PRODUCTION OF 3000 TPD OF
BIO-ETHYLENE FROM ZEA-MAYS

Cwee ¢

WAH ENGINEERING COLLEGE
University of Wah

Session 2019-2023

Supervised By
Engr. Usman Asghar

Group Members

Kashaf Tehreem UW-19-CHE-BSc-008
Shehar Bano UW-19-CHE-BSc-001
Abdullah Niaz UW-19-CHE-BSc-020
Sami Jabbar UW-19-CHE-BSc-010

Department of Chemical Engineering
Wah Engineering College
University of Wah, Wah Cantt



Production of 3000 Tons/Day of Bio-Ethylene from Zea-Mays

This report is submitted to the Department of Chemical Engineering, Wah

Engincering College, University of Wah for the partial fulfilments of the
requirement for the

Bachelor of Science
In
Chemical Engineering

Internal Examiner

Sign: \’,\/\D "\/\Vs
Sign: \7<‘ ;i\\—‘;’.w%vixm 2023
(

E

Sign: % |

FYDP Evaluation Committee

Sign: A\/u,*‘-“:‘o

Sign: ﬁ

R

Department of Chemical Engineering,
Wah Engineering College,
University of Wah
Wah Cantt.



PRODUCTION OF 3000 TPD OF
BIO-ETHYLENE FROM ZEA-MAYS

Acknowledgement

We are grateful to Almighty Allah for giving us the strength, bravery, and insight so that we

have been able to complete this final year project report, with the help of His assistance.

We also want to express our gratitude to our parents for their unconditional love,
encouragement, and belief in our abilities. Your unwavering support and sacrifices has been

the cornerstone of our success. We will always be grateful for their support.

We are thankful to the Dean Engineering Dr. Adnan Tarig and Head of Department Dr.
Khurram Shahzad Baig for providing facilities and guidance. We are also thankful to
project coordinator Mr. Fazeel Ahmed and other teachers for their earnest efforts and

advice, which helped us greatly in accomplishing our objective.

We are thankful to our Project Supervisor, Engr. Usman Asghar, for his constant support,
knowledge, observations, expertise and valuable insight throughout the entire duration of this
project. His guidance and encouragement were instrumental in shaping the direction of our
project and enhancing the quality of our work. Their passion for knowledge and dedication to

their work has inspired us to strive for excellence.



PRODUCTION OF 3000 TPD OF
BIO-ETHYLENE FROM ZEA-MAYS

Abstract

The nonrenewable nature of fossil fuels and their connection to the buildup of greenhouse
gases in the atmosphere have been recognized for a long time. As a result, renewable
methods have been developed that utilize both non-biomass sources like wind, solar,
geothermal, and hydroelectric power, and biomass sources that can be directly combusted or
converted into value-added products using various thermochemical processes or using
microorganisms. This combination of microorganisms and biomass has paved the way for the
creation of a bio-economy, enabling the commercial production of biofuels, bio-chemicals,
and other miscellaneous materials. This study focuses on the production of bio-ethylene from
Zea Mays (a waste biomass of corn). Ethylene is a key feedstock for various downstream
chemical products like PET, ethylene oxide etc. It is responsible for the production of about
half of all plastics produced globally (a fast-growing industry all over the world). Annually,
over 140 million tons of ethylene are produced, and demand for it is expected to rise,
particularly in developing economies. With its resemblance to ethylene in terms of chemical
makeup, bio-ethylene can also be used to make plastics and other downstream products with
the current machinery and production capacity. This study provides techno-economic
analysis for the production of bio-ethylene from Zea Mays (corn stover). The production of
bio-ethylene from biomass-based pathways involves two primary steps: fermentation to
produce bioethanol from biomass, followed by the catalytic dehydration of bioethanol to bio-
ethylene. This research work discusses all the technical aspects with the economic evaluation
of the production process. All indicators of economic analysis (Net Present Worth, IRR etc.)
shows the Bio-Ethylene from Zea Mays is economically viable (27.8% rate of return) to
produce value added product (bio-ethylene) with least environmental implications.
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1.1

iv.

Introduction:

Ethylene, also referred to as ethene (CH2=CH2), is the first alkene. It is a colorless gas
with a commonplace boiling point of -103.7 °C and is just marginally soluble in water and
alcohol. Due to its high activity, this substance reacts readily when combined with various
chemical reagents [1]. Ethylene due to its simple molecular formula and composition
serves as the basic raw material for Plastic and Polymer industry. Ethylene is the important
feed stock used in the production of various valuable products like plastics, PET bottles,
PVC pipes, ethylene glycol etc. Almost 60% of Ethylene is used in Polyethylene
manufacturing. At the present time, Ethylene is being produced from the cracking of fossil
fuel based raw materials like Naphtha, Natural gas, shale gas etc. As we know, fossil fuels
are depleting day by day and their prices are on the rise which is causing ethylene to get
more expensive and eventually affecting the polymer industry. A number of people are
now interested in making plastics using non-renewable feedstock. Utilizing biomass to
create usable goods contributes to the reduction of greenhouse gas emissions. [2].

In this project, we have designed a complete process for the sustainable production of
Ethylene (also known as Bio-Ethylene due to its production from biomass) from a cheap
waste material, i.e., Corn stover (Zea-Mays) which is the remaining of the corn crop.
Farmer used to get rid of this waste (corn stover) by land filling or by burning it. This
action involves the serious environmental impacts (emission of GHG from its burning is
major impact). Our project is a value addition project (converting waste into valuable
product) which contains following Commercial advantages over the existing process:

Reducing Environmental Hazards

Raw material is inexpensive which will obviously drastically affect the selling price of
Ethylene. The low-price Ethylene will give the boost to the polymer industry of Pakistan
(as ethylene is feed stock for polymer industry)

This process is sustainable in term Ethylene production because the conventional
production involves the fossil fuel based raw material which depleting day by day.

This process is the first step towards bio-refinery in Pakistan.

1.2 Physical Properties:

Table 1.1: Physical Properties of Ethylene

Description Properties
Chemical Formula C2H4
Molecular weight 28.05 g/mol

Boiling Point -103.7 °C

Melting Point -169.2 °C

Colour Colourless
Odour Odorless
PH 2.5
Specific gravity 0.9740
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1.3 Thermodynamic Data:

Table 1.2: Thermodynamic Properties of Ethylene

Description Properties
Heat capacity, Cp (gas) 42.9 J/mol K
Thermal conductivity 0.020 W/m°C
Specific volume 0.0247 m3/mol
Flash Point 137K

1.4 Reactions of Ethylene:

1.4.1 Hydrogenation of Ethylene:
At normal temperature, it is easily hydrogenated under pressure while a platinum or
palladium chemical catalyst is present. Under 200 to 300°C, nickel catalyst is used. Under
normal conditions of pressure and temperature, raney nickel works well as a catalyst.

CoHs+Hy, — CoHg (11)

1.4.2 Addition Reaction of Ethylene:
Chlorine or bromine and CH,=CH, combine to generate an addition compound. It joins
with halogen acids to generate an addition complex. For instance, ethylene bromide is
created when CH,=CH, adds hydrogen bromide. The addition of halogen acids reacts in
the following order: HI > HBr > HCI > HF. After absorbing concentrated sulfuric acid, it is
hydrolyzed to produce ethanol.
CoHs + Br, — C,H4BI (12)

1.4.3 Hydroxylation of Ethylene:
It is easily converted into glycols by adding hydroxyl groups to it. It is changed into cis-
ethylene glycol by a cold, diluted alkaline permanganate solution. Osmium tetroxide
quickly forms cyclic compounds like osmic ester when it reacts with CH,=CH,. 1,2-glycol
is produced by refluxing osmic ester with ethanolic sodium hydrogen sulphate.

CoHs + H,O + KMNnOy4 — CoHgOs (13)

1.4.4 Ozonolysis Reaction:
To create an ozonide chemical, it adds ozone gas molecules. To create formic acid, the
ozonide is oxidized using silver oxide, hydrogen peroxide, or peracids. Ozonide is reduced
with zinc dust to produce formaldehyde. To provide the appropriate alcohol, reduction can
alternatively be done using sodium borohydride or lithium aluminum hydride.

Co,Hs+ O3 — 2CH,0 (14)


https://www.engineeringtoolbox.com/heat-capacity-d_338.html
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Figure 1.1: Chemical Reactions of Ethylene [3]

1.5 Industrial Applications:

There are many polymeric derivatives of ethylene that are employed in diverse contexts.

v

v
v

Polyethylene is used to make packaging, stretch films, containers, barrels, pallets, and
other goods.

The manufacturing of polyester films, resins, and fibers all uses ethylene oxide.
Polypropylene (PP) is used to make a variety of products, including films, sheets,
foamed goods, industrial goods, reinforced goods, containers, etc.

The most common material used to make soda bottles and other packaging is
polyethylene terephthalate (PET).

PVC, a polymer of vinyl chloride, is used to produce bottles and packaging.

The fabrication of electrical and electronic gadgets uses polystyrene (PS).

1.6 Storage and Handling of the Product:

Around -103°C is the typical storage temperature for liquid ethylene. The use of cryogenic
tanks is prevalent. Transferring ethylene typically involves the use of pipelines. Trucks can
also transport liquid ethylene. For low temperatures, these tanks are built of carbon steel or
stainless steel. [4].

Before working with ethylene, one must receive training on how to handle and store it.

v

v

<

An explosion could result from the combination of ethylene with trifluoro-methyl sub-
fluoride, ozone, and nitrogen dioxide. .

The OXIDENTS (perchlorates, peroxides, permanganate, chlorate, nitrate, chlorine,
bromine, and fluorine), Nitro-methane, strong acid (hydrochloric acid, sulfuric acid,
nitric acid, etc.), and a chlorine rink are incompatible with ethylene.

Store in an airtight container in a cool, well-ventilated place.

Metal container for transporting ethylene must be grounded

While opening and closing the ethylene container, only non-sparking tools and
equipment should be used.
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v Use electrical equipment and fittings that are explosion-proof where ethylene is used,

processed, or manufactured.

1.7 Safety Hazard:

v" Inhaling ethylene gas can have an impact on you.

v’ Contact with liquid ethylene can cause frosthite on the skin..
v’ Ethylene exposure can result in headaches, vertigo, weariness, drowsiness, confusion,

and unconsciousness.

v’ Ethylene is one of the volatile compounds that can cause deadly flames and explosions.

1.8 Motivation:

v A step towards bio refinery as we are using biomass for production of ethylene.
v" We are converting a waste into useful product hence it is a value addition.
v’ Biorefinery based ethylene is sustainable alternative to oil-based ethylene because it

can reduce dependence on fossil fuels.

v Compared to fossil fuel-based ethylene, bio-ethylene can cut GHG emissions by 40%.
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Figure 1.2: Advantages of Bio-Ethylene Production
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2.1 Global Ethylene Production and Consumption:

In 2021, the estimated value of the world's ethylene capacity was 216.35 mtpa. From 2021 to
2026, the market is anticipated to expand at an AAGR of more than 7%. The major nations in
the globe, which together account for more than 50% of the world's ethylene capacity, are the
US, China, Saudi Arabia, South Korea, and Iran. From 2020 to 2028, the demand for
ethylene is anticipated to grow at a CAGR of 3.4%, reaching 233.9 million tons.

The expected increase in global ethylene usage from 2014 to 2020 is 4.3% per year.
Additionally, estimates indicate that between 2020 and 2028, the growth rate of the world's
ethylene consumption will climb by 3.4%.

The greatest user of ethylene worldwide, North America consumes 24% of the world's
supply. 18% of the world's ethylene consumption is accounted for by China, the second-
largest consumer. Third-largest user globally, the Middle East consumes 18% of the world's
ethylene.

Global Ethylene Demand by Application

h
Ot e

Ethylene
Dichloride
Production

Polyethylene
Production

|
Ethylene Oxide J
Production

Figure 2.1: Ethylene Demand [5]

2.2 Ethylene Consumption and Production in Pakistan:

Almost 60% of ethylene is used in production of polyethylene. Pakistan's plastics sector is
one of the nation's oldest, and evidence of its existence dates to 1947, the year Pakistan was
founded. The years 1965 to 1975 marked a significant turning point in the usage of plastics in
the country, when it became a powerful force with a sizable base.

Pakistan's plastics sector has made considerable progress toward success. Currently, plastics
materials are the fourth most popular import, and this industry alone makes a considerable
contribution to the national exchequer across multiple categories. The industry is expanding
at a rate of 15% a year on average, and as it develops, it is outpacing all other industrial
sectors. Over the past 15 years, the nation's per capita consumption has also increased.
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Manpower Engaged with Plastics

Industry
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Figure 2.2: Manpower Engaged with Plastic Sector [2]

There are 6000 plastics processors operating in Pakistan now. The entire sector is a SME that
is self-financing. Through customs duties, sales taxes, and income taxes, the sector gives the
national exchequer about 8 billion rupees a year. There is a significant concentration of
plastics processors in and around the industrial centres of Karachi, Lahore, Gujranwala,
Peshawar, Faisalabad, Hyderabad, Rawalpindi, Gadoon, and Hattar, whether they be
producers of woven, extruded, injection-molded, blow-molded, or tubular films.

Both the structured and un-organized sectors of the industry can be separated. The organized
sector, which has between 600 and 700 units, is capable of manufacturing goods of high
quality. Products of poor quality and low price are produced by the un-organized sector.
Despite this, over the past 15 years, the un-organized sector has expanded more quickly than
the structured sector.

2.3 Market Assessment:

231

The growth of the ethylene market is primarily being driven by the rising demand for
polyethylene products across a variety of industries, while variables like the volatility of raw
material costs could restrain market expansion. The going up demand for polyethylene
products from a variety of industries, including consumer electronics, construction, and
automotive, is one of the significant drivers fueling the expansion of the worldwide ethylene
market. The market for polyethylene was estimated at USD 66.24 billion in 2021, and it is
anticipated to expand at a CAGR of 3.7% over the next five years. The worldwide
polyethylene market is also projected to be significantly impacted by the growing demand for
plastic. [5].

Corn Production in Pakistan:

In Pakistan, maize has overtaken rice and wheat as the third-most important cereal crop,
covering 1.3 million hectares. Pakistan's corn (maize) production increased by 7.79 percent
between 2019 and 2020, reaching 7,800,000 tons. In 2020, maize production soared by 32.16
percent following a decline of 3.78 percent in 2017.
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Presently, Pakistan's two most important provinces for corn production are Punjab and KPK.
Nearly all of the country's maize (corn) production comes from these two provinces. In which
KPK contributes 21% and Punjab contributes 76% of nation’s grain production. In the
provinces of Sindh and Baluchistan, maize (corn) grains are only produced by 2 to 3 percent.
Azad Kashmir's 0.122 million hectares of land are used for maize (corn) production, which is
also gaining prominence [6].

Pakistan Corn Production by Year
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Figure 2.3: Pakistan Corn Production per Anum [7]

2.3.2 Worldwide Corn Production Data:
Worldwide, 1,060,247,727 tons of corn are produced each year. The largest maize producer
in the world, the United States of America produces 384,777,890 tons of corn annually.
China comes in second with a yearly production of 231,837,497 tons. China and the United
States of America jointly create 58% of global output. [8].
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Figure 2.4: Worldwide Corn Production [12]



Chapter # 02 Process Selection

2.3.3 Raw Material:

As a raw material, zea mays, also known as corn stover, is utilized. The stalks, leaves, and
husks that remain after harvesting corn are called stover. It is mostly made of cellulose,

lignin, and water.

Compound Modeled As wit%
Cellulose Cellulose 492
Water Water 20
Sucrose Sucrose 0.6
Lignin WVanillin 13.1
Calcium
Ash Oxide 6.7
Acetate Acetic Acid 1.5
Extractives G!ucnsc B9
Oligomer

Figure 2.5: Raw Material Composition

2.3.4 Corn Silage Suppliers in Pakistan:
There are some companies that supply corn stover in all over Pakistan.

e Agri-complex Pakistan private limited
e Four Brothers Group Pakistan

e King Silage (Pvt) Ltd

e AIMS Agro Feeds

e A2ZEE Corporation

2.4 Capacity selection:

Corn production in Pakistan (2022 - 2023) = 8.9 million Tones

Punjab takes 76% part in corn production per year = 6.76 million Tones

2kg of corn stover contain 1kg of corn = 13.4 million Tons of Corn Stover

It is premised that we will safely and conveniently collect 40% of that waste
= 5.3 million Tones

Production of Bio-Ethylene = 3000 Tones / day

10
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2.5 Manufacturing Processes:

The division occurring about because of the refining of gaseous petrol and oil are broken to
produce ethene.
The processes are:

v The steam cracking of ethane and propane.
v The steam cracking of naphtha from crude oil
v The catalytic cracking of gas oil from crude oil.

Availability, pricing, and other products from cracking that are required will all affect the
feedstock choice. Steam cracking is the primary method of ethene production.
v Ethylene can also be produces by biomass such as sugarcane, wood waste, corn stover
etc.

2.6 Process Description:

This procedure involves two main steps: firstly, production of bioethanol from maize
stover and secondly production of ethylene from bioethanol. The procedure involves four
basic stages:

* Pre-treatment of Raw Material

» Saccharification and Fermentation

* Purification of Bioethanol
» Conversion of Bioethanol to Bio-Ethylene

The physical and chemical processing of raw materials is the first phase. Corn stover is
then ground to a thickness of 0.2 mm. To release hemicellulose sugars and break down
biomass, maize stover is first processed with diluted sulfuric acid in the pre-treatment and
conditioning unit [2]. Ammonia is then added to the pre-treated slurry to alter its acidity to
be acceptable for enzymatic hydrolysis. The subsequent step involves sending the
hydrolysate to an enzymatic hydrolysis and fermentation unit, where a cellulase enzyme is
utilized for the enzymatic hydrolysis process. The cellulose in the hydrolyzed slurry is then
fermented to create bioethanol. Using glucose as the main carbon source, an enzyme
manufacturing unit on-site produces the necessary cellulase enzyme. The produced beer is
then divided into bioethanol, water, and residual solids in a production recovery section
using distillation and solid-liquid separation [9]. A wastewater treatment unit collects and
treats wastewater streams produced during the synthesis of bioethanol using anaerobic and
aerobic digestion. To form HP steam, which is utilized to produce electricity and meet the
demand for process heat, solids and biogas from the product recovery unit and wastewater
treatment unit are burned. Bioethanol made from maize stover is first dehydrated to
produce ethylene, water, and other by-products in the ethylene manufacturing process. The
dehydration reactor effluent is then pressurized and quenched. In an ethylene purification
unit, the effluent is finally divided into ethylene, water, and other components [4].

11
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3.1 Introduction:

The quantities of all materials entering and leaving any system or process are calculated
deploy on the "law of conversation of mass". This law states that the creation or destruction
of matter has no effect on the overall mass. .

The basic idea behind material balancing calculations is to formulate and resolve several
independent equations with several compositional and mass flow rate unknowns that are
frequently seen in engineering and environmental investigations.

To develop chemical reactors, investigate substitute chemical production methods, model
pollutant dispersion, and other physical system processes, for example, the mass balance
theory is applied. Three complementary analysis tools are the material balance, energy
balance, and the slightly more complex entropy balance. Several methodologies are required
for comprehensive design and research of systems like the refrigeration cycle.

General Equation of Material Balance:

(Rate of Mass Input) - (Rate of Mass Output) + (Rate of Mass Generation) — (Rate of Mass
Consumption) - (Rate of Mass Accumulation) =0

Basis:

1 hour of operation

Assumption:

Steady state conditions.

Capacity of plant:

3000 tons /day

Reactant supplied:

14871.3 tons/ day

Yield:

21%

3.2 Feed Composition:

Table 3.1: Composition of Feed

Components Composition % Mass Flow Rates (Kg/hr)

Cellulose 49.2 276563.04
Water 20 112424
Sucrose 0.6 3372.72

Lignin 13.1 73637.72

Ash 6.7 37662.04
Acetic acid 15 8431.8

Glucose Oligomer 8.9 50028.68
Total 100 562120
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3.3 Material Balance on Mixer (M-101):

Material balance

67454.4 Kg/hr
3
| M-101
v\

562120 Kg/hr

@"629574.4 kg/hr

Figure 3.1: Mixer (M-101)

60% of original amount of water is added in mixture
Composition of water = 112424

= (112424%0.60)

= 67454.4 kg/hr

Table 3.2: Material Balance on Mixer (M-101)

Material Input (Kg/hr) Material Output (Kg/hr)

Components Stream-03 Stream-04 Stream-05

Cellulose - 276563.04 276563.04

Water 67454.4 112424 179878.4
Sucrose - 3372.72 3372.72
Lignin - 73637.72 73637.72

Ash - 37662.04 37662.04
Acetic Acid - 8431.8 8431.8

Glucose Oligomer - 50028.68 50028.68

TOTAL 629574.4 kg/hr 629574.4 kg/hr

16
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3.4 Material Balance on Flash Separator (S-101):

Water 4.4*10*kg/hr

190°C Acetic Acid 1.2*10%kg/hr
1 bar
190°C
12 bar
10 5-101
693135.4264 kg/hr
190°C
1 bar
693135.4264 kg/hr

Figure 3.2: Flash Separator (S-101)
25% of water is removed in flash separator.
Composition of water = 179878.4 kg/hr
= (179878.4%0.25)
= 44969.6 kg/hr

15% of acetic acid is removed in flash separator.

Composition of acetic acid = 8431.8 kg/hr
= (8431.8x 0.15)
=1264.77 kg/hr

Table 3.3: Material Balance on Flash Separator

Material Input (Kg/hr) Material Output (Kg/hr)
Components Stream-9 Stream-10 Stream-11
Cellulose 257442.63 - 257442.63
Water 179878.4 44969.6 134908.8

Sucrose 3372.72 - 3372.72
Lignin 73637.72 - 73637.72

Acetic Acid 8431.8 1264.77 7167.03
Glucose oligomer 50028.68 - 50028.68
H,SO, 1935.9413 - 1935.9413
Glucose 19359.413 - 19359.413

TOTAL 693135.4264 kg/hr 693135.4264 kg/hr

17
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3.5 Material Balance on Pre-Hydrolysis Reactor (R-101):

H,S0, 6.1*10*kg/hr

140°C I
12 bar
0 / 140°C
oc 12 bar
12 bar - . 9 -
693135.4264 kg/hr LJ 693135.4264 kg/hr

Figure 3.3: Pre-Hydrolysis Reactor (R-101)

10% of H,SOq is added in reactor.
Flowrate of H,SO,4 = 62957.44 kg/hr

Reactions:

(CeH00s)h ————>  CgH100s X =0.07
CsH1005 —— CeH1206 X=09
Calculations:

Compositions of cellulose = 276563.04

Molar mass = 162.1406

Moles
Moles = Molar mass

| 276563.04
162.1406

= 1705.6986 moles

= (1705.6986 x0.07)
Cellulose reacted = 119.5025 kmoles/ hr
Cellulose reacted = 19120.41 kg/hr

Cellulose unreacted = (1705.6986 x 162.14)
= 276561.971 kg/hr
= 276561.971 —19120.41
Cellulose unreacted = 257442.6 kg/hr

Cellulose reacted = Glucolig produced
Glucolig produced = 19376.14 kg/hr

(3.1)
(3.2)

18
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Reacted glucolig = moles x conversion
=119.5025x 0.9
=107.5525 kmoles/ hr

Glucolig reacted = 107.5523 kmol/hr

Glucose produced = (107.5523 x 180)
=19359.414 kg/hr
Glucose produced = 19359.414 kg/hr

Glucolig unreacted = 119.5025-107.5523
=11.95025 k mol/hr
Glucolig unreacted = 1935.941 kg/hr

Material balance

Table 3.4: Material Balance on Pre-Hydrolysis Reactor (R-101)

Material Input (Kg/hr) Material Output (Kg/hr)
Components Stream-07 Stream-08 Stream-09
Cellulose 276563.04 - 257442.63
Water 179878.4 - 179878.4
Sucrose 3372.72 - 3372.72
Lignin 73637.72 - 73637.72
Ash 37662.04 - 37662.04
Acetic Acid 8431.8 - 8431.8
Glucose Oligomer 50028.68 - 50028.68
H,SO, 0 62957.44 1935.9413
Glucolig 0 - 61386.08
Glucose 0 - 19359.413
TOTAL 693135.4264 kg/hr 693135.4264 kg/hr
Material Balance on Neutralization Reactor (R-102):
NH; 6.9*10°kg/hr —
25°C T
1 bar
25°C /j 25°C
1 bar 1bar
LJ 693135.4264 kg/hr
693135.4264 kg/hr R-102

Figure 3.4: Neutralization Reactor (R-102)
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1% NH; is added in neutralization reactor

NH3 = 6931.354 kg/hr

Reactions:

CH3COOH + NH; — NH4COOCH;
H,SO4+2NH; ——» (NH4)ZSO4

Reaction # 01:

CH3;COOH + NH; —— > NH,COOCH;3;
Limiting reactant = CH;COOH

Flowrate of CH3COOH = 7164.568 kg/hr
Molar mass of CH3;COOH = 60

Mass
Moles = Molar mass

_ 7164.568
60

CH3COOH reacted = 119.4505 kmol/ hr

CH3;COOH reacted = 7167.03 kg/hr

NH4COOCH; produced = 7167.03 x 77
NH;,COOCH; produced =9197.6885 kg/hr
Reaction # 02:

H,SO4+ 2NH; — (NH4)2804

Limiting reactant = NH3
NH; unreacted = 2x 144.45

= 288.2762 kmol/hr
NH; unreacted = 4900.6958 kg/hr

(NH4)2SO4 produced = 288.2762 x 132.14
(NH4)2SO4 produced = 38092.8170 kg/hr

H,SO, unreacted = 338.1124 kmol/hr

H,SO,4unreacted = 33135.01 kg/hr

Material balance

Conversion=100% (3.3)
Conversion=100% (3.4)

Conversion=100%

Conversion=100%
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Table 3.5: Material Balance on Neutralization Reactor
Material Input (Kg/hr) Material Output (Kg/hr)
Components Stream-9 Stream-10 Stream-11
Cellulose 257442.63 - 257442.63
Water 179878.4 44969.6 134908.8
Sucrose 3372.72 - 3372.72
Lignin 73637.72 - 73637.72
Ash 37662.04 - 37662.04
Acetic Acid 8431.8 1264.77 7167.03
Glucose oligomer 50028.68 - 50028.68
H,SO, 1935.9413 - 1935.9413
Glucolig 61386.08 - 61386.08
Glucose 19359.413 - 19359.413
TOTAL 693135.4264 kg/hr 693135.4264 kg/hr

3.7 Material balance on Saccharification Reactor (R-103):

48°C
1 bar

Cellulase  5.1*10"kg/hr

a6

48°C
1 bar

»

48°C
1 bar

606770.1263 kg/hr

18

606770.1263 kg/hr

Figure 3.5: Saccharification Reactor (R-103)

Reactions:

(CeH1005)n —— > CgH100s
C6H1005 EE— C6H1206
Calculations:

Composition of cellulose = 257442.63

Molar mass of cellulose = 162.14

X =0.07
X=09

(3.5)
(3.6)
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Mass
Moles = Molar massX conversion

Cellulose reacted = 1430.237 kmol/ hr

Glucolig produced = (1430.237 x162.14)
Glucolig produced = 231898.6272 kg/hr

Cellulose unreacted = 257442.6 — 231898.62
Cellulose unreacted = 25744.26 kg/hr

Glucolig reacted = moles x conversion
Glucolig reacted = 1370.078 kmol/hr
Glucose produced = 1370.078 x 162.14

Glucose produced = 246614 kg/hr
Water unreacted = 6745.44 kg/hr

Table 3.6: Material Balance on Saccharification Reactor

Components Input (Kg/hr) Output (Kg/hr)
Stream-16 Stream-15 Stream-17
Cellulose - 257442.63 25744.263
H,0 - 134908.8 6745.44
Sucrose - 3372.72 3372.72
lignin - 73637.72 73637.72
Ash - 37662.04 37662.04
Acetic Acid - 0 0
Glucose Oligomer - 50028.68 50028.68
H,SO, - 1935.9413 11691.811
Glucolig - 33135.01 33135.01
Glucose - 19359.413 265973.41
(NH4)2SO4 - 9197.6885 9197.6885
NH,COOCH; - 38092.82 38092.82
Cellulase 51488.52646 - 51488.526
TOTAL 606770.1263 kg/hr 606770.1263 kg/hr
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3.8 Material Balance on Fermentation Reactor (R-104):

611918.9789 Kg/hr T
48°C
1 bar
W N e
1 bar
1 &
48°C 611918.9789 Kg/hr

Zymo 5.1*10%kg/hr

Figure 3.6: Fermentation Reactor (R-104)

Reaction:
Ce¢H120¢ — 2C,Hs0OH +2CO» Conversion = 0.95 (3.7)

Calculations:
Mass

Moles = Molar mass

Glucose = 1477.63 kmol/hr

Moles = 1477.63 x 0.95

Glucose reacted = 1418.525 kmol/hr

Glucose unreacted = 1477.63 — 1418.525
=59.105 k mol/hr
Glucose unreacted = 10638.94 kg/ hr

Ethanol produced = 2x 1419.36
Ethanol produced = 2837.05 kmol/hr

Ethanol produced = 130504.3 kg/hr
Carbon- dioxide produced = 124830.2 kg/hr
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Material balance

