328	305.56	300.22	296.94	71.88	-89.3	0.9	9	-4728566	-24296.7	4550.02	4550.02	Spray
Result Summary	1	4 1	1	201.609	305.56	299.88	296.61	71.66	-132.6	0.86	া	-7070370	-24244.8	4270.08	4270.08	Spray
Warnings & Messages Optimization Path		5 1	1	201.141	305.56	300.72	297.38	71.64	-134.3	0.85	1	-7164637	-24685.6	5095.17	5095.17	Spray
Recap of Designs		6 1	1	185.3881	305.56	300.34	297	71.2	-189.7	0.79	0.99	-10164660	-24714.3	4731.16	4731.16	Spray
TEMA Sheet		7 1	1 1	171.6352	305.56	299.92	296.57	70.84	-245.3	0.73	0.99	-13171110	-24795.4	4396.19	4396.19	Spray
Overall Summary		8 1	1 1	156.8823	305.56	299.45	296.08	70.51	-301.1	0.67	0.99	-16189640	-24918	4075.96	4075.96	Soray
4 🔄 Thermal / Hydraulic Summary		9 1	1	142,1294	305.56	298.9	295.52	70.22	-357.1	0.61	0.99	-19224490	-25070.5	3763.19	3763.19	C1053
Performance	-	0 1	1	127.3765	305.56	298.25	294.85	69.96	-413.5	0.54	0.98	-22278440	-25239.7	3454.31	3454.3	
Heat Transfer	1	1 1	1	112.6235	305.56	297.49	294.07	69.74	-470.3	0.48	0.98	-25352760	-25413.9	3150.98	3150.96	Sotav
Pressure Drop		2 1	1 1	97.8706	305.56	296.61	293.16	69.55	-527.5	0.42	0.97		-25585.7	2859.71	2859.66	
Flow Analysis Vibration & Resonance Analysis		3 1	1	83,1177	305.56	295.56	292.09	69.39	-585	0.35	00000	-31560710	-25726	2572.07		Intermittent
Methods & Convergence		-	1	68.3648	305.56	294.41	290.92	69.25	-642.9			-34690520	-25869	2319.22		Intermittent
Mechanical Summary		9 12	1	53,6119	305.56	293.2	289.69	59.14	-701	0.23	0.94		-26029.6			Intermittent
Exchanger Geometry		6 1	1	38.859	305.56	292.01	288.47	69.06	-759.6	0.16			-26239.4	1936.9		Intermittent
🛄 Setting Plan & Tubesheet Layout	1	-	1	38,391	305.56	291.59	288.08	69.06	-761.4	0.16		-41108830	-26059.7	1865.89		Intermittent
Cost / Weights		8	1	26.672	305.56	291.06	287.49	69.04	-808.2	0.11		-43638040	-26445.3	1823.28		Intermittent
Calculation Details	1	-	1	14.953	305.56	290.67	287.04	69.02	-855.7	0.05	0.30	-46208820	-26928.2	1809.08		Intermittent
Analysis along Shell		0 1		3,234	305.56	290.07	286.69	69.01	-904.1	0.05		-48829240	-27492.2	1813.05	1813.22	

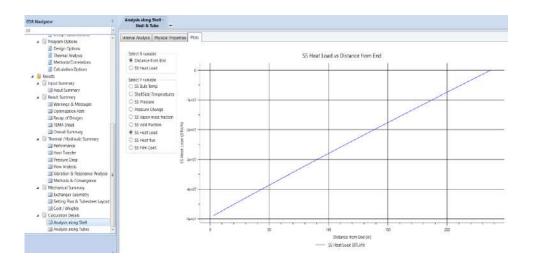

Analysis along Shell × Shell & Tube

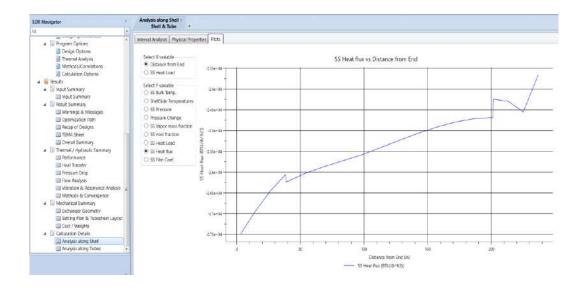

4

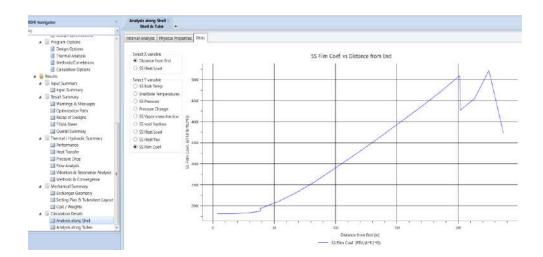

¢

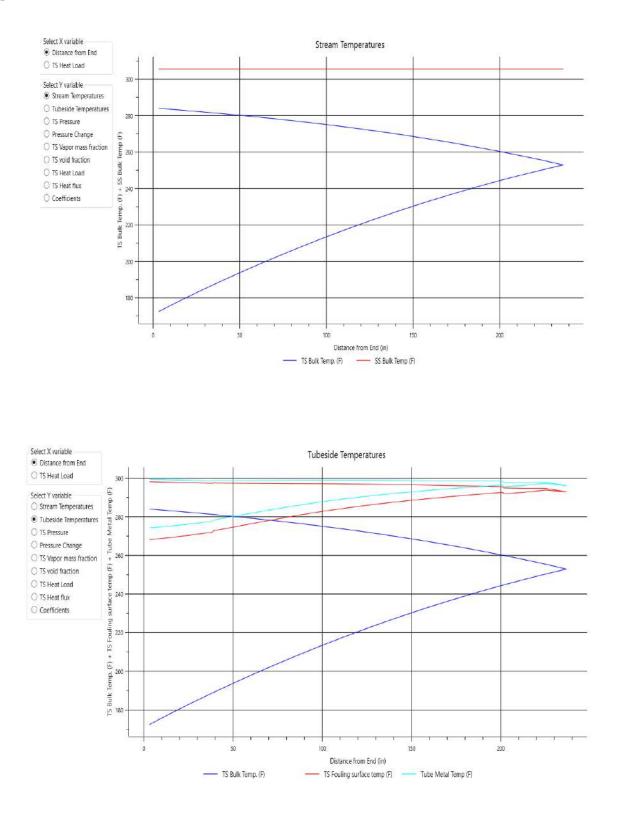

Program Options															
Design Options	Temperature	۰F		305.6	305.56	305.56	305.56	305.56	305.56	305.56	305.56	305.56	305.56	305.56	305,56
Intermal Analysis	Enthalpy	BTU/lb		-2	-84.1	-166.1	-248.2	-330.3	-412.4	-494.5	-576.6	-658.7	-740.8	-822.9	-903
Methods/Correlations	Pressure	psi		72.52	72.19	71.85	71.52	71.19	70.86	70.53	70.19	69.86	69.53	69.2	68.87
Calculation Options	Vapor mass fraction	Pai	1	1	0.91	0.82	6,75-5	0.64	2000.5	0.45	0.36	0.2227.0	0.18	0.09	00.07
Security Sec		16/ft ³				57.115		57.115		57.115				57.115	57.115
4 🔛 Input Summary	Liquid density			_	57.115		1000			100					
Input Summary	Liquid specific heat	BTU/(Ib-F)	. *		1.0146	1.0146	1.0146	1.0146	1.0146	1.0146	1.0146	1.0146	1.0146	1.0146	1.0146
Result Summary	Liquid thermal cond.	BTU/(ft-h-F)			0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398
Warnings & Messages	Liquid viscosity	cp	-		0.1935	0.1935	0.1935	0.1935	0.1935	0.1935	0.1935	0.1935	0.1935	0.1935	0.1935
Optimization Path Recap of Designs	Surface tension	lbf/ft	*		0.00328	0.00328	0.00328	0.00328	0.00328	0.00328	0.00328	0.00328	0.00328	0.00328	0.00328
TEMA Sheet	Latent heat	BTU/Ib	+	903	903	903	903	903	903	903	903	903	903	903	903
Overall Summary	Vapor density	lb/ft ³	-	0.163	0.162	0.162	0.161	0.16	0.159	0.159	0.158	0.157	0.156	0.156	
🔺 🔄 Thermal / Hydraulic Summary	Vapor specific heat	BTU/(Ib-F)		0.5693	0.5693	0.5693	0.5693	0.5693	0.5693	0.5693	0.5693	0.5693	0.5693	0.5693	
Performance	Vapor thermal cond.	BTU/(ft-h-F)		0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	
Heat Transfer	Vapor viscosity	cp		0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	
Pressure Drop	vapor viscosity	φ	_	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	0.0142	
Flow Analysis															
Wibration & Resonance Analysis															
Methods & Convergence															
4 🔄 Mechanical Summary															
Exchanger Geometry															
Setting Plan & Tubesheet Layout															
Cost / Weights															
Calculation Details															
Analysis along Shell															

