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Abstract 

pMRI (Parallel Magnetic Resonance Imaging) techniques have attracted the attention of 

researchers in MRI as it allows faster image acquisition without any increased gradient and 

additional RF (Radio frequency) power. Several methods have been proposed in literature to 

reconstruct images using pMRI methods including GRAPPA (Generalize Autocalibrating Partial 

Parallel Acquisition). GRAPPA enables under-sampled data acquisition in MRI and reconstructs 

artifact free images while using multiple receiver coils to reduce MRI scan time. However, this 

scan time reduction causes long image reconstruction time because as the number of receiver 

coils increases, the time to reconstruct images from each coil increases in GRAPPA. 

The reconstruction time in GRAPPA can be reduced using Random Projection Method and 

Channel Compression. This project is aimed to design an accelerator based on System-On-Chip 

system using VIVADO High-Level-Synthesis (HLS) tool. The proposed design consists of two 

hardware accelerators for Random Projection and Channel Compression. The accelerators have 

been implemented on Zynq System-On-Chip board. The accelerators are coupled with GRAPPA 

algorithm. The proposed design accelerates the reconstruction process of undersampled parallel 

MRI data, as well as providing reduced power consumption, low cost, and higher reliability than 

the contemporary system. The proposed SoC is more efficient than the multi-chip systems, as 

fewer packages in the system reduces assembly cost and reduces the power consumption.  
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Chapter-01 

Introduction 

1.1  Purpose and Overview: 

Magnetic Resonance Imaging (MRI) [1] is a noninvasive test used to produce detailed medical 

images in order to examine the internal structure, anatomy, and organs of the human body at the 

tissue level. The medical images produced by MRI are used to diagnose and treat different 

medical conditions including tumors, cancers, soft tissue injuries such as damaged ligaments, 

joint injuries, spinal injuries, internal organs injury including brain, heart, lungs, kidney, 

digestive organs, etc.  

Unlike other clinical diagnoses, MRI doesn’t produce any harmful radiation. However, longer 

scan time and image reconstruction time are major drawbacks of MRI which cause discomfort to 

the patients and poor image quality due to patient’s mobility. To address these challenges, 

researchers have been working on various technical modifications to MRI processors. These 

modifications aim to reduce scan time by implementing real-time mathematical acceleration 

techniques. By