Table 3.7: Material Balance on Fermentation Reactor

Input (Kg/hr) Output (Kg/hr)
Components Stream-20 Stream-18 Stream-21
Cellulose 25744.263 0 25744.263
H,O 6745.44 - 6745.44
Sucrose 3372.72 - 3372.72
Lignin 73637.72 - 73637.72
Ash 37662.04 - 37662.04
Acetic Acid 0 - 0
Glucose Oligomer 50028.68 - 50028.68
Glucolig 11691.811 - 11691.811
H,SO, 33135.01 - 33135.01
Glucose 265973.41 - 10638.936
NH,COOCH; 9197.6885 - 9197.6885
(NH4)2SO4 38092.82 - 38092.82
Ethanol 0 - 130504.29
CO, 0 - 124830.19
Cellulase 51488.526 - 51488.526
Zymo 0 5148.8526 5148.8526
TOTAL 611918.9789 Kg/hr 611918.9789 Kg/hr

Material Balance on Distillation Column (D-101):

231686.9 Kg/hr

223°C
1bar

E-101

28

30

83°C
1bar

Figure 3.7: Distillation Column (D-101)

L

146827.2 Kg/hr
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Overall material balance on distillation column

F=D+W (3.8)
Component balance (ethanol):
_ 0.572215-0.23
0.77—0.23
D =0.63373F
D = 0.6337 %(231686.9)
D =146827.2 kg/ hr
F=D+W
231686.9 = 146827.2 +W
W = 84859.7 kg/hr
F =D+W
231686.9 = 146827.2 +84859.7
231686.9 = 231686.9
Table 3.8: Material balance on Distillation column
Components | Input(kg/hr) % Distillate(kg/hr) % Bottoms(kg/hr) %
H,O 6745.44 2.9576351 30833.711 21 56772.198 64
Sucrose 3372.72 1.4788176 0 887.0656 1
H2S504 33135.01 14.528522 0 1774.1312 2
Glucose 10638.936 | 4.6647945 0 1774.1312 2
Ammonium
38092.82 | 16.702344 0 3548.2624 4
Suphate
Ethanol 130504.29 57.22148 113056.94 77 20402.509 23
NH,COOCH, 9197.6885 | 4.0328587 2936.5439 2 3548.2624 4
Total 23:5/?:?9 101.58645 | 146827.2 Kg/hr 100 | 88706.56 Kg/hr 100
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3.10 Material Balance on Distillation Column (D- 102):

E-104

7 g 78°C
@ 1 bar
83°C

1 bar D-102

146827.2 Kg/hr —— — 1 44

T,

Figure 3.8: Distillation Column (D-102)

43 >
16940.09 Kg/hr

Overall material balance on distillation column

F=D+W (3.9)

Component balance (ethanol):

~ 0.87-0.01
0.99-0.01

D = 0.87755F
= 0.87755%(146827.2)
129887.12 kg/ hr
F=D+W
146827.2 = 12988.1 +W
W = 16940.09 kg/hr
F=D+W
146827.2 = 129887.1 +16940.09
146827.19 = 146827.19
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Table 3.9: Material Balance on Distillation column

Components | Input(kg/hr) % Distillate(kg/hr) | % | Bottoms(kg/hr) %
Ethanol 113056.94 87.693315 128588.23 99 419.8116 1

Water 30833.711 23.916359 1298.8711 1 37573.138 89.5
NH4COOCH3 | 2936.5439 2.2777485 0 0 3988.2102 95

Total 1?3/112 129887.11 Kg/hr 16940.09 Kg/hr | 100

3.11 Material Balance on Reactor (R-105):

530°C
40 bar

&

Ethanol 1.2*10°kg/hr

127729.8 kg/hr -
R-105 0
530°C
\\T/ 40 bar
Figure 3.9: Reactor (R-105)

Reactions:
CoHsOH — > H,0+CyH, (3.10)
2C,HsOH —— >  H,+ (CyHs),0 (3.11)
C2H50H —  H;+C,H,0 (3.12)
2H;+ C;HsOH —— > H,0 + 2CH, (3.14)
H,0 + C;HsOH —— > CH3COOH + H, (3.15)
H,+ C,HsOH —— > CHg+ H; (3.16)
Calculations:

The selectivity of the reactions was 98%.
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Flowrate of Ethanol = 1.1x10° kg/hr
Ethylene Produced = 126016.5 Kg/hr

Unreacted Ethanol = 126016.5/46
Unreacted Ethanol = 2571.765 Kg/hr

Unreacted Ethanol = 55.90793 Kmoles/hr
Ethanol Reacted = 55.90793x0.7
Ethanol Reacted = 39.1355 Kmoles/hr

H,O Produced = 39.1355 Kmoles/hr
Unreacted Ethanol = 55.90793 — 39.1355
Unreacted Ethanol = 16.77238 Kmoles/hr

Ethanol Reacted = 16.77238x0.5
Ethanol Reacted = 8.386189 Kmoles/hr

Diethyl Ether Produced = 8.3861x74.2
Diethyl Ether Produced = 622.2486 Kg/hr

Unreacted Ethanol = 8.386189 Kmol/hr
H, Produced = 8.386189 Kmoles/hr
Ethanol Reacted = 8.3861x0.08
Ethanol Reacted = 0.67088 Kmaoles/hr
H, Produced = 0.67088 Kmoles/hr

Unreacted Ethanol = 8.3861 — 0.67088
Unreacted Ethanol = 7.638141 Kmoles/hr
Ethanol Reacted = 7.638141x0.01
Ethanol Reacted = 0.670895 Kmoles/hr

Acetaldehyde Produced = 29.55 Kg/hr

H, Reacted = 0.09051 Kmoles/hr
H,0 Produced = 0.09051x18x0.5

H,0 Produced = 0.04528 Kmoles/hr

Unreacted H,o = 39.18084 Kmoles/hr
Ethanol Reacted = 10.84x0.025
Ethanol Reacted = 0.1905 Kmoles/hr

Material balance
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H, Produced = 0.190954 Kmoles/hr

Unreacted Ethanol = 342.2281 Kg/hr
H, Reacted = 0.009157 Kmoles/hr

Ethane Produced = 0.274729 Kg/hr
H,0O Produced = 0.009157 Kmoles/hr

Total H,O = 687.7885 Kg/hr
Total H, = 9.1574 Kg/hr

Table 3.10: Material Balance on Reactor

Component Input (kg/hr) Output(kg/hr)
Ethanol 128588.235 342.22806
Ethylene 0 126016.47

Diethyl-Ether 0 622.255241

Acetaldehyde 0 29.5529308

Methane 0 1.4491335

Ethane 0 0.27472401

Acetic Acid 0 11.4572117

H2 0 18.2966192

H,O 0 687.788491
TOTAL 128588.2 kg/hr 127729.8 kg/hr

3.12 Material Balance on Flash Separator (S-102):

28°C 126742.7 Kg/hr
1bar <25
R
48°C
3 bar

$-102
128588.2 kg/hr

48°C
1 bar

—  087.0675 Kg/hr
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Figure 3.10: Flash Separator (S-102)

82.3% of Ethanol is removed
Composition of ethanol = 342.22806
= (342.22806 x0.82)
Ethanol Removed = 281.6537 Kg/hr
100% of Acetaldehyde is removed
Composition of acetaldehyde = 29.5529308 = (29.5529308x1)
Acetaldehyde Removed = 29.55293 Kg/hr
96.6% of water is removed
Composition of water = 687.788491 = (687.788491x0.96)
Water Removed = 664.4037 Kg/hr
100% of Acetic Acid is removed
Composition of acetic acid = 11.4572117 = (11.4572117x1)
Acetic Acid Removed = 11.4572117 Kg/hr

Table 3.11: Material Balance on Flash Separator

Components Input(kg/hr) Output(kg/hr)
Stream-47 Stream-48 stream-49
Ethanol 342.22806 60.5743666 281.653693
Ethylene 126016.47 126016.47 0
Diethyl-Ether 622.255241 622.255241 0
Acetaldehyde 29.5529308 0 29.5529308
Methane 1.4491335 1.4491335 0
Ethane 0.27472401 0.27472401 0
Acetic Acid 11.4572117 0 11.4572117
H2 18.2966192 18.2966192 0
H,O 687.791192 23.3848087 664.406383
TOTAL 126742.7 Kg/hr 987.0675 Kg/hr
TOTAL 128588.2 kg/hr 127729.7725kg/hr
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4.1 General Equation of Energy Balance:

Energy balance

(Rate of Heat In) - (Rate of Heat Out) + (Generation / Consumption) = 0

4.2 Energy Balance on Pre-Heater (H- 101):

Tin=25°C
Tou=190°C

Heat Duty

Q =mCuAT

Q = 2.3x10° MJ/hr
Steam Requirement
Saturated steam

P =5 bar

T=152°C

Steam flow rate
Q=mi

m = 1.141x10° kg/hr

Table 4.1: Thermodynamic Data for Pre-Heater ( H-101)

Components Flow rates (kg/hr) Cp (kJ/kg.°C)
Corn Stover 2.7x10° 1.37
Water 1.7x10° 1.84
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Energy balance

4.3 Energy Balance on Reactor -101 (Pre-hydrolysis Reactor):

H,SO, 6.1*10%kg/hr

140°C T
12 bar
8
6 / 140°C
Eob;:r > 12 bar
’ 1 I\J ’ 693;35 4264 kg/h
693135.4264 kg/hr : g/nr
R-101
Figure 4.1: Pre-Hydrolysis Reactor (R-101)
Reaction:
(CeH100s)n CsH1006 4.1)
AHrps = 3.9 x10° ki/hr AH, g,
= A, 55+ ). [(nCP)P — (nCp)R]dT (4.2)
AHrigo = 3.9%x10° kJ/hr
Rate of heat in — Rate of heat out — Consumption of heat = Q
Q =57.6 MJ/hr (Endothermic Reaction)
Steam Requirement:
Saturated steam
P =5Dbar
T=152°C
Steam flow rate
Q=mA\ (4.3)
m = 2.7x10* kg/hr
Table 4.2: Energy Balance on Reactor -101
Components Heat In (kJ/hr) Heat Out (kJ/hr) Cp (kJ/kg.°C)
Corn stover 1.648x10° 2.17x10° 1.37
H,SO, 1.246x10’ 1.246x10’ 9.54
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H,0 9.9x10’ 9.9x10’ 3.36
Glucose - 5.77x10° 1.5
Total 2.77x10° 3.35x10° 16.67

4.4 Energy Balance on Flash Separator (S-101):

190°C
12 bar

10

190°C
1 bar 12

693135.4264 kg/hr

Rate of heat in = 2.78x10° MJ/hr

Vapor outlet:

S-101

——>

Water 4.4*10*kg/hr
Acetic Acid 1.2*10° kg/hr

190°C
1 bar

— 693135.4264 kg/hr

Figure 4.2: Flash Separator (S-101)

Latent heat of vaporization for water = 2250 kJ/kg
Latent heat of vaporization for acetic acid = 870.94 kJ/Kg
Weighted A = 693 KJ/kg

Q=mA\

Q = 3.2 x10*“MJ/hr

Liquid outlet

Rate of heat outlet = 1.775x108 k/hr
Rate of heat in — Rate of heat out = Q
Q=1 x10°M J/hr

Steam Requirement

Saturated steam
P =5 bar
T=152°C
Q=mA

(4.4)
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m = 4.8 x10*kg/ hr

Energy balance

Table 4.3: Thermodynamic Data for Flash Separator -101

Components Flow Rates (kg/hr) Cp (kJ/kg.°C)
Cellulose 2.5x10° 18
Water 1.7x10° 3.36
Sucrose 3.3x10° 0.42
Ash 3.7x10° 15
Acetic Acid 8.4x10° 9.54
H,SO, 6.1x10° 0.11
Glucolig 1.9x10* 11.2
Glucose 1.9x10* 0.219

Temperature input =T;, = 190°C

4.5 Energy Balance on Waste Heat Boiler (H-102):

Temperature output =Ty = 25°C

Weighted Cp = 9.672 KJ/kg. K
Heat duty = Q = mCpAT

Q = 8.96x10° MJ/hr

Production of Saturated steam

P = 5atm
T=152°C

Q
CpAT+A

m = 3.3x 10° kg/hr

Table 4.4: Thermodynamic Data for WHB-102

Components Flow Rates (kg/hr) Cp (kJ/kg.°C)
Cellulose 2.5x10° 1.5
Water 1.3x10° 3.36
Sucrose 3.3x10° 0.42

(4.5)

(4.6)
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Ash 3.7x10°
Acetic Acid 7.1x10° 9.54
Glucose oligomer 5.0x10* 0.2
H,SO, 1.9x10° 0.13
Glucolig 1.6x10° 185.33
Glucose 1.9x10* 0.2

4.6 Energy Balance on Reactor- 102 (Neutralizer):

Temperature input =T;, = 25°C
Temperature output =Ty = 25°C
Temperature reference =T e = 25°C

Reactions
CH3COOH + NH; ———— > NH4COOCH;3; 4.7)
H,SO4+ 2NH3 > (NH4)ZSO4 (48)

AHrps = -5.783x10" k/hr

Rate of heat in — Rate of Heat out + Heat generation - Q =0
Q =-5.7 x10* MJ/hr (Exothermic Reaction)

Cooling requirement:

Q =mC,AT (4.9)

. CPQA . (4.10)
5.783%x107

M="(4.2)(20)

m = 6.98x10° kg/hr
Table 4.5: Thermodynamic Data for R-102

Components Flow rates (kg/hr) Cp (kJ/kg.°C)
Cellulose 2.5x10° 1.3
Water 1.3x10° 1.86
Sucrose 3.3x10° 1.24
Acetic Acid 7.1x10° 18.72
Glucose oligomer 5.0x10* 0.4
Glucolig 1.9x10° 185.3
H,SO, 6.1x10" 2.96
Glucose 1.9x10* 0.4
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4.7 Energy Balance on Pre-Heater (H-103):

Process Stream
Temperature input =T;, = 25°C
Temperature output =Ty = 48°C
Weighted Cp = 2.0675 kJ/Kg. k
Heat duty
Q =mCpAT
Q = 2.8x10* MJ/hr
Saturated steam at
P =5Dbar
T=152°C
Q=mA
m = 1.36x 10* kg/hr

Table 4.6: Thermodynamic Data for H-103

Energy balance

(4.11)

Components Flow Rates (Kg/hr) Cp (kJ/kg.°C)
Cellulose 2.5x10° 1.3
Water 1.3x10° 4.18
Sucrose 3.3x10° 1.23
Ash 3.7x10" 1.24
Glucose oligomer 5.0x10* 0.4
Glucolig 1.9x10° 185.3
H,SO, 3.3x10" 0.13
Glucose 1.9x10* 0.4
NH,COOCHj5 9.1x10° 7.6
(NH,),SO, 3.8x10* 1.423
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4.8 Energy Balance on Reactor- 103 (Saccharification Reactor):

48°C
1 bar

Cellulase  5.1*10"kg/hr

1 bar

606770.1263 kg/hr

606770.1263 kg/hr

Figure 4.3: Saccharification Reactor (R-103)

Temperature input =T;, = 48°C
Temperature output =T, = 48°C
Temperature reference =T = 25°C
Reaction

(CeH100s)n + H0 > CeH120s (4.12)
AHr,5=399026 kJ/hr
AHrgg = 3.9x10° kd/hr

Rate of heat in

Weighted Cp = 2.0675 kJ/kg.k

Q =mCpAT (4.13)
Q = 2.8 x10* MJ/hr

Rate of heat out

Q =mCpAT

Q = (606770) x(1.2719) x(23)

Q=17.7 MJ/hr

Rate of heat in — Rate of Heat out — Consumption + Q=0 (4.14)
Q =1.1x10* MJ/hr (Endothermic Reaction)
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Saturated steam at
P = 5bar
T =152°C
Q=mir
m = 5.4 x10° kg/hr
Table 4.7: Thermodynamic Data for R-103

Components Flow Rates (Kg/hr) Cp (kJ/kg.°C)
Cellulose 2.5x10° 2.0
Water 1.3x10° 1.84
Sucrose 3.3x10° 0.42
Ash 3.7x10* 1.26
Glucose oligomer 5.0x10* 0.21
Glucolig 1.9x10° 185.3
H,S0, 3.3x10" 0.13
Glucose 1.9x10* 0.21
NH,COOCH; 9.1x10° 7.2
(NH,),SO, 3.8x10" 1.42

4.9 Energy Balance on Fermentation Reactor (R- 104):

611918.9789 Kg/hr T
48°C
1 bar
@ e 48°C
1 bar
I\_) 22 >
48°C 611918.9789 Kg/hr

Zymo 5.1%10°kg/hr

Figure 4.4: Fermentation Reactor (R-104)
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Reaction
CeH120¢

AHrys = -2.634x10° k/hr

AHryg = -2.61x10° kJ/hr

2C,Hs0H+2CO,

Rate of heat in

Weighted Cp = 1.2719 kJ/kg.k
Q =mCpAT

Q = 1.7 x10* MJ/hr

Rate of heat out

Q =mCpAT

Q = 1.6 x10* MJ/hr

Rate of heat in — Rate of Heat out + generation - Q =0

Q =-2.2 x10° MJ/hr (Exothermic Reaction)

Cooling Water Flowrate

__Q
mCpAT

m = 2.7x 10° kg/hr

Table 4.8: Thermodynamic Data for R-104

Energy balance

(4.15)

(4.16)

(4.17)

(4.18)

Components Flow Rates (Kg/hr) Cp (kJ/kg.°C)
Cellulose 2.5%10° 2.0
Water 6.7x10° 4.2
Sucrose 3.3x10° 0.42
Ash 3.7x10° 1.25
Glucose oligomer 5.0x10* 0.21
Glucolig 1.1x10° 185.3
H,SO, 3.3x10° 0.13
Glucose 2.6x10° 0.21
NH,COOCH; 9.1x10° 7.26
(NH,),SO,4 3.8x10° 1.42

4.10 Energy Balance on Heat Exchanger (H- 104):

Temperature input = T;, = 40°C
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Temperature output = Toy =223°C
Heat duty
Q =mCpAT
Q =1 x10° MJ/hr
Saturated Stream
P = Sbar
T =152°C
Steam flow rate
Q=mir
m = 5x10* kg/hr
Table 4.9: Thermodynamic Data for H-104

Components Flow rates (kg/hr) Cp (kJ/kg.°C)
Ethylene 1.2*10° 2.98
Di-Ethyl-Ether 6.8*10° 0.24
H, 1.8*10" 14.71

4.11 Energy Balance on Distillation Column (D- 101):

Steam is saturated liquid at its bubble point i.e 223°C
Condenser duty
Dew point = 83°C
Weighted Cp = 3.4791 kJ/Kg. k
Weighted A = -1225.8 kJ/kg
Q =mCpAT + mA
Q = -1 x10° MJ/hr
Cooling water requirement
Q =mCpAT
m = 1.2 x10% kg/hr
Re-boiler duty:
Q=mA
Weighted A = 1806.17kJ/kg

(4.19)

(4.20)
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Q =1.6 x10° MJ/hr

Saturated Steam
P = 5bar

T =152°C
Q=mA

m = 7.6x10" kg/hr

Energy balance

Table 4.10: Thermodynamic Data for D-101

Components Flow Rates (Kg/hr) Cp (kJ/kg.’C)
Water 6.7x10° 4.2
Sucrose 3.3x10° 0.42
H,SO0, 3.3x10* 0.12
Glucose 2.6x10* 0.219
NH,COOCH; 9.1x10° 6.5
(NH,),SO, 3.8x10" 1.42
Ethanol 1.3x10° 5.0

4.12 Energy Balance on Distillation Column (D- 102):

Steam is saturated liquid at its bubble point i.e 83°C

Condenser duty

Dew point = 78°C

Weighted Cp = 0.025 kJ/Kg. k
Weighted A =-926.182 kJ/kg

Q =mCpAT + mA
Q =-1.2 x10° MJ/hr

Cooling water requirement

Q =mCpAT

m = 1.42 x10° kg/hr
Re-boiler duty
Q=m\

Weighted A= 2517.5 kJ/kg

Q = 4.2 x10* MJ/hr
Steam at

P = 5bar

T =152°C

(4.21)
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Q=mA\
m = 5.20x10* kg/hr
Table 4.11: Thermodynamic Data for D-102

Components Flow Rates (Kg/hr) Cp (kJ/kg.°C)
Water 3.0x10* 15

NH,COOCH; 2.9x10° 6.5
Ethanol 1.1x10° 2.4

4.13 Energy Balance on Reactor- 105:

C,HsOH ——>  H,0+C,H, (4.22)

2CoHsOH —— H, + (C2H5),0 (4.23)
C,HsOH ———  Hp+C,H,0 (4.24)

2H, + C;HsOH ———— H,0 + 2CH, (4.25)
H,0 + C0HsOH— CH3COOH + H, (4.26)
H,+ C,HsOH —— C,Hg+ H, (4.27)
Reactions

AHrs = 2.05x10° kJ/hr
AHrszo= 2.924x10° kJ/hr
Rate of heat in

Q =mCpAT

Q =4 x10* MJ/hr

Rate of heat out

Q =mCpAT

Q = 1.922x10° MJ/hr
Rate of heat in — Rate of Heat out — Consumption + Q=0
Q = 21.4 x10*MJ/hr
Steam Flow-rate:
Saturated steam at

P = 5bar

T=152°C

Q=mA

m = 1x10° kg/hr
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4.14 Energy Balance on Waste Heat Boiler (WHB-105):

Temperature input =T;, = 530°C
Temperature output =T, =100°C
Heat duty
Q =mCpAT + mir
Q = 4.6 x10° MJ/hr
Saturated Stream
P=5bar T=152°C
Steam flow rate

Q =mCpAT+ mA

__ 0
CpAT+A

m = 1745.2 kg/hr

Table 4.12: Thermodynamic Data for WHB-106

Components Flow rates (kg/hr) Cp (kJ/kg.°C)
Ethanol 6.0*10" 4
Ethylene 1.2*10° 298

Di-ethyl-ether 6.2*10° 0.24
Methane 1.4 4.7

Ethane 2.7*10™ 3.2
H, 1.8*10" 14.71
H,0 2.3*10* 10

4.15 Energy Balance on Flash Separator (S-102):

Feed
Weighted Cp = 1.754 kJ/Kg. k
Q =mCpAT
Q= 16.8 x10° MJ/hr
Vapor outlet
Q=mA
Q = 6.1 x10* MJ/hr
Liquid outlet
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Weighted Cp = 3.63 kJ/Kg. k

Q =mCpAT

Q=243 MJ/hr

Rate of heat out = 6.17x10" k/hr

Rate of heat in — Rate of heat out = Q

Q = -44670 MJ/hr
Cooling requirement
Q=mCpAT

Q

T CpAT

m = 5.2x10° kg/ hr

Energy balance

Table 4.13: Thermodynamic Data for S-102

Components Flow rates (kg/hr) Cp (kJ/kg.°C)

Ethanol 6.0*10" 6

Ethylene 1.2*10° 2.98

Di-ethyl-ether 6.2*10° 0.24
Methane 1.4 4.7
Ethane 2.7*10" 3.2

H, 1.8*10" 14.71
H,0 2.3*10" 10
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5.1 Reactor Design:

5.1.1 Introduction:
The heart of a chemical reaction is the reactor. Reactor design is an essential part of the
process' overall design because it is the only area where raw materials are transformed into
finished goods. The industrial chemical reactor's design must adhere to the some of the
requirements:

e The chemical factors: The design must permit the desired reaction to progress to the
necessary degree of conversion by allowing enough residence time.

e Transfer factors of mass: In heterogeneous reactions, the diffusion rate of the species that
are reacting must in control of the reaction rate rather than chemical kinetics.

e Transfer factors of heat: the reduction or addition of reaction heat.

e The safety factors: the containment of potentially dangerous reactants and products, as well
as the regulation of reaction and process conditions.

5.1.2 Principal Types of Reactors:
Reactor designs are typically categorized using the following features:

e Batch or continuous operating modes.
e Homogeneous or heterogeneous phases are observe.
e Geometry of the reactor: The flow pattern and the method of contacting the phases

Reactors are classified in the following broad category:

e Stirred tank reactor
e Tubular reactor
e Packed bed, stationary and mobile

There are further varieties, such as fluidized beds and micro channel reactors, in addition to
these. The interaction of the reactor design with the other process processes must not be
disregarded while choosing the reactor conditions, especially the conversion, and
optimizing the design.

The size and expense of any equipment required to separate and recycle unreacted
materials will depend on the degree of conversion of the reactor's input materials. In these
situations, it is necessary to optimize the reactor as a whole with the supporting machinery.

5.1.3 Selection of Reactor:

There are many factors to take into account while choosing the reactor type for a particular
procedure.

e Temperature and pressure is mandatory for chemical reaction.

e The requirement for the reactants and products to be removed or added.
¢ Reaction Phase.

e The required product delivery strategy.

e The use of catalysts should take into consideration aspects like the need for solid catalyst
particles and contact with fluid reactants and products.
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Reactor Relative cost.
The design of the reactor must Adhere the following requirements:

Chemical factors: Enough residence time must be allowed in the design for the desired
reaction to proceed to the necessary level of conversion.

Mass transfer factors: For instance, in heterogeneous reactions, the rates of diffusion of the
species that are reacting may be in control of the reaction rate rather than chemical kinetics.
Heat transfer factors: Taking away or adding heat from the reaction.

Safety factors: The containment of potentially harmful reactants and products, as well as
the regulation of reaction and process conditions.

5.1.4 Design of Multi-Tubular Reactor (R-105):

530°C
40 bar

1

43

Ethanol 1.2*10°kg/hr

127729.8 kg/hr -
R-105

530°C
\\T—/ 40 bar

Figure 5.1: Multi-Tubular Reactor (R-105)

For fixed-bed catalytic reactor, multi-tubular reactors are frequently used in the chemical
and refining sectors. In the reactor, a gas phase reaction is taking place. Since the
dehydrogenation of ethanol is a strongly endothermic reaction, steam must be added to the
reactor to keep it at a constant temperature, necessitating the use of a shell and tube
configuration.

C;HsOH ——>  H;0+CyH, (5.1)
2C,HsOH ————>  H,+ (CoHs),0 (5.2)
C,HsOH ————>  Hp+C,H,0 (5.3)
2H, + CoHsOH —> H,0 +2CH,4 (5.4)
H,O + C,HsOH ~—————> CH3COOH + H, (5.5)
H,+ CbHsOH —> CyHg+H; (5.6)
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Rate Equation:

-Ta = K*((Pe)/(Pe + (Kuw/Ka)*Py + (Kaw/Ka)*Pe*Py))

n=1,k=1500hr™
Pe = 4048 kPa, P,, =4.053 kPa
(Kw/Kz) = 063, (Kaw/Kz) =0.2
-ra = 828.16 kPa/hr
-ra = 125.69 kmol/m°hr
Design Equation:
W/Fao = [ dXA/—1A
Weight of Catalyst:
W = 1760 kg
Volume of Catalyst:
V. = W/ppuik
Ve=22m’
Volume of Reactor:
V,=V./1-¢
V,=3m®
Space Time:
t=V\/V,
1=33s
Tube Dia:
L =16 ftor4.86 m
Tube dia=D;=0.12 m
Particle size = D, = 0.0014 m
D(/D, = 85.7
Volume of Tube:
V. = nD{L/4
V, = 0.054m’
No. of Tubes:
N; = V/V;
Nt = 56 tubes

Equipment Design

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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Shell Dia:

Nt = ((Ds — ka)®* /4 + ko) — P*(Ds — ka)*(nks + ks))/1.223 Py
ki=1.080, k»=-0.9000, ks3=0.690, k4=-0.8000
Ds=0.26 m

Shell Height:

Li=4.8m

Ls = 40% of L+ Ly

Ls=6.8m

Pressure Drop:

AP/L = [(150*u*(1-e)**G)/(e¥*Dy**p)] + [(1.75%(1-)*G?)/(e**Dy*p)]
1 = 9.135* 10 kg/ms

p = 800 kg/m®

D, =0.0014 m

G = 146 kg/sm?

AP =5.29 psi

(5.13)

(5.14)
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SPECIFICATION SHEET
Identification
Item Reactor
Item no. R-105
No. required 2
Operation Continuous
Type Multi Tubular Packed Bed Reactor
Catalyst Al,O3
Function
Dehydration of Ethanol to Ethylene
Chemical Reactions
CoHsOH — H20 + CoH,y
2C;HsOH — H,+ (C2Hs),0
C,HsOH — H, + C,H,0
2H, + C,HsOH — H,0 + 2CH4y
H,O + C;Hs0H — CH3COOH + H,
H,+ C2H50H —>C2H6 + H,

Weight of bed 1760 Kg
Volume of Catalyst 2.2m’
Volume of Reactor am?

Space Time 3.3 sec
Diameter of tube 0.12m
Number of Tube 56

Shell Diameter 0.26 m

Pressure Drop 5.29 psi
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5.1.5 Design of Pre-Hydrolysis Reactor (R-101):

H,SO, 6.1%10% kg/hr

140°C T
12 bar
0 / 140°C
140°C 12 bar
12 bar
7 ” 9 >
693135.4264 kg/hr I\J 693135.4264 kg/hr

Figure 5.2: Pre-Hydrolysis Reactor (R-101)

In the pre-hydrolysis reactor, the slurry of maize stover is treated with diluted sulfuric acid
to dissolve the lignin shield and expose the cellulose for additional enzymatic hydrolysis.
The following factors led to the selection of the continuous stirred tank reactor.