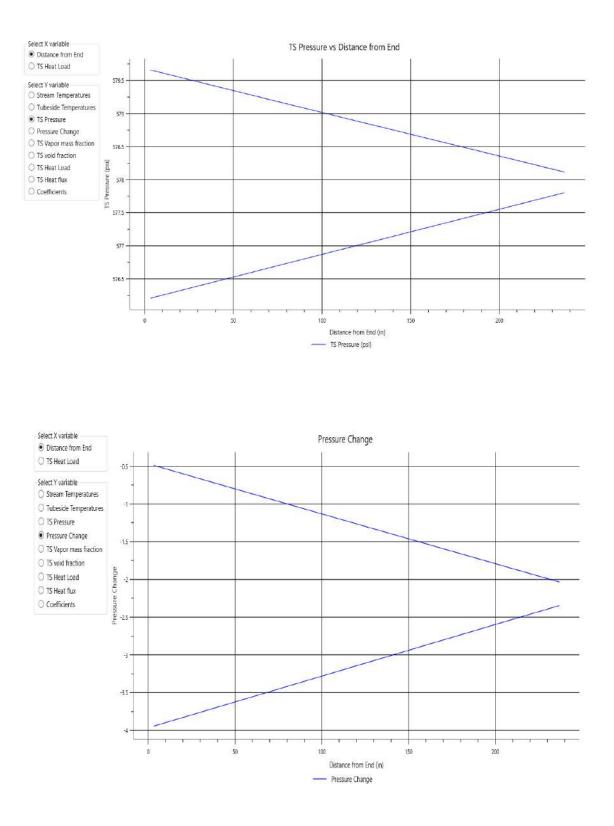


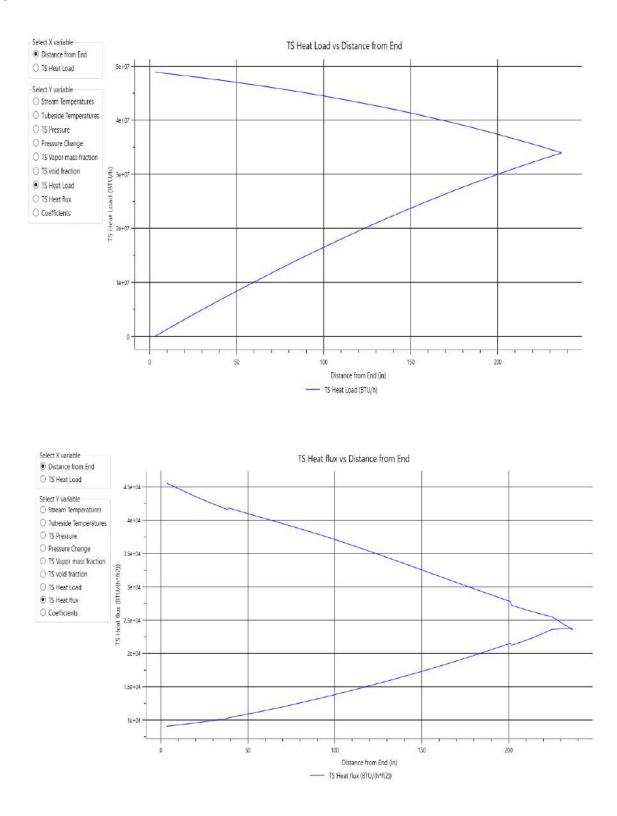


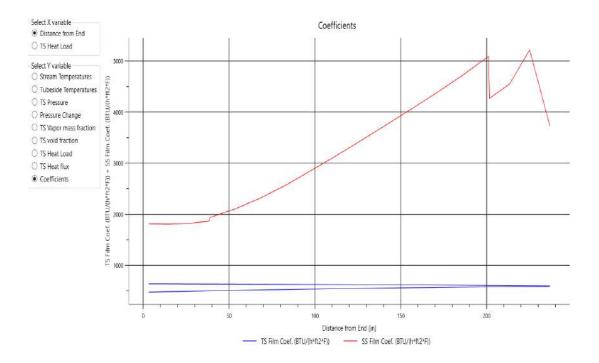


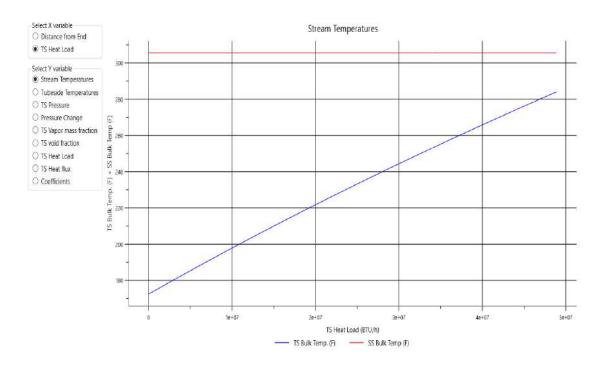


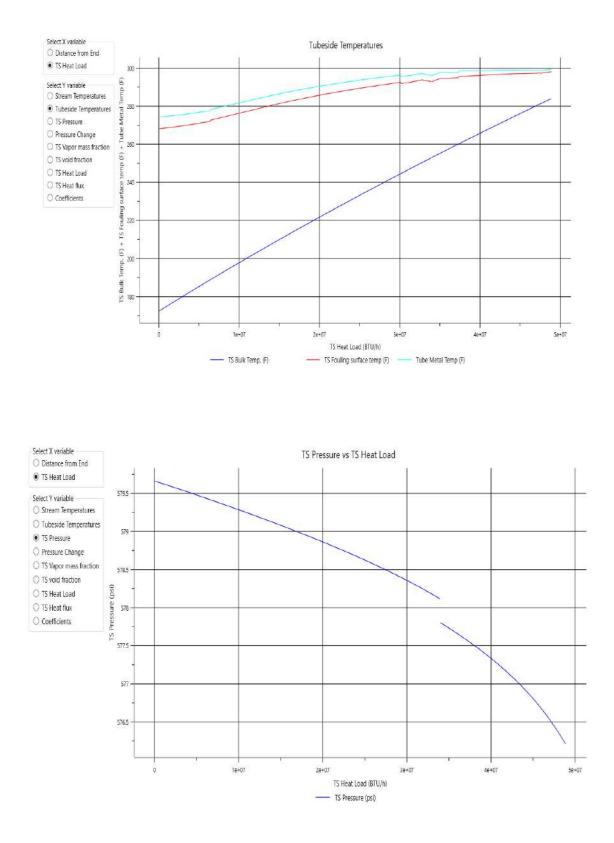


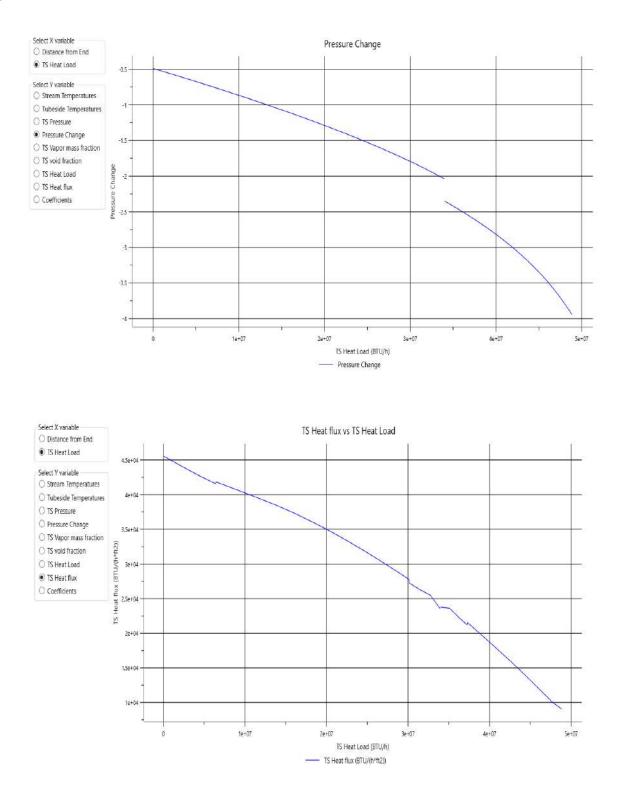


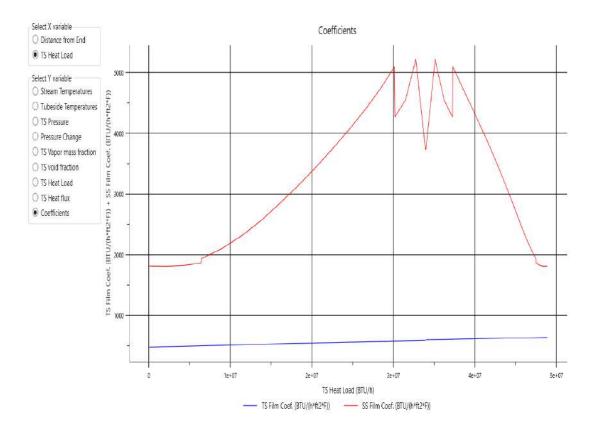

u o congrespecericación de	Interval	Analysis	Physical Pro	perties	Plots											
4 🔡 Program Options		0.00	1 HJ Starrie	-perior	0.00000	_										
Design Options Design Analysis Methods/Correlations	Sheli No.	Tube Pass No.	Distance from End	SS Bulk Temp	SS Fouling surface temps	Tube Metal Temp	TS Fouling surface temp	TS Bulk Temp.	TS Pressure	TS specific enthalpy	TS Vapor mass fraction	TS void fraction	TS Heat Load	TS Heat flux	TS Film Coef	SS Film Coc
Calculation Options			în -	°F +	4F =	4F 7	°F +	чр. т	DSI T	BTU/Ib *			BTU/h +	iTU/lh-ft ¹ *	U/th-ft ² - *	U/(h-ft*-
A 🧧 Results			3,234	305.56	280.43	274,28	268.13	172.52	579.66	0,1	0	0	44241	45570.2		1813.0
A 🗊 Input Summary		1	14,953			275.22	269.26	178.2		4.4	0	a	2224179	44124.7	484.52	1809.0
Input Summary Summary		1	26.672			276.32	270.55	183.62	579.5	8.6	0	0	4336661	42784.1	492,18	1823.2
Warnings & Messages		1	38 301	305.56		277.66	272.05	188.82	579.43	12.6	0	0	6387607	41584.4	499.62	1865.8
Optimization Path		1	38,859	20020022	Those serves	278.31	272.67	189.02	579.42	12.8	0	0	6468601	41840.5	500,22	1936
Recap of Designs		1	53.6119			280.73	275.24	195.33	579.32	17.7	0	a	8995131	40712.5		2105.6
III TEMA Sheet		1	68.3648	5,2505.5	10000000	283.14	277.8	201.39	579.23	22.6	0	0	11453620	39606.4	0.0000.0	2319.2
Overall Summary		1	83 1177	305.56	290.6	285.41	280.22	207.17	579.13	27.3	0	0	13843840	38470	526.62	2572.0
Thermal / Hydraulic Summary		1	97.8706			287.49	282.46	212.72	579.03	31.9	0	0	16163330	37281	534.51	2859.7
Heat Transfer			112.6235	305.56		289.28	284.43	218.01	578.93	36,3	0	0	18407430	35993.7	541.94	3150.9
Pressure Drop		1	127.3765			290.85	285.18	223.05	578.84	40.6	0	0	20571510	122222221		3454.3
Flow Analysis		1	142.1294				287.74	227.84	578.74	44.7	0	0	22652770	33277.7	555.56	3763.1
Wibration & Resonance Analysis		1	156,8823			293.44	289.14	232.38	578.64	48.6	0	0	24549420	31882.7	561,78	4075.9
Methods & Convergence		1	171.6352		-	294,51	290.4	236.69	578.55	52.4	0	0	26560900	30489.4		4396.1
4 🗍 Mechanical Summary		1	186,3881	305.56		295.48	291.55	240.76	578.45	56	0	0	28387720	29113.5	-	4731.1
Exchanger Geometry Setting Plan & Tubesheet Layout		1	201.141	305.56		296.36		244.61	578.35	59.4	0	0	30131280	27767.7	578,41	5095.
Cost / Weights		1	201.609	-		295.51	291.83	244.73	578.35	59.5	0	0	30184770	27237.7	578,25	4270.0
4 🗊 Calculation Details		1	213.328			295.24	292.7	247.58	578.27	62.1	0	0	31487590	26265.4		4550.
Analysis along Shell		1	225,047	305.56		297.24	293.8	250.33	578.19	64.6	0	0	32747590			5219.
🛄 Analysis along Tubes 🛛 🔽		1	236,766		10000000		292.9	252.91	578.12	66.9	0	0	33941580	23549.1	588,89	3732
		2	236,766					253.01	577.8	67	0	0	33987390	23777.5		3732