Reaction That Is Moderately Endothermic

Accurate Temperature Regulation

Superior heat and mass transmission rates.

Reduced labor requirements

Effective for delayed reactions that require a lot of hold time
Spread of the Catalyst

To Control Liquid-Gas Systems

SRV NENENE NN

Reaction:
(CeH1005)n — > CgH1206 Conversion = 0.07 (5.15)
Rate Equation:
Ta=k Ce (5.16)
n=1,k=98hr"
-ra =k Ceo (1-X¢)
X =0.07, Cgo = 2.6 kmol/m®
-ra = 24.5 kmol/m>hr
Design Equation:
V/IFeo = AXc ] -ta (5.17)
Volume Calculations:
Feo =1705.7 kmol/hr
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V=5m’

5% Safety allowance
V=51m’

1=285s

L/D=1.2

L=2m ,D=174m

Impeller Design:

Pitched blade turbine is selected because:

For mixing of slurries
Viscosity is moderately high
Maximum Radial Flow

No back mixing

Promote Heat Transfer
Impeller Specifications:

Dia of impeller =D, =0.58 m
Height of impeller =W =0.11 m
Length of impeller = L, =0.145 m

Distance of impeller from bottom = E =0.58 m

Thickness of Baffles =J =0.145 m
Power Requirements:

Agitator Speed=n =100 rpm

Re = 9768

Np=1.5

r = 1088.8 kg/m®

P = (Np)*(Da)**(r)*(n)’

P=57hp

Jacket Selection:

Dimple Jacket is selected because

High pressure steam
Induce turbulence
Low pressure drop
Cost effective

La=0.145m, Da=0.58m
n =100 rpm

Equipment Design
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Tr=140°C Ts=152°C
p =1088.8 kg/m3

n=0.06kg/ms k=0.0316 W/mK

Cp = 1.37 KJ/kg K

Re = (La2*n* r)/ pu

Re =610

jh=15

i = jin *(K/Da)*((cy* W)/K)*™°
hi = 3.327 W/m°K

ho = 8520 W/m’K

Ue = (hi*ho)/(hi+ho)

U, = 3.325 W/m’K

R4 =0.003

1/Uq = (1/U) + Ry

Ug = 3.27 W/m’K

Jacket Covers 95% of reactor area

A= 0.95*(zD, + nD%/4) = 13 m?

Equipment Design

(5.19)

(5.20)
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SPECIFICATION SHEET

Identification

Item Reactor
Item no. R-104
No. required 3
Operation Continuous
Type Continuous stirred type reactor
Function

Fermentation of Glucose to Ethanol

Chemical Reaction
CeH1,05 —2C,H50H + 2CO»

Reactor Specifications Jacket Specifications

Length of Reactor 2m Process Fluid Temp 48°C

Diameter of Reactor 1.36 m t; 25°C

Volume of Reactor 3.05m’ t) 45°C
Speed of Impeller 100 rev/min hi 4.26 W/m°K
Length of Impeller 0.1125m ho 1.61 W/m°K
Diameter of Impeller 0.45m ud 1.15 W/m°K

Power 6.46 hp Area 9.5m’
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Equipment Design

SPECIFICATION SHEET

Identificatio

n
Reactor

Item

Item no.

R-103
1

No. required

Operation

Continuous

Type

Continuous stirred type reactor

Function

Hydrolysis of Cellulose to Glucose

(CsH1005) n + H,O

Chemical Reaction

— CeH 1206

Reactor Specifications Jacket Specifications
Volume of Reactor 1.2m’ Jacket Type Dimple Jacket
Diameter of Reactor 1m Steam Temperature 152°C
Length of Reactor 15m Steam Pressure 5 bar
Type of Impeller Rushton Impeller hi 3.927 W/m’K
Speed of Impeller 100 rev/min ho 8520 W/m°K
Diameter of Impeller 0.33m ud 3.72 WIm’K
Power 1.3hp Area 5 m?
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Equipment Design

SPECIFICATION SHEET

Identification

Item Reactor
Item no. R-101
No. required 1
Operation Continuous
Type Continuous stirred type reactor
Function

Pre-Hydrolysis of Cellulose to Glucose

Chemical Reaction

(CsH190s) n — CeH 1,06

Jacket Specifications

Reactor Specifications
Volume of Reactor 51m° Jacket Type Dimple Jacket
Diameter of Reactor 1.7m Steam Temperature 152°C
Length of Reactor 2m Steam Pressure 5 bar
Type of Impeller Pitched Blade Impeller hi 3.327 W/m’K
Speed of Impeller 100 rev/min ho 8520 W/m°K
Diameter of Impeller 0.58 m ud 3.27 WIm’K
Power 5.7 hp Area 13 m?
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5.2 Distillation Column Design:

521

522

5.2.3

Introduction:
In industry it is common practice to separate a liquid mixture by distilling the components,
which have lower boiling points when they are in pure condition from those having higher
boiling points. This process is accomplished by partial vaporization and subsequent
condensation.

“It is a process in which a liquid or vapor mixture of two or more substances is separated
into its component fractions of desired purity, by the application and removal of heat”’.

The creation or addition of another phase in distillation is obtained by the repeated
vaporization and condensation of the fluid. The separation process exploits the differences
in vapor pressure of key components in the mixture initiate the separation.

The advantages of distillation are its simple flow sheet, low capital investment and low
risk. The separation process can handle wide ranges of feed concentrations and
throughputs while producing a high purity product.

Types of Distillation Column:
Distillation columns come in a variety of forms, most of which is created to carry out a
particular kind of separation and varies in complexity.

e Batch columns
e Continuous columns

Batch Columns:

In a batch operation, the feed is introduced to the column in batches. For more information,
the distillation process is carried out once the column is charged with a "batch” of material.
A new batch of feed is supplied once the product has undergone the necessary level of
purification.

Continuous Columns:

In contrast, a continuous feed stream is processed by continuous columns. Unless there is a
problem with the column or nearby process units, there are no interruptions. They are the
more prevalent of the two varieties and are able to manage high throughputs. We will
solely focus on this category of columns.

Choice Between Packed and Plate Column:
The mass transfer of vapors and liquids can be done in a packed column or a plate column.
These two separate sorts of operations are very dissimilar. a selection process that takes
into account the elements under four areas,

v’ Scale, foaming, pressure loss, and liquid holdup are factors that rely on the system.

v Elements that are affected by the fluid flow moment.

v" Factors that depend on the column's internal structure and physical properties, such as
cost, size, weight, and side stream.
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v Factors that are affected by the mode of operation, such as batch and continuous
distillation turndown, and intermittent distillation.

Following are the advantages of plate over packed column:

1. Plate columns are used to manage dispersion issues when liquid flow rates are lower
than gas flow rates.

2. For large columns, the packed column weighs more than the plate column.

3. Manholes shall be fed for cleaning if recurring maintenance is necessary. Before
cleaning packed columns, packaging must be taken out.

4. The plate column is ideal for non-foaming systems.

5. Compared to packed columns, design information for plates columns is more accessible
and trustworthy.

6. To reduce the temperature of a reaction or solution in a plate column, inter-stage cooling
can be offered.

7. Packing may be harmed when there is a temperature fluctuation.

5.2.4 Choice of Plates in Column:
In distillation column, Four main tray types, the bubble cap, sieve tray, ballast or valve
trays and the counter flow trays are used.

| have selected sieve tray because:

v They are lighter in weight and less expensive. Easily install.
v" Cleaning is so much easy as compared to other types of trays so maintenance cost is
reduced as compared to others.

5.2.5 Selection of Trays:
Cost:

Cost of plate depends upon material of construction used.
Valve plate . Sieve plate : Bubble-cap plate
1.5 : 3 : 1.0
Operating Range:
Comparison of operating range flexibility is,
Bubble cape tray > Valve tray > Sieve tray
Sieve plates provide a reasonable operating range with good design.
Pressure Drop:

Bubble-cap tray > wvalvetray > sieve tray

5.2.6 Main Components of Distillation Column:
1. Column internals such as trays/plates and/or packaging which are utilized to enhance
component separations.
2. A-reboiler to supply the required vaporization for the distillation process. The liquid taken
out of the reboiler is referred to as bottoms, or just bottoms.
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3.

A condenser that will cool and condense the vapor that is leaving the column's top. The
distillate, referred as the top product, is the condensed liquid that is taken out of the
system.

Factors Affecting the Distillation Column Operation:

1.

Foaming: The term foaming describes how a liquid expands when a vapor or gas passes
through it. Excessive foaming frequently causes liquid to accumulate on trays even if it
offers high interfacial liquid-vapor contact. Foaming can occasionally get so terrible that
it mixes with the liquid in the tray above. The physical characteristics of the liquid
mixtures have the most role in determining whether foaming will happen, but tray
designs and conditions can also play a role.

Entrainment: Once more, entrainment is brought on by high vapor flow rates and refers
to the liquid that the vapor carries up to the tray above. It is harmful because tray
efficiency is decreased and less volatile material is transferred to a plate holding a more
volatility. High purity distillate might also become contaminated. Over-entrainment
might result in floods.

Weeping/Dumping: Low vapor flow is the cause of this condition. The liquid on the
tray cannot be supported by the vapor's pressure alone. Liquid begins to leak as a result
through perforations. Weeping too much will result in dumping. In other words, a
domino effect will cause the liquid on all trays to crash (dump) through to the base of the
column, necessitating a restart of the column.

Flooding: Excessive vapor flow causes liquid to be entrained in the vapor up the
column, which results in flooding. An increase in liquid holdup on the plate above
results from the pressure buildup brought on by too much vapor, which also backs up the
liquid in the down comer. The column's maximum capacity may be significantly
lowered depending on the level of flooding. Sharp rises in column differential pressure
and a sizable decline in separation efficiency are indicators of flooding.

Feed Conditions: The operating lines and, thus, the number of stages needed for
separation are influenced by the state of the feed mixture and feed composition. The
position of the feed tray is also impacted. Trays and packaging condition: Keep in mind
that the effectiveness of the plate determines the precise number of trays needed for a
given separation duty. Therefore, any elements that lower tray efficiency will also affect
how well the column performs. The rates at which fouling, wear and tear, and corrosion
affect tray efficiency vary on the characteristics of the liquids being processed.

Column Diameter: Column diameter affects vapor flow velocity. Column capacity is
calculated by weeping, which establishes the minimal vapor flow necessary, and
flooding, which establishes the highest vapor flow permitted. As a result, the column
will not function effectively if the column diameter is not sized properly.

Design calculations:

gk~ E

Designing steps of distillation column:

Bubble point and dew point calculations.

Key components selection.

Determining the Minimum number of stages.(N min).
Minimum Reflux Ratio (Rm) calculations.
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6. Determining the Actual Reflux Ratio R.

7. Calculate the theoretical number of stages and actual number of stages.
8. Establishing the physical characteristics of the top and bottom products.
9. Calculating the column's diameter.

10. Calculation of entrainment, weeping point, etc.
11. Calculating pressure drop.
12. Determining the column's height.

5.2.9 Design Calculations:

Temperature of feed = 83°C

Temperature of top product = 78°C

Temperature of bottom product = 83°C

Heavy Key Component = Water

Light Key Component = Ethanol

Table 5.1: Feed Composition

. B X i
Components Feed (Xf) % | Distillate (Xd) % ottom ( b) REIat_I\_/e
% Volatility
Ethanol 77 99.5 0.005 1
Water 21 0.5 90.5 0.969
Ammonium
Acetate 2 - 9.8 5.4226
Calculation of Minimum Reflux Ratio Ry,
We are using Underwood equation,
XfA%XA | XfBXB | XfcXc _ 4
wcn 8 g8 Txes 174 (5.21)

As feed is entering as its boiling point so,q=1
By trial, 0 =0.9757
We are using eg. of min. reflux ratio,

XfFAXA
OCA—B

XfBXpB
OCB—Q

xfCOCC _ _
+ L =Rn—1

(5.22)
Putting all values Ry, = 2.6907

Actual Reflux Ratio

We follow the rule of thumb is:

R = (1.2 -1.5) Rmin

R = 3.2284

Minimum No. of Plates

For minimum no. of stages N, is obtained.
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Using Fenske relation which is,

o |(G2), G5,

log(%Bclavg

Npin =

Theoretical No. of Plates

For theoretical number of plates,

- Hmin = 0,75 [1 = (R‘R—mi")o'm]

R-1
Theoretical no. of stages to be,
N = 24 trays
We removed One plates for Re-boiler, so
N = 24-1 = 23 trays
Nmin = 10
Location of Feed Plate
logz—g = 0.206log [(g) (ZCC’Z—I’:) (%)2]
Np=0.27Ng
Na = Np + Ngr

Number of Plates above the feed tray N = 26
Number of Plates below the feed tray Np = 8

So, the feed enters at 9™ plate
Actual Number of Stages
Na = 34 trays

_ Number of thoretical stages

Eo =

Actual number of stages

Eo =70%

Equipment Design

(5.23)

(5.24)

(5.25)

(5.26)
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Determination of the Column Diameter

Equipment Design

Table 5.2: Product Conditions

Top Conditions

Bottom Conditions

L =34.9x10° Kg/hr
V. = 47.9><104 Kg/hr
Average mol.wt = 46.07 g/mol
T=78C
pV = 3.134 Kg/ m’
pL =701.4 Kg/ m

L =49.6x10 Kglhr
V = 47.9><104 Kg/hr
Average mol.wt = 77.01 g/mol
T=83'C
pV =157 Kg/ m3
pL = 950.1 Kg/ m

Flow Parameters

Liquid and vapor flow rates are larger at bottom so based upon bottom flow rates.

Ry = (&) (2)™ (5.27)

Vim PL

FLv = Liquid Vapor Factor = 0.0420

Capacity Parameter

Assumed tray spacing = 14 in. = 0.3m

Csh20) = 0.061 m/Sec (Capacity parameter for liquids (o = 20 dynes/cm))

Surface tension of system = o = 27.3 dynes/Cm

o\ 0-2
Cao = Covao (35) (5.28)
=0.103 m/s
_ . \05
Ut = Cop (prvpv)
=1.41m/s

Tray Selection
We have selected single cross flow sieve tray with segmental down comer.
Down comer area = Aqg=0.12 At
Weir length = L,, =0.77 Dt
weir height = h,, = 50 mm
Hole size (range 1/8* to %) = 1/8”=3.015 mm

Spacing between trays = 14 in. = 0.3m
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Tower Diameter

Let flooding = 80% (by trial)

F =08

Un = Upsx F = 1.128 m/Sec

Net area.

Net Area = [column area (cross sectional) - (Down-comer area)]

An = AT—Ad =0.88 AT

—An _ O
T ™ o088 088U,
Ar = 2.45 m?
Ar= (m/4)*D?
D=176m

Tower area = Ay = 2.45 m?
Net area =A,=0.88 Ar
=2.156 m’
Down comer area = Aqg = 0.12 At
= 0.294 m’?
Hole area = A, = 0.1 At
=0.245m°
Flooding Check
Vmax = Ky y/pL — pv/pv
Vinax = 1.09
F=22x 100
F=78%
Calculation of Entrainment
As FLV =0.042
F=80%
v =0.06
Since y < 0.1, process is satisfactory

Tray Pressure Drop

Ht =Hd + ( Hw + How ) + Hr

Equipment Design

(5.29)

(5.30)

(5.31)
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Hw =50 mm

Dry Tray Pressure drop
Hg = 51 (Un/Co) ? (pv /pL)
Uy = Hole velocity = Q./An
U = QW/An = 11.40 m/sec
Using Fig, we find “C, “
C,=0.80

Hg = 51*(Uh/Co)**(pv/ pL)
Hq=17.11 mm

Weir Crest

How = 750 ( Lw/pL* lw) %2
Ly =0.77D+

Ly =1.35m

How= 750 ( Lw/p.* lw) #°
How = 18.61 mm

Residual Head (Hr)

12.5x103
He= (222
PL

H, =17.83 mm
Hi=Hg+ (Hw + How ) + H;
=17.11+50 + 18.61 + 17.83
=103 mm
Total Pressure Drop
P = (9.81 x10° 10) H, x p.
=9.81 x10* x78.9 x 701
=708 Pa
=0.1 psi
Estimation of Weep point

K,—[0.90—(25.4—dp]

Uh (min) =

0.5
(p V)
Hw = 25.4 mm
How = 18.61 mm

Equipment Design

(5.32)

(5.33)

(5.34)

(5.35)
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Hw + How = 25.4+18.61= 44.18 mm
Using graph,
K, =30.2
Uhmin) = 9.2 m/sec
Actual Min. Vapour Velocity > Uhmin
No Weeping.
Total no. of holes
Total no. of holes = An/a,
Diameter of 1 hole = 5mm
=0.005m
Area of one hole = (3.14 x 2.5 x10°)/ 4
= 1.96 x10”° m?
Total no. of holes = Ap/ay
Total number of holes = 12500
Height of Distillation Column
No. of plates = 34
Tray spacing = 0.30m
Distance between 12 plates =0.30 x 34 =10.2m
Tray thickness = 3 mm/plate
Total Height of column = [(34-1) x 0.3] +0.5
=10m

Equipment Design
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Equipment Design

SPECIFICATION SHEET

Identification

Item Distillation column
Item no D-102
No of required 2

Type Multi- components
Calculations
No of plates 34 Tray spacing 0.3m
Height of column 10m Efficiency 70%
Flooding 80% Hole area 1.96x10™ m?
Weeping No weeping Hole size 3.175 mm
Fractional entrainment 0.06 Pressure drop 0.1 psi
Reflux ratio 3.22 Diameter of column 1.76 m

69



Chapter # 05

Equipment Design

SPECIFICATION SHEET

Identification

Item Distillation column
Item no D-101
No of required 2

Type Multi- components
Calculations
No of plates 16 Tray spacing 0.3m
Height of column 5.43m Efficiency 68%
Flooding 75% Hole area 1.96x10™ m*
Weeping No weeping Hole size 3.175 mm
Fractional entrainment 0.04 Pressure drop 0.09 psi
Reflux ratio 0.712 Diameter of column 1.01m

70



Chapter # 05 Equipment Design

5.3 Design of Waste Heat Boiler (WHB-102):

190°C 18°C
1 bar WHB-102 1 bar

504300 Kg/hr 4’ e) @ 504300 Kg/hr

Figure 5.3: Waste Heat Boiler (WHB-102)

5.3.1 Introduction:
A waste heat boiler converts heat generated as a byproduct of another operation, heat that
would otherwise be squandered, into steam. Steam may be used to power turbines that
generate energy. The boiler can also be used to merely heat water or other types of fluid. A
waste heat boiler, also known as a waste heat recovery boiler, can lower a system's fossil
fuel consumption and operating costs by recycling part of the energy utilized. This also
implies that less greenhouse gases enter the atmosphere.

A waste heat boiler with a water-tube design can handle significantly greater steam
pressures than a boiler with a fire-tube design, but it is more complicated to build and
install. The tubes in this type of boiler are thinner than those in a fire-tube boiler, and they
hold water rather than hot gases. Waste heat, in the form of hot gases or furnace flames,
surrounds the water-filled tubes in a reversal of the system within a fire-tube boiler. To
prevent the boiler tubes from flame damage, insulating materials are utilized. A water-tube
waste heat boiler can withstand high pressures while also responding swiftly to variations
in heat input.

We have selected water tube waste heat boiler due to following reasons

5.3.2 Advantages:
v Working pressures is high
v’ Superheated steam generation
v’ Heat recovery is faster
v’ Better turn down

5.3.3 Design Calculations:
Heat Duty

Temperature Input=190°C

Temperature Output = 48°C

As the relation for latent heat is given as
Q = 8.96x10° MJ/hr
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Steam Requirement

Pressure = 5 bar

m = 3.3x10° kg/hr

Energy required and heat production

2% heat loses

Using the relation for energy required and heat loss
Qr=Qy +0.02Q7

Rearranging the above the equation and putting values
Qr1=9.14x10" kg/hr

Water Requirement

Mass of Feed water (Mg) = Mass of Stream(Mg) + Blow — down(Mg)

Blow-down up to 10% (Proposefull discharge)

My — 0.1M; = Mg

M, = 36.6x10* kg/hr

M = 101.6 kg/sec

Estimation of Surface Area

For system having heavy organics assume Up = 700 — 1140
So assuming,

U, = 1140 W/ m’k

Up = 4104 kJ/hr.m?k
LMTD Calculations

ATy = e
(=)

AT, =38°C

AT, =23°C

LMTD =30°C

Correction Factor

R=Ta=Tb _ 111

tp—ta

s=1b"'a 139
Ta_Ta

FLMTD =0.91
ATC =LMTD x FLMTD

(5.36)

(5.37)

(5.38)

(5.39)
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AT, = 301k

Applying Correction factor

__Q
UAT)f

A =74 m? = 796 ft°

Tube Dimensions:

Length of tube = 16 ft = 4.87m
Tube outer diameter = %in =0.019m

Tube inner diameter = 0.620in = 0.016m
BWG =16

Tube side (Process Slurry)

No of tubes

Nt = A
mdoL

N; =254

Tube outer dia = %in =0.019m

1 shell and 2 passes

Triangular pitch

Inner diameter of shell = 19.25in = 0.488m
Bundle diameter

Ky =0.249

n; =2.207

1

Dp=0.44m

Tube cross-sectional area

nd3

Cross — sectional area = ”

Cross sectional area =2.8 x 10~*m?
Tube per passes

For 2 passes

N =127

Area per passes = tube per area x cross-sectional area

Equipment Design

(5.40)

(5.41)
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=0.03 m?

Volumetric flow rate:

Feed flowrate

Volumetric flow rate = ———
Density of water

=0.11m3/s

Tube velocity:

volumetric flow rate

Tube velocity = Area per passes

Gt =3.3mfs
Reynold Number:

Reynold Number = Re = %di

Re =14671.8

Prandtl number:

Prandtl number = Pr = ”—E"
Pr =224
L 487
D; 0.019
From graph,
ju=19x 1073

Tube side coefficient:

k. 0.14
h; = d—i]HRe(Pr)°'33 (ﬁ)
h; = 1837 W/m2k

Shell side (Water)

Shell diameter

For fixed tube, diametrical clearance

=13 x 1073m

Shell diametr = Db + diametrical clearance

Ds = 0.45m

Ideal cross flow coefficient (Hoc)
Tube pitch = Py = 1.25do
P:=0.024m

256

Equipment Design

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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Area of shell:
_ (pt—do
As = (T) (D) (Ls)

Lg = d? =0.1m
As = 0.01 m?

Shell side velocity

. flow rate
Shell velocity = AV:T

G; =706 kg/m?s
Reynold Number

Reynold Number = Re = Gsdo

Re = 31008

Prandtl number

Prandtl number = Pr = ”—E"

Pr=3.5
Shell side coefficient:
k . 0.14
hoc = EJHRe(Pr)OBB (i)

hyc = 4460 w/m? /s
Tube row correction factor (Fn):

Tube vertical pitch = Pt = 0.87pt

Pt =0.02m
Baffle height cut = baffle cut x Ds
hc=0.12m
Height b/w baffle cut = shell ID—2 X hc
=0.25m
Nov =28 erteatite
Ney =12.5

From fig, 12.32 we get value of Fn
Fn=1.04
jH =3.0x 10_2

Equipment Design

(5.47)

(5.48)

(5.49)
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Window correction factor:

Hy == Ds (0.5 By)

Hy =0.11m

Bundle cut:
-HB _5g

By, = o~ 25%

From fig, 12.41 Ra=0.19
Tube in one window area:
Nw = Ntx Ra

=48

Tube in cross flow area

Nc = Nt-2Nw
= 158
Rw=28% _ 437
Nt

From Figure, 12.33 Fw =1.03
Bypass correction:
Ag=1lp X(Ds- Dp)
Ag=2.2 x 1073m?

Ab 2N
Fg = expl-a x — (1 - (N—Cj )0.33]

Fg =0.99

Leakage correction:
Ct=7x10"*m
Cs=47x10"3m

CtmDo

Ay = X (Nt-Nw)
Ay =4.2 x 1073m?

CsDs
> (2m—Qb)

Ay, =38x%x1073

Agp =

AL =Apt Agp
A, =7.8x%x1073
From fig, p; = 0.43

Equipment Design

(5.50)

(5.51)

(5.52)
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Atb+2A

FL=1-B (——= Sb)

F, =0.5

Shell side coefficient:

Hs = Hy +F, + Fw+ Fn+ Fb (5.53)
Hg= 2364 W/m?2s

Overall heat transfer coefficient:

()= )+ (o) + Ga)+ m(B) + (B) o) + () ) (554

h,q = 5000 W/m?

Kw =16 W/m?s

Putting values

Up = 940 W/ m’k

Pressure Drop:

Tube Side (Heavy Organic)

No of tubes =254

1 shell and 2 passes

ID of tube = 0.016m

U,=3.3m/s

Jr=1.9% 1073

AP;=Np [8 J; — ( —) 01440, 5] (5.55)
AP, =8 psi

Shell Side (Water)

AP, =2 AP, + AP, (N, -1)+ N, AP, (5.56)
Cross flow zone

J, =8.3x 1073

us =0.7m/s

AP =8 J; N, B2

Api =158

F'g = expl-a x =2 (1 — (o= )0.33]
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Fg =1.00

From figure, p; = 0.66
FL=1- B (P2
F', =0.06

AP, = F'y APF',

AP, =10.45

Window zone

n(Ds)?
4

A, =9.1x1073
Nw =10
AP, =2.35

n(Do)Z)

Ay =( -

X Ra)-(Nw x

Nw+Ncv

APe - API Nw

!
><Fb

AP, = 316

AP, =2 AP, + AP.(Nb — 1) + NbAP,

AP;=0.10psi

Equipment Design

(5.57)

(5.58)

(5.59)
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Equipment Design

SPECIFICATION SHEET

Identification

Item Waste Heat Boiler
Item no. WHB- 102
No. of required 3

Type

1-2 horizontal heat exchanger

Operation

Continuous

Utilization of extra heat in output gases by generating steam

Heat Duty = 8.9 x 10° %

Heat Transfer area = 74 m?

Operating Pressure 1 bar Operating Pressure 1 bar
Temperature In/ out 21- 152 °C Temperature In/ out 190- 48 °C
Diameter 0.45m Tube inner Diameter 0.016
Passes 1 No of tubes 254
Shell Diameter 0.488 m Tube outer Diameter 0.019m
Pressure Drop 0.10 Pa Pressure Drop 8 Pa
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5.4 Design of Heat Exchanger:

5.4.1 Introduction:
A Heat Exchanger is a heat transfer device that is used for transfer of internal thermal
energy between two or more fluids available at different temperatures. In most of the
exchangers the fluids are separated by a heat transfer surface and ideally don’t mix with
each other.

5.4.2 Basic Principle of Heat Exchangers:
The main principle of a heat exchanger is the exchange of thermal energy on the basis of
thermal gradients between two bodies (fluids). The mechanism of heat transfer in heat
exchangers is the combination of the basic heat transfer mechanisms. The basic heat
transfer mechanisms are:

v" Conduction
v" Convection
v" Radiation

5.4.3 Types of Flow Arrangements in Heat Exchangers:
One of the following flow types may be used in a heat exchanger, which is the most typical
in practice.

v' Parallel flow
Counter-flow
Crossflow

AN

5.4.4 Selection Criteria of Heat Exchanger:
Proper selection of heat exchanger depends upon following factors:

Heat transfer rate

Operating temperature

Cost

Pumping power

Material of construction

Flow rates

Flow arrangements

Phases of fluids

5.4.5 Why Shell and Tube Heat Exchanger Is Selected:

The reasons of selection of this heat exchanger are as follows:

AN N N NN YN

Easy maintenance

Having great heat transfer

Well-proven design procedures.

Can be built from a variety of materials.
Applicable for large heat transfer coefficients

5.4.6 Design Steps of Shell & Tube Heat Exchanger:
In designing the shell and tube heat exchanger the following steps are involved.

DN NI NI NN
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Q is available from energy balance so with heat balance the flow rate of utility and process
stream determined by heat balance.

Calculate log mean temperature difference i.e.
LMTD = 22 2h (5.60)
loghs
AT, =T, -1 ; AT1= Tt
Then calculate R & S for FT i.e.
R:Tl—T21 S:’tz—t1
tz o t1 T1 T t1

Get Fyfrom Fig.
True temperature difference by multiplying F+ & LMTD.
When there is no available exchanger and only the process conditions are known Q and
true temperature difference are fixed by the process conditions
Only A and Up are unknown
If Up is considered to have a trial value and A can be determined to have a trial value
A= Q/UD ATt
For trial value of Up see Appendix Table 8
. Up is related to U, by a reasonable dirt factor Ry
. The criterion of performance Ry was then obtained from Up and U,
. Except where both coefficient are approximately equal, the lower film coefficient
determines the range of U, and Up
From fluid flow conditions h,, hjo, U, and pressure drops were calculated

14. The tube counts in Appendix Table 9 become a list of all conceivable exchanger shells when

15.

16.