EDR Navigator	Analysis along Tubes	+												
Al	*													
Scarger opcontactions Program Options	Interval Analysis Physica	al Properties Plots												
Design Options	Temperature	۰۶ ÷	172.4	183.9	195.07	205.94	216.52	226.85	236.92	246.75	256.36	265.77	274.98	284
Thermal Analysis	Enthalpy	BTU/Ib -	0	8.8	17.5	26.3	35.1	43.8	52.6	61.3	70.1	78.9	87.6	96.4
Methods/Correlations	Pressure	psi *	580.15	579.76	579.36	578.96	578,57	578.17	577.78	577.38	576.99	576.59	576.2	575.8
Calculation Options	Vapor mass fraction	psi	0	0	0	0	0	0	0	0	0	0	0	0,010
Esults Input Summary	Liquid density	b/ft³ ∗	45,754	45.354	44.956	44,559	44,163	43,766	43,368	42.968	42.566	42,161	41.752	41.34
Input Summary	Liquid specific heat	BTU/(16-F) *	0.7514	0.7735	0.7954				0.8808	0.9015	0.9218	0.9419		0.9812
4 🔲 Result Summary	Liquid thermal cond.	BTU/(ft-h-F) •	0.094	0.093	0.092	0.00.00	0.09		0.089	0.088	0.087	0.086	0.085	0.085
🔲 Warnings & Messages	Liquid viscosity		0.4634	0.424	20.53	0.3612	0.3358	1000		0.276	0.2599	0.2453		0.2195
Optimization Path		ф *	0.40.54	0.424	0.5902	0.5012	0.5538	0.5150	0.2957	0.270	0.2099	0.2435	0.2318	0,2190
Recap of Designs	Surface tension	lbf/ft •	-										-	
TEMA Sheet	Latent heat	BTU/Ib *												
Overall Summary	Vapor density	lb/ft ³ *		a							a - 5			
Thermal / Hydraulic Summary	Vapor specific heat	BTU/(Ib-F) *								_			_	
Performance	Vapor thermal cond.	BTU/(ft-h-F) *		2							× 9		-	
Heat Transfer Pressure Drop	Vapor viscosity	cp *												
Flow Analysis			L	8 1					2					_
Vibration & Resonance Analysis	No.													
Methods & Convergence	=													
- memore a convergence														


4 🗍 Mechanical Summary







171

CHAPTER # 09 COST ESTIMATION

9.1 Economic Evaluation:

The economic analysis is the crucial step in any design. A solid project should guarantee a speedy return on the investment and excellent profitability during the predicted lifetime, similar to other industrial or financial ventures. It is both a specific field and a profession to estimate costs. To choose between different designs and for project evaluation, the design engineer must be able to quickly and roughly estimate costs. Chemical plants are constructed with the intention of making a profit, thus before the profitability of a project can be evaluated, an estimate of the investment necessary and the cost of production is needed. In this project, a variety of factors that make up a plant's capital cost and its operational costs are taken into account, and the cost estimation techniques are assessed. [10].

9.2 Total Capital Investment:

Working and fixed capital investments make up the total capital investment. The whole cost of the plant in its startup state is known as fixed capital. The price that the contractors were charged.

It Covers the Price of:

- Construct and design other engineering and construction supervision.
- All products of equipment and their installation.
- Working capital is the additional investment required, above and beyond fixed capital, to start and run the plant until revenue is generated. It consists of the price of:
- Raw materials and process intermediates.
- Inventory count for Finished goods.

Cost of Conveyor:

Screw (stainless steel):

Screw (stainless steel):	
C = 0.85 L0.78	(9.1)
C = \$ 38	
Cost of Crusher:	
Hammer Mill:	
C = 2.97 W 0.78	
C=\$1124	
Cost of Mixers:	
C = FMCb + Ca (Vessel)	
$C = 1.218 \exp[a+b \ln HP+c(\ln HP)2]$	(9.2)
C = \$ 46669	
Cost of Storage Tank:	
$C = 1.218Fm \exp[2.631+1.3673(\ln V)-0.06309(\ln V)2]$	(9.3)

C = \$ 56671	
Cost of Reactors:	
$C = F_M * Cb + C_a$ (Vessel)	
$C = 1.218 \exp[a+b \ln HP+c(\ln HP)2]$	(9.4)
C = \$46669	
Cost of Flash Tank:	
$C = 1.218Fm \exp[2.631+1.3673(\ln V) - 0.06309(\ln V)2]$	(9.5)
C = \$ 195820	
Cost of Pumps:	
$\mathbf{C} = \mathbf{F}_{\mathbf{M}} \mathbf{F}_{\mathbf{T}} \mathbf{C}_{\mathbf{b}}$	(9.6)
C = \$ 599148	
Cost of Heat Exchangers:	
$C = 1.218 \times (fd \times fm \times fp \times Cb)$	(9.7)
$C = 1.218 \times (0.6002) \times (1.9) \times (1.00) \times (18468)$	
C = \$25651	
Cost of Distillation Column:	
$Ct = 1.218[f_1C_b + Nf_2f_3f_4C_t + C_{pt}] = Ct = \$\ 259662$	

9.2.1 Purchased Equipment Cost:

Table 9.1: Purchased Equipment Cost for Plant

ment Cost
s
06
\$ 4359040
ngers
06
\$ 1480130
olumn
02
\$ 2819862
02
\$ 93338
sel

No. Required	02
Purchased Cost	\$ 391640
	Pumps
No. Required	06
Purchased Cost	\$ 599148
(Crushers
No. Required	03
Purchased Cost	\$ 1124
С	onveyors
No. Required	03
Purchased Cost	\$ 114
Mechan	nical Separator
No. Required	01
Purchased Cost	\$ 20765
Total Purchased Equipment Cost	\$ 10069592

9.2.2 Direct Cost:

Table 9.2: Direct Cost of Plant

	Direct Cost	
Item	% (Purchased Equipment)	Cost \$
Purchased equipment	100%	10069592
Installation	47%	4732708
Instrument and Control	18%	1812527
Piping	66%	6645931
Electricity	11%	1107655
Building	18%	1812527
land	6%	604175.5
Service facility	70%	7048714
Yard Improvement	10%	1006959
То	otal	34840788

9.2.3 Indirect Cost:

Indirect Cost							
Items	% (Direct Cost)	Cost \$					
Engg. & Supervision	33%	3322965.36					
Contractor fee	19%	1913222.48					
Construction Expenses	41%	4128532.72					
Contingences	37%	3725749.04					
Total		13090469.6					

 Table 9.3: Indirect Cost of Plant

Fixed capital = direct cost + indirect Cost

(9.8)

Fixed capital = \$47931258

Working capital investment = 15% of fixed capital investment

Working capital investment = \$7189688

Total capital investment = Fixed capital investment + Working capital investment

Total capital investment = \$ 55120946

9.3 Operating Cost:

For the purpose of evaluating a project's viability and selecting amongst potential alternative processing techniques, an estimate of the operational expenses, or the cost of producing the product, is mandatory.

The items on the following list will be included in the price of making a chemical product. There are two groups formed from them.

- 1. Variable operating costs: expenses that change according to the volume of output..
- 2. Fixed operating costs: expenses that don't change based on the rate of production. No matter how much is generated, these bills must be paid.

9.4 Total Production Cost:

9.4.1 Variable Cost:

Raw Material Cost

Flow rate of corn stover = 562120 kg/hrFor 330 days = 4451990400 kg/yearPrice of corn stover per kg = 0.0585/kgTotal price of corn stover = 260441438/year

Catalyst Cost Price of catalyst (Al2O3) = 1.2/kgWeight of catalyst = 1760 kgPrice of catalyst = $\frac{2112}{\text{year}}$ **Miscellaneous Material** Maintenance cost = 7% of FCI Maintenance cost = \$335518Miscellaneous Material = 10% of maintenance cost Miscellaneous Material = \$ 33551 **Steam Cost** Price of steam in 2022 = 0.014/kgTotal steam required = 432000 kg/hrFor 330 days = 3421440000 kg/year Total price of steam per year = 47900160/year **Cooling water** Cooling Water price = \$0.00001/kg Cooling water required = 51780960000 kg/year Total price of cooling water = $\frac{517809}{\text{year}}$ Variable cost = raw material cost + miscellaneous cost + utilities cost Variable cost = \$ 305502483/year

9.4.2 Fixed Cost:

Table 9.4: Fixed Operating Cost for Process Plan	nt
--	----

	Fixed Operating Cost							
Item	% (FCI)	Cost \$						
Maintenance	7%	3355188						
Operating cost of labor	10%	4793126						
Laboratory Cost	20%	9586252						
Supervision Cost	15%	7189689						
Plant Overheads	50%	23965629						
Capital Charges	10%	4793126						
Insurance	1%	47931.26						
Local Taxes	2%	95862.52						
Royalties	1%	47931.26						
То	Total							

(9.9)

9.4.3 Direct Production Cost:

Direct Production Cost = variable cost + fixed cost

Direct Production Cost = \$ 305502483 + \$ 34840788

Direct Production Cost = \$ 340343271

9.4.4 Overhead Charges:

30% of direct production cost

Overhead charges = (0.3)(340343271) =\$ 102102981

Total Production Cost = Direct Production Cost + Overhead Charges

Total Production Cost = \$442446252/year

Total Production Rate = 99000000kg/year

Production Cost (\$/kg) = Total Production Cost / Total Production Rate

Production Cost (\$/kg) = \$ 0.47/kg

9.5 **Profitability Analysis:**

Total Income	
Selling Price = \$600/ton	
Total Production per year = 990000 ton/year	
Total Income = \$594000000/year	
Gross Profit	
Gross Profit = Total Income - Total Production Cost	(9.10)
= \$ 594000000 /year - \$442446252/year	
= \$151553748/year	
Depreciation:	
Machinery and equipment = 20% of FCI	
= \$ 9586251	
Building = 4% of Building cost	
= \$ 1812527	
Total Depreciation = Machinery and equipment + Building	(9.11)
= \$ 11398778	
Profit before Taxation:	
Net Profit before Taxation = Gross profit – Depreciation	
= \$ 151553748 /year - \$ 11398778/year	
= \$ 140154970/year	
Net Profit after Taxation:	
Net Profit after Taxation = $(1-0.40)^*$ Profit before taxation	(9.12)

(9.15)

= \$ 15335449/year

=

=

=

Rate of Return

$$\frac{\text{Net Profit}}{\text{Total Capital Investment}} \times 100$$
(9.13)

27.8 %

Pay Back Period

= 3.5 years

9.6 Feasibility Analysis:

9.6.1 Discounted Cash Flow:

Total Capital Cost = $C_{FC} + C_L + C_{WC}$

 $C_{FC} = Fixed Capital$

 $C_L = Land Cost$

C_{WC} = Working Capital

Annual Expense = Cost of manufacturing

 $COM = 0.304 FCI + 2.73 COL + 1.23 (C_{UT} + C_{RM})$

COL = Cost of Labor

 $C_{UT} = Utilities Cost$

C_{RM} = Raw Material Cost

9.6.2 Net Present Worth:

The future profitability of an investment, project, or business is assessed using net present value. The NPV of an investment is essentially the total discounted to present value of all future cash flows during the investment's lifetime.

9.6.3 Cash Flow:

Cash flows include all money produced or spent for the benefit of the investment, such as interest and loan repayments as well as capital outlays. The cash flow for each period comprises both inflows for profits, revenues, and dividends as well as outflows for costs.

9.6.4 Internal Rate of Return:

An internal rate of return computation is used in capital planning to determine whether projects or investments are worthy of funding and to rank them. The discount rate at which the net present value (NPV) is zero is known as the IRR. (when time-adjusted future cash flows equal the initial investment). An indicator of actual investment performance is the annual rate of return, or IRR.

Years	Gross Income	Annual Expense	Cash Flow Before Depreciation	Depreciation	Taxable Income	Tax	Cash Flow after Tax	Cumulative Cash Flow
	\$	\$	\$	\$	\$	\$	\$	\$
-1			-47931258					-47931258
-1			-1917250					-49848508
-1			-7189689					-57038197
1	594000000	562529739	31470261	1195870	30274391	13623476	16650915	-40387282
2	594000000	562529739	31470261	2265859	29204402	13141981	16062421	-24324861
3	594000000	562529739	31470261	2108507	29361754	13212789	16148964	-8175896
4	594000000	562529739	31470261	1951156	29519105	13283597	16235508	8059611.5
5	594000000	562529739	31470261	1793805	29676456	13354405	16322051	24381662
6	594000000	562529739	31470261	1667924	29802337	13411052	16391285	40772948
7	594000000	562529739	31470261	1416162	30054099	13524345	16529755	57302703
8	594000000	562529739	31470261	1416162	30054099	13524345	16529755	73832457
9	594000000	562529739	31470261	1416162	30054099	13524345	16529755	90362212
10	594000000	562529739	31470261	1416162	30054099	13524345	16529755	106891966
11	594000000	562529739	31470261	1416162	30054099	13524345	16529755	123421721
12	594000000	562529739	31470261	1416162	30054099	13524345	16529755	139951476
13	594000000	562529739	31470261	1416162	30054099	13524345	16529755	156481230
14	594000000	562529739	31470261	1416162	30054099	13524345	16529755	173010985
15	594000000	562529739	31470261	1416162	30054099	13524345	16529755	189540740
16	594000000	562529739	31470261	1416162	30054099	13524345	16529755	206070494
17	594000000	562529739	31470261	1416162	30054099	13524345	16529755	222600249
18	594000000	562529739	31470261	1416162	30054099	13524345	16529755	239130004
19	594000000	562529739	31470261	1416162	30054099	13524345	16529755	255659758
20	594000000	562529739	31470261	1416162	30054099	13524345	16529755	272189513

Table 9.5: Discounted Cash Flow Ana	alysis for Process Plant
-------------------------------------	--------------------------

9.7 Cumulative Cash Flow Diagram:

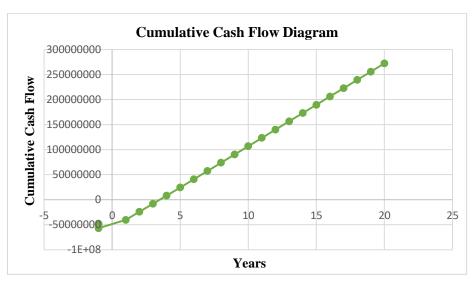


Figure 9.1: Cumulative Cash Flow Diagram for Breakeven

Minimum Acceptable Rate of Return (MAAR) = 15%

Internal Rate of Return = i %

$$NPW = \frac{net \, profit(1+i)^{n}}{i(1+i)^{n}} - TCI = 0$$
(9.16)

By hit and trial method

IRR = 31% NPW = \$11984107 IRR > MAAR 31% > 15%

It proves that our investment is economically safe and feasible.

CHAPTER # 10 INSTRUMENTATION AND PROCESS CONTROL

10.1 Introduction:

Control in process industries refers to the regulation of all aspects of the process. Precise control of level, temperature, pressure and flow is important in many process applications. This module introduces you to control in process industries, explains why control is important, and identifies different ways in which precise control is ensured. The objective of an automatic process control is to use the manipulated variable to maintain the controlled variable at its set point in spite of disturbances. Instruments are provided to monitor the key process variables during plant operations. Instruments monitoring critical process variables will be fitted with automatic alarms to alert, the operations to critical and hazardous situations. Pneumatic instruments are used in this plant. The main process parameters are all indicated in the control room where automatic or remote control is carried out centrally. The process parameters e.g. temperatures, pressure flow, liquid level etc. are converted to signals with transducers and then indicated, recorded and controlled with secondary instruments.

10.2 Importance of Process Control:

Refining, combining, handling, and otherwise manipulating fluids to profitably produce end products can be a precise, demanding, and potentially hazardous process. Small changes in a process can have a large impact on the result. Variations in proportions, temperature, flow, turbulence, and many other factors must be carefully and consistently controlled to produce the desired product with a minimum of raw materials and energy. Process control technology is the tool that enables manufacturers to keep their operations running within specified limits and to set more precise limits to maximize profitability, ensure quality and safety.

10.3 Process:

Process as used in the terms process control and process industry, refers to the methods of changing or refining raw materials to create end products. The raw materials, which either pass through or remain in a liquid, gaseous, or slurry (a mix of solids and liquids) state during the process, are transferred, measured, mixed, heated or cooled, filtered, stored, or handled in some other way to produce the product. Process industries include the chemical industry, the oil and gas industry, the food and beverage industry, the pharmaceutical industry, the water treatment industry, and the power industry. Process Control: Process control refers to the methods that are used to control process variables when manufacturing a product. For example, factors such as the proportion of one ingredient to another, the temperature of the materials, how well the ingredients are mixed, and the pressure under which the materials are held can significantly impact the quality of an end product. Manufacturers control the production process for three reasons:

- ✓ Reduce variability.
- ✓ Increase efficiency.
- ✓ Ensure safety.

10.3.1 Reduce Variability:

Process control can reduce variability in the end product, which ensures a consistently high quality product. Manufacturers can also save money by reducing variability. For example, in a gasoline blending process, as many as 12 or more different components may be blended to make a specific grade of gasoline. If the refinery does not have precise control over the flow of the separate components, the gasoline may get too much of the high-octane components. As a result, customers would receive a higher grade and more expensive gasoline than they paid for, and the refinery would lose money. The opposite situation would be customers receiving a lower grade at a higher price.

10.3.2 Increase Efficiency:

If manufacturers do not retain exact control over all of the processing factors, a run-away process, such as an out-of-control nuclear or chemical reaction, may result occurs. A process that runs amok might have disastrous results. To maintain safety, precise process control might also be necessary. Plant safety operations:

- \checkmark To maintain process variables within predetermined safe operating ranges.
- ✓ To recognize potentially dangerous circumstances as they arise and to set up alarms and automatic shut-down mechanisms.
- \checkmark To offer alerts and interlocks to prevent risky operating methods

10.4 Process Control Terms:

10.4.1 Process Variable:

A process variable is a property of the fluid that are in processing that has the potential to alter the manufacturing process. The process variable in the illustration of you relaxing by the fire was temperature. These are typical given below,

- ✓ Pressure
- ✓ Flow
- ✓ Level
- ✓ Temperature

10.4.2 Set Point:

The set point is a value for a process variable that is desired to be maintained. For example, if a process temperature needs to keep within 5 °C of 100 °C, then the set point is 100 °C. A temperature sensor can be used to help maintain the temperature at set point. The sensor is inserted into the process, and a controller compares the temperature reading from the sensor to the set point. The burner's fuel valve is instructed to close slightly until the process cools to 100 °C if the temperature reading is 110 °C, which indicates that the process is above set point. Additionally, set points may be maximum or minimum values.

10.4.3 Measured Variables:

The process fluid's state, which may be maintained at the predetermined set point, is the measured variable.

10.4.4 Manipulated Variable:

The varying variable that can be used to maintain the control variable at the correct value

10.5 Hardware Elements of Control System:

10.5.1 The Measuring Instruments or Sensors:

These are the tools that are used to measure controlled variables and disturbances.

10.5.2 Transducers:

An apparatus that changes one form of energy into another is called a transducer. A transducer mainly transforms a signal from one form of energy to another.

10.5.3 Transmission Line:

The measurement signal is transferred from the measuring equipment to the controller using it.

10.5.4 Controller:

This gets the data from the measuring tools that determine if the information is accurate or not.

10.5.5 The Final Controller Element:

The Final control element is a device controlled by a controller to change the operating conditions of a process. Final control elements require energy to operate against the process. It is the hardware element that implements the decision taken by controller.

10.6 Classification of Control Systems:

The following control loops are the most frequently utilized for instrumenting and controlling various plant areas and equipment.

- ✓ Feed-back control loop
- ✓ Feed forward control loop
- ✓ Ratio control loop

10.6.1 Backward Feed Control Loop:

A method of control in which a measured value of a process variable is cross-pond with the desired value of the process variable and any important action is taken. Feedback control is considered as the basic control loops system. Its disadvantage lies in its operational procedure. For example if a certain quantity is entering in a process, then a monitor will be there at the process to note its value. Any changes from the set point will be sent to the final control element through the controller so that to adjust the incoming quantity according to desired value (set point). But in fact changes have already occurred and only corrective action can be taken while using feedback control system[1].

10.6.2 Forward Feed Control Loop:

A method of control in which the value of disturbance is measured than action is taken to prevent the disturbance by changing the value of a process variable. This is a control method designed to prevent errors from occurring in a process variable. This control system is better than feedback control because it anticipates the change in the process variable before it enters the process and takes the preventive action. While in feedback control system action is taken after the change has occurred.

10.6.3 Ratio Control:

A control loop in which, the controlling element maintains a predetermined ratio of one variable to another. Usually this control loop is attached to such a system where two different systems enter a vessel for reaction that may be of any kind. To maintain the stoichiometric quantities of different streams, this loop is used so that to ensure proper process going on in the process vessel.

10.6.4 Split Range Loop:

In this loop controller is preset with different values corresponding to different actions to be taken at different conditions. The advantage of this loop is to maintain the proper conditions and avoid abnormalities at very differential levels.

10.6.5 Cascade Control Loop:

This is a control in which two or more control loops are arranged so that the output of one controlling element adjusts the set point of another controlling element. This control loop is used where proper and quick control is difficult by simple feed forward or feed backward control. Normally first loop is a feedback control loop.

10.6.6 Control Schemes of Distillation Column:

In distillation column control any of following may be the goals to achieve.

- ✓ Composition of bottom
- ✓ Constant bottom product rate.

The objectives in distillation column control could be any of the following:

- ✓ Steam flow rate to Re-boiler.
- ✓ Rate of Reflux.

10.7 Control Scheme:

Since the bottom product rate might change, any variation in rate of entering the material also absorbed by the fixed overhead by rate of utput. Since the vapor rate remains almost constant while the feed rate increases, the purity of the top product also rises. The dynamics of the system that adjusts it for level control determine how the overhead reflux changes.

10.8 Instrumentation and Control for Distillation Column:

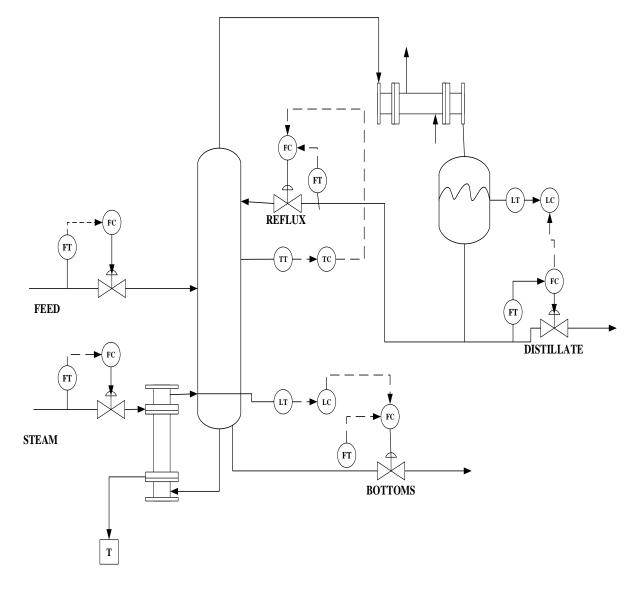


Figure 10.1: Instrumentation and Control for Distillation Column

10.8.1 Description:

The LC is the level controller. The sensing element (level measuring device) measure the level and sends signal to the controller.

Which has a preset value feed to it. It compares the set point and the measured value and send signal to the valve. Which in turn act on the instruction provided by the controller.