17.
18.
19.
20.
21.
22.
23.
24,
25.

26.

the value of A is paired with tube length and pitch.

Having decided which fluid will flow in the tubes and which one in shell the trial number
of tube passes and number shell passes can be approximated.

Then get internal diameter of shell and the internal diameter of tubes from table 9
according number tubes and equivalent diameter from figure 28 according taking square
pitch. The outer diameter of tube is selected from table 10.

The length of tubes range up to 16 in.ft. The BWG is up to 16”.

After getting all calculate the area of shell and tube side.

The mass velocity is also calculated for both sides.

Then calculate the equivalent diameter of both sides.

Reynolds number across shell side and tube side

Calculating Prandtl’s number

Calculating factors for heat transfer coefficients

Individual heat transfer coefficients calculation for both sides

Then overall clean coefficients i.e.

U - Ml (5.61)

° h +h
Dirt factor calculations i.e.
Uu -u
R =—c¢ D
¢ U U, 81
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27. Pressure drop calculations are also done for shell side and tube side.

5.4.7 Design of Heat Exchanger (H-103):

25°C 48°C
1bar 1 bar
15 > 16 >
571300 Kg/hr 571300 Kg/hr
H-103

Figure 5.4: Heat Exchanger (H-103)

Steam:

Temperature = 152°C
Pressure = 5 bar
Shell side

Aqueous solution is used on shell side because it is less corrosive.
Tube Side

Steam is used on tube side as it is corrosive in nature.
Calculation of Heat Duty:

Aqgueous solution:

Q = mass flow rate x specific heat x temperature difference

Q = m C, AT

1.0 x10° Btu/hr

Steam:

Q = mi

Q = 1.0%10° BTU/hr

Q = Enthalpy of Hot stream

C = mass heat capacity

Calculation of LMTD:

LMTD = {AT, - ATy }/ In (AT2/AT,) (5.62)
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LMTD = 186°F
Heat Transfer Area

Q =UA AT
Where,

Up = Heat transfer coefficient

Assumed Up = 680 BTU/hrft’F
(Range = 200-700 BTU/hrft?F)

Heat transfer area,

A =790 ft°

Tube specification:

16 BWG
Outside Diameter = OD =15in
Inside Diameter =ID =137in

Length of Tube = L =16 ft
Pitch = 15/ 8 (square)
Passes = 1

(Triangular pitch)

Correction of Heat transfer Area and Up:

Corrected Area:
A =NixLxa
A, = 823 ft?

Corrected Coefficient Up:

Up = 653 BTU/hrft’F
Number of Tubes N;:
Number of Tubes = N¢=A/L*a

Nt =131

[From table 8]

Equipment Design

(5.63)
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Equipment Design

Table 5.3: Dimensions of Shell and Tube Side

Shell Side Tube Side
ID =29 in N, =131
Baffle =5.8 in Length =16 ft
Passes =1 OD=1.51n
Clearance =1.8 in 16 BWG

Pitch =15/8 (square)

Passes =1

Shell and tube side’s calculations:

Shell side ( Aqueous solution)
Flow area:

as = |ID*C*B/144P;

= 12ff

Mass velocity:

Gs =Wwlag

= 425000 Ib/hr ft*

Re =D¢*Gs/ 1

De = 0.018m

Res=106250

Jy Factor [ From Fig 8]
v = 220

From Figure

k=0.06 BTU/hr ft’ F
Cp=0.57 BTU/Ib F
(Cpp/k)3=1.6

Shell Side Coefficient (ho)
ho = JnkiDe (Cpwk)¥s.
= 176 BTU/hr ft°F

Tube side ( steam)
Flow area:

a = N*A/144n
= 131t

Mass velocity:

G = Wl

= 84615 Ib/hrft®
Re =Di*G¢/ p

Di =0.015m
Re=38782

Jn Factor

Tube Side Coefficient
(hi)
hii, = 1500 Btu/hrft*°F
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Clean Overall Coefficient:
UC = h0h|0/(h0+h|0)
= 158 BTU/hr ft* F

Equipment Design

R4 = U¢-Up/Uc*Up (5.64)
Rq=0.003
Up = 107 BTU/hr ft°F
This is very close to the assumed value. Thus, the Design is Satisfactory.
Pressure Drop Calculations:
Shell Side (Agqueous Solution) Tube Side (Steam)
) " Re= 38782
APs= {Gs"(N+1)Ds/5.22x10"Deds 0.2585
F=0.4137Re™
Re=106250
F=0.02
f=0.0013
SG=0.0931
np+1=12*L/B=33 ) i
) . AP=fn,L.G*/7.50*10"°D;3 Dy
AP=fG“ds(np+1)/7.50*10 “D3Ds _
) AP= 0.03 psi
APs=0.028 psi

5.5 Design of Flash Separator (5-102):

48°C
1 bar

48°C
3 bar
5-102
128588.2 kg/hr
\_/
26

48°C
1 bar

126742.7 Kg/hr

987.0675 Kg/hr

Figure 5.5: Flash Separator (S-102)
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A flash separator is a tool used in chemical engineering to divide a vapor-liquid mixture
into its component phases. It can function as a two-phase or three-phase separator and can
be a vertical or horizontal tank.

The terms flash drum, break pot, knock-out pot, compressor suction drum, suction
scrubber or compressor inlet drum, or vent scrubber are also used to describe vapor-liquid
separators. It is frequently referred to as a demister when used to remove suspended water
droplets from streams of air.

Gravity is used in vapor-liquid separators to induce the less dense fluid (vapor) to be
removed from the top of the vessel while the denser fluid (liquid) settles to the bottom of
the vessel.

A typical liquid separator will not work in low gravity settings like a space station since
gravity is ineffective as a separation mechanism. In this scenario, liquid must be forced
toward the outer edge of the chamber for removal using centrifugal force in a rotating
centrifugal separator. Gaseous parts go inward, toward the center.

Vertical Flash Separator is selected because:

L/d ratio is less than 5
F=128119.8 kg/hr

D =127072.4 kg/hr
W =1047.408 kg/hr
Vapor Velocity
Vy =Ky ((pL— pv)/ pv)°° (5.65)
S = (D/W)*(pv/ p)**
S=11
Ky=0.12
V,=0.5m/s
Vapor Flow Rate
V=D/py (5.66)
V =0.07 m%s
Vapor Cross Sectional Area
A, = VIV, (5.67)
A,=0.14 m?
Diameter
d= (4*A./1) (5.68)
d=042m
Liquid Flow Rate
L=W/p_
L =3.12*10" m*/s
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Allow a hold up time of 10 min
Volume Holdup
V= L*10*60
vV, =0.187m®
Vessel Cross Sectional Area
A = (n*d%/4)
A=0.11m?
Vessel Height
L, =VI/A
L,=1.7m
Increase 0.3 m to allow space for positioning
Li=L,+0.3
Li=2m
L/d Ratio
L/d=4.7m

Equipment Design

(5.69)

(5.70)

(5.71)
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Equipment Design

SPECIFICATION SHEET

Identification

Item Flash Tank
Item no. S-102
No. required 1
Operation Continuous
Type Vertical Flash Separator

Function

Separation of Ethylene

Vapor Velocity 0.5 m/s
Vessel Cross Sectional Area 0.11 m°
Diameter 0.42m
Liquid Holdup 0.187 m*
Vessel Height 2m
L/D Ratio 4.7
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5.6 Design of Spiral Tube Heat Exchanger:

The design of spiral tube heat exchangers consists of many tubes arranged in multiple
layers of helical coils, around a center pipe. This tube bundle is fitted in a cylindrical
pressure vessel. The fluid on the shell as well as tube side flows in opposite directions,
making the equipment a true countercurrent heat exchanger.

Shell side

The high turbulence flow is created by the patented design of the tube coils. The variation
of the fluid velocity between the tubes creates a pulse-surge collision flow regime
increasing subsequently the heat exchange coefficient outside the tubes.

The possibility of fouling is greatly limited by the non-baffle design, the turbulence of the
fluid and the very low surface roughness of the tubes.

Tube side

The helix-pattern flow in the tubes creates, thanks to the centrifugal forces, a secondary
flow consisting of a pair of vortices enhancing the coefficient of heat transfer at the
peripheral of the tubes.

Spiral tubes are coiled layer by layer in opposite direction to have a homogeneous heat
transfer all along the exchanger.

e Selection of Appropriate Type
Spiral tube heat exchanger is selected so here is the reason behind selection:
v’ ltis effective for slurries, sludges and viscous liquids
v" Highly resistant to thermal and hydraulic shock
v' Suitable for fluids that tend to cause fouling because of
= Continuous Curving
= High Turbulence
= High shear stress
v' Self-cleaning ability
Hot Fluid (Steam)

T,=152°C Ty=152°C
e Cold Fluid ( Process Slurry)
tp=25°C to =140 °C

OD of tube =dy, =19 mm
Thickness of tube = 2.7 mm

ID of tube = dj = 13.5 mm
Number of Spiral Coils=n=3
Number of Turns =N =4
Spiral Pitch =P =25 mm
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ID of Spiral = D; = 114.02 mm
OD of Straight Tube = dn, = 27 mm
ID of Straight Tube = dyj =25 mm

Shell Inside Dia
Dis = 2*(R, + Rhy)
Dis = 261 mm
Length of Shell
Ls = (R’ — R?)/a
a= Pn/4

Ls =332 mm
Curvature Ratio
2 =di/D;

2 =0.087

Developed length of spiral
Lo, =3.14*n (R, + R))

L, =1639 mm
Total Length
L: = N¢*Lo

L: = 6556 mm
Area

As = n**d,*L,
A, =0.185 m?
LMTD

LMTD = (At — At)/In(Aty / Aty)

LMTD =49 °C
LMTD =322 K

Steam Heat Transfer Coefficient

h, = 8520 W/m?K

Slurry Heat Transfer Coefficient

Mass Velocity
G =m/A

G =940 kg/sm?
Reynolds Number
Re=G*di/

Re = 3666

Equivalent Diameter:

Equipment Design

(5.72)

(5.73)

(5.74)

(5.75)

(5.75)
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De = Re (r/Ri)*?
D. = 1261 mm

Nusselt Number:
Ny = 0.836 * D°* Pro*

N, =61.2
hi = 278 W/m?K

Clean Overall Heat Transfer Coefficient:
Uc = (hi*ho)/(hi+hy) (5.76)

U, =269 W/m?K

Design Overall Heat Transfer Coefficient :
1/Uq = (1/Uc)+Rd

Ug = 148 W/m?K

Area:
A = Ay +Asi

A = [n*n*do*L, + ny*r*dho*Ly] + [n*1*di*Lo + ny*n*dhi*L] (5.77)
A =25m?

For Steam:
AP = [(0.0789*(L/pr))*(mn/H*dho)*((1.3*(1th)**)/(dhe+0.032))*(H/mp,)* #+1.5+16/L]

AP =0.0154 bar
AP =0.22 psi

For Slurry:
AP = [(0.0789*(L/pc))*(mc/H*dh;)*((1.3*(pc)®>*)/(dhi+0.032))* (H/m.)**+1.5+16/L]

AP =0.382 bar
AP =5.5 psi
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Equipment Design

SPECIFICATION SHEET

Identification

Item Heat Exchanger
Item no. H-101
No. required 1
Operation Continuous
Type Spiral Tube
Function
Pre-heating of corn stover slurry
Heat Duty 9.9%10* MJ/hr
Heat Transfer Area 2.5 m?
Shell Side (Steam) Tube Side (Slurry)
Steam Temperature 2m ty 25°C
Steam Pressure 1.36 m to 140°C
ho 8520 W/m*K hi 278 WIm?K
Pressure Drop 0.22 psi Pressure Drop 5.5 psi
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6.1 Mechanical Design of Pre-Hydrolysis Reactor (R-101):

AN NI NI

Chapter # 06

H,SO, 6.1*10%kg/hr

Mechanical Design

140°C
12 bar

140°C T
12 bar
8 /_
140°C .
12 bar . .
693135.4264 kg/hr I\J

R-101

Figure 6.1: Pre-Hydrolysis Reactor (R-101)

Material Selection:
Austenitic Stainless-Steel Grade 304 is selected because of :

High strength

Resistant to scaling at high temperatures
Resistant to corrosion

Used for high pressure reactors
Chemical Composition:

Cr = 24-26% Ni = 19-23% C=0.25%
Baffle Spacing:

4 radial baffles are used

B =nDy/4

B=136m

J=Dy/12

J=0.145m

Distance from bottom = D/2

E=0.87m

Minimum Practical Wall Thickness

9 >
693135.4264 kg/hr

(6.1)

(6.2)

As vessel diameter is between 1-2 mm so minimum practical thickness is 7mm
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Vessel diameter (m) Minimum thickness (mm)
1 5
l to 2 T
2025 9
25t0 30 10
30t 35 12

Wall Thickness

Di=1.744m

L=2m

P; = 12 bar or 1.32 N/mm?
Corrosion allowance =2 mm
Stress Factor = S = 135 N/mm?
Joint Efficiency =E =1

Table 13.2. Typical design stresses for plate
(The appropriste matenial standards should be consulted for panticular grades and plate thicknesses)

Material Tensile Design stress at temperature “C (N/mme©)
strength

(Nimm®) Ot 50 100 150 200 250 300 350 400 450 500

Carbon steel

[semi-killed or

silicon killed) 360 135 125 115 105 495 85 o ]
Carbon-manganese steel

(semi-killed or

silicon killed) 460 180 70 150 140 130 115 105 100
Carbon-molybdenum

steel, (05

per cent Mo 450 180 170 145 140 1300 120 110 110
Low alloy stee]

(Ni, Cr, Mo, V) 550 240 M0 240 240 240 235 230 220 190 170
Stainless steel

18CHENI

unstabilised (304 510 165 45 130 115 110 105 100 100 95 L4
Stainless steel

18CH8NI

Ti stahilised (321} 540 165 150 140 135 130 130 125 (20 120 115
Stainless steel

18CH 8N

Mo 24 per cem

(316) 520 175 150 135 120 115 110 105 M5 100 45

t = (Di*P;)/(2SE-P))
t=8.24 mm

t=10.24 mm

Outer Diameter of Shell

(6.3)

(6.4)
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D,=1.764 m
Ellipsoidal Heads

t = (Di*P;)/(2SE-0.2P))
t=8.21 mm

t=10.2 mm

Vessel Support

For reactors we use bracket supports
Weight Loads

W, = 240*C,*D;*(L+0.8(D;)*t
W, =15.65N

Wind Loads
F=Pw*D,
F=1816.92 N/m
Longitudinal Stress
on = (Pi*Di)/2t

on = 112 N/mm?
Circumferential Stress
oL = (Pi*Dy)/4t

oL = 56.29 N/mm®
Dead Weight Stress
oL = W/p*(Di+t)*t

oL = 0.27 N/mm?
Radial Stress

oq = Pi/2

o4 = 0.66 N/mm?
Bending Moment

My = F*H

My = 1816.92 N/m
Bending Stress

op = (Mx/Iv)*((Dil2)+1)
o = 0.15 N/mm?

Mechanical Design

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)
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6.2 Mechanical Design of Saccharification Reactor (R-103):

ANENENENEN

48°C
1 bar

Cellulase  5.1*10"kg/hr

1 bar

606770.1263 kg/hr

606770.1263 kg/hr

Figure 6.2: Saccharification Reactor (R-103)

Material Selection

Austenitic Stainless-Steel Grade 304 is selected because of:
High strength

Resistant to scaling at high temperatures

Resistant to corrosion

Used for high pressure reactors

Chemical Composition

Cr = 24-26% Ni =19-23% C=0.25%
Baffle Spacing

4 radial baffles are used

B = pDt/4

B=0.785m

J=Dt/12

J=0.08 m

Distance from bottom = Dt/2

E=05m

Minimum Practical Wall Thickness

As vessel diameter is 1 mm so minimum practical thickness is 5 mm

98



Chapter # 06

Mechanical Design

Vessel diameter (im)

Mimimum thickness (mm)

|
l to 2
21025
251030
301w 35

L

WO =]

12

Wall Thickness

Di=1m

L=15m

Pi = 1 bar or 0.11 N/mm?
Corrosion allowance = 2 mm
Stress Factor = S = 135 N/mm?
Joint Efficiency =E =1

t = (Di*Py)/(2SE-P;)

t=0.40 mm

t=2.4mm

Outer Diameter of Shell

D, =D;+ 2t

Do=1m

Ellipsoidal Heads

t = (Di*P;)/(2SE-0.2P))
t=0.40 mm

t=2.4mm

Vessel Support

For reactors we use bracket supports

Weight Loads

W, = 240*C,*D;*(L+0.8(D;)*t
W, =143 N

Wind Loads

F=Py*D,

F =1030 N/m

(6.11)

(6.12)

(6.13)
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Longitudinal Stress
on = (Pi*Dj)/2t

on = 22.9 N/mm?
Circumferential Stress
oL = (Pi*Di)/4t

oL = 11.4 N/mm?
Dead Weight Stress
oL = W/p*(Di+t)*t

oL = 0.189 N/mm®
Radial Stress

og = Pi/2

o4 = 0.055 N/mm?
Bending Moment

My = F*H

My =515 N/m
Bending Stress

op = (My/1)*((Di/2)+)
op = 0.059 N/mm?

611918.9789 Kg/hr T

o

48°C
1 bar

6.3 Mechanical Design of Fermentation Reactor (R-104):

Mechanical Design

(6.14)

(6.15)

(6.16)

(6.17)

48°C
1 bar
/' 48°C
1 bar
22 >

s

R-104

Zymo 5.1*10%kg/hr

Figure 6.3: Fermentation Reactor (R-104)

611918.9789 Kg/hr
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Material Selection

Austenitic Stainless-Steel Grade 304 is selected because of :
High strength

Resistant to scaling at high temperatures

Resistant to corrosion

Used for high pressure reactors

Chemical Composition

Cr = 24-26% Ni =19-23% C=0.25%
Baffle Spacing

4 radial baffles are used

B = pDt/4

B=106m

J =Dt/12

J=0.11m

Distance from bottom = Dt/2

E=0.68m

Minimum Practical Wall Thickness

As vessel diameter is between 1-2 mm so minimum practical thickness is 5 mm

Vessel diameter (m) Minimum thickness {mm)
1 5
I to 2 T
Zto25 9
2510 30 10
3w 35 12

Wall Thickness

Di=1.36m

L=2m

Pi = 1 bar or 0.11 N/mm?

Corrosion allowance = 2 mm

Stress Factor = S = 135 N/mm?

Joint Efficiency =E =1

t = (Di*P;)/(2SE-P;) (6.18)
t=0.55mm

t=2.55mm
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Outer Diameter of Shell

D, =D+ 2t

D,=136m

Ellipsoidal Heads

t = (Di*P;)/(2SE-0.2P)) (6.19)
t=0.55mm

t=2.55mm

Vessel Support

Weight Loads

W, = 240*C,*D;*(L+0.8(D;)*t (6.20)
W, =277N

Wind Loads

F =Py * Do

F=1400.8 N/m

Longitudinal Stress

on = (Pi*D;)/2t (6.21)
on = 29.3 N/mm?

Circumferential Stress

oL = 14.6 N/mm’

Dead Weight Stress

oL = W/p*(Di+t)*t (6.22)
oL = 0.25 N/mm?

Radial Stress

oq = Pi/2

o4 = 0.055 N/mm?

Bending Moment

My = F*H

My = 1400.8 N/m

Bending Stress

b = (My/1,)*((Dif2)+t) (6.23)
op = 0.059 N/mm?
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Chapter # 07 Power Calculations

7.1 Introduction:

The liquid's mechanical energy is increased by centrifugal action in centrifugal pumps. In a
correctly working pump, the liquid enters by a suction connection that is centered on the
excess of the impeller, a high-speed rotating element; the distance between the vanes is
totally filled with a liquid that is flowing without cavitation. The fluid that exits the
impeller's outer perimeter is gathered in a spiral casing known as the volute and is
discharged from the pumps through a tangential discharge connection. The liquid's velocity
head from the impeller is changed into pressure head in the volute. Single-stage or
multistage, propeller, mixed-flow, and peripheral centrifugal pumps are all possible.

We have selected centrifugal pumps for a process because of the following advantages:

o Rlldp!omnll /
000 -4
Centrifugal
=570 B4 L. 7
1,000 |
& 500 Va
i s
= 300
R B =
100 operation
o /
A
S0 mT.;
_l’h 1
r‘ 0
Rmm hmino) Aol
. ANy 6
0 L] 10 500 1,000 5.000 10,000 50,000 100,000
Capacity, gpm.
v They are easy in operation and cheep
v" Fluid is transferred at uniform pressure without shocks or pulsation
v No valves involved in pump operation
v They operate at high speed (up to 4000 rpm) so they can be coupled linerly to an electric
motor.
v Without altering the pump, the discharge pipe can be totally or partially closed off.
v

Compared to other kinds of pumps, this one requires less maintenance.

7.2 Design Calculations:

Design steps for pump sizing:

v' Define the flow system, i-e locate points 1 and 2. The pressures Py and P, will be known at
these points.
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Position the process equipment follows to the rules-of-thumbs.
Estimate Z; and Z,.

Estimate Frictional pressure losses Ep and Es.

Determine Pump Work.

Find out Pump shaft horsepower & estimate its Efficiency.

Step 1: Pressure at suction and Discharge of the pump:

Inlet pressure= P, = 1.3 bar
Outlet pressure= P, = 8.2 bar (required)
Step 2: Rule of thumbs for locating the process equipment:
Table 7.1: Rule of thumb for locating the process equipment

Process equipment Location above
ground level, ft
Pumps 0
Condensers 20
Reflux drums 10
Phase Separators 3105
ey
Heat Exchangers 1to 4

As the discharge of our pump is at the top of absorber so we take skirt height within the

range given above.
Height of skirt = 4ft = 1.21m

Step 3: Estimate Z; and Z; that is height at suction and discharge:

Suction height = Z; = 0ft = Om (As by rule of thumb pump will always consider at ground

level) Discharge height = Z, = height of equipment + skirt height = 10+1.21 = 11.21m

Step 4: Estimate Frictional pressure losses Ep and Es.

Flow system Pressure
components drop (bar)
Pipeline 0.35
Control valve 0.70
Interchanger 0.35
Air cooler 0.60
Surge vessel Small

So Ep=0.35 +0.70+0.35 = 1.40 bar

Step 5: Calculate Pump Work:
Density = 1024 kg/m®
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P1 — P2

W = gE(Zl—Zz)‘l‘

(o

- (Es + ED)

(1.3 —8.82) x 10>  (0.35 + 0.35 + 0.70) x 10°

W= 9.8(0 - 11.21) + 1024 1024

W = (109.85)-(734.37)-(136.71) = -980.93 N;—g"“

The negative sign shows that the work is done on the system.
Step 6: Pump Power Calculations:
Flow rate = m = 4050Kg/hr = 1.125kg/s

Pump efficiency =n =0.45
m X W
n

_1.125 x980.93
Pp 0.45

P, = 2452.32 Watt
Pp=3.26 hp

Pp =

Step 7: Calculate electric-motor horsepower & estimate its Efficiency:

An induction motor with an efficiency of motor is selected to be 86%.

P,
PE = —P

n
b _ 3.26
E™ 0.86
Pg = 3.79hp

Safety factor: A safety factor of 10% is taken
Safety factor = 1.1
SoPe=379%x11=4.16hp

Select a standard electric-motor horsepower

The standard motor selected is of 5 hp.
Net Positive Suction Head:
We know that

Where,

Hs¢ = friction in suction line = Obar

Z,=0

P,= 1.3atm = 130000 Pa Vapor pressure:
Process stream at 116 °C = 94392.2 Pa

So, by putting the values, we get
1 /130000 —94392.2

NPSH = %( 1024

—0)—023.24m
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Specification Sheet P-101

Total Mass flow rate 405056 kg/hr
Discharge height = 12 m
Z,

Work required by --980.93 N-m/kg

pump
Pump Power 3.26 hp
Electric-motor

Power o
NPSH 3.24m
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8.1 Process Flow Diagram:

& {i[r *ﬂ

8.2 Introduction to ASPEN HYSYS:

Aspen HYSYS (or simply HYSYS) is achemical process simulator currently developed
by Aspen Tech used to mathematically model chemical processes, from unit operations to
full chemical plants and refineries. HYSYS is able to perform many of the core
calculations of chemical engineering, including those concerned with mass balance, energy
balance, vapor-liquid equilibrium, heat transfer, mass transfer, chemical
Kinetics, fractionation, and pressure drop. HYSYS is used extensively in industry and
academia for steady-state and dynamic simulation, process design, performance modeling,
and optimization

8.3 Introduction to ASPEN Plus:

ASPEN PLUS allows you to create your own process model, starting with the flow sheet,
then specifying the chemical components and operating conditions. ASPEN PLUS will
take all of your specifications and, with a click of the mouse button, simulate the model.
The process simulation is the action that executes all necessary calculations needed to
solve the outcome of the system, hence predicting its behavior. When the calculations are
complete, ASPEN PLUS lists the results, stream by stream and unit by unit, so you can
observe what happened to the chemical species of your process model.

8.4 Simulation of Dehydration Reactor:

Selection and addition of the components of the process.

v" Ethanol
v Ethylene
v’ Water
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Fiter AUl Families

Full Nawme /Sy ncaym

Selection of the proper fluid package. In our case we have selected NTRL as fluid package.

Establish reactions. Click Add after going to the Reactions folder. This will produce Set-1

Bae) 4+
% [ Beses Cortty. | Sheilew | Prmve Oster | Srbus | Mo

ComponentList - 1 [VSY5 Databaris] = vaw

e e

a new reaction set. Select Add Reaction and Hysys, Conversion in Set 1. Rxn-1 will be a
novel reaction that results from this. To open the Rxn-1 window, double-click on the Rxn-
1 icon. Enter the information below. When finished, close this window. We now need to
connect the reaction set to the fluid package in Set-1. To add Basis-1 to your FP, click the
Add to FP button. Now, the response system ought to be prepared.

Jpideacsn v | Degtesexcten Ly Fascses

6.~ Deats St opy Smance i 0y
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Go to the simulation environment and select a PFR-100 and add to worksheet. By double
clicking on the PFR a window will open.

[EP Pivg Flow Reacton BFR-100 - Set-1 - o e
Design | Aeactions | Rating | Worksneet | Pertormance | Dynamics
Dern Name PFR-100
Connections
Parameters Inlets.
Heat Transfed '"' .l_ﬂ. o
User Vinables g i
Notes
Cutler
| preduct
_+
Energy {Optionall Fhusd Package L
- | Bass-1 |
el

Go to the reactions tab in the already opened window and insert the required data.

P Plug Flow Roactor; FFR-100 - Sat-1 - =] e

ITslize segment reactions from:
& Current Previeu = Re-init

Integration Information

1.0002-003 m |
1.000
2500 kg/m3
1775 kg/m3
250.0 kifkg-C

ey [JE.

Click on the worksheet tab and enter the data of the temperature and pressure of both input
and output streams.

D Plug Flow Reactor: PFR-100 - Set-1 - (u] *

Design | Reactions | Rating | Worksheet | farformance [ Dynamics

Woriakest Name feed product
Conditions Wapaur 1.0000 1.0000
Properties Temperature [C] 5300 5300
Compaosition | | Pressure [kPa] 4000 4000
BF Specs Malar Flow lkgmoile/n] 27 27
Mass How [kg/h) 1.286e+005 1 2h6e+005
St Ideal Lig Vol Flow [m3,h] 1615 161.5
Malar Enthalpy [x)/kamote] 1.645e+ 005 1 B45e+005
Polar Entropy [kkgmole-L] 221.1 2211
Heat Flow [kifh] 5.148e 00B 5148+ (08

Delete | | | (norec
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Go to the ratings tab in the already opened window.

The PFR is simulated and should look like this now.

PFR-100

=)
feed product

8.5 Simulation of Fermenter:

Selection and addition of the components of the process

v" Glucose

D Piug Flow Reactor: PRR-100 - Set-1

Diesign | Reacions | Rating | Worksheet | Performance | Dynamics

Rating Tube Dimensions
Sizing Total Vohlume 3.000 m3
MNozzles Length 6800 m
Crameter 000z m

Number of Tube: 56

Wall Thi 5.000e-003 m

Tube Packing
0.290

Veid

08700 m3

[ oeere | | | crcrea
v' Ethanol
v CO,

Source Databank HYSYS | Pure Components 2 Filtes AB Families
e | Search by: Full Name/Synonym
HypeGroupd
Narne * Nams y muls
Metha 044
Ethan C2HB
Prapan CM
8 1 Camt
4 A0
5 CSH12
SH12
CEH14
7H1
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Selection of the proper fluid package. In our case we have selected NTRL as fluid package.

Basis.l |+
SetUp | mnary Coetrs | Stabest 1 Phase Drder | Tabular | Notes
Package Tyoe:  HYSYS Camponent List Sedecticn

Property Package Selection Activity Model Spedfications

Vagour Model Ideal

density Mat Costakd
UNIFAC 25.0000 C
Usa Puy! 2

No Porameters required for the selected Property Fackage.