The temperature sensor senses the temperature of the feed and immediately send signal to the controller TC-2 which in turn sends signal to the flow controller.

FC-4 that will immediately control the reflux rate.-

10.8.2 Action:

If the rate is less than the set point, increase the feed flow rate; if it is greater than the set point, decrease the feed flow rate.

Process	Flow rate of feed stream
Controller	Automatic(PIC)
Controlled variable	Flow rate
Measuring element	Orifice
Manipulated element	Valve
Regulating element	Valve
Load variable	Leakage and value characteristics friction in pipe

 Table 10.1: Elements of Control Loop for Feed of Distillation Column

10.8.3 Operation:

If the feed flow increases the (FC) will send signal to the controller. The controller also send signal to the valve which will drive the control valve to close. If the feed flow decreases the (FC) will send signal by (FT) to the controller. The controller also send signal to the valve which will drive the control valve to open.

10.8.4 Top Pressure Control:

The efficiency of separation will be impacted by any change in operating pressure, which is why distillation column pressure needs to be controlled.

Set point: 1 bar

Table 10.2: Elements of Control Loop for Distillation Column Top Section Pressure

Process	Distillation column
Controller	Automatic(P)
Controlled variable	Pressure
Measuring element	Manometer
Regulating element	Valve(pneumatic)
Manipulated element	Vapor Flow rate
Load variable	Feed flow rate of fed temperature, change in the ratio of gas to liquid, valve characteristic

10.8.5 Operation:

The transmitter sends the measured value to the controller, which compares it to the set point.

If the pressure is higher than 1 bar, the flow rate of the cooling water in the condenser must be increased; if it is lower than 1 bar, the flow rate of the cooling water must be decreased..

10.8.6 Drum level control:

Using a valve, the distillate flow rate can be changed to adjust the drum level in the top part. 85% of the holdup volume is the set point.

10.8.7 Operation:

The distillate flow rate lowers if the drum level exceeds the predetermined point. If it falls below the specified point, the distillate flow is increased.

Process	Distillation
Controller	Automatic PID
Controlled variable	Drum level
Measuring element	Orifice
Regulating element	Valve

Table 10.3: Control Loop Elements for Drum Level Control for Distillation Column

10.9 Instrumentation and Control on Reactor:

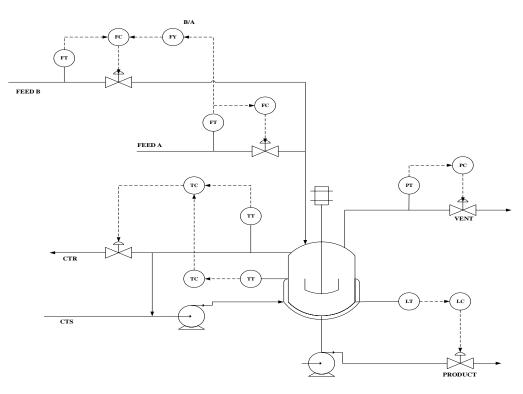


Figure 10.2: Instrumentation and Control on Reactor

10.9.1 Temperature Control:

The reason of temperature control in reactor is to avoid the runaway reaction. This can be done by controlling the water flow rate of cooling water. Set Point = 190° C

10.9.2 Operation:

The temperature sensor measures the temperature inside the reactor and send an electrical signal analog to the value of the temperature. The controller receives this signal and compare it, then gives corrective action. (If temperature is increased than 190°C the controller increases the flow rate of the water and vice versa). The transducer converts the value to pneumatic signal to the regulating element. (Water valve)

10.9.3 Pressure Control:

The operating pressure of the vinyl acetate reactor is 8 bar. Controlling this pressure is highly significant process to maintain the plant safety. We can control the pressure inside the reactor by controlling the pressure of the inlet feed.

10.9.4 Operation:

The pressure sensor measures the pressure inside the reactor, send an electrical signal analog to the value of the temperature. The controller receives this signal and compares it, then gives corrective action. The transducer converts value of the pneumatic signal to the electrical signal.

CHAPTER # 11 SAFETY AND HAZOP STUDY

11.1 Introduction:

Chemical industry procedures that involve industrial biology are frequently used in the production of food, pharmaceuticals, and energy. Interest in occupational health and safety issues is growing because of the expansion of bioprocessing facilities. However, there are still gaps in the assessment of potential difficulties with occupational health and safety. While being handled industrially, the biomass may expose workers to biological and chemical agents that could be released into the work environment. Particular risks associated with the production of biofuels (bioethanol, biogas, bio ethylene, etc.) include the development of potentially explosive atmospheres and pool fires. These unintentional discharges may also result from the breakdown of equipment in processing plants, such as tanks, flanges, valves, pumps, and compressors.

11.2 Hazard and Operability Study:

A HAZOP analysis is a meticulous method used to determine how a process could stray from its intended course. This approach can differentiate between hazard (any operation that could result in a catastrophic leak or harm to personnel) and operability (any project-related procedure that could result in a plant closure with potential effects on safety or earnings). It is described as the process of applying a formal, methodical, and critical assessment of the procedure and the engineering goals of new or existing facilities to analyze the outcomes of potential operating failures of specific equipment parts and the ensuing repercussions on the facility.

Since it has shown to be effective in identifying environmental, safety, and health concerns, the HAZOP safety-analysis technique is used globally and is recognized by law. The HAZOP system was created in the 1970s when chemical factories grew and a preventive strategy became necessary. This technology was later used in continuous chemical operations, the nuclear, pharmaceutical, and transportation industries.

Numerous attempts have been made to automate the analysis, and HAZOP has been frequently used in conjunction with other analysis methodologies.

All installation types and stages are covered, but new installations in particular benefit because they lack operational experience. This examination systematically identifies the dangers and weaknesses.

11.3 When is HAZOP Carried Out?

- \checkmark Checking that operating and emergency measures are sufficient before starting up.
- ✓ Analyzing the safety implications of maintenance procedures or any installation modifications while the installation is in use.
- ✓ Ensuring that safety objectives are properly satisfied during the design phase.

11.4 Why is HAZOP Carried Out?

- ✓ To confirm the project's safety
- ✓ Examine operating and safety procedures
- ✓ Boost that our system is safely working

11.5 Benefits of HAZOP Study:

- ✓ Creating operating guidelines.
- ✓ Verification of design parameters, processes, and prospective changes.
- ✓ Knowledge that can be used to assess and manage the risk posed by the discovered unintentional incidents.

11.6 Success or Failure of the HAZOP:

The following elements affect whether the HAZOP is successful or unsuccessful:

- ✓ Team's technological expertise and perspectives.
- ✓ Team's capacity to visualize variances, causes, and effects by using the approach as a creative tool.
- \checkmark The team's capacity to concentrate on the identified more critical dangers.

11.7 Systematic Terms:

11.7.1 Study Nodes:

The sites where deviations from the process parameters are looked for (on pipe and instrumentation drawings and procedures).

11.7.2 Intention:

The intention defines how the plant is expected to operate in the absence of deviations at the study nodes. This can take a number of forms and can either be descriptive or diagrammatic; e.g., flow sheets, line diagrams, P&IDs.

11.7.3 Deviations:

These are changes from the purpose that are found by repeatedly using the helping phrases (for example, apply additional pressure).

11.7.4 Foundation:

These are the reasons why deviations might occur. Once a deviation has been shown to have a credible cause, it can be treated as a meaningful deviation. This cause can be hardware failures, human errors, an unanticipated process state (e.g., change of composition), external disruptions (e.g., loss of power), etc.

11.7.5 Consequences:

These are the results of the deviations should they occur. Trivial consequences, relative to the study objective, are dropped.

11.7.6 Guide Words:

Guide-word	Meaning	Comment
NO/NOT	The complete negation of the design or operating intent	No part of the intention is achieved
MORE	Quantitative increase	More of the intention occurs or is achieved
LESS	Quantitative decrease	Less intention occurs or is achieved
AS WELL AS	Qualitative increase	All the intention is achieved with some addition
PART OF	Qualitative decrease	Only some of the intention is achieved
REVERSE	Logical opposite of the intention	The reverse of the operating intention occurs
OTHER THAN	Something else happens	No part of the intention occurs

Figure 11.1: Guide Words for HAZOP [10]

These are straightforward terms that are used to qualify or quantify the aim in purpose to direct and inspire brainstorming so that change can be found. At the research node (place in the plant) under investigation, each guidance word is necessary to the process system

11.8 Steps for HAZOP Study:

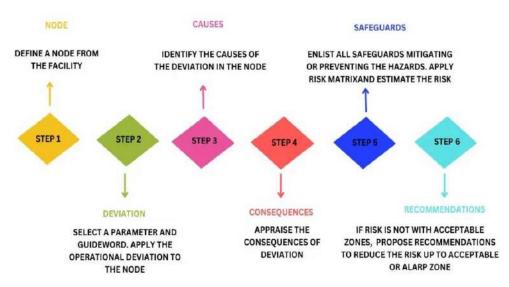


Figure 11.2: Steps for HAZOP Study [3]

11.8.1 Scope of Work:

Specify the purpose, objective, and scope of the study. The purpose may the analysis of a yet to be built plant or a review of the risk of un-existing unit. Given the purpose and the circumstances of the study, the objectives listed above can he made more specific. The scope of the study is the boundaries of the physical unit, and also the range of events and variables

considered. For example, at one time HAZOP's were mainly focused on fire and explosion endpoints, while now the scope usually includes toxic release, offensive odor, and environmental end-points. The initial establishment of purpose, objectives, and scope is very important and should be precisely set down so that it will be clear, now and in the future, what was and was not included in the study. These decisions need to be made by an appropriate level of responsible management.

11.8.2 HAZOP Team:

Select the HAZOP study team. The team leader should be skilled in HAZOP and in interpersonal techniques to facilitate successful group interaction. As many other experts should be included in the team to cover all aspects of design, operation, process chemistry, and safety. The team leader should instruct the team in the HAZOP procedure and should emphasize that the end objective of a HAZOP survey is hazard identification; solutions to problems are a separate effort.

11.8.3 Data Collection:

- ✓ Process flow sheets.
- ✓ Process layout
- ✓ Control Diagram

11.8.4 Operating Procedures:

- ✓ Maintenance procedures
- ✓ Emergency response procedures
- ✓ Safety and training manuals

11.8.5 Conduct the Study:

Conduct the study. Using the information collected, the unit is divided into study "nodes" and the sequence diagrammed in Figure, is followed for each node. Nodes are points in the process where process parameters (pressure, temperature, composition, etc.) Have known and intended values. These values change between nodes as a result of the operation of various pieces of equipment' such as distillation columns, heat exchanges, or pumps. Various forms and work sheets have been developed to help organize the node process parameters and control logic information.

When the nodes are identified and the parameters are identified, each node is studied by applying the specialized guide words to each parameter. These guide words and their meanings are key elements of the HAZOP procedure.

Repeated cycling through this process, which considers how and why each parameter might vary from the intended and the consequence, is the substance of the HAZOP study.

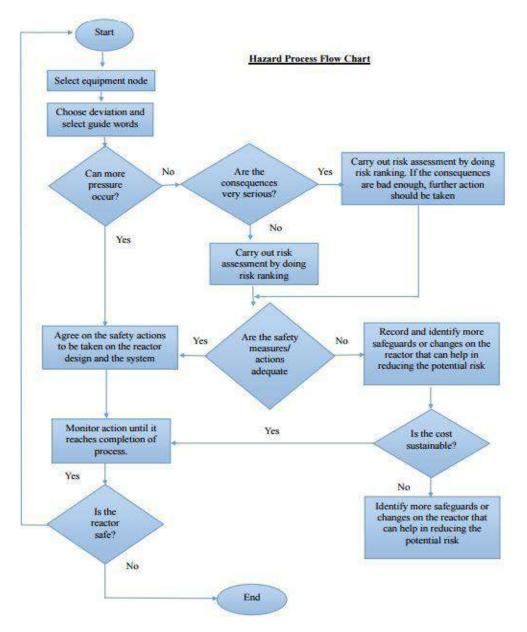


Figure 11.3: HAZOP Process Flow Chart [11]

11.9 Procedure:

HAZOP studies are normally carried out by a team of experienced people, who have complementary skills and knowledge, led by team leader who is experienced in the technique. The team examines the process vessel by vessel, line by line using the guide words to detect any hazard. The information required for the study will depend on the extent of investigation. A preliminary study can be made from a description of the process and the process flow sheets. For detailed, final, the study of design, flow sheets, piping and instrumentation diagrams, equipment specifications and layout drawings would be needed. In general, the procedure steps involving HAZOP are:

- 1. Divide the system into sections (i.e., reactor, storage).
- 2. Choose a study node (i.e., line, vessel, pump, operating instructions).
- 3. Describe the design intent.

- 4. Selecting a process parameter.
- 5. Used a guide word.
- 6. Determine causes.

11.10 HAZOP on Reactor:

Exothermic is the reaction. For the method of removing reaction's excess energy, a cooling system is offered. The temperature of the reactor would rise if the cooling function were to fail. This would cause a faster reaction rate, which would release more energy. A run-away reaction that generates pressures higher than the reactor's bursting pressure could be the outcome. A valve measures the temperature within the reactor and uses that information to regulate the flow rate of the cooling water.

	HAZOP on Reactor					
Guide Word	Deviation	Causes	Consequences	Action		
No	No cooling	faulty cooling water valve	The temperature in the reactor rises	Set up a high temperature alarm.		
Reverse	Reverse cooling flow	Backward flow is the outcome of a water supply failure.	less cooling, perhaps explosive reaction	Set up the check valve		
More	More cooling flow	Control valve malfunction, and the operator ignores the alarm	excessive cooling	Installing an operator on the steps		
As Well As	Reactor product in coils	increased reactor pressure	Unorthodox product	Examine maintenance schedules and processes.		
Other Than	Another material besides cooling water	source of contaminated water	There could be a response and inadequate cooling.	If cooling is less, TAH will notice. Isolate the water source if it is found.		

Table 11.1: HAZOP Study on Reactor

11.11 HAZOP on Heat Exchanger:

HAZOP on Heat Exchanger							
Guide Word	Deviation	Causes	Consequences	Action			
Less	Less flow of cooling water	pipe obstruction	Process fluid's temperature remains constant.	temperature warning			
More	More cooling water	cooling water valve malfunction	reduction in process fluid temperature	Alarm for low temperature			
More Of	More Pressure on Process fluid line	process fluid valve failure	rupture of the tube	mounting a high pressure alarm			
Contamination	Contamination of process fluid line	A tube leaks, and cooling water enters	Pollution of the process fluid	proper upkeep and attentive operation			
Corrosion	Corrosion of tube	Water used for cooling is hard.	less cooling and tube cracking	Suitable upkeep and			
None	No Cooling water flow	failing to open the water valve	Temperature must not be reduced correspondingly.	Install a temperature gauge prior to and following the fluid line.			
Reverse	Flow is reverse	inlet valve failure	offset by output material	Set the check valve			
More	More cooling water flow	the input cooling water valve failing to close	Low fluid temperature	Install a temperature gauge prior to and following the fluid line.			
Less	Less cooling water	Leakage in pipe	Process fluid temperature may be low	flow meter is necessary			
Contamination	Fluid contamination	cooling water Contamination	Outlet temperature too low	Appropriate upkeep			

Table 11.2: HAZOP Study on Heat Exchanger

11.12 HAZOP on Distillation Column:

The following aims are recommended by studies on distillation columns:

- 1. Maintaining the overhead or bottom composition at a predetermined level through product quality management.
- 2. Material balance control is used to keep the top and bottom inventories, as well as the column holdup, within the permitted ranges.
- 3. The column must not overflow. Pressure needs to be high enough to sustain efficient column operation, and the reboiler's temperature difference needs to be below the critical threshold.

HAZOP on Distillation Column						
Guide Word	Deviation	Possible Causes	Consequences	Action record		
NO	No flow	 Blockage in packing Control valve shut Failure of valve Pump failure 	 Column dry out possible dangerous concentration 	 low level alarm being install Schedule, maintenance, And check procedure, Make bypass 		
LESS	Less flow	Pipe blockageFailure of valvePump failure	 Column dry out Change in product quality 	 Install low level alarm Emergency plant shut down 		
MORE	More flow	 Control valve is fully opened Increasing in pumping capacity failure of Control valve 	 Flooding in column Change the product quality Decrease in temperature Raise in bottom liquid level 	 Install low level alarm Schedule, maintenance, check procedure Install control valve 		
HIGH	High pressure	 Valve pressure high Pressure indicator controller fail 	 Low efficiency of separation Rupture of column other related equipment Product loss 	 Install high Pressure alarm Install pressure relief valve 		

Table 11.3: HAZOP Study on Distillation Column

	High Temperat ure	 Instrumentatio n failure More steam flow Exchanger tube failure Heating medium leak into the process 	 Separation cannot be done Change in product quality Column flooding Film boiling in column and reboiler 	 Install pressure indicator Instruct operator on procedure Attention to heat input and out control
LOW	Low pressure	• Vapor line leakage	 Low efficiency of separation Loss of product 	• Install pressure indicator
	Low Temperat ure	 Instrumentatio n failure less steam flow loss of heating less steam temperature and pressure 	 pressure change product loss change in product quality ineffective separation process phase effect 	 install temperature indicator install operator on procedure Isolation is up- graded attention to heat input and out control

CHAPTER # 12

ENVIRONMENTAL IMPACT ASSESSMENT

12.1 Introduction:

The project description, evaluation of the project's environmental and social implications, mitigation strategies, and associated management and monitoring plans are all included in the EIA Report. The report contain

- \checkmark It requested information that is relevant and helpful for making judgments.
- ✓ It results in the precise prediction of the negative effects of the recommended actions and their mitigation using both common and unique solutions.
- ✓ The creation of a thorough EIA is fraught with difficulties. These include the use of out-ofdate assessment models, inadequately detailed alternatives and mitigation actions, and incomplete identification of the essential consequences. The types of flaws that could be found in various samples of typical EIA reports are listed in the table below.

12.2 Safety and Environmental Factors:

Although light olefins are colorless gases with a mild odor that is nonirritating to the eyes or respiratory system, these are hydrocarbons and therefore flammable. All vessels must be designed for handling the liquids and gases during operation at the temperature and pressure that exists, and safety and relief (depressurizing) valves must be provided to relive excessive pressure. Releasing the hydrocarbons in the air in large amounts must be avoided because of health and fire hazards.

If hydrocarbons must be released in the air it is done under blanket of steam. To protect the plants and personnel in case of fire, a complete fire-fight system is provided with tanks grouped to minimize fire and provided with foam makers and deluge systems. An olefin plant produces liquid, gaseous, and solid wastes that must be disposed of in an environmentally safe manner. Liquid waste generated within the complex consists of wastewater streams of relatively low organic content, and process waste of high organic contents.

Wastewater from various units and operations are serrated according to the wastewater characteristics, such as type of contaminants, concentration, special treatment, or permanent requirements [8]. A segregated sewer allows for the most efficient treatment. Atmospheric emissions from the facility are either controlled or fugitive in nature. Controlled emissions are released from process venting, waste incineration, decoking operations, and heater firing. Fugitive emission may occur from product loading and storage and equipment and valve leaks. Solid wastes are treated in solid waste disposal area to reduce their volume and/or toxicity prior to final disposal in a secure landfill. Combustible wastes can be incinerated in a slagging rotary kiln to reduce volume and toxicity.

12.2.1 Safety:

When a plant is being designed, the concern for operating safety becomes apparent. Even after the factory is finished being built, the design and specifications are thoroughly examined. This is true of the overall design of the instrumentation and control systems. The caliber and competency of the operating and support staff has a significant impact on plant safety.

In the end, everything safety is summarized in the plant's operating manuals. These guides emphasize

- \checkmark The operating mode at design and light loads;
- ✓ Emergency measures, for instance, in the event of a sudden loss of power from the outside, to allow for the swift and secure discharge and disposal of the plant's liquid and vapor stockpiles;
- ✓ The use of steam, foam, and water sprays to avoid ignite by dissipating combustible elements that escape from damaged lines and equipment above ground;

12.3 Environmental Impacts of Ethylene Plant:

Three major categories can be used to group the environmental damage caused by the operation of the hot section of the ethylene plant,

- Air pollution
- Water pollution
- Noise pollution

12.3.1 Air Pollution:

The major source of air pollution in on ethylene plant in the stack gases coming out of the cracking furnace, Gaseous pollutants of environmental concern include carbon monoxide and oxides of nitrogen, the high furnace operating temperature and a slight oxidizing atmosphere, preclude the formation of carbon monoxide in any significant quantity. Larger burner capacity will tend to increase the NO_X level of a particular furnace [11].

12.3.2 Water Pollution:

Oily fractions from leaks, spills, and tank draw-off are included in the liquid waste effluent from the hot part of the ethylene plant. The caustic scrubbing column's spent caustic solution is the primary cause of water contamination, and how it is disposed of can have a significant impact on the plant's profitability. The principal corrective actions for decreasing oily wastes are,

- \checkmark The prevention of oil leaks through routine maintenance of the equipment and pipes..
- ✓ Elimination and separate treatment of emulsions where they already exist or prevention of their creation.

12.3.3 Environmental:

Stringent environmental laws requires that nitrogen oxides (NOx), and sulfur oxides emission from furnaces be manually reduced. In some areas of the world, regulations require NOx be reduced to 70 ppm or lower. on a wet basis. Conventional burners usually produce 100 to 120 ppm of NOx.

Since NOx production depends on the flame temperature and quantity of excess air, achieving required limits may not be possible through burner design alone.

Therefore, many new designs incorporate $DENO_X$ units that employ catalytic methods to reduce the NOx limit. Platinum containing monolithic catalysts are used. Each catalyst performs commonly for a specific temperature range, and most of them work properly on 400° .

12.4 Emissions:

12.4.1 GHG Emissions:

Cellulosic ethanol from corn Stover and forest wood residue can avoid a significant amount of GHG emissions. Cellulosic ethanol produced from corn Stover could avoid GHG emissions by 86–89% and ethanol produced from forest residues in 2030 could reduce GHG emissions by 85%. Reductions of GHG in corn ethanol cases are moderate (21–24%). Accounting for lime applications and farming machinery in the assessment of the life cycle of corn ethanol causes an increase in GHG emissions of about 4% and 1%, respectively. Lime application increases CO_2 and therefore GHGs emissions because of its CaCO₃ chemistry. With one million Btu of fuel, gasoline emits 98 kg of GHGs from wells to wheels, while corn Stover-derived ethanol emits only 14 kg of GHGs. GHG emissions here are CO_2 -equivalent emissions of CO_2 , N₂O, and CH₄, weighted with their global warming potentials. The trend for CO_2 is similar to that for GHGs. One million Btu of corn Stoverbased ethanol to displace one million Btu of gasoline could avoid 85 kg of CO₂. The CO₂ data are presented here to allow comparison with the results from some other studies, which only estimate CO_2 emissions. Apparently, ignoring N₂O and CH₄ emissions gives fuel ethanol some unwarranted additional benefits [12].