(< List - 1 [HYSYS

sopers s

View

Establish reactions. Click Add after going to the Reactions folder. This will produce Set-1,
a new reaction set. Select Add Reaction and Hysys, Conversion in Set 1. Rxn-1 will be a
novel reaction that results from this. To open the Rxn-1 window, double-click on the Rxn-
1 icon. Enter the information below. When finished, close this window. We now need to
connect the reaction set to the fluid package in Set-1. To add Basis-1 to your FP, click the

-1.000 100
2.000 000
1.99¢ (2

Add to FP button. The reaction set should now be ready.

D cont. Stimed Tank Reactor: Fermenter R-104 - Set-1
De-sugni Reactions | Rating | Wicrksheat | Dymamics
Reactions Reaction Information

Diataits Reaction Set Set-1 - Reaction
Results

Specifics @ Stoichiometry 7 Basis

Stoichiometry

Component hlole Wi Stoich Coeff
Glurose* 160,000 -1.000
Ethano! 46.070 2000
ooz 44010 199
**Add Comp**
Balance Errar 0.00000
Reaction Heat (25 C} cemply>

Reverse fiescton

Ignored
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Go to the simulation environment and select Fermenter R-101 by double clicking a
window will open label the input and output streams.

ﬁ‘ Cont, Stired Tank Reactor; Fermenter B-104 - Set-1 = O x
Design | Reactions I Rating | ‘Worksheet l Dynamics
Design Mame Fermenter R-104
Connections
Parameters -
User Vanables S
Inlets Vapour Qutlet
Mates /J\ o .
Feed coz2 -
== Stream >>
-
-
-
Energy (Optional) e B Liguid Outlet
[ - \r/ | Ethanol -
.
>
Fluid Package Basis-1 -
cece | | o

Click on the worksheet tab and enter the data of the temperature and pressure of both input
and output streams.

FD Cont. Stirred Tank Reactor: Fermenter R-104 - Set-1 = O =

Design | Reactions | Rating | Worksheet | Dynamics

Workshest Name Feed Ethanol coz
Conditicns Vapour 0.0000 0.0000 1.0000
Properties Temperature [C] 48.00 48.00 4B.00
Composition Preszure [kPa] 100.0 100.0 100.0
PF Specs Motar Flow [kgmolesh] 1477 2837 2837
Mass Flow [kg/h] 2,650e+005 1.207e+005 1.249e+ 005
St Ideal Lig Vai Flow [ma/m] 1704 1542 151.3
Matar Enthalpy [kl fkamala] 173 1a+004 -2.746e+005 -3.829e +005
Malar Entrapy [klfkgmale-C) 4344 34.35 2129
Heat Flow [k)/h] 2.557e+007 -7790e+ 008 -1.115e+00%

vecte | | | |
Click on the ratings tab in the already opened window.

B‘ Cont. Stirred Tank Reactor: Fermenter R-104 - Set-1 = O x

Design | Reactions | Rating | Worksheer | Dynamics |
Rating Geametry

Sizing Orientation: @ Vertical Horizontal

Nozzes @ Cylinder Wolume 1"'".3] 3000

Heat Loss | Sphere Diameter {m] 1368
Height [m] i)

| This reactor has a boot

| et (oo
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The Fermenter Reactor should be simulated now and look like this.

—)
Feed CC—)g
Ethanol

Fermenter
R-104

8.6 Simulation of Distillation Column (D-101):

Components - Specifications -« | +

[@Selectioﬂ |P‘etm|eum MNonconventional |Enterprise Database |Cumments

Select components
Component ID Type Component name Alias
ETHANOL Conventional ETHANOL C2H60-2
WATER Conventional WATER H20

F AMMON-01 Conventional AMMONIUM-ACETATE C2HTNOZ2

[ Find | [ Elec Wizard | [ SFE Assistant | [ User Defined | [ Reorder | [ Review

Click on the Methods in the navigation pane. Select NTRL as the Base Method.

Methods =+

& Global Flowsheet Sections IRe‘Ferenced ICDr‘nr‘nents

Property methods 8 options

Method name
Method filter COMMOMN

MRTL -

[ Methods Assistant...
Base method MRTL

Henry components

- [] Modify

W - 5 5
Petroleurmn calculation options R EERER 2=
. ~
Free-water method STEAM-TA - Data set |
Water solubility 3 - Liquid garmma GMREMOM
Data set 1=
Electrolyte calculation options

Ligquid melar enthalpy HLMX26
HoamEny e Liquid meolar volume WLMWA0T
Use true components [Hizst = miine
Poynting correction

Use liquid reference state enthalpy
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Click a DSTWU block onto the flowchart in the Columns area of the Model Palette, then
link the FEED stream to the input of column. Create a bottoms stream and a distillate

stream. Your flow-sheet should resemble the illustration below.

Now in the configuration tab add your desired data.

Main Flowsheet B1 (RadFrac) FEED (MATERIAL) DIST (MATERIAL) - Results +

[@Configurat\on |@Streams | & Pressure I & Condenser I & Reboiler | 3-Phase ‘Comments |

Setup eptions

Calculation type Equilibrium -

Mumber of stages 345 Stage Wizard |
Condenser Total -
Reboiler Kettle -
Valid phases Vapor-Liquid -
Convergence Standard -

Operating specifications

Distillate rate > Mass - 129887 kg/hr
Reflux ratio * Mass - 3.22
Free water reflux ratio a

[ Design and specify column internals |

In the Streams Tab give the Feed at stage 9 and also give the remaining data.

Main Flowsheet B1 (RadFrac) FEED (MATERIAL) DIST (MATERIAL) - Results +

|@Conﬁgurat|on @ Streams ‘@Pressure |@Cnndenser I@Reboller |3—Pha:5 Comments

Feed streamns

Mame Stage Convention
» FEED 9 Above-Stage

Product streams

Marme Stage Phase Basis Flow Units Flow Ratio
DIST 1 Liquid Mele krmol/hr
EOT 34 Liquid Mole kmal/hr

Pseudo streams

Marme Pseudo Stream Stage Internal Phase Reboiler Phase Rebailer Pumparound =~ Pumparound
Type Conditions D Conditions

In the Pressures Tab give the pressure for condenser.

Feed Specs

Flow

Units
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Choose the Flash Type variables to be Pressure and Temperature.

PMain Flowsheet

| B1 (RadFrac)

" FEED (MATERIAL)

DIST (MATERIAL) - Results i+

Process Simulation

@ Mixed | CI Solid

| Specifications

NC Solid | Flash Options | EO Options

I Costing I Comments

Solvent

- Reference Temperature

Volume flow reference temperature

Flash Type Temperature - Pressure -
- State wvariables
Temperature 83 C -
Prescure 1 bar -
Vapaor fraction
Total flow basis Mass -
Total flow rate 146827 ka/hr -

- Composition

Mass-Frac -

Component alue
ETHANOL 077
WATER 0.21
AMMON-07 0.02

C
Component concentration reference temperature
C Total 1
Main Flowsheet - ' B1 (RadFrac) - ] FEED (MATERIAL) DIST (MATERIAL) - Results +

View

~Top stage / Condenser pressure

| & Configuration | @ Streams | @ Pressure | & Condenser | & Reboiler | 3-Phase | Comments

Stage 1/ Condenser pressure 1 bar
~Stage 2 pressure (optienal)
0! Stage 2 pressure bar
() Condenser pressure drop bar
~Pressure drop for rest of column (optional)
Stage pressure drop bar
() Column pressure drop bar

Run the simulation.

Main Flowsheet

51 (MATERIAL)

/52 (MATERIAL) - Results (Default) - | +

[Materlal l‘w‘o\.%Cur'.fes Wt. % Curves | Petroleum | Polymers | Solids |05tatus |

Description
From
To

Stream Class

Cost Flow

Maximum Relative Error

= MIXED Substream

Phase

Temperature
Pressure

Molar Vapor Fraction
Molar Liguid Fraction
Malar Solid Fraction
Mass Vapor Fraction
Mass Liguid Fraction
Mass Solid Fraction

Molar Enthalpy

$/hr

bar

Units

cal/mol

52 -
B1
COMVEN
Liquid Phase
784706
1
0
1
0
0
1
0
-63980.9
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Main Flowsheet S1 (MATERIAL) - '§2 (MATERIAL) - Results (Default) - | +
I Material ‘ Wol.% Curves | Wt % Curves | Petroleum | Polymers | Solids lm
Units - -
Muolar Enthalpy cal/mal -63980.9
Mass Enthalpy calfgm -1588.24
Maolar Entropy cal/mol-K -59.6001
Mass Entropy cal/gm-K -1.46085
Meolar Density maelfcc 0.0181434
Mass Density gm,fce 0.740214
Enthalpy Flow calfsec -1.77725e+06
Average MW 40,798
= Mole Flows kmol/hr 100
ETHAMOL kmol/hr 77
WATER kmol/hr 21
AMMON-01 kol /hr 2
= Mole Fractions
ETHAMOL 077
WATER 0.21
AMMON-01 0.02
= Mass Flows kg/hr 4079.8

51 (MATERIAL)

'S2 (MATERIAL) - Results (Default) -« | +

Material | Wiol.% Curves Wit % Curves Petroleumn Polymers Solids lml
Units =) - -
— Mass Flows kg/hr 4079.8
ETHAMOL kgshr 3547.32
WATER kghr 378.321
AMDMOMN-01 kgshr 154.166
— Mass Fractions
ETHAMOL 0.8694382
WATER 0.0927302
AMBOMN-01 0.0377877
Veolume Flow Ifmin 91.8508
— Liquid Phase
Molar Enthalpy cal/mol -53980.9
Mass Enthalpy cal/gm -1568.24
Melar Entropy cal/mol-K -50.6001
Mass Entropy cal/gm-K -1.46086
Molar Density molfcc 0.0181434
Mass Density gmycc 0.740214
Enthalpy Flow calfsec -1.77725e+06
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Main Flowsheet 51 (MATERIAL) /52 (MATERIAL) - Results (Default) - | +

[ Material | Vol.% Curves | Wt % Curves | Petroleumn | Polymers | Solids | & Status |
Units 52 - -
= Mole Flows kmol/hr 100
ETHAMNOL kol hr 77
WATER kol hr 21
AMMON-01 kol hr 2
» — Mole Fractions
ETHANOL 077
WATER 0.21
AMMOM-01 0.02
= Mass Flows kg/hr 4079.8
ETHAMNOL kg/hr 3547.32
WATER kg/hr 378321
AMMOM-01 kag/hr 134166
— Mass Fractions
ETHANOL 0.869482
WATER 0.0927302
AMMOM-01 0.0377877
<add properties>

8.7 Simulation of Distillation Column (D-102):

In the Components Specifications selection tab, enter the components needed for this
simulation.

‘Components - |+

& Selection |Petro|eum |Nor1corwer1tiona| Enterprise Database | Comments
Select components
Compaonent ID Type Component name Alias
» ETHANOL Conventional ETHANOL C2H60-2
SUCROSE Conventional SUCROSE C12H22011
H2504 Conventional SULFURIC-ACID H2504
GLUCOSE Conventional DEXTROSE CoH1206
AMMON-01 Conventional AMMOMIUM-SULFATE (NH4)2504
AMMON-02 Conventional AMMOMNIUM-ACETATE C2ZHTNO2
WATER Conventional WATER H20
| Find | | FlecWizard | | SFEAssistant | | UserDefined | | Reorder | | Review |

Click on Methods in the navigation pane. Select NTRL as the Base Method.
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Methods -~ |+

] [ & Global | Flowsheet Sections | Referenced | Comments

~Property methods & options —————————  Method name
' -
Method fiiter S MRTL - Methods Assistant...
Base method MRTL -
Henry components « | ([l Modify
~Petroleurn calculation options Vapor EQS ESIG
)
Free-water method STEAM-TA - Data set 18
Water solubility 3 - Liquid gamma GMREMOMN
Data set 1 :

~Electrolyte calculation options Liquid molar enthalpy HLMX26

Chemistry ID -
Emistry Liquid maolar volume | VLMEXD

Use true components

Heat of mixing

Poynting correction

Use liquid reference state enthalpy

In the Columns section of the Model Palette, insert a DSTWU block onto the flowsheet
and connect the FEED stream to the column input. Make a distillate stream and a bottoms
stream. Your flowsheet should look like the example below.

B1
DIST >
! '| FEED >
80T |—=

Now in the configuration tab add your desired data.
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Main Flowsheet DIST (MATERIAL) - Input - B1 (RadFrac) ~ | FEED (MATERIAL) DIST (MATERIAL) - Results (Default)

& Configuration |05tr:,ums | & Pressure | & Condenser | & Reboiler

3-Phase |Comm:nb |

~Setup options

Calculation type Equilibrium -

Mumber of stages 16 t
Condenser Total -
Reboiler Kettle -
Valid phases Vapor-Liquid -
Convergence Standard -

~ Operating specifications

Distillate rate ~ Mass - 146827 leg/hr -
Reflux ratio - Mol - 0.71205
Free water reflux ratio o

[ Design and specify column internals ]

In the Streams Tab give the Feed at stage 9 and give the remaining data.

Main Flowsheet DIST (MATERIAL) - Input BA (RadFrac) - | FEED (MATERIAL) DIST (MATERIAL) - Results (Default) +

& Configuration | @Streams | @Pressure | & Condenser | @Reboiler | 3-Phase | Comments

- Feed streams

Name Stage Convention

b FEED 12 Above-Stage

~Product streams

Mame Stage Phase Basis Flow Units Flow Ratio Feed Specs
DIST 1 Liquid Mole kmal/hr
BOT 16 Liquid Mole kmal/hr

-Pseudo streams

Mame  PseudoStresm  Stage  Internal Phase Reboiler Phase  Reboiler | Pumparound =~ Pumparound Flow Units
Type Conditions D Conditions
Choose the Flash Type variables to be Pressure and Temperature.
Main Flowsheet DIST (MATERIAL) - Input “FEED (MATERIAL) ~ DIST (MATERIAL]) - Results (Default) +
[ @ Mixed ICI Solid | NCSolid | Flash Options | EQ Options | Costing | Comments |
~ | Specifications
Flash Type Temperature ~ Pressure -~ Composition
~ State variables Mass-Frac M
Temperature 223 C M Component Value
Pressure 1}|ar ~ ETHANOL 0.45
Vaporfraction SUCROSE 0.0146
Total fl basi M -
orattow bass ass H2504 0.143
Total flow rate 231687 kg/hr - _
GLUCOSE 0.0459
Sobvent
AMMON-01 0.164
~Reference Temperature AMMOMN-02 0.0397
Volume flow reference temperature WATER 0.0291
e
Component concentration reference ternperature
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"Main Flowsheet | DIST (MATERIAL) - Input | B1 (RadFrac) - | FEED [MATERIAL) - 'DIST (MATERIAL) - Results (Default) - |+

[ Material l Vol.% Curves | Wt. % Curves | Petroleurn | Polymers

Solids |08tatus |

Description

From

To

Stream Class

Maximum Relative Error

Cost Flow

Units

$/hr

DIST -

EB1

CONVEN

“Main Flowsheet - | DIST (MATERIAL) - Input ~ | B1 (RadFrac) ~ | FEED (MATERIAL) - DIST (MATERIAL) - Results (Default) « |+

[ Material I Vol.% Curves | Wt. % Curves | Petroleurn | Polymers

Solids |08tatus |

= MIXED Substream
Phase
Termperature
Pressure
Malar Vapor Fraction
Molar Liquid Fraction
Malar Solid Fraction
Mass Vapor Fraction
Mass Liguid Fraction
Mass Solid Fraction
Molar Enthalpy
Mass Enthalpy

Units

calfmol

calfgm

DIST -

Liquid Phase
79.6509
1

1
0
-734146
-1597.91

“Main Flowsheet | DIST (MATERIAL) - Input - | B1 (RadFrac) | FEED (MATERIAL) ~ 'DIST (MATERIAL) - Results (Default) -~ | +

[Material ]VDL%CUP.‘EE Wi. % Curves | Petroleum | Polymers | Solids | @Status |
Units DIST - -
— Mole Fractions
ETHANOL 0.799003
SUCROSE 9.21761e-24
H2504 0.0688685
GLUCOSE 125273e-18
AMMON-01 5.26552-276
AMMON-02 2.18507e-276
WATER 0132129
N Moce 1 teen s 145077
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Main Flowsheet | DIST (MATERIAL] - Input | B1 (RadFrac) | FEED (MATERIAL}) 'DIST (MATERIAL) - Re

[Material ]vm.% Curves | Wt % Curves | Petroleum | Polymers | Solids | @Status |
Units - -

— Mass Flows kg/hr 146827
ETHANOL kg/hr 117634
SUCROSE kgshr 1.00833e-17
H2504 kgshr 21586.1
GLUCOSE kgshr 7.2125e-13
AMMON-01 kgshr 2.22358e-270
AMMON-02 kg/hr 5.3827e-271
WATER kg/hr 7607

— Mass Fractions
ETHANOL 0.801174
SUCROSE 6.867432-23
H2504 0.147017
GLUCOSE 491224¢-18
AMMON-01 1.51442e-275
AMMON-02 3.66601=-276
WATER 0.0518092

Main Flowsheet | DIST (MATERIAL) - Input | B1 (RadFrac) | FEED (MATERIAL) 'DIST (MATERIAL) - Re

I Material l Vol.% Curves | Wt % Curves Petroleurn | Polymers Solids lm
Units - -
— Liquid Phase

Muolar Enthalpy calfmol -7314.e

Mass Enthalpy calfgm -1597.91

Muolar Entropy calfmol-K -71.0203

Mass Entropy cal/gm-K -1.54732
Molar Density moldcc 0.0175737

Mass Density gmyfcc 0.807411
Enthalpy Flow calfsec -6.31712e+07
Average MW 459442

— Mole Flows kmol/hr 3195.77
ETHAMOL kmol/hr 2553.43

SUCROSE krmol/hr 2.94574=-20

H2504 krmol/hr 220.088

GLUCOSE kmol/hr A4,003442-15
AMMON-01 kmol/hr 1.68274e-272
AMMOM-02 kmol/hr 6.082%98e-273
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“Main Flowsheet | DIST (MATERIAL] - Input ~ | B1 (RadFrac) « | FEED (MATERIAL) - 'DIST (MATERIAL) - Re

| Material [ vol Curves | W% Curves | Petroleum | Polymers | Solids | @Status |
Units DIST - -
— Mole Fractions
ETHANOL 0.799003
SUCROSE 9.21761e-24
H2504 0.0688685
GLUCOSE 12527318
AMMON-01 5.26552¢-276
AMMON-02 212507e-276
WATER 0132129
= Mass Flows kg/hr 146827
ETHANOL kgfhr 117634
SUCROSE kgfhr 10083317
H2504 kgfhr 21586.1
GLUCOSE kgfhr 7.2125e-13
AMMON-01 kgfhr 2.22358¢-270
AMMON-02 kgfhr 5.3827e-271
WATER kahr 7607

Main Flowsheet DIST (MATERIAL) - Input ~  B1 (RadFrac) - FEED (MATERIAL) - 'DIST (MATERIAL) - Results (Default) « +

‘Material “Jol.%[ur.fes Wt % Curves | Petroleum | Polymers | Solids | @Status

= Mass Fractions
ETHANOL
SUCROSE
H2504
GLUCOSE
AMMON-01
AMMON-02
WATER

Units

RS - \

0801174
6.86743e-23
0.147017
49122418
1.51442¢-275
3.66601e-276
0.0518092
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4 Cold Stream (2) Compositions eme—— : . T
il Cold Stream (2) Properties Baffes Gty Stcel - |
4 | Exchanger Geometry Tube material Carbon Stesl -1 |
8 Geometry summary £ Fin material Set Defaull -8
|4] shell/Heads/Fanges/Tubeshests
(4] Tubes
] Baffles/Supports Databank Search |
) Bundle Layout
A Mozzles
| Thermosiphon Piping
4 [l Construction Specifications
|15 Materials of Construction
I} Design Specifications
» Ly Program Options
4 ) Results
¢ L Input Summary
L Result Summary
» L4 Thermal / Hydraulic Summary
EDR Navigator S ‘
¥ Shell & Tube +
L -
4 1) Shell & Tube L) v Design Specifications
3J Consgle Codes and Standards
4 | Input
4 |} Problem Definition Design Code |ASME Code Sec VIl Div 1 bl
!1 Headings/Remarks Service class | Normal v
g'l Application Options i |R ; . -
tlass - refinery senvice v
ﬁ'l Process Data i !
4 [ Property Date Material standard | ASME v
31 Hot Stream (1] Compositions Dimensional standard |ANSI—Amerimn |
] Hot Stream (1] Properties
2] Cold Sream (2) Compositions Design Conditions
] Cold Stream (2) Properties ShellSide —
4 | Exchanger Geometry £ '
: 2 Hot Side Cold Side
.3] Geometry Summary =
1) Shell/Heads/Flanges/Tubesheets Design pressure (gauge) [ | g0 &
B Tubes Design temperature I"F '| |3.?0 |350
1) Bafles/Supperts
" Vacuum design pressure (gauge [ v
j Bundie Layout e (gauge) Ips | | |
2 Nozzles Test pressure (gauge) [ psi v| | |
B Themosipion Piirg Corrosion allowance lin v| lo1zs 0125 |
4 | Construction Specifications :
Rediography |Spat v [Spat v

_-] Materials of Construction
| .j] Design Specifications |
& |, Program Cptions
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& Input
4 | Problem Definition
1) Headings/Remarks
4 Application Options
] Process Data
4 i Property Data
_:"f Hot Stream {1} Compasitions
) Hot Stream {1} Properties
|8 Cold Stream (2} Compositions
1 Cold Stream (2) Properties
4 [ Exchanger Geometry
4 Geometry Summary
1 shell/Heads/Flanges/Tubesheets |
B Tubes
) Baffies/Supports
14 Bundle Layout
& Mozzles
| Thermosiphon Piping
4 || Construction Specifications
2 Materials of Construction
&) Dasign Specifications
4 [ Program Options
|4 Design Options
& Thermal Analysis
4 Methods/Correlations
|8 Calculation Options

EDR Navigator <

A

. Design Options
Shell & Tube

+

Process Simulation

' Geometry Options |  Geometry Limits ] o Process Limi'ts.]  Optimization Options |

Geometry Options

Use shell 1D or OD as reference

Shell side nozzle location options

Location of nozzle at U-bend

Allow baffles under nozzles

\Use proportional baffle cut

Mumber of tube rows between sealing strips

Percent of tubes to be plugged

Shell Disengagement Options

Remove tubes for vapor disengagement space in flonded evaporator

Percent of shell diameter for disengagement

Variable Baffle Pitch Options
Number of regiens for variable baffle pitch
\arigble baffle pitch: First to last pitch ratio

. Design Options ‘
Shell & Tube |+

| Inside diameter ¥ |
| Opposite sides -
| Set default J
(o M|
|Yes %]
G |
o |
(e -]
| One region - |
s |

=

4 5 Input

4

4 [ Property Data

-

14} Problem Definition i

& Headings/Remarks

| Application Cptions
|41 Process Data

1] Het Stream (1) Compaositions
uﬂ Het Stream (1) Properties
| Cold Stream (2) Compositions
|8 Cold Stream (2) Properties
Exchanger Geometry
|_-:j Geometry Summary
|4] Shell/Heads,/Flanges, Tubesheets 5
@) Tubes i
| Baffles/Supparts
|4 Bundle Layout
|ﬁ Mozzles
Thermosiphon Piping
¢ Construction Specifications
| Materials of Construction
|8 Design Specifications
"\ Program Options
|j Design Options
[ Thermal Analysis
|8 Methods/Correlations
ig Calculation Cptions

|'¢ Geometry Options |+ Geometry Limits | . Praeess Limits I . Optimization Optiohs |

Geometry Limits

Shell diameter

Tube length

Tube passes

Baffle spacing

Baffle cut (% of diameter)
Shells in series

Shells in parallel

Use pipe for shells below this diameter

in

[

- e

[1246..

-

Increment

Minimum Maximum
|s | 106 |
4 | 240 |

-] [ | s |
2 | 20 |
[10 | la0 |
i | 6 |
l1 | (10 |
|24 | |
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4 [§ Problem Definition
8 Headings/Remarks
|#] Application Options
|8 Process Data
4[5 Property Data
|£] Hot Stream {1) Compasitions
| Hot Stream (1) Properties
|8 Cold Steam (2) Compositions
|1 Cold Stream (2) Properties
4 || Exchanger Geometry
|8 Geometry Summary

|4 Shell/Heads/Flanges/Tubesheets

&) Tubes
0] Baffles/Supports

| Bundie Layout

| Nozzles

Thermosiphon Piping

| Canstruction Specifications
|£] Materials of Construction
| Design Specifications
Program Cptions

[
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=

&| Design Options

|8 Thermal Analysis
|8 Methods/Correlations
ﬂ Calculation Options

EDR Navigator

Shell&Tube  +

+ Geometry Opticns [ « Geometry Limits | + Process Limits | . Optimization Options

Process Limits
Minimum fuid velocity fifs =
Maximum fluid velocity ™ -

Target % pressure drop in nozzles
Maximum exit entrainment ratio (mass liguid/vapor) (pool beilers only)

Aliow local temperature cross

< DesignOptions

All

Shell & Tube  +

Hot Side Cold Side
||:|.03

[s28.08
15 | 15

002

| Ves

o Ihput

4 | Problem Definition
4] Headings/Remarks
] Application Options
4] Process Data

4 |3 Property Data

] Hot Stream (1) Compositions

] Hot Stream (1) Properties

] Cold Stream (2} Compositions

_u] Cold Stream {2] Properties
4 [ Exchanger Geometry
] Geometry Summary

- Optimization Options

Design search thoroughness options

Basis for design optimization

Highest cost or area ratio considered

Mirmum % excess surface area raquired

Show units that mest minimum actual/required surface area ratio

Show units that mest maximum actual/allowed het side prassure drop ratio

Show units that meet maximum actual/allowed cold side pressure drop ratic

] Shell/Heads/Flanges/Tubesheets = Number of design iterations (before search is stopped)

1) Tubes
] Baffles/Supparts
] Bundle Layout
) Nozzles
Thermasiphan Piping
4 [ Construction Specifications

] Materizls of Construction
4] Design Specifications

I

4 |y Program Options

;'.] Design Options
2] Thermal Analysis
) Methods/Correlations

0  Geometry Options I o Geometry Limits | ./ Process Limits | o Optimization Options

Normal b
M‘frlimum cost w
1.25

o

09

1.5
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i » ||l + Heat Transfer | o Pressure Drop I o DeltaT ] ' Fouling
4 | Input

4 &Y Problem Definition = Heat Transfer Options
|41 Headings/Remarks Hot Side Cold Side
5] lication Opticns
B Aep g Liquid heat transfer coefficient | ETUsn-f v | | | | |
|8 Process Data )

4 W Property Data Twa phase heat transfer coefficient [erusms~ | | | |
|4 Hor stream {1) Compositions Vapor heat transfer coefficient |Brusm-i | | | | |
|1 Hat Stream (1) Properties o § . ' ' | |
&1 Cold Stream {2} Compositions Liguid heat transfer coefficient multiplier 1 | 1 |
|4 Cold Stream {2} Properties Two phase heat transfer coefficignt multiplier | 1 | | 1 |

4. & Eachisnges Bedimety Vapor heat transfer coefficient multiplier | il | | 1 |
|] Geometry Summary . 3
) shell/Heads/Flanges/Tubesheets |- U-bend area will be considered effective for heat transfer | Setdefault -

12 Tubes Fraction of tube area st i for shell side ¢ 5 | |

] fi 1
1) Batfles/Supports Weir height above bundle for kettle reboiler n
| Bundle Layout
| Mozzles

|| Thermosiphon Piping

4 | Construction Specifications
| Materials of Construction
1] Design Specifications

4 || Program Options
@ Design Dpt:lons
&) Thermal Analysis L
1] Methods/Correlations
|4 Calculation Dptions

EDR Navigator < * Thermal Analysis -
I ‘Shell & Tube  +
I.Iu: [
- # ||[I| o Heat Transfer |  Pressure Drop | o/ Delta T | + Fouling l
4 [ Input - - -
4 (i} Problem Definition Ml Pressure Drop Options
% Headings/Remarks Hot Side Cold Side
2 lication Options
i : Pressure drop multiplier | T 1 |
|4 Process Data
4 [ Property Data Pressure drop: friction / grawity, hot side |J'ricﬁ0n only * | | frictiom only A |
1 Hot Stream (1) Compositions Pressure change: acceleration | during heat transfer v | | during heat transfer - |

/] Hot Stream (1) Properties
&) Cold Stream {2) Compositions
1 Cold Stream (2) Properties
B Exchanger Geometry
| Geometry Summary
j Shell/Heads/Flanges/Tubesheets =
8 Tubes
ﬂ Baffies/Supports
] Bundle Layout
|4 Nozzies
| Thermasiphon Piping
4 [ Construction Specifications
1) Materials of Construction
/] Design Specifications
4 [/ Program Options
ﬂ Design Options
) Thermal Analysis
|1 Methads/Carrelations
4 Calculation Options
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ﬂ Design Options

|[8) Thermal Analysis
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 Thermal Analysis ‘
Shell & Tube |+

Process Simulation

[ . Heat Transfer l o Pressure Drop | o Delta T | o Fouling |

/Thermal Analysis -
‘Shell & Tube

+

Minimum allowable MTD Ft correction factor

Temperature Difference Options

o7

= Coriooie

o Input

A

| Problem Definition

|] Headings/Remarks

|] Application Options

|11 Process Data
) Property Data

|1 Hot Stream (1) Compositions
:j Hot Stream (1) Properties
,;1 Cold Stream (2) Compositions
| Cold Stream (2) Properties

| Exchanger Geomgtry

1] Geometry Summary
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£ Tubes
) Baffles/Supports
|] Bundle Layout
|8 Mozzles
| Thermosiphon Piping
Construction Specifications
1] Materials of Construction
|1] Design Specifications
. Program Options
\&] Design Options
| |1] Thermal Analysis
|11 Methods/Correlations
|4 Caleulation Options

=

| ./ Heat Transfer |  Prassure Drop [ ,/DeltaT|  Fauling 1

Fouling Calculations

Fouling calculation options

Fouling layer thickness

| Adjust both sides based on fouling input

¥ |

Hot Side

Cold Side

|in A |

||
Fouling thermal conductivty | BTUAR-h-F) + | | ||
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|1 Process Data
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) Nozzles
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Shell & Tube an

Process Simulation

Vibration Analysis Options
Vibration analysis method
Tube axial stress

Effective cross flow fraction

Single phase tulbeside heat transfer method
Lowfin tube calculation method

Viscosity method for twa liquid phases

 Shell & Tube +

" General ]:,./'Condensatk:m I « Vaparnization ] " Enhancement Data

| Full HTFS analysis

| HTFS recommended method

| HTES 7 £SDU

| HTFs selected method

— e

¥ Input

4 |} Problem Definttion |

Al
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b
=
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@
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Property Data
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E]

Exchanger Geametry
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' Canstruction Specifications
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)

|\ Program Optians
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B

Headings/Remarks
Application Dptions
Process Data

Hat Stream (1) Compositions
Haot Stream (1) Properties
Cald Stream (2) Compositions
Cold Stream (2) Properties

Geometry Summary
Shell/Heads/Flanges/Tubesheets =
Tubes
Baffles/Supports
Bundle Layout
Nozzles
Thermosiphon Piping

Materials of Construction
Diecign Specifications

Design Opticns

Thermal Analysis

|[1] Methads/Carrelations

@

Calculation Options

Condensation Options
Desuperheating heat transfer method
Condensation heat transfer model
Vapor shear heat transfer enhancement
Liquid subcooling heat transfer/vertical

Priority for condenser outlet temperature (mixtures)

- [ . General ‘ v Condensaticn |  Maporization l  Enhancement Data

| wet wat

¥ |

| H7FS - Sitver-gell

it |

l Use vapor shear enhancement = |

| rvor Used

)

I Vapor-Gas
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Fragram Options

|] Design Options

&) Thermal Analysis
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| Calculation Options
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- | « General |  Condensation | ' Vaponzation | Enhancement Data [

Vaporization Options
Subcooled boiling accounted forin

Post dryout heat transfer determined

Boiling Curve Correction

Heat flux reference point

Temperaturs difference {Delta T reference point
Boiling curve exponent on Delta T

Correction 1o boiling curve

Falling film evaporation method

 Calculation Options - |

A

Shell & Tube |+

| Heat transfer & pressure drop ™

-

|l"€5

| BTU/h-f) =

E -

Boiling curve not used

.HTFS recommended method

e
4 [ Input
4 |1} Problem Definition
] Headings/Remarks
] Application Options
] Process Data
Property Data
) Hot Stream (1] Compositions
] Hot Stream (1] Properties
1 Cold Streamn (2) Compositions
ﬂ Cold Stream (2) Properties
|\ Exchanger Geometry
] Geometry Summary
| Shell/Heads/Flanges/ Tubesheets
] Tubes
ﬂ Baffles/Supports
] Bundle Layout
] Nozzles
Thermosiphon Piping
Construction Specifications
] Materials of Construction
] Design Specifications
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Program Options

2] Design Opticns

] Thermal Analysis

1 Methods/Correlations
| 4 Calculation Options

.| || o Caleulation Options l

Calculation method

Convergence Options

Maximum number of Iterations
Convergence tolerance - heat load
Convergence tolerance - pressure
Relaxation parameter

Calculation grid resolution
Convergence criterion

| Calculation step size

Pressure Caleulation Options
Pressure calculation opticn - hot side
Pressure calculation option - cold side
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Minimum pressure - cold side
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Advanced method
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i s Recap of Design
4 | | Exchanger Geometry
[1] Geometry Summary Current selected case A
[] Shell/Heads/Flanges/Tubesheets
[] Tubes
| Raffles/Supparts el 1D 1 -
| Bundle Layout ele f ft g
1] Nozzles b q d ft =
| Thermosiphon Fiping . - o =
4 |\ Construction Specifications Wl .
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|17 Materials of Construction 2
| Design Specifications : gEE it >/
4 || Program Options e 4
|] Design Cptions 2 p4
|ﬂ Thermal Analysis De De
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|1} Calculation Options 0 P
4 |3} Results a Dollar(Us) -
4 [ Input Summary = q de
1 Input Summary alculats 2
4 || Result summary Atea B = =
1 Warnings & Messages
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21 Optimization Path v
» alc 2ra ETl T X
1 Recap of Designs :
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‘ TEMA Sheet
Shell &Tube  +

TS

Zxchanger Geometry

] Geometry Summary Heat Exchanger Specification Sheet
jSheIL.'Hezds,-'5Ianges_.-'7uheshem 1| Company:
4 Tubes 2 | Location:
4] Baffles/Supports 3 | Service of Unit Our Reference:
] Bundle Layout 4 fem Mo Your Reference;
] Nozzles 3 | Date; Rev No.: Job No:
Thermaosiphan Piping 6|5ize: 26 -240 in Type:  BEM Horizontal Connectedin: 1 parallel 1 series
4 [/ Constrction Spe ons 7 | surffunitieft) 278 ft! Shells/unit Surf/shellietf) 20178 it
| Materials of Construction 8 EEREAIRBKELE Ak QNN
_1 Design Specifications 9 | Fluid atlocation Shell Side Tuhe Side
4 Program Opticns :” EAIEnie - - —
B Design Dptions 11 Fluid quantny., Total Ib/h 54127 507055
% 12 apor {infOut) Iefh 54127 ] ] )
j hermal Analysis e c41 - 7
b Methiods/Correlitiorie 13| liuid Infh 0 saf27 507055 507055
ey 14]  Noncar bl Iefh 0 0 0
] Calculation Options I
A W Results 16| Tempetature in/ouy k3 3056 30536 1724 284
4 & Input 5“"'"'“"’-'-*' E0[l |17]  Bubble / Dew paint °F |30556 / 30556 | 30556 / 30556 ! /
L input Summary 18] Density Vapor,Liquid b/ | 0463 / /57115 { 45754 [ 4134
4 Ly Result Summary 10] Viscosity o (00142 / / 01935 / 04634 /02185
[ Waminos & Messages 20| Molecular wt, Vap 1801
1 Optimizaticn Path 21| Molecular wt, NC
i Recap of Designs 22| Specific heat BTU/b-F) |0.5653 / /10046 {07514 J 08g
[ TEMA Sheet 23| Thermal conductvity BTUfit-h-F) | 0017/ EE /0094 | 085
| Cverall Summary 24| Latent heat BTUD 903 03
Thermal / Hydraulic Summary 25| Pressure {abs) psi 7252 BA.A7 5B0.15 575.8
Mechanical Summary 26| Velodity (Mean/Max) fifs J644 / 8731 66 /702
D — 27| Pressure drop, allow./calc psi 175 365 125 | 435
28] Fouling resistance {min] ft'-h-F/BTU 0 ] 0 hobased
29] Heat exchanged 43382100 BTUM MTD {corrected) 58497 *F
30| Transfer rate, Service 410,84 Dirty 430,58 Clean 43058 BTUh-f™F)
31 CONSTRUCTION OF ONE SHELL Sketch
32 Shell Side Tube Side
33| Design/Vacuum/test pressure psi| &0/ / 640 |
34| Design temperature °F 370 350
=] (=]
35| Number passes per shell 1 2 (Tﬂ—! I I I I fl]:D
36| Carrosion allowance in 0.125 0.125 L
37| Connections In in| 1 14 - 1 8 / -
38| Size/Rating Qut 1 3 / - 1 8 / -
39] Nominal Intermediate 1 / - 1 / -
40| Tube # 527 OD: 075 Tks. Average 0.083 in Length: 240 in Pitch: 0.9375 in  Tube pattern: 30
41] Tube type: Plain Insert: None Fin#: #/in Material: Carbon Steel
42| Shell  Carbon Steel ID 26 oD 2675 in | Shell cover -
43| Channel or bonnet Carbon Steel Channel cover =
44] Tubesheet-stationary Carbon Steel = Tubesheet-floating =
45] Floating head cover - Impingement protection  None
46] Baffle-cross  Carbon Steel Type Single segmental Cut(%d) 40.87 Hi Spacing: c/c  23.25 in
47| Baffle-long - Seal Type | Inlet 35.625 in
48] Supports-tube U-bend 0 Type
49] Bypass seal Tube-tubesheet joint Expanded only (2 grooves)(App.A 'T)
50| Expansion joint - Type None
51| RhoV2-Inlet nozzle 1512 Bundle entrance 954 Bundle exit 7 Ib/(ft-5%)
52| Gaskets - Shell side - Tube side Flat Metal Jacket Fibe
53 Floating head -
54| Code requirements ASME Code Sec VIII Div 1 TEMA class R - refinery service
55| Weight/Shell 118984  Filled with water  16335.6 Bundle 74321 b
56| Remarks
57
58
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4 Pragram Options
| Design Opticrs

. Ovenl Summary.
Shell & Tube  +

. Owerall Summary

Process Simulation

35
36
37
38
39
9
41
To)
13

45
48
47
48
49
50
51
52
53

3 Thermal Analysis 1] Se= 26 X 240 in Type BEM  Hor Connected in I paradel 1 series
) Methods/Conelations 2| st o/t on) mes w7 i/ FE shelfunt 1
= ) 1| SuriShell {grossiefinned) 20605 8 I [
& Calculation Optians 1 [ Design szirg) PERFORMANCE OF ONE UNIT
4 Results 5 Shell Side Tube Side Heat Tramsfer Parameters
4 Input Summary 6| Process Data In Qut In Dut | Totsl hest load
2 Input Summary 7| Totl fiow lbih s4127 07055 AT, MTDH 1 pass MTD 7
& [1f Resuit Summary 4| vopor Il 34127 ] I 0 Actual/fieqd srea ratia - foulediclean 145 1
i 9| Liouid Ioh ¢ 1T W SN
Jammings & M
=l Wartiings & Messages 10] Moncondensable loh ] ] Coef,Resist BIU -1t - -F/BTU %
= t_}p”m‘itm”_pft“ 1| condEap by 3437 0 Overat foulen 43038 a3
_ Recap of Designs 12 Temperatare FOMSE M5 1724 280 | Oversl clean 42058 o
2 TEMA Shest 13| Bubkle Baint F 3055 30556 Tuibe side film 58095 oy T4z
_ Cverall Summary 14] Dew Point *F 30356 305,56 Tue side fouling 0 4
4 [1 Themal / Hydrauiic Summary 13| Wzpor mass fraction 1 0 q i Tube wall ERiTAT il 162
18] Pressure (ab ioTis 7w ST e foulr i
B Periorinance y |t pi 725 688 5015 58 | Dutsie ouing 0 "
" T 17| Detta? aliow/cal psi TS 265 723 435 | outside fim T 20003 ey
=1 Heat Transfer 18] velocity R T2 122 22 T4
 Fressure Drop 15| Liquid Properties Shell Side Pressure Drop i %
A Flow Analysis 0 Dendy Ibyit* 5715 4575 4134 | Inktpozie 026
21 Vibration & Resonance Analysis | = 2] Viscosity {as] 0.1935 04538 Inletspaceifion 059
] Methods & Convergence o E:eciﬂ: heat BTU/(b-F) 107148 07514 12 Eahexilcw 214
Mechanical Summa 23| Thermi. cond. BTU(ft-h-) 0328 003 0085 | Bafie window Lk
4 Ko o] SUTAaTy 24| surizee tension Bt Outletspaceifion [0
- Buchanger Geometry 25| Muoleadlar weight 1801 4535 4536 | Outlet noczle 15
i Setting Plzn & Tubesheet Layout 26| Vapor Properties Imterrmsdiste nazles
) Cost { Weights 27| Densy I 0163 Tube Side Pressure Drop pei %
4 [ Caleudation Details 2| Viscosity @ 00142 ket poazie 03T 268
1 Analysis along Shell 28] Sorechic heat BTUfIb-F) 05693 Entering tubes 02 47
30] Therm, cond. BTUf-h-F 0017 Insige tubes ENE T35
G Anolysts along Tubes X 1 1801 E By 03 i
32| Two-Fhase Properties Outlet nozzle 022 303
33| Latant heat ETUle 803 o3 Intermeiate nozles
Heat Transfer Parameters Velocity / Rho®V2 ft/s Ib/(ft-s%)
Reynelds No, vapar 83268.28 Shell nozzle inlat 96.27 1512
Reynelds No. liquid 611012 44486.24 95738.59| Shell bundle Xflow 782 0.22
Prandt| No. vapor 1.13 Shell baffle window 87.31 0.25
Prandt! No. liquid 119 8.98 6.15 Shell nozzle outlet 513 1502
Heat Load ETU/R BTU/h Shell nozzle interm
Vaper only -6150 0 ft/s Ib/(ft-s%)
2-Phase vapor 0 0 Tube nozzle inlet 3.6 3593
Latent heat -48875960 0 Tubes 6.22 7.02
2-Phase liguid 0 0 Tube nozzle outlet 981 3976
Liquid anly 0 48882100 Tube nozzle interm
Tubes Baffles Nozzles: (Ne./OD)
Type Plain Type Single segmental Shell Side Tube Side
ID/OD in 0584 / 0.75 Number 8 Inlet in 1 fo4 1/ 8625
Length act/eff ft 20 / 195 Cut(¥d) 40.87 Outlet 1 § 0 EHD 1/ 8625
Tube passes 2 Cut orientation H Intermediate ! /
Tube No. 527 Spacing: ¢ in 2325  Impingement protection None
Tube pattern 30 Spacing at inlet in 35625
Tube pitch in 08375 Spacing at outlet  in 35625
Insert None
Vibration problem (HTFS / TEMA) Yes / RhoV2 violation Yes
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EDR Navigator §0 et e ‘
- - Shell & Tube |+
' i e "o ||| Overal Performance | Resistance Distiibution | Shell by Shell Conditions | Hat Stream Composition | Cold Stream Composition
4 |\ Program Options -
8 Ifles:gn Options Design (Sking) s beads
& Thermal Anaysi Total mass flow rate Ibh 54127 507055
1] Methods/Comelations Vapor mass flow rate (InOut) Ibfh 54127 0 0 0
14 Caleulation Options Liguid mass flow rate lbm 0 4127 S5 507055
4 1) Results Vapor mass fraction 1 0 0 0
4 [ Input Summary Temperatures °F 3056 305356 1724 284
L Input Summary Bubble / Dew paint °F | 30556 / 30556 30556 / 30556 / !
4 Result Summary Operating Fressures psi 7252 6387 580.13 5758
[ Warmings & Messages Film cosfficient BTU/h-f2-F) 07 56095
] Optimization Path Fouling resistance f-h-F/BTU 0 ]
|1 Reap of Designs Velocity (highest) ftfs 8731 I
[ TEMA Sheet Pressure drop {aliow. calc) psi 375 f 365 725 ! 435
[ Overall Summary Total heat exchanged BTUM 43882100 Unit BEM 2 pass 1 ser 1 par
4 [ Thermal / Hydraulic Summary Overall ciean coeff. (plain/finned) BTU/-fE-F) | 43058 Shell size % - 240 in Hor
] Performanca - Overal| dirty coeff, {plain/finned) BIU/M-C-F) | 43058 Tubes Plain
] Heat Transfer | Effective area (plain/finned) | 20178 | Insert Nene
2 Pressure Drop Eifective MTD o 5897 Mo, 527 0D 073 Tks 0083 in
{51 Flow Analyss Actual/Required ar=a ratio (dirty/dean) 105 /105 | Pattem 30 Piteh 09375 in
[ Vibration & Resonance Analysis Vibration problem (HTFS) ‘fag Eaffies Single segmental Cut(%d) 40.87
RhaV2 problem Yas Total cast 3125 Dollar{Us)
[ Methods & Convergence
4 || Mechanical Summary Haat Trancfor Rosistanca
j E:Zﬁ;i‘i;::’?uig —_— Shell side/ Fauling / Wal { Fouling { Tube side
Tl F i youtr) i o
£ Cost/ Weighs ShellSide [ [— & ]  Tube Side
4 |\ Calculation Details
. ¢ Performance
r :DR i Shell & Tube  +
Al 4
A ||| Overst Performance | Resistance Distribution | Shell by Shell Conditions | Hot Stream Composition | Cold Stream Composition
4 Progrzm Options - .
<] Design Options Overall Coetficient  Resistance Summary Clean Dirty Max Dirty
] Therm Aalysi Area raquired (tube OD base) it 18253 19253 TS
j Methads/Carreltions Area ratio: actual/raquirad 105 105 1
) Calculation Options Overal cocfficent BTU/(h-it-F) £3058 3058 11034
4 | Results Overall resistance fH-n-E/8TU 00023 00023 00024
4 | Input Summary Shell side fauling fthh-/BTU 0 0 00001
—Input Summary Tube side fouling 0 1] 0,000
4 | Result Summary Resistance Distribution BTU/(h-ftF) ft2-h-F/BTU % % %
1 Warnings & Messagas Shell side film 301794 0.0003 1427 1427 1361
1 Dptimization Path Shell side fouling ] 0 229
2] Recap of Designs Titbe viall 3706.16 Q0003 1182 152 11.08
[ TEMA Sheset 3 Tube side fouling 0 0 23
1 Overall Summary Tube side film * 5B0.95 Qoo17 7412 7412 7072
4 || Thermal / Hydraulic Summary
JPGI'TOI’I‘H&HCE B * Based on outside surface - Area ratic: Ao/li = 1.28
J Heat Transfer Heat Transfer Resistance
1 Pressure Drop Shell side / Fouling / Wall / Feuling / Tube side
S Flow Analysis Shel Side I il Trube Side
] Vibration & Resanance Analysis |z
I Methads & Comvergence
4 | Mechanical Summary
L [ SO R - PR W
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EDR Navigator «  Performance
Shell 8 Tube  +

All

TR T T e e e ey

i . [ Cwerall Performance | Resistance Distribution | Shell by Shell Conditions | Hot Stream Composition | Cold Stream Composition
4 | Program Options - -

|5] Design Options

&) Thermal Analysis Shell 1

|} Methods/Comrelations —

|2) calculation Options Shell heat load BTLM . 48382100

4 1 Results Shell inlet temperature B - 3056
4 [ Input Summary Shell outiet temperature 30556

 Input Summary Tube inlet temperature
4 | Result Summary

[ Warnings & Messages

|1 Optimization Path

] Recap of Designs

|ZJ TEMA Sheet T
| Qverall Summary |

Tube outlet temperature
Shell inlet vapor fraction
Shell cutiet vapor fraction
Tube inlet vapor frachion

[ube outlet vapor fraction

4 | Thermal / Hydraulic Summary
] Perfarmance Shell outlet pressure
(X Heat Transfer Tube jnlet pressure
| Pressure Drop
L Flow Analysis
| vibration & Hesonance Analysis =

Tube outlet pressure

Shell pressure drop

[ Methods & Convergence Tube pressure diop
4 | Mechanical Summary Mean shell metal temperatura
L Exchanger Geometry Mean tube metal temperature
[ Setting Plan & Tubesheet Layout Minimum tube metal temperature
[ Cost f Weights =
4 3 Calculation Details Maimum tube metal tempealure
] Analysis zlong Shell
[ Analysis along Tubes =
EDR Navigator < Performance
Shell & Tube |+
i o i :
R e 3 = -
4 [/ Program Options
|¥] Design Optians Total Comp 1
[ Thermal Analysis Stream mass fractions
&) Methads/Correlations liquid mass fractions at inlet
&) Calculation Options Liquid mass fractions at cutlet
4 8 BESUHS \apor mass fractions at inlet
4 | Input Summary Vapor mass fractions at outlet
L1 Input Summary laquid 2 mass fractions at infet
4 [ Result Summary liguid 2 mass fractions al outlet
L] Warnings & Messages Stream mole fractions
L Opimization Path Liquid mole fractions at inlet
[ Recap of Designs Liquid mole fractions at outlet
=] TEMA Sheet UM Vapor mole fractions at infet
[ Overall Summary Vapor mole fractions at outlet
4 [ Thermal / Hydraulic Summary Liguid-2 mole fractions at inlet
|2 Performance liquid-2 mole fractions at outlet
[ Heat Transfer Stream miass flow
X1 Pressure Drop Liquid mass flow at infet
1 Flow Analysis :
[ Vibration & Resonance Analysis | = et a5 it ute!
] Methads & Convergence Vapor mass flow at inlet
4 [/ Mechanical Summary \fapor mass flow at outlet
£ Exchanger Geometry Liguid 2 rmass Now atinket
| Setting Plan & Tubesheet Layout :
3 Cost Weights Liguid 2 mass flow at outlet
4 | Calculation Details
[ Analysis along Shell
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EDR Navigator

Performance

Shell &Tube  +

Process Simulation

|an

[ el i Sl
4 |/ Program Options
|4 Design Opticns
|4 Thermal Analysis
£ Methods/Correlations
|8 Calculation Options
4 4 Results
4 [ Input Summary
- Input Summary
4 | Result Summary
A Warnings & Messages
| Optimization Path
(= Recap of Designs
] TEMA Sheet
3 Overall Summary
4 || Thermal / Hydraulic Summary

L Performance

|1 Heat Transfer
|2 Pressure Drop
(2 Flow Analysis

| Vibration & Resonance Analysis

L Methods & Convergence
4 | Mechanical Summary
1 Exchanger Geometry

|4 Setting Plan & Tubesheet Layout

{23 Cost / Weights
4 [/ Calculation Details

EDR Navigator

All

Stream mass fractions

Liguid mass fractions at inlet
Liguid mass fractions at outlet
Vapor mass fraclions at inlet

Vapor mass fractions-at outlet
Liguird 2 mass fraciinns at mnlet
Liguid 2 mass fractions at outlet
Stream male fractions

Liguid mole fractions at inlat
Liguid mole fractions at outlet
Vapor mole fractions at inlet
Vapor mole fractions at outhet
Liquid-2 mole fractions af inlet
Liguid-2 mole fractions at cutiet

Stream mass flow

Total

507055

| Ouerall Performance | Resistance Distribution l Shell by Shell Conditions I Hat Stream Composition | Cold Stream Composition L

= Comgn opm o e
4 | Program Opdons
|11 Design Options
|ﬁ Thermal Analysis
8] Methods/Comelations
& catculation Options
4 1) Results
4 [ Input Summary
1 Input Summary
4 [ Result Summary
1 Warnings & Messages
] Optimization Path
| Recap of Designs
] TEMA Shest
| Overall Summary
4 [ Thermal / Hydraulic Summary
= Performance

| Heat Transfes

1 Pressure Drop
1 Flow Analysis

(3 Vibration & Resonance Analysis |2

] Methods & Convergence
4 | Mechanical Summary

Liguid mass flow at infet Ib/h 507055 507984] 5071
i Liguid mass flow at outlet I/ 507055 501984 5071
' Vapor mass flow at inlet Ib/h 0 0 0
Vapor mass flow at outlet Ib/h 0 0 0
Liguid 2 mass flow at inlet Ib/h
Liguid 2 mass flow at outlet Ib/h
Heat Transfer |
Shell & Tube  +
Heat Transfer Coefficients | MTD 8 Flux I Duty Distribution |
Film coefficients BTU/th-fE2-F) Shell Side Tube Side
Bare ara (O0) [/ Finned arez Bare zrez [O0) [/ 1D arez
Overall film coetficents 301759 / 580.95 ! Te.04
Vapar sensible 4011.55 ! {
T phasa 01843/ i
Liqued sensible 181321 ! 580.95 ! 74509
Heat Transfer Parameters In Qut In Qut
Frandtl numbers Vapar 113
Liguid 119 8.8 615
Teynalds numbers Vapaor Mominal 83254.28
Licguidt Nominal 6110.12 L4456.74 9573859
Fir Efficiency
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Heat Transfer
it ol 2 | Shell & Tube  +
. ;rcganrl Cptors i Heallran;fa'Coeﬁ'luean| MTD & Flux | Dty Distribution |
& Design Options
& Themnal Analysis Temperaturs Differenca °F | Heat Flux (ased on tuke 0.0] BTU/h-ft}
1! Methods/Carrelations {rveral effective MTD 5357 | Ouerall fiux 253911
L. Caeulation Optians Dine pass courkerilow MTO 5900 | Critical haat fux (2t highest ratio)
4 [ Results LMTD based on end poirts 6134 | Highest local i 435907
4 | Input Summary Effective MTD comedtian factar 1.9 | Highest lncaliaritical flux
I Input Summary Wt i
4 Resuit Summary Shell mean metal temperature 30556
21 Warnings & Messages Tube mean matal temperature 29341
I Cpimizaion Fath Tube wall tem peratunes hi “rwest 23935 { 1478
1 Recap of Designs
A TEMA Sheet
4 Cwerall Summary
4 Thermal { Hydrauhe Summary
A Performance
' Heat Transfier
2 Pressura Deop
1 Flow Anzhysis
= Vibration & Rescnance Analysis |2
1 hathods & Comercance
Navigaior . HeatTransfer -
= Shell & Tube  +
A T {7
F ;D;r;l:ltll;:nm « | || Heat Transfes Cozfficients | MTD & Flux | Duty Distnbution
| Desion Opticrs
18 Thermal Analysis Heat Load Summary ‘Shall Side Tube Sida
] Methods/Correlations 31U % total ETU/h % total
1 Caleulation Options Vapor crly £150 o1 o [}
4 ) Results 2-Phase vapor 1 1 0 i
4 [ tnpitSurmmany Latent heat 257560 EEE (] [
| Input Summary 2-Fhese fiquid o 0 [} [
4 [ Result Summary ligue anly 0 0 2100 10
] Warnings & Messaes Total -4EEEI100 1 A5E2100 100
| Optimezation Path LSz L
] Recap of Designs
|2 TEMA Shest T
[ Dverall Summary
4 |\ Thermal { Hydraulic Summary
|2 Performance
[ Heat Transter
|| Pressure Dop
EDR Navigator o | %
Al |*
al ;0;';:5;:;;“"'" || Pressure Drop | Themmosiphon Fiping | Thermasiphan Piping Elements
14 ram ¢
j ﬁam:zs Pressura Drop psi Shell Sido Tube Side
4 Methods/Conelations E:lﬁ;zdm ::: :i
¥ Calculation Options Comvitational o o
4 [ Results Frictianal ATy 43
4 [/ Input Summary Momenium change 042 0.4
2 Input Sumima 1t
4 |4 Resu.TSummHy‘y Fresrs dron S riniia) me«u—.:s Fmer Dutlet * - Neurlr.»ius Hesr et * -
] Warrnings & Messages Inlst nozae 9827 (i3 BAR B 057 BAG
1 Optimization Path Enttzring bundle TedR 622 02 a7
1 Fecap of Designs Inside tubes 622 7402 FRL 7333
A TEMA Sheet Indet space ¥fow 6715 059 1567
] Ovenall Summary Buridle Kfiow 2 iz EE T 5658
4 [ Thermal | Hydraulic Summary il 23 B 58 156
[ Performance Dutlet space Kfow 013 {171, 142
= Heat Trarsfer Exiting bundle 035 2 033 TEL
._JPr_essu_re_D_mpi_ Outlet pazzie 512 @15 387 o8t 022 503
3 Flow Anlysis Liguid cutlet nozzle
 Vibration & Resonance Analysis g & r;::n:::m;
2 Methods & Convergence
4 |4 Mechanical Summary

1 Exchanger Geometry
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Process Simulation

EDR Navigator ¢« HowAnalysis -
Shell & Tube | +
All =

4 |y Program Cptions
1 Design Options Shell Side Flow Fractions Inlet Midde Outiet Diameter Clearance
) Thermal Analysis i
1 Methods/Correlations Crossfiow {5 ctraam) 7 06 0T
1 Calculation Optians Window (B4CH stream) 029 076 091

4 [ Results B hale - tube 00 (4 sream) a5 w2 D04 0D1%6

4 [l Input Summary Baffle O - shell ID (€ straam) 006 (i) 005 01875
2 Input Summary Shell ID - bundle OTL (C stream) (iNE] 013 0ig 1

4 | Result Summary Pass lanes (F stream) (1] 0 0
= Warnings & Messages
= Optimization Path Rho*V2 Analysis Flow Area Velocity Density Rho*V2 TEMA limit
| Recap of Designs in fitis Ibfit" Th/fft-s] Ibfift-53)
1 TEM® Sheet St inlet nozzle 137886 95.27 0163 1512 1500
=1 Overall Summary Shell entrance 174951 7376 0163 £l 4000