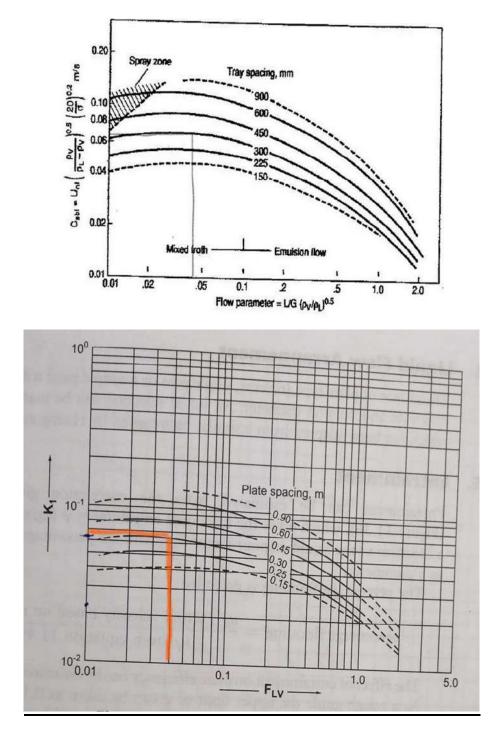
12.4.2 Pollutant Emissions:

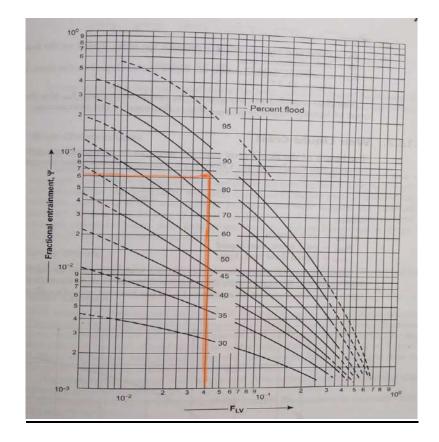
The results of criteria pollutant emissions, expressed in grams of emissions per mile driven in FFV fueled with E85 are separated into total and urban emissions. Total emissions are the sum of the urban and rural emissions. Urban emissions have long been an environmental and health concern because the potential of exposing the human population to emissions in that setting is high. In comparison with gasoline, ethanol can achieve net reductions in the urban criteria pollutant emissions of VOCs, CO, NOx, PM, and SOx. This phenomenon can be explained by the location of bio-ethanol plants. Corn and cellulosic ethanol plants are most likely to be built near farms to minimize feedstock transportation costs. Criteria pollutants emitted from the farming, feedstock transportation, and ethanol-production steps contribute to rural emissions only. In contrast, several petroleum refineries (up to 60%) are currently situated in or near urban areas, which results in a high urban share of emissions from petroleum refining. Most significant reductions occur with SOx, where 60% of current SOx emissions due to vehicles fueled with gasoline could be avoided. As a result, there is a shift in the emission of criteria pollutants from urban to rural areas with bio-based ethanol in the near term. While urban emissions of VOCs, CO, NOx, PM, and SOx decrease, total emissions (urban and rural) increase, which means there are increased emissions in the rural area. Because urban area emissions are more of an environmental and health concern, this shift provides at least a positive step toward the reduction of regulated pollutants. Cellulosic ethanol derived from corn Stover could achieve a net reduction of total VOCs, NOx, PM, and SOx emissions in 2030. In the near-term scenario (2021), corn Stover-derived ethanol emits slightly higher VOCs than does corn grain ethanol. This higher emission is caused by VOC emissions from the biomass boiler.

12.4.3 Carbon Dioxide:

The estimation of the precise amount of carbon dioxide created during the production of bioethanol is a difficult and imprecise procedure that heavily depends on the technology used to produce the ethanol and the assumptions used in the calculation.

Calculations must take into account:


- ✓ Costs associated with raising the feedstock
- \checkmark The price of delivering the feedstock to the manufacturing facility
- ✓ Costs associated with converting the feedstock into bioethanol
- \checkmark These consequences may or may not be taken into account in such a calculation.
- \checkmark The price of delivering the feedstock to the manufacturing facility
- ✓ Costs associated with converting the feedstock into bioethanol
- \checkmark The following impacts may or may not be taken into account in such a calculation:
- \checkmark The price of changing how the land is used in the region where the fuel feedstock is produced.
- \checkmark The price of moving bioethanol from the plant to where it will be used.
- \checkmark The bioethanol's effectiveness in comparison to regular gasoline


REFERENCES

- [1] R. Gustafson, "Novel Ni-SIRAL Catalyst for Heterogeneous Ethylene Oligomerization," *Industrial & Engineering Chemistry Research*, vol. 61, no. 12, pp. 4286-4299, 2022.
- [2] Minbo Yang, Xueyu Tian, and Fengqi You, "Manufacturing Ethylene from Wet Shale Gas and Biomass: Comparative Technoeconomic Analysis and Environmental Life Cycle Assessment," *Industrial & Engineering Chemistry Research*, vol. 57, no. 17, pp. 5980-5998, 2018.
- [3] Li Cong, Li Zhang, "Characterization and components separation of corn stover by alkali and hydrogen peroxide treatments," *Polish Journal of Chemical Technology*, vol. 17, no. 2, pp. 89-95, 2015.
- [4] Gregory Cameron, Linda Le, Nathan Nagulapalli, "Process Design for the Production of Ethylene from Ethanol," *SeniorDesignReports*, vol. 59, 2012.
- [5] I. Solange, "Technological trends, global market, and challenges of bio-ethanol production," *Biotechnology Advances*, vol. 28, no. 6, pp. 817-830, 2010.
- [6] P. Haro, "Technoeconomic assessment of lignocellulosic ethanol production via DME (dimethyl ether) hydrocarbonylation," *Energy*, 2012.
- [7] Junaid Nawaz Chauhdary, *, Allah Bakhsh, "Effect of different irrigation and fertigation strategies," *Pak. J. Agri. Sci.*, vol. 54, no. 4, pp. 855-863, 2017.
- [8] Owusu, P.A.; Asumadu-sarkodie, S., "A review of renewable energy sources, sustainability issues and climate change mitigation.," *Civil & Environmental Engineering*, vol. 15, p. 1– 14, 2016.
- [9] D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, and A. Aden, "Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," *Fuel Processing Technology(FPT)*, vol. 8, pp. 5100-47764, 2011.
- [10] Mirela Tsagkari, Dr. Jean-Luc Couturier, Prof. Antonis Kokossis, Dr. Jean-Luc Dubois, "Early-Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques," *ChemistryEurope*, vol. 9, no. 17, pp. 2284-2297, 2016.
- [11] Asumadu-sarkodie, S.; Owusu, P.A., "A review of Ghana's energy sector national energy statistics and policy framework.," *Civil & Environmental Engineering*, vol. 3, p. 1155274, 2016.
- [12] Suksun Amornraks, Ittipat Subsaipin, Lida Simasatitkul and Suttichai Assabumrungrat, "Systematic design of separation process for bioethanol production from corn stover," *BMC Chemical Engineering*, vol. 2, no. 1, p. 10, 2020.
- [13] Siavash Aghaei, Masih Karimi Alavijeh , Marzieh Shafiei , Keikhosro Karimi, "A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives," *Biomass and Bioenergy*, vol. 161, p. 106447, 2022.

APPENDICES

14.1 Appendix-A:

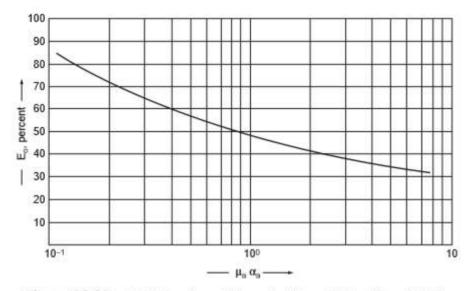


Figure 11.15. Distillation column efficiences (bubble-caps) (after O'Connell 1946).

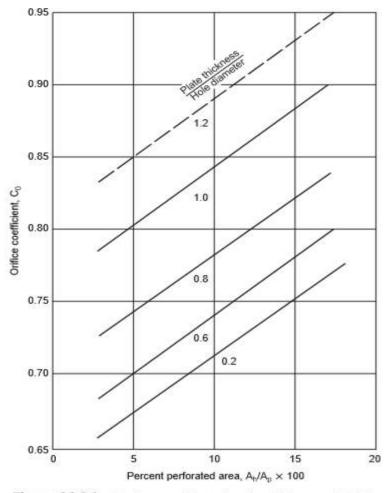
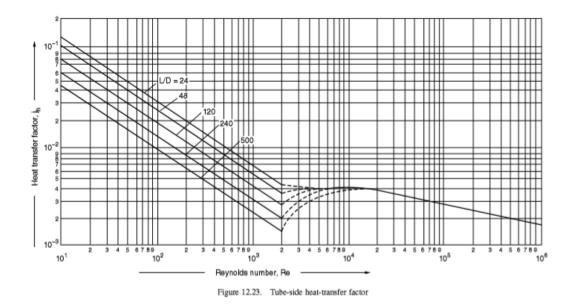



Figure 11.36. Discharge coefficient, sieve plates (Liebson et al., 1957).