4 [ Thermal ! Hydraulic Summary Buncdle entrance 173554 TEAB 0163 954 4003
] Performance Bundle ext 107519 035 57,115 7 4000
1 Heat Transfar Sell exit 13767 a7 57115 433 4000
] Pressurz Drop Shell oulet noere 7391 513 5715 150
|2 Flow Analysis in tis It ibfits7 IefiRs)
= Vibration & Resonance Analysis | 2 Tule niet nozze 50027 486 45754 3553 5999
) Methods & Convergence Tube infet 7152 622 45754 1M

4 || Mechanical Summary Tube outlet B8.913 102 41.34 2035
2 Exchanger Geometry Tube outiet noze 50027 981 4134 3978
=1 Setting Plan & Tubesheet Layout
2 Cost { Weights

- L e R

EDR Navigator ¢ ration & Resonance Analysis ‘
Shell & e
lH” .| o Y. e .
B s » ||| Fuid Elastic Instability (HTFS) | R & Analysis (HTFS) | Simpie Fluid Elashc instability (1EMA) | Simple and Acoustic Analysis (TEMA)

4 Program Qptians —
4] Design Options Shell number: | Shell 1%
& Thermal Analysis

Fluid Elastic Instability Analysis

| Wethods/Correlations
4] Calculation Ogptions
4 i Results
4 Input Summary
L1 Input Summary
4\ Result Summary
|2 Warnings & Messages
(=] Optimization Path
=1 Recap of Designs
| TEMA Sheet
| Owverall Summary
4 Thermal / Hydraulic Summary
(= Performance
| Heat Transfer
[ Pressure Drop
L Flaw Analysis
(] Vibration & Resonance Analysis |
2 Methods & Convergence
_U Mechanical Summary

4
| Exchanger Geometry
12 Setting Plan & Tubesheet Layout
(2 Cast / Weights

. Caleulation Details
LI Analysis along Shell
L] Analysis along Tubes

ol

Vibration tube number
Vibsation tube location

Vibration

W/We tor heavy damping {LI
W for medium damping (EDec
W/Wc for light damping  (LDec
WiWc tor estmated damping
Estimated log Decrement

Tube natural frequ

Matural frequency method

Dominant span
Tube effective mass

1 2 4 3 i i
et row, A Baffle Inlet row,  |Cuter
centre window, averlap Acom:fow end window, top

bottom
Possible fes No: Ne Possible s
0.33 0.77] 0.1 0.184 0.33 0.76}
0.5 1414 0.32) 033 0.5] 138
1.04 7] 244 0.56] 0.58 1.04 7 2397
(.68] 159 % .31 0.38 0.68] 1.56 %
0.02] 0.02 0.03] 002 O.DZI 0.02
34,281 34.28] 877 342 34,23} 3428
Exact Exact Exact Exact Exact Exact
Solution  |Solution  [Solution  |Solution  {Solution  |Solution
0.a2 .82 0.82] 082 0.82] .82

Tube material density I
Tube gyial stress psi
Tube matenial Young's Modulus i
U-bend longest unsupported length i

Motes W/Wc = ratio of actual shellside frowrate to critical flowrate for onsat of fuid-elastic instability

489.544
2521
28459016
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+
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Fluid Elastic Instability (HTFS) | Resonance Analysis (HTFS) | Simple Fluid Elastic Instability (TEMA) | Simple Amplitude and Acoustic Analysis (TEMA)

Shell number: | Shell 1 7 |

Resonance Analysis
bration tub b 1 1 1 2) 2 2 4 4 4 5 5) 5 6
bration tube locatio Inlet row, |Inlet row, [Inlet row, 3:’: z:)wf 3:: z:)wf Sll: j;w' Baffle Baffle Baffle Bottom  |Bottom  |Bottom  |Inlet row, |l
centre centre centre bottom  |bottom  |bottom overlap |overlap |overlap  |Row Row Row end f
ocation along tub Inlet Midspace [Outlet Inlet Midspace |Outlet Inlet Midspace |Outlet Inlet Midspace |Outlet Inlet |
bration prob Possible  |Possible  [No No No Yes No Possible  |No No Possible  |No Possible |l
p g in = 35.625 46,5  58.875| 58875 465 35625 35625 2325 35625 58875 465 35625 35625
q 0 16.51 1.72 0.35] 8.15) 3.95 0.92 4 3.59 1.74 0.35 1.92] 0.93 ¥ 0.08 16.51
q 0 131 0.29) 0.24] 0.65) 0.68 0.63 0.73 0.76] 0.61 0.15 0.16) 0.05 1.31
q 0 10.61 1.114 0.22] 5.23) 254 0.59 231 1124 0.22 1.24] 1134 0.05 10.61
q 0 0.84 1 0.19) 0.15] 0.42) 0.43 041 047 0.49 0.39 0.1 0.19 0.03 0.84 %
o dding amplitud in = 0.1127, 0.0021
bulent b g amplitud in S 0.0007] 0.0004
A amplitude in - 0.015 0.015 0.015
eq cycle/s E 34.28 34.28 34.28 34.28 34.28 34.28 &7.7 877 87.7 34.28 34.28 34.28 34.28
Aco eq. Fa cycle/s i 43086  200.57] 49.74) 43086  200.57 49.74 43086 20057 49.74) 43086 20057} 4974 430.86
ow velo ftfs S 76.48 18.63} 1.9 3774 42.77 424 42.58 48.24 413 8.92 101 0.35 7648
0 0 1 0.8 0.8 0.8 08 0.8 0.8 0.3 0.8 0.8 0.8 1 0.8
Rho Ib/(ft-s%) e 951 107 105 232 563 736 295 7 698 13 31 5 951
o 0 0.46| 0.46) 0.46] 0.4 0.46| 0.46| 0.46| 0.46| 0.46) 0.46) 0.46) 0.46) (.46
Kl w ]
Methods & Convergence
} - Shell & Tube ‘ +
11| Methods Summary Convergence Plot
Hot Side Cold Side
Heat transfer coefficient multiplier No No
Heat transfer coefficient specified No No
Pressure drop multiplier No No
Pressure drop calculation option friction only friction only

Calculation methed
Desuperheating heat transfer method
Multicomponent condensing heat transfer method

Vapor shear enhancad condensation

Liquid subcoaling heat transfer (vertical shell)

Subcooled boiling accounted for in
Post dryout heat transfer accounted for in
Correction to user-supplied boiling curve

Falling film evaporation method

Single phase tube side heat transfer method
Lowfin Calculation method

Tube Pass Multiplier

Advancad method
Wet wall
HTFS - Silver-Bell
Yes
Not Used

Heat transfer & pressure drop

No

Boiling curve not used

HTFS recommended method

HTFS recommended method

HTFS / ESDU
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ey =
4 |/ Program Options
] Design Options
) Thermal Analysis
] Methads/Comelations
] Calculztion Options

4 |} Resufts

4 U Input Summary
Z Input Summary
4 | Result Summary
1 Warnings & Messages
L Optimization Path
1 Recap of Designs
Il TEMA Sheet
1 Qwerall Summary
4 [\ Thermal f Hydraulic Summary
i Performance
1 Heat Transfer
| Pressure Drop
I Flow Analysis
i Mibration & Resonance Analysis
_l Methods & Convergence
4 | Mechanical Summary
| 1 Exchanger Geometry
1 Setling Plan & Tubeshest Layout
= Cost / Weights
4 | Calculation Details
1 Analysis along Shell
1 Analysis along Tubes

Basic Geametry | Tubes | Batties | supports-Wisc. saffes | Bundi

i EFHWENS 1hermﬁ_s_|phnn F‘I_[J!I’lg_

Unit Config
Exchanger type BEM | Tube number 527
Fosibon Har | Tube length actual ft 20
Arrangament 1 parzllel 1 series | Tube pazses 2
Baffie type Single segmental | Tube type Plain
Baffie number & Tube O.0. in 75
Spacing [center-centsr) in 23.25 | Tube pitch in 0.9375
Spacing at inlet in 35.625 | Tube pattern 30
Shell Kettle Front head Rear Head
Qutside diameter in 2675 26.75 2675
Inside diamater in 26 25.5 255
Shell Side Tube Side
iniet [Outlet Inlet Cutlet
1 1 1 1
in b 14 35 4,525 B.625)
in * 13.25 3.068( 7581 7.981
in = 45679 13203
in -
in =
n r
in? -
No Mo No
impingement  fimy impingament
b in - 227 7.5
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T s

4 |/ Program Cptions

Basic Geormatry| Tubes | Baffles ] Supports-Misc, Baffles l Bundle l Enhancements | Thermasiphan Mping

&) Design Options Tibis
j L“:::ﬂjgjg::m e _ Biin | Total oumber of tubes Y
. . Clutside dizmeter n (.75 | Nuriber of tubes plugged a
. IR Cadator o Insid dameter in 1584 | Tube langth actual ft )
4 | Results Wall thicknese in 0083 | Tube langth effective ft 105
4 B lnput Sammary Araa Ratio Aofdi 1284247 | Front tubeshaet thicknese in 287
L Ingut Summary Pitch in 019375 | Rear tubesheet thickness in 2875
4 [ Result Summary Pattem 30 | Matesial Cargon Stesl
[ Warnings & Messages External enhancernent Thermal canductity BTU/(Ee-h-F) 28074
|2 Optimization Path Internal enhancement
{2 Recap of Designs Low fins Longitudinal fins
=] TEMA Sheet Fin density #in Fin pumber 0
[ Cverall Summary Fin height in il thickness in
4 [ Themal | Hydraulic Summary Fin thickness in Fin height n
|| Performance Tube root dizmeter n Fin'spacing in
|2 Heat Transfer Tube wall thickness under fin in Cut and twist length in
[ Pressure Drap Tube inzicle diameter under fins in
L Flow Analysis Dﬂw.lhidﬂ o] - -
(] vibration & Resonance Analysis = Hfgh anTwe_ ) oot Hfghﬁ“ e i
{2 Methods & Convergence High Fin Tip Diameater in High Fin Frequency £fin
4 | Mechanical Summary
| Exchanger Geometry
TR Catbimm Mo O Tishnrhinnt | animed
EDR Navigator < Exchanger Geometry -
: Shell & Tube +
All hd
B o = - | Basic Geomeiry ] Tubes | Baffles | Supports-Misc. Baffles | Bundle l Enhancements | Thermosiphan Piping
4 |\ Program Options
2] Design Options B
j Thermal Analysis Type Single segmental | Baffle cut: inner/outer/interm
£ Methods/Correlations Tubes in window Yos | Actusl (% dismeter} w087/
1] Calculation Cptions Number B | Nominal (% diameter) 40 !
4 i) Resuits Spacing fcenter-center) in 23.25 | Actuzl % area) Wad
4 ) Input Summary Spacing at inlet in 35,625 | Cut orientation H
— Input Summary Spacing 2t putlet in 35,625 | Thickness in 0.375
4 |\ Result Summary Spacing at center infout for G HJJ in Tube rows in baffle overdap 5
] Warnings & Messages Spacing at center for H shell n Tube rows in baffle window i
] Optimizaticn Path End length of the front head in 38,625 | Baffle hole - tube od diam dearance in 00156
] Recap of Desions £nd length of the rear head in 38625 | Shell id - tube od diam clezrance in 0.1875
] TEMA Sheet
1 Overall Summary eu BT SO

4 [\ Thermal / Hydraulic Summary

= Performance

| Heat Transfer
A Pressure Drop
1 Flow Analysis

] Vibration & Resonance Analysis
i Methods & Convergence

4 || Mechanical Summary

| ) Exchanger Geometry

1 Satting Plan & Tubeshest Layout

[ Cost / Weights
4 || Calcutation Details

| Baffle cut percent, outer
| Baffle cut percent, inner
| Number of baffle spaces

i Baffie region length
| Baffle cut area parcent, outer
i Baffle cut area percent, inner
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RO e

4 | Program Opfions

Basic Geometry [ Tuhes [ Raffles. ] Supports-Misc. Bafﬂes| Bundle | Enhancements | Thermosiphan Piping

1] Design Options Bundlz
] Thermal Analysis Shell 1D to center 15t tube row in Tube pamsas P
j Methods/Comelations From top ASETS | Tube pass layout Ribbon (single band)
j Calculation Options From battom 13203 | Tube pass anentation Stanlard (harizontal)
4 3 Results From right (5062 | U-bend orientation Undsfined
4/ Input Summary From left 08062 | Horizontal pass lane width in 075
[ Input Summary Impingement protection Mone | Vertical pass lane width in
4 Resuit Summary Impingament plate cearance 1o lube edgs in Interpacs tube alignmant o
(1 Warmings &-Messages Impingement plate diameter in Deviation in fubes/pass 095
(21 Optimization Path Impingament plate width n Cutter tube it n x5
= E mpingement plate length n | id - bundle otl dizm dearance n i
[Z) Racap of Designs I . ekl e i i
] TENA Sheet =) Impingament piate thickness in Tie rod number &
._;] C- ' s Gross surface area par shell fé 20655 | Tie rod diameter in 0378
= "E'la H”mm":_“rs Ffective surface are3 per shell B 20178 | Sesing stips (pairs) 2
4. 8 Themal/ Epdiule Summary Bare e avea per el 2017 | Tube to Tubesheet joint B 2o
= f’e'rn'mam Finnad area pershell ® U | Tube projecuon from front tsht n 05
[ Heat Tiansfer U-bend area per shall ¥ 0 | Tube projecion from reartsht in 01
] Pressure Drop
L2 Flow Analysis
(2 Vibration & Resonance Analysis |2
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Chapter #9 Cost Estimation

9.1 Economic Evaluation:

The economic analysis is the crucial step in any design. A solid project should guarantee a
speedy return on the investment and excellent profitability during the predicted lifetime,
similar to other industrial or financial ventures. It is both a specific field and a profession
to estimate costs. To choose between different designs and for project evaluation, the
design engineer must be able to quickly and roughly estimate costs. Chemical plants are
constructed with the intention of making a profit, thus before the profitability of a project
can be evaluated, an estimate of the investment necessary and the cost of production is
needed. In this project, a variety of factors that make up a plant's capital cost and its
operational costs are taken into account, and the cost estimation techniques are assessed.
[10].

9.2 Total Capital Investment:

Working and fixed capital investments make up the total capital investment. The whole
cost of the plant in its startup state is known as fixed capital. The price that the contractors
were charged.

It Covers the Price of:

e Construct and design other engineering and construction supervision.
e All products of equipment and their installation.

Working capital is the additional investment required, above and beyond fixed capital, to start
and run the plant until revenue is generated. It consists of the price of:

e Raw materials and process intermediates.
e Inventory count for Finished goods.
Cost of Conveyor:

Screw (stainless steel):

C=0.85L0.78 9.1)
C=%$38

Cost of Crusher:

Hammer Mill:

C=297W0.78

C=%$1124

Cost of Mixers:

C=FMCb + Ca (Vessel)

C = 1.218 exp[a+b In HP+c(In HP)2] (9.2)
C =$ 46669

Cost of Storage Tank:

C =1.218Fm exp[2.631+1.3673(In V)-0.06309(In V)2] (9.3)
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C=$%$56671

Cost of Reactors:

C=Fu*Cb+ C, ( Vessel)

C = 1.218 exp[a+b In HP+c(In HP)2] (9.4)
C =$ 46669

Cost of Flash Tank:

C = 1.218Fm exp[2.631+1.3673(In V) - 0.06309(In V)2] (9.5)
C =$195820

Cost of Pumps:

C = FuFCy (9.6)
C =$599148

Cost of Heat Exchangers:

C =1.218%( fd x fmx fpx Cbh) 9.7)
C =1.218 x(0.6002) x(1.9) %(1.00) x(18468)

C =$ 25651

Cost of Distillation Column:

Ct = 1.218[f,Cp + Nf,f3f4C; +Cpi ] = Ct = $ 259662

9.2.1 Purchased Equipment Cost:

Table 9.1: Purchased Equipment Cost for Plant

Purchased Equipment Cost

Reactors

No. Required 06

Purchased Cost $ 4359040

Heat Exchangers

No. Required 06

Purchased Cost $ 1480130

Distillation Column

No. Required 02
Purchased Cost $ 2819862
Mixers
No. Required 02
Purchased Cost $93338
Flash Vessel
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9.2.2 Direct Cost:

No. Required 02
Purchased Cost $ 391640
Pumps
No. Required 06
Purchased Cost $ 599148
Crushers
No. Required 03
Purchased Cost $ 1124
Conveyors
No. Required 03
Purchased Cost $114
Mechanical Separator
No. Required 01
Purchased Cost $ 20765
Total Purchgssg Equipment $ 10069592
Table 9.2: Direct Cost of Plant
Direct Cost
Item (y;ézlij;;hefte)d Cost $
Purchased equipment 100% 10069592
Installation 47% 4732708
Instrument and Control 18% 1812527
Piping 66% 6645931
Electricity 11% 1107655
Building 18% 1812527
land 6% 604175.5
Service facility 70% 7048714
Yard Improvement 10% 1006959
Total 34840788
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9.2.3 Indirect Cost:
Table 9.3: Indirect Cost of Plant

Indirect Cost

Items % (Direct Cost) Cost $
Engg. & Supervision 33% 3322965.36
Contractor fee 19% 1913222.48
CET;;‘:}ZE:” 41% 4128532.72
Contingences 37% 3725749.04
Total 13090469.6

Fixed capital = direct cost + indirect Cost (9.8)

Fixed capital = $47931258
Working capital investment = 15% of fixed capital investment
Working capital investment = $7189688
Total capital investment = Fixed capital investment + Working capital investment

Total capital investment = $ 55120946

9.3 Operating Cost:

For the purpose of evaluating a project's viability and selecting amongst potential
alternative processing techniques, an estimate of the operational expenses, or the cost of
producing the product, is mandatory.

The items on the following list will be included in the price of making a chemical product.
There are two groups formed from them.

1. Variable operating costs: expenses that change according to the volume of output..
2. Fixed operating costs: expenses that don't change based on the rate of production. No
matter how much is generated, these bills must be paid.

9.4 Total Production Cost:

9.4.1 Variable Cost:
Raw Material Cost

Flow rate of corn stover = 562120 kg/hr

For 330 days = 4451990400 kg/year

Price of corn stover per kg = $0.0585/kg
Total price of corn stover = $260441438/year
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Catalyst Cost

Price of catalyst (Al203) = $1.2/kg

Weight of catalyst = 1760 kg

Price of catalyst = $2112/year

Miscellaneous Material

Maintenance cost = 7% of FCI Maintenance cost = $ 335518
Miscellaneous Material = 10% of maintenance cost
Miscellaneous Material = $ 33551

Steam Cost

Price of steam in 2022 = $0.014/kg

Total steam required = 432000 kg/hr

For 330 days = 3421440000 kg/year

Total price of steam per year = $ 47900160/year

Cooling water

Cooling Water price = $0.00001/kg

Cooling water required = 51780960000 kg/year

Total price of cooling water = $517809/year

Variable cost = raw material cost + miscellaneous cost + utilities cost
Variable cost = $ 305502483/year

9.4.2 Fixed Cost:
Table 9.4: Fixed Operating Cost for Process Plant

Fixed Operating Cost

Item % (FCI) Cost $
Maintenance 7% 3355188
Operating cost of 10% 4793126

labor

Laboratory Cost 20% 9586252
Supervision Cost 15% 7189689
Plant Overheads 50% 23965629
Capital Charges 10% 4793126
Insurance 1% 47931.26
Local Taxes 2% 95862.52
Royalties 1% 47931.26
Total 34840788
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9.4.3 Direct Production Cost:
Direct Production Cost = variable cost + fixed cost

Direct Production Cost = $ 305502483 + $ 34840788
Direct Production Cost = $ 340343271

9.4.4 Overhead Charges:
30% of direct production cost

Overhead charges = (0.3)(340343271) = $ 102102981
Total Production Cost = Direct Production Cost + Overhead Charges
Total Production Cost = $442446252/year
Total Production Rate = 990000000kg/year
Production Cost ($/kg) = Total Production Cost / Total Production Rate
Production Cost ($/kg) = $ 0.47/kg

9.5 Profitability Analysis:

Total Income

Selling Price = $600/ton

Total Production per year = 990000 ton/year

Total Income = $594000000/year

Gross Profit

Gross Profit = Total Income - Total Production Cost
= $ 594000000 /year — $442446252/year

= $151553748/year

Depreciation:

Machinery and equipment = 20% of FCI

= $ 9586251

Building = 4% of Building cost

=$ 1812527

Total Depreciation = Machinery and equipment + Building
=$11398778

Profit before Taxation:

Net Profit before Taxation = Gross profit — Depreciation
=$ 151553748 /year - $ 11398778/year

= $ 140154970/year

Net Profit after Taxation:

Net Profit after Taxation = (1-0.40)* Profit before taxation

(9.9)

(9.10)

(9.11)

(9.12)
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= $ 15335449/year
Rate of Return
Net Profi
- cthrolt x 100 (9.13)
Total Capital Investment
= 27.8 %
Pay Back Period
1
= —_— (9.14)

Rate of Return

3.5 years

9.6 Feasibility Analysis:

9.6.1 Discounted Cash Flow:
Total Capital Cost = Cgc + C +Cwc (9.15)
Crc = Fixed Capital
C_ = Land Cost
Cwc = Working Capital
Annual Expense = Cost of manufacturing
COM = 0.304FCI1+2.73COL+1.23(Cyt+Crm)
COL = Cost of Labor
Curt = Utilities Cost
Crm = Raw Material Cost

9.6.2 Net Present Worth:
The future profitability of an investment, project, or business is assessed using net present
value. The NPV of an investment is essentially the total discounted to present value of all
future cash flows during the investment's lifetime.

9.6.3 Cash Flow:
Cash flows include all money produced or spent for the benefit of the investment, such as
interest and loan repayments as well as capital outlays. The cash flow for each period
comprises both inflows for profits, revenues, and dividends as well as outflows for costs.

9.6.4 Internal Rate of Return:
An internal rate of return computation is used in capital planning to determine whether
projects or investments are worthy of funding and to rank them. The discount rate at which
the net present value (NPV) is zero is known as the IRR. (when time-adjusted future cash
flows equal the initial investment). An indicator of actual investment performance is the
annual rate of return, or IRR.
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Table 9.5: Discounted Cash Flow Analysis for Process Plant

Years Gross Annual CaBS:ftl):rlg ! Depreciation Taxable Tax ICZ:E)S;/C Cumulative
Income Expense Depreciation Income after Tax Cash Flow
$ $ $ $ $ $ $ $
-1 -47931258 -47931258
-1 -1917250 -49848508
-1 -7189689 -57038197
1 594000000 | 562529739 31470261 1195870 30274391 | 13623476 | 16650915 | -40387282
2 594000000 | 562529739 31470261 2265859 29204402 | 13141981 | 16062421 | -24324861
3 594000000 | 562529739 31470261 2108507 29361754 | 13212789 | 16148964 | -8175896
4 594000000 | 562529739 31470261 1951156 29519105 | 13283597 | 16235508 | 8059611.5
5 594000000 | 562529739 31470261 1793805 29676456 | 13354405 | 16322051 | 24381662
6 594000000 | 562529739 31470261 1667924 29802337 | 13411052 | 16391285 | 40772948
7 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 57302703
8 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 73832457
9 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 90362212
10 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 106891966
11 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 123421721
12 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 139951476
13 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 156481230
14 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 173010985
15 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 189540740
16 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 206070494
17 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 222600249
18 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 239130004
19 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 255659758
20 594000000 | 562529739 31470261 1416162 30054099 | 13524345 | 16529755 | 272189513
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9.7 Cumulative Cash Flow Diagram:

Cumulative Cash Flow Diagram
300000000

250000000

200000000

150000000

100000000

50000000

Cumulative Cash Flow

10 15 20 25

Years
Figure 9.1: Cumulative Cash Flow Diagram for Breakeven

Minimum Acceptable Rate of Return (MAAR ) = 15%

Internal Rate of Return =i %

net profit(1+i)"
i(1+i)n

By hit and trial method
IRR =31%
NPW = $11984107
IRR > MAAR
31% > 15%

NPW = —TCI =0 (9.16)

It proves that our investment is economically safe and feasible.
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Chapter # 10 Instrumentation and Process Control

10.1 Introduction:

Control in process industries refers to the regulation of all aspects of the process. Precise
control of level, temperature, pressure and flow is important in many process applications.
This module introduces you to control in process industries, explains why control is
important, and identifies different ways in which precise control is ensured. The objective
of an automatic process control is to use the manipulated variable to maintain the
controlled variable at its set point in spite of disturbances. Instruments are provided to
monitor the key process variables during plant operations. Instruments monitoring critical
process variables will be fitted with automatic alarms to alert, the operations to critical and
hazardous situations. Pneumatic instruments are used in this plant. The main process
parameters are all indicated in the control room where automatic or remote control is
carried out centrally. The process parameters e.g. temperatures, pressure flow, liquid level
etc. are converted to signals with transducers and then indicated, recorded and controlled
with secondary instruments.

10.2 Importance of Process Control:

Refining, combining, handling, and otherwise manipulating fluids to profitably produce
end products can be a precise, demanding, and potentially hazardous process. Small
changes in a process can have a large impact on the result. Variations in proportions,
temperature, flow, turbulence, and many other factors must be carefully and consistently
controlled to produce the desired product with a minimum of raw materials and energy.
Process control technology is the tool that enables manufacturers to keep their operations
running within specified limits and to set more precise limits to maximize profitability,
ensure quality and safety.

10.3 Process:

Process as used in the terms process control and process industry, refers to the methods of
changing or refining raw materials to create end products. The raw materials, which either
pass through or remain in a liquid, gaseous, or slurry (a mix of solids and liquids) state
during the process, are transferred, measured, mixed, heated or cooled, filtered, stored, or
handled in some other way to produce the product. Process industries include the chemical
industry, the oil and gas industry, the food and beverage industry, the pharmaceutical
industry, the water treatment industry, and the power industry. Process Control: Process
control refers to the methods that are used to control process variables when manufacturing
a product. For example, factors such as the proportion of one ingredient to another, the
temperature of the materials, how well the ingredients are mixed, and the pressure under
which the materials are held can significantly impact the quality of an end product.
Manufacturers control the production process for three reasons:

v Reduce variability.
v Increase efficiency.
v Ensure safety.
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10.3.1 Reduce Variability:

Process control can reduce variability in the end product, which ensures a consistently high
quality product. Manufacturers can also save money by reducing variability. For example,
in a gasoline blending process, as many as 12 or more different components may be
blended to make a specific grade of gasoline. If the refinery does not have precise control
over the flow of the separate components, the gasoline may get too much of the high-
octane components. As a result, customers would receive a higher grade and more
expensive gasoline than they paid for, and the refinery would lose money. The opposite
situation would be customers receiving a lower grade at a higher price.

10.3.2 Increase Efficiency:
If manufacturers do not retain exact control over all of the processing factors, a run-away
process, such as an out-of-control nuclear or chemical reaction, may result occurs. A
process that runs amok might have disastrous results. To maintain safety, precise process
control might also be necessary. Plant safety operations:

v To maintain process variables within predetermined safe operating ranges.

v To recognize potentially dangerous circumstances as they arise and to set up alarms and
automatic shut-down mechanisms.

v To offer alerts and interlocks to prevent risky operating methods

10.4 Process Control Terms:

10.4.1 Process Variable:
A process variable is a property of the fluid that are in processing that has the potential to
alter the manufacturing process. The process variable in the illustration of you relaxing by
the fire was temperature. These are typical given below,

v Pressure

v" Flow

v' Level

v" Temperature

10.4.2 Set Point:

The set point is a value for a process variable that is desired to be maintained. For example,
if a process temperature needs to keep within 5 °C of 100 °C, then the set point is 100 °C.
A temperature sensor can be used to help maintain the temperature at set point. The sensor
is inserted into the process, and a controller compares the temperature reading from the
sensor to the set point. The burner's fuel valve is instructed to close slightly until the
process cools to 100 °C if the temperature reading is 110 °C, which indicates that the
process is above set point. Additionally, set points may be maximum or minimum values.

10.4.3 Measured Variables:

The process fluid's state, which may be maintained at the predetermined set point, is the
measured variable.
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10.4.4 Manipulated Variable:
The varying variable that can be used to maintain the control variable at the correct value

10.5 Hardware Elements of Control System:

10.5.1 The Measuring Instruments or Sensors:
These are the tools that are used to measure controlled variables and disturbances.

10.5.2 Transducers:
An apparatus that changes one form of energy into another is called a transducer. A
transducer mainly transforms a signal from one form of energy to another.

10.5.3 Transmission Line:

The measurement signal is transferred from the measuring equipment to the controller using
it.

10.5.4 Controller:
This gets the data from the measuring tools that determine if the information is accurate or
not.

10.5.5 The Final Controller Element:
The Final control element is a device controlled by a controller to change the operating
conditions of a process. Final control elements require energy to operate against the
process. It is the hardware element that implements the decision taken by controller.

10.6 Classification of Control Systems:

The following control loops are the most frequently utilized for instrumenting and
controlling various plant areas and equipment.

v Feed-back control loop
v Feed forward control loop
v’ Ratio control loop

10.6.1 Backward Feed Control Loop:

A method of control in which a measured value of a process variable is cross-pond with
the desired value of the process variable and any important action is taken. Feedback
control is considered as the basic control loops system. Its disadvantage lies in its
operational procedure. For example if a certain quantity is entering in a process, then a
monitor will be there at the process to note its value. Any changes from the set point will
be sent to the final control element through the controller so that to adjust the incoming
quantity according to desired value (set point). But in fact changes have already occurred
and only corrective action can be taken while using feedback control system[1].