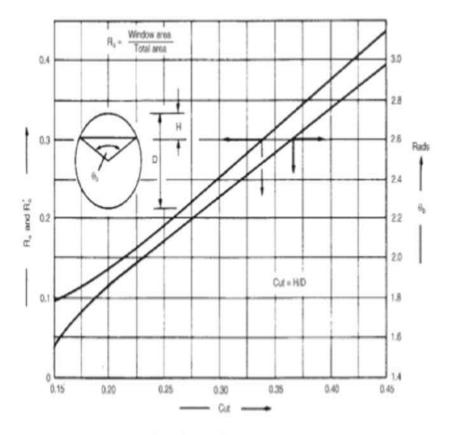


Figure 12.41. Baffle geometrical factors

Appendixes

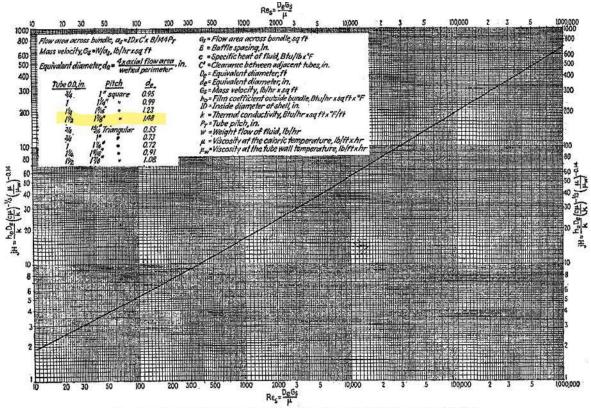
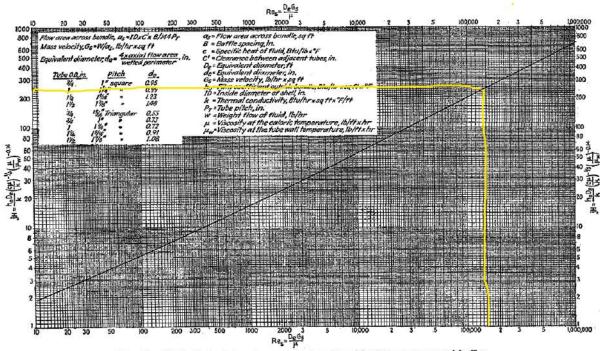
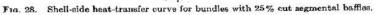
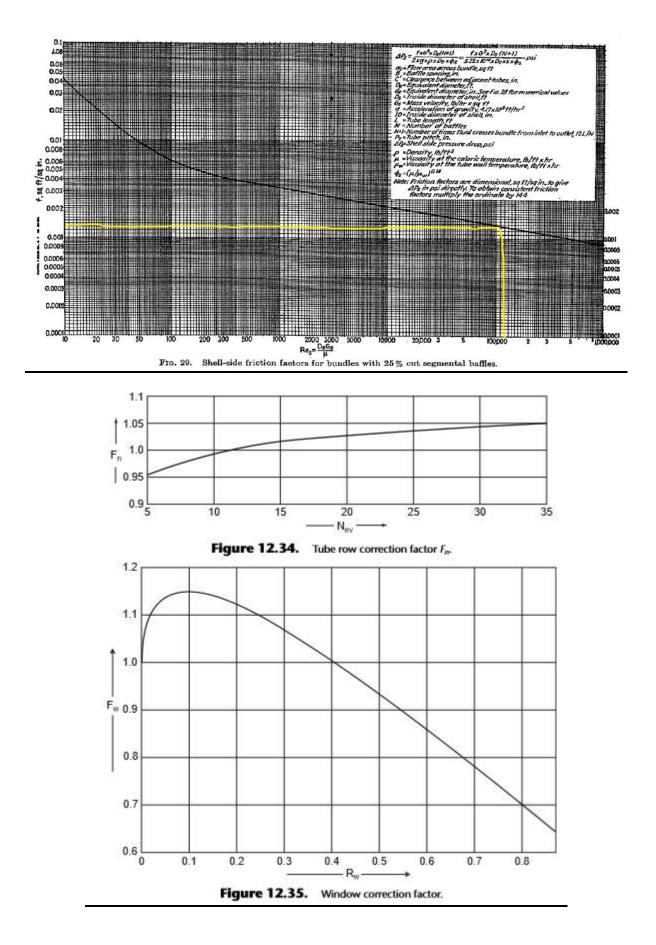





FIG. 28. Shell-side heat-transfer curve for bundles with 25% cut segmental baffles.

14.2 Appendix-B:

	, a turn-down ratio	of 70%	pressure, is to be design	led for the following
	, a tann-down lago	0170%.		
	F	Vapour rate	14 000 kg/h	
		Liquid rate	12 500 kg/h	C.
		Vapour density	1.77 kg/m ³	
		Liquid density	928 kg/m ³	
		Surface tension	0.025 N/m	
The fo	llowing data regard	ding an available tray	has been provided:	
	Column Diam	eter (m)	1.2	
	Downcomer A	vrea (m ²)	12 % of total are	a
	Hole Area		10% of active an	ea .
	Hole Diamete	r (mm)	5	
	Weir Height (I	mm)	50	D
	Tray Spacing	(m)	0.6	
		in the second	0.77× diameter	
	Weir Length (mm)		and the second second at the second s
	Weir Length (Tray thicknes		5	

Tube BWG	DWG	WG Wall ID, in	TD 's	Flow area	Surface per lin ft, ft*		Weight per lin ft,
Tube OD, in.	BWG	ness, in.	ID, in.	per tube, in. ²	Outside	Inside	lb steel
и	12 14 16 18 20	0.109 0.083 0.065 0.049 0.035	0.282 0.334 0.370 0.402 0.430	0.0625 0.0876 0.1076 0.127 0.145	0.1309	0.0748 0.0874 0.0969 0.1052 0.1125	0.493 0.403 0.329 0.258 0.190
94	10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.134\\ 0.120\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ \end{array}$	$\begin{array}{c} 0.482\\ 0.510\\ 0.532\\ 0.560\\ 0.584\\ 0.606\\ 0.620\\ 0.634\\ 0.652\end{array}$	$\begin{array}{c} 0.182\\ 0.204\\ 0.223\\ 0.247\\ 0.268\\ 0.289\\ 0.302\\ 0.314\\ 0.334\\ \end{array}$	0.1963	$\begin{array}{c} 0.1263\\ 0.1335\\ 0.1393\\ 0.1466\\ 0.1529\\ 0.1587\\ 0.1623\\ 0.1660\\ 0.1707 \end{array}$	$\begin{array}{c} 0.965\\ 0.884\\ 0.817\\ 0.727\\ 0.647\\ 0.571\\ 0.520\\ 0.469\\ 0.401\\ \end{array}$
1	8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.165\\ 0.148\\ 0.134\\ 0.120\\ 0.095\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ \end{array}$	$\begin{array}{c} 0.670\\ 0.704\\ 0.732\\ 0.760\\ 0.782\\ 0.810\\ 0.834\\ 0.856\\ 0.856\\ 0.884\\ 0.902\\ \end{array}$	$\begin{array}{c} .0.355\\ 0.380\\ 0.421\\ 0.455\\ 0.479\\ 0.515\\ 0.546\\ 0.576\\ 0.594\\ 0.613\\ 0.639\\ \end{array}$	0.2618	$\begin{array}{c} 0.1754\\ 0.1843\\ 0.1916\\ 0.1990\\ 0.2048\\ 0.2121\\ 0.2183\\ 0.2241\\ 0.2277\\ 0.2314\\ 0.2361\\ \end{array}$	1.611.471.361.231.141.000.8900.7810.7100.6390.545
11/4	8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 0.165\\ 0.148\\ 0.134\\ 0.120\\ 0.109\\ 0.095\\ 0.083\\ 0.072\\ 0.065\\ 0.058\\ 0.049\\ \end{array}$	$\begin{array}{c} 0.920\\ 0.954\\ 0.982\\ 1.01\\ 1.03\\ 1.06\\ 1.08\\ 1.11\\ 1.12\\ 1.13\\ 1.15\\ \end{array}$	$\begin{array}{c} 0.665\\ 0.714\\ 0.757\\ 0.800\\ 0.836\\ 0.884\\ 0.923\\ 0.960\\ 0.985\\ 1.01\\ 1.04 \end{array}$	0.3271	$\begin{array}{c} 0.2409\\ 0.2498\\ 0.2572\\ 0.2644\\ 0.2701\\ 0.2775\\ 0.2839\\ 0.2896\\ 0.2932\\ 0.2969\\ 0.3015\\ \end{array}$	$\begin{array}{c} 2.09\\ 1.91\\ 1.75\\ 1.58\\ 1.45\\ 1.28\\ 1.13\\ 0.991\\ 0.808\\ 0.688\\ 0.688\end{array}$
11/2	8 9 10 11 12 13 14 15 16 17 18	0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049	1,17 1,20 1,23 1,26 1,28 1,31 1,23 1,36 1,37 1,38 1,40	1.075 1.14 1.19 1.25 1.29 1.35 1.40 1.44 1.47 1.50 1.54	0.3925	$\begin{array}{c} 0.3063\\ 0.8152\\ 0.8225\\ 0.3299\\ 0.3356\\ 0.3430\\ 0.3492\\ 0.3555\\ 0.3587\\ 0.3023\\ 0.3670\\ \end{array}$	2.57 2.34 2.14 1.98 1.77 1.56 1.37 1.20 1.09 0.978 0.831

TABLE 10. HEAT EXCHANGER AND CONDENSER TUBE DATA

840

PROCESS HEAT TRANSFER

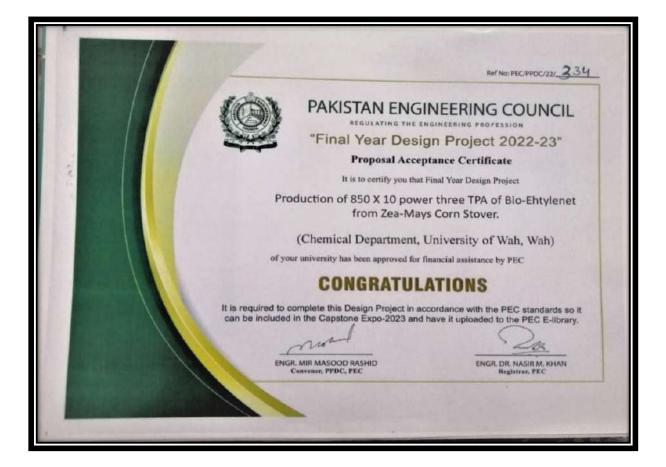
TABLE 8. APPROXIMATE OVERALL DESIGN COEFFICIENTS Values include total dirt factors of 0.003 and allowable pressure drops of 5 to 10 psi on

Hot fluid	Cold fluid	Overall U_L	
Water	Water	250-5005	
Methanol	Water	250-500\$	
Ammonia	Water	250-500\$	
Aqueous solutions	Water	250-500\$	
Light organics*	Water	75-150	
Medium organics†	Water	50-125	
Heavy organics‡	Water	5-751	
Gases	Water	2-501	
Water	Brine	100-200	
Light organics	Brine	40-100	
	Heaters		
Hot fluid	Cold fluid	Overall UD	
Steam	Water	200-700§	
Steam	Methanol	200-700§	
Steam	Ammonia	200-700§	
Steam	Aqueous solutions:	Tal and the second	
Steam	Less than 2.0 cp	200-700	
Steam	More than 2.0 cp	100-500§	
Steam	Light organics	100-200	
Steam	Medium organics	50-100	
Steam	Heavy organics	6-60	
Steam	Gases	5-50¶	
1	Exchangers	68	
Hot fluid	Cold fluid	Overall U_D	
Water	Water	250-500 §	
Aqueous solutions	Aqueous solutions	250-500 §	
Light organics	Light organics	40-75	
Medium organics	Medium organics	20-60	
Heavy organics	Heavy organics	10-40	
Heavy organics	Light organics	30-60	
Light organics	Heavy organics	10-40	

 *Light organics
 10-40

 actions, ethnol, mothyl othyl katone, gasoline, light kerosene, and naphtha.

 + Medium organics have viscosities of 0.5 to 1.0 contipolse and include kerosene, straw oil, hot gas oil, hot absorber oil, and some orudes.


 : Resure organics have viscosities above 1.0 contipolse and include kerosene, straw oil, hot gas oil, reduced erude oils, tars, and apphalts.

 : Dirt factor 0.00. to 30 pai.

 : These rates are greatly influenced by the operating pressure.

Triangular pitch	$p_i = 1.25d_o$				
No. passes	I	2	4	6	8
<i>K</i> ₁	0.319	0.249	0.175	0.0743	0.0365
<i>n</i> 1	2.142	2.207	2.285	2.499	2.675

ACHIEVEMENTS

CERTIFICATE OF PROOF READING

It is certified that the submitted manuscript titled as "*Production of 3000 TDP of Bio-Ethylene from Zea Mays*" is as per the standard formatting given by the FYP Coordinator.

Supervisor Signature: ------

FYP Coordinator Signature: -----

Department of Chemical Engineering

PLAGIARISM REPORT