10.6.2 Forward Feed Control Loop:
A method of control in which the value of disturbance is measured than action is taken to
prevent the disturbance by changing the value of a process variable. This is a control
method designed to prevent errors from occurring in a process variable. This control
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system is better than feedback control because it anticipates the change in the process
variable before it enters the process and takes the preventive action. While in feedback
control system action is taken after the change has occurred.

10.6.3 Ratio Control:
A control loop in which, the controlling element maintains a predetermined ratio of one
variable to another. Usually this control loop is attached to such a system where two
different systems enter a vessel for reaction that may be of any kind. To maintain the
stoichiometric quantities of different streams, this loop is used so that to ensure proper
process going on in the process vessel.

10.6.4 Split Range Loop:
In this loop controller is preset with different values corresponding to different actions to
be taken at different conditions. The advantage of this loop is to maintain the proper
conditions and avoid abnormalities at very differential levels.

10.6.5 Cascade Control Loop:
This is a control in which two or more control loops are arranged so that the output of one
controlling element adjusts the set point of another controlling element. This control loop
is used where proper and quick control is difficult by simple feed forward or feed
backward control. Normally first loop is a feedback control loop.

10.6.6 Control Schemes of Distillation Column:
In distillation column control any of following may be the goals to achieve.

v Composition of bottom
v’ Constant bottom product rate.

The objectives in distillation column control could be any of the following:

v" Steam flow rate to Re-boiler.
v" Rate of Reflux.

10.7 Control Scheme:

Since the bottom product rate might change, any variation in rate of entering the material
also absorbed by the fixed overhead by rate of utput. Since the vapor rate remains almost
constant while the feed rate increases, the purity of the top product also rises. The

dynamics of the system that adjusts it for level control determine how the overhead reflux
changes.
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10.8 Instrumentation and Control for Distillation Column:
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Figure 10.1: Instrumentation and Control for Distillation Column

10.8.1 Description:
The LC is the level controller. The sensing element (level measuring device) measure the level
and sends signal to the controller.

Which has a preset value feed to it. It compares the set point and the measured value and send
signal to the valve. Which in turn act on the instruction provided by the controller.

The temperature sensor senses the temperature of the feed and immediately send signal to the
controller TC-2 which in turn sends signal to the flow controller.

FC-4 that will immediately control the reflux rate.-
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10.8.2 Action:

If the rate is less than the set point, increase the feed flow rate; if it is greater than the set point,
decrease the feed flow rate.

Table 10.1: Elements of Control Loop for Feed of Distillation Column

Process Flow rate of feed stream
Controller Automatic(PIC)
Controlled variable Flow rate
Measuring element Orifice
Manipulated element Valve
Regulating element Valve
Load variable Leakage and valuienc;;reacteristics friction

10.8.3 Operation:
If the feed flow increases the (FC) will send signal to the controller. The controller also send
signal to the valve which will drive the control valve to close. If the feed flow decreases the

(FC) will send signal by (FT) to the controller. The controller also send signal to the valve
which will drive the control valve to open.

10.8.4 Top Pressure Control:

The efficiency of separation will be impacted by any change in operating pressure, which is
why distillation column pressure needs to be controlled.

Set point: 1 bar

Table 10.2: Elements of Control Loop for Distillation Column Top Section Pressure

Process Distillation column
Controller Automatic(P)
Controlled variable Pressure
Measuring element Manometer
Regulating element Valve(pneumatic)
Manipulated element Vapor Flow rate
Feed flow rate of fed temperature,
Load variable change in the ratio of gas to liquid,
valve characteristic

10.8.5 Operation:
The transmitter sends the measured value to the controller, which compares it to the set point.
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If the pressure is higher than 1 bar, the flow rate of the cooling water in the condenser must be
increased; if it is lower than 1 bar, the flow rate of the cooling water must be decreased..

10.8.6 Drum level control:
Using a valve, the distillate flow rate can be changed to adjust the drum level in the top part.
85% of the holdup volume is the set point.

10.8.7 Operation:
The distillate flow rate lowers if the drum level exceeds the predetermined point. If it falls
below the specified point, the distillate flow is increased.

Table 10.3: Control Loop Elements for Drum Level Control for Distillation Column

Process Distillation
Controller Automatic PID
Controlled variable Drum level
Measuring element Orifice
Regulating element Valve

10.9 Instrumentation and Control on Reactor:

. 94

Q PRODUCT

Figure 10.2: Instrumentation and Control on Reactor
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10.9.1 Temperature Control:
The reason of temperature control in reactor is to avoid the runaway reaction. This can be done
by controlling the water flow rate of cooling water. Set Point =190°C

10.9.2 Operation:
The temperature sensor measures the temperature inside the reactor and send an electrical
signal analog to the value of the temperature. The controller receives this signal and compare
it, then gives corrective action. (If temperature is increased than 190°C the controller increases
the flow rate of the water and vice versa). The transducer converts the value to pneumatic
signal to the regulating element. (Water valve)

10.9.3 Pressure Control:
The operating pressure of the vinyl acetate reactor is 8 bar. Controlling this pressure is highly
significant process to maintain the plant safety. We can control the pressure inside the reactor
by controlling the pressure of the inlet feed.

10.9.4 Operation:
The pressure sensor measures the pressure inside the reactor, send an electrical signal analog to
the value of the temperature. The controller receives this signal and compares it, then gives
corrective action. The transducer converts value of the pneumatic signal to the electrical signal.
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11.1 Introduction:

Chemical industry procedures that involve industrial biology are frequently used in the
production of food, pharmaceuticals, and energy. Interest in occupational health and safety
issues is growing because of the expansion of bioprocessing facilities. However, there are
still gaps in the assessment of potential difficulties with occupational health and safety. While
being handled industrially, the biomass may expose workers to biological and chemical
agents that could be released into the work environment. Particular risks associated with the
production of biofuels (bioethanol, biogas, bio ethylene, etc.) include the development of
potentially explosive atmospheres and pool fires. These unintentional discharges may also
result from the breakdown of equipment in processing plants, such as tanks, flanges, valves,
pumps, and compressors.

11.2 Hazard and Operability Study:

A HAZOP analysis is a meticulous method used to determine how a process could stray from
its intended course. This approach can differentiate between hazard (any operation that could
result in a catastrophic leak or harm to personnel) and operability (any project-related
procedure that could result in a plant closure with potential effects on safety or earnings). It is
described as the process of applying a formal, methodical, and critical assessment of the
procedure and the engineering goals of new or existing facilities to analyze the outcomes of
potential operating failures of specific equipment parts and the ensuing repercussions on the
facility.

Since it has shown to be effective in identifying environmental, safety, and health concerns,
the HAZOP safety-analysis technique is used globally and is recognized by law. The HAZOP
system was created in the 1970s when chemical factories grew and a preventive strategy
became necessary. This technology was later used in continuous chemical operations, the
nuclear, pharmaceutical, and transportation industries.

Numerous attempts have been made to automate the analysis, and HAZOP has been
frequently used in conjunction with other analysis methodologies.

All installation types and stages are covered, but new installations in particular benefit
because they lack operational experience. This examination systematically identifies the
dangers and weaknesses.

11.3 When is HAZOP Carried Out?

v Checking that operating and emergency measures are sufficient before starting up.

v' Analyzing the safety implications of maintenance procedures or any installation
modifications while the installation is in use.

v Ensuring that safety objectives are properly satisfied during the design phase.
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11.4 Why is HAZOP Carried Out?

v To confirm the project's safety
v Examine operating and safety procedures
v’ Boost that our system is safely working

11.5 Benefits of HAZOP Study:

v" Creating operating guidelines.

v Verification of design parameters, processes, and prospective changes.

v" Knowledge that can be used to assess and manage the risk posed by the discovered
unintentional incidents.

11.6 Success or Failure of the HAZOP:

The following elements affect whether the HAZOP is successful or unsuccessful:

v Team's technological expertise and perspectives.

v' Team's capacity to visualize variances, causes, and effects by using the approach as a
creative tool.

v' The team's capacity to concentrate on the identified more critical dangers.

11.7 Systematic Terms:

11.7.1 Study Nodes:
The sites where deviations from the process parameters are looked for (on pipe and
instrumentation drawings and procedures).

11.7.2 Intention:
The intention defines how the plant is expected to operate in the absence of deviations at the
study nodes. This can take a number of forms and can either be descriptive or diagrammatic;
e.g., flow sheets, line diagrams, P&IDs.

11.7.3 Deviations:
These are changes from the purpose that are found by repeatedly using the helping phrases
(for example, apply additional pressure).

11.7.4 Foundation:
These are the reasons why deviations might occur. Once a deviation has been shown to have
a credible cause, it can be treated as a meaningful deviation. This cause can be hardware
failures, human errors, an unanticipated process state (e.g., change of composition), external
disruptions (e.g., loss of power), etc.

11.7.5 Consequences:
These are the results of the deviations should they occur. Trivial consequences, relative to the
study objective, are dropped.
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11.7.6 Guide Words:

The complete negation of

NO/NOT the design or operating No part of the intention is achieved
intent
R s More of the intention occurs or is
MORE Quantitative increase Schieved
LESS Quantitative decrease Less intention occurs or is achieved
I T All the intention is achieved with some
AS WELL AS Qualitative increase addition
PART OF Qualitative decrease Only some of the intention is achieved
REVERSE Logical opposite of the The reverse of the operating intention
intention occurs
OTHER THAN Something else happens No part of the intention occurs

L L4

Figure 11.1: Guide Words for HAZOP [10]

These are straightforward terms that are used to qualify or quantify the aim in purpose to
direct and inspire brainstorming so that change can be found. At the research node (place in
the plant) under investigation, each guidance word is necessary to the process system

11.8 Steps for HAZOP Study:

CAUSES SAFEGUARDS
DEFINE A NODE FROM IDENTIFY THE CAUSES OF ENLIST ALL SAFEGUARDS MITIGATING
THE FACILITY THE DEVIATION IN THE NODE OR PREVENTING THE HAZARDS. APPLY

RISK MATRIXAND ESTIMATE THE RISK

T 1

STER1 STEP 6
! }
CONSEQUENCES
SELECT A PARAMETER AND APPRAISE THE IF RISK IS NOT WITH ACCEPTABLE
GUIDEWORD. APPLY THE CONSEQUENCES OF ZONES, PROPOSE RECOMMENDATIONS
OPERATIONAL DEVIATION TO DEVIATION TO REDUCE THE RISK UP TO ACCEPTABLE
THE NODE OR ALARP ZONE

Figure 11.2: Steps for HAZOP Study [3]

11.8.1 Scope of Work:
Specify the purpose, objective, and scope of the study. The purpose may the analysis of a yet
to be built plant or a review of the risk of un-existing unit. Given the purpose and the
circumstances of the study, the objectives listed above can he made more specific. The scope
of the study is the boundaries of the physical unit, and also the range of events and variables
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considered. For example, at one time HAZOP's were mainly focused on fire and explosion
endpoints, while now the scope usually includes toxic release, offensive odor, and
environmental end-points. The initial establishment of purpose, objectives, and scope is very
important and should be precisely set down so that it will be clear, now and in the future,
what was and was not included in the study. These decisions need to be made by an
appropriate level of responsible management.

11.8.2 HAZOP Team:
Select the HAZOP study team. The team leader should be skilled in HAZOP and in
interpersonal techniques to facilitate successful group interaction. As many other experts
should be included in the team to cover all aspects of design, operation, process chemistry,
and safety. The team leader should instruct the team in the HAZOP procedure and should
emphasize that the end objective of a HAZOP survey is hazard identification; solutions to
problems are a separate effort.

11.8.3 Data Collection:
v Process flow sheets.
v Process layout
v Control Diagram

11.8.4 Operating Procedures:
v" Maintenance procedures
v Emergency response procedures
v’ Safety and training manuals

11.8.5 Conduct the Study:

Conduct the study. Using the information collected, the unit is divided into study "nodes™ and
the sequence diagrammed in Figure, is followed for each node. Nodes are points in the
process where process parameters (pressure, temperature, composition, etc.) Have known and
intended values. These values change between nodes as a result of the operation of various
pieces of equipment' such as distillation columns, heat exchanges, or pumps. Various forms
and work sheets have been developed to help organize the node process parameters and
control logic information.

When the nodes are identified and the parameters are identified, each node is studied by
applying the specialized guide words to each parameter. These guide words and their
meanings are key elements of the HAZOP procedure.

Repeated cycling through this process, which considers how and why each parameter might
vary from the intended and the consequence, is the substance of the HAZOP study.
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> Start
’*\ 3 Hazard Process Flow Chart
Select cquipment node |
L ’ A
Choose deviaton and
select guide words
5 . Carry out nsk assessment by doing
< Cammote > No. Are the S~ Yes | risk ranking. If the conscquences
4 prossure Pr—rG coRSTaTices 5 are bad enough, further action
g No
Yes ot
Carry out risk
assessment by doing
nisk ranking
fE A;m: m];_;am actions 1 g - 4 sk 2 Record and identify more
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design and the syste 4 i > = reactor that can help in
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No |
Is the | ldentify more safeguards or
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- cafe? > can help in reducing the
- No =
End

Figure 11.3: HAZOP Process Flow Chart [11]

11.9 Procedure:

HAZOP studies are normally carried out by a team of experienced people, who have
complementary skills and knowledge, led by team leader who is experienced in the
technique. The team examines the process vessel by vessel, line by line using the guide
words to detect any hazard. The information required for the study will depend on the extent
of investigation. A preliminary study can be made from a description of the process and the
process flow sheets. For detailed, final, the study of design, flow sheets, piping and
instrumentation diagrams, equipment specifications and layout drawings would be needed. In
general, the procedure steps involving HAZOP are:

1. Divide the system into sections (i.e., reactor, storage).
2. Choose a study node (i.e., line, vessel, pump, operating instructions).
3. Describe the design intent.
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4. Selecting a process parameter.
5. Used a guide word.
6. Determine causes.

11.10 HAZOP on Reactor:

Exothermic is the reaction. For the method of removing reaction's excess energy, a cooling
system is offered. The temperature of the reactor would rise if the cooling function were to
fail. This would cause a faster reaction rate, which would release more energy. A run-away
reaction that generates pressures higher than the reactor's bursting pressure could be the
outcome. A valve measures the temperature within the reactor and uses that information to

regulate the flow rate of the cooling water.
Table 11.1: HAZOP Study on Reactor

HAZQOP on Reactor
Guide Word Deviation Causes Consequences Action
i The i Set up a high
. faulty cooling temperature in
No No cooling temperature
water valve the reactor |
rises alarm.
Backward flow is less coolin
Reverse cooling | the outcome of a g,_ Set up the check
Reverse perhaps explosive
flow water supply . valve
. reaction
failure.
Control valve )
. . Installing an
More cooling | malfunction, and . .
More excessive cooling operator on the
flow the operator
. steps
ignores the alarm
Examine
Reactor product | increased reactor Unorthodox maintenance
As Well As . P .
in coils pressure product schedules and
processes.
There could be a If cooling is less,
Another source of TAH will notice.
. . . response and
Other Than material besides contaminated inadequate Isolate the water
cooling water water q source if it is
cooling.
found.




Chapter # 11

11.11 HAZOP on Heat Exchanger:

Table 11.2: HAZOP Study on Heat Exchanger

HAZOP on Heat Exchanger
Guide Word Deviation Causes Consequences Action
pipe Process fluid's temperature
Less Less flow of obstruction temperature warning
cooling water remains
constant.
) cooling water reduction in Alarm for low
More cooling .
More water valve process fluid temperature
malfunction temperature
More Pressure | process  fluid|  rupture of the mounting a
More Of on Process fluid | valve failure tube high pressure
line alarm
Contamination | A tube leaks,| Pollution of the | proper upkeep
Contamination | of process fluid | and cooling|  process fluid and attentive
line water enters operation
. Corrosion of | Water used for| less cooling and Suitable
Corrosion L .
tube cooling is hard. |  tube cracking upkeep and
Temperature Install a
) failing to open must not be temperature
No Cooling .
None water flow the water valve reduced gauge prior to
correspondingly. | and following
the fluid line.
inlet valve Set the check
Reverse Flow is reverse failure offset by output valve
material
the input te:: Sz?rgtzre
More cooling cooling water Low fluid P .
More - gauge prior to
water flow valve failing to temperature .
close and following
the fluid line.
. Process fluid .
Less cooling L flow meter is
Less Leakage in pipe | temperature may
water necessary
be low
.. Fluid cooling water | Outlet temperature Appropriate
Contamination u.' . ! g_w . N peraty Ppropri
contamination Contamination too low upkeep

Safety and HAZOP Study

11.12 HAZOP on Distillation Column:

The following aims are recommended by studies on distillation columns:
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Safety and HAZOP Study

1. Maintaining the overhead or bottom composition at a predetermined level through
product quality management.
2. Material balance control is used to keep the top and bottom inventories, as well as the
column holdup, within the permitted ranges.
3. The column must not overflow. Pressure needs to be high enough to sustain efficient
column operation, and the reboiler's temperature difference needs to be below the critical

threshold.
Table 11.3: HAZOP Study on Distillation Column
HAZOP on Distillation Column
Guide Word Deviation Possible Causes Consequences Action record
e low level
alarm being
e Blockage in install
NO No flow packing e Column dry out e Schedule,
e Control valve possible maintenance,
shut dangerous And check
e Failure of valve concentration procedure,
e Pump failure Make bypass
e Column dry out o Install low
e Pipe blockage e Changein level alarm
Less flow . .
LESS e Failure of valve product quality e Emergency plant
e Pump failure shut down
) e Flooding in e Install low
* Control valve is column level alarm
More flow fully OPe”e_d e Change the e Schedule,
MORE * Increasing in product maintenance,
pumping quality check
ca_tpamty e Decrease in procedure
o failure of temperature e Install control
Control valve e Raisein valve
bottom
liquid level
e Low efficiency e Install high
* Valve pressure of separation Pressure
high
High pressure e Pressure * Rupture of alarm
HIGH o column other e Install
indicator . related pressure relief
controller fail equipment valve
e Product loss
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. e Separation o Install
* Instrumentatlo cannot be done pressure
n failure e Changein indicator
* More steam product quality e Instruct
flow e Column operator on
* Exchanger flooding procedure
tube falllure e Filmboiling in e Attention to
High * Heating column and heat input and
Temperat me.dlum leak reboiler out control
ure into the
process
. e Low efficiency e Install pressure
* Vlae[;i;:;:e of separation indicator
LOW Low pressure e Loss of product
. e pressure e install
* Instrumentatlo change temperature
n failure e product loss indicator
Low *  less steam flow e changein e install operator
Temperat| ~® lossof heating product quality on procedure
ure * lesssteam ineffective e Isolation is up-
temperature separation graded
and pressure process e attention to heat

phase effect

input and out
control
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12.1 Introduction:

The project description, evaluation of the project's environmental and social implications,
mitigation strategies, and associated management and monitoring plans are all included in
the EIA Report. The report contain

v" It requested information that is relevant and helpful for making judgments.

v" It results in the precise prediction of the negative effects of the recommended actions and
their mitigation using both common and unique solutions.

v The creation of a thorough EIA is fraught with difficulties. These include the use of out-of-
date assessment models, inadequately detailed alternatives and mitigation actions, and
incomplete identification of the essential consequences. The types of flaws that could be
found in various samples of typical EIA reports are listed in the table below.

12.2 Safety and Environmental Factors:

Although light olefins are colorless gases with a mild odor that is nonirritating to the eyes or
respiratory system, these are hydrocarbons and therefore flammable. All vessels must be
designed for handling the liquids and gases during operation at the temperature and pressure
that exists, and safety and relief (depressurizing) valves must be provided to relive excessive
pressure. Releasing the hydrocarbons in the air in large amounts must be avoided because of
health and fire hazards.
If hydrocarbons must be released in the air it is done under blanket of steam. To protect the
plants and personnel in case of fire, a complete fire-fight system is provided with tanks
grouped to minimize fire and provided with foam makers and deluge systems. An olefin
plant produces liquid, gaseous, and solid wastes that must be disposed of in an
environmentally safe manner. Liquid waste generated within the complex consists of
wastewater streams of relatively low organic content, and process waste of high organic
contents.
Wastewater from various units and operations are serrated according to the wastewater
characteristics, such as type of contaminants, concentration, special treatment, or permanent
requirements [8]. A segregated sewer allows for the most efficient treatment. Atmospheric
emissions from the facility are either controlled or fugitive in nature. Controlled emissions
are released from process venting, waste incineration, decoking operations, and heater
firing. Fugitive emission may occur from product loading and storage and equipment and
valve leaks. Solid wastes are treated in solid waste disposal area to reduce their volume
and/or toxicity prior to final disposal in a secure landfill. Combustible wastes can be
incinerated in a slagging rotary kiln to reduce volume and toxicity.

12.2.1 Safety:
When a plant is being designed, the concern for operating safety becomes apparent. Even
after the factory is finished being built, the design and specifications are thoroughly
examined. This is true of the overall design of the instrumentation and control systems. The
caliber and competency of the operating and support staff has a significant impact on plant
safety.
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In the end, everything safety is summarized in the plant's operating manuals. These guides
emphasize

v The operating mode at design and light loads;

v' Emergency measures, for instance, in the event of a sudden loss of power from the
outside, to allow for the swift and secure discharge and disposal of the plant's liquid and
vapor stockpiles;

v' The use of steam, foam, and water sprays to avoid ignite by dissipating combustible
elements that escape from damaged lines and equipment above ground;

12.3 Environmental Impacts of Ethylene Plant:

Three major categories can be used to group the environmental damage caused by the
operation of the hot section of the ethylene plant,

Air pollution

Water pollution

Noise pollution

12.3.1 Air Pollution:

The major source of air pollution in on ethylene plant in the stack gases coming out of the
cracking furnace, Gaseous pollutants of environmental concern include carbon monoxide
and oxides of nitrogen, the high furnace operating temperature and a slight oxidizing
atmosphere, preclude the formation of carbon monoxide in any significant quantity. Larger
burner capacity will tend to increase the NOx level of a particular furnace [11].

12.3.2 Water Pollution:

Oily fractions from leaks, spills, and tank draw-off are included in the liquid waste effluent
from the hot part of the ethylene plant. The caustic scrubbing column's spent caustic
solution is the primary cause of water contamination, and how it is disposed of can have a
significant impact on the plant's profitability. The principal corrective actions for decreasing
oily wastes are,

The prevention of oil leaks through routine maintenance of the equipment and pipes..
Elimination and separate treatment of emulsions where they already exist or prevention of
their creation.

12.3.3 Environmental:

Stringent environmental laws requires that nitrogen oxides (NOx), and sulfur oxides
emission from furnaces be manually reduced. In some areas of the world, regulations
require NOx be reduced to 70 ppm or lower. on a wet basis. Conventional burners usually
produce 100 to 120 ppm of NOx.

Since NOx production depends on the flame temperature and quantity of excess air,
achieving required limits may not be possible through burner design alone.

Therefore, many new designs incorporate DENOx units that employ catalytic methods to
reduce the NOx limit. Platinum containing monolithic catalysts are used. Each catalyst
performs commonly for a specific temperature range, and most of them work properly on
400°.
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12.4 Emissions:

12.4.1 GHG Emissions:
Cellulosic ethanol from corn Stover and forest wood residue can avoid a significant amount
of GHG emissions. Cellulosic ethanol produced from corn Stover could avoid GHG
emissions by 86-89% and ethanol produced from forest residues in 2030 could reduce GHG
emissions by 85%. Reductions of GHG in corn ethanol cases are moderate (21-24%).
Accounting for lime applications and farming machinery in the assessment of the life cycle
of corn ethanol causes an increase in GHG emissions of about 4% and 1%, respectively.
Lime application increases CO, and therefore GHGs emissions because of its CaCOj3
chemistry. With one million Btu of fuel, gasoline emits 98 kg of GHGs from wells to
wheels, while corn Stover-derived ethanol emits only 14 kg of GHGs. GHG emissions here
are CO,-equivalent emissions of CO;, N,O, and CH4, weighted with their global warming
potentials. The trend for CO; is similar to that for GHGs. One million Btu of corn Stover-
based ethanol to displace one million Btu of gasoline could avoid 85 kg of CO,. The CO,
data are presented here to allow comparison with the results from some other studies, which
only estimate CO, emissions. Apparently, ignoring N,O and CH,4 emissions gives fuel
ethanol some unwarranted additional benefits [12].
12.4.2 Pollutant Emissions:

The results of criteria pollutant emissions, expressed in grams of emissions per mile driven
in FFV fueled with E85 are separated into total and urban emissions. Total emissions are the
sum of the urban and rural emissions. Urban emissions have long been an environmental
and health concern because the potential of exposing the human population to emissions in
that setting is high. In comparison with gasoline, ethanol can achieve net reductions in the
urban criteria pollutant emissions of VOCs, CO, NOx, PM, and SOx. This phenomenon can
be explained by the location of bio-ethanol plants. Corn and cellulosic ethanol plants are
most likely to be built near farms to minimize feedstock transportation costs. Criteria
pollutants emitted from the farming, feedstock transportation, and ethanol-production steps
contribute to rural emissions only. In contrast, several petroleum refineries (up to 60%) are
currently situated in or near urban areas, which results in a high urban share of emissions
from petroleum refining. Most significant reductions occur with SOx, where 60% of
current SOx emissions due to vehicles fueled with gasoline could be avoided. As a result,
there is a shift in the emission of criteria pollutants from urban to rural areas with bio-based
ethanol in the near term. While urban emissions of VOCs, CO, NOx, PM, and SOx
decrease, total emissions (urban and rural) increase, which means there are increased
emissions in the rural area. Because urban area emissions are more of an environmental and
health concern, this shift provides at least a positive step toward the reduction of regulated
pollutants. Cellulosic ethanol derived from corn Stover could achieve a net reduction of
total VOCs, NOx, PM, and SOx emissions in 2030.In the near-term scenario (2021), corn
Stover-derived ethanol emits slightly higher VOCs than does corn grain ethanol. This higher
emission is caused by VOC emissions from the biomass boiler.
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12.4.3 Carbon Dioxide:
The estimation of the precise amount of carbon dioxide created during the production of
bioethanol is a difficult and imprecise procedure that heavily depends on the technology
used to produce the ethanol and the assumptions used in the calculation.
Calculations must take into account:

AN NI N N NN

AN

Costs associated with raising the feedstock

The price of delivering the feedstock to the manufacturing facility

Costs associated with converting the feedstock into bioethanol

These consequences may or may not be taken into account in such a calculation.
The price of delivering the feedstock to the manufacturing facility

Costs associated with converting the feedstock into bioethanol

The following impacts may or may not be taken into account in such a calculation:
The price of changing how the land is used in the region where the fuel feedstock is
produced.

The price of moving bioethanol from the plant to where it will be used.

The bioethanol's effectiveness in comparison to regular gasoline
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Ref No: PEC w()c;zz/_,g_ﬂl_
PAKISTAN ENGINEERING COUNCIL

REGULATING THE ENGINEERING FROFESSION
“Final Year Design Project 2022-23"
Proposal Acceptance Certificate
It is 10 certify you that Final Year Design Project

Production of 850 X 10 power three TPA of Bio-Ehtylenet
from Zea-Mays Corn Stover.

(Chemical Department, University of Wah, Wah)

of your university has been approved for financial assistance by PEC

CONGRATULATIONS

It is required to complete this Design Project in accordance with the PEC standards so it
can be included in the c.pﬂon,e Expo-2023 and have it uploaded to the PEC E-library
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ENGR. MIR MASOOD RASHID ENGR. DR. NASIR M, KHAN
Convener, PFDC, PEC Meglstrar, PEC
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Il v University of Wah WPENHOUSE |

Certificate of Achievement

This certificate is presented to Mr/Ms _Shehar Bano

for Production of 3000 Tons/Day of Bio-Ethylene from Zea-Mays

and securing 1* Position in Final Year Project 2023

A

Prof. Dr. Adnan Tariq |

Dean, Faculty of Engineering '




Republic of Tirkiye's 100™ Anniversary.
We are stronger together, our beloved Turkish Nation.

KARASUK

UNIVERSITY

This certificate is presented to

Kashaf Tehreem

In collaborations with: Usman Asghar, Shehar Bano, Fazeel Ahmad, Wagas Ahmad Khan,
Abdullah Niaz, Sami Jabbar

"Techno-Economic Evaluation of Bio-Ethylene Production from Zea-Mays

(Biorefinery as a sustainable solution for the utilization of waste)" for
attending as a Speaker at the 6™ Pak-Tiirk Conference on Emerging Technologies in the Field
of Sciences and Engineering organized by the University of Karabiik on 4 - 6 May, 2023,

WM/
Prof. Dr. Necla CAKMAK
Chief of PAKTURK 2023 Conference

Karabiik University, Science Faculty, Physics Department, 78050 - Karabiik, Tiirkiye




CERTIFICATE OF PROOF READING

It is certified that the submitted manuscript titled as “Production of 3000 TDP of Bio-
Ethylene from Zea Mays” is as per the standard formatting given by the FYP Coordinator.

Supervisor Signature:  =m-mmmmmmmmmme oo

FYP Coordinator Signature: ---

Department of Chemical Engineering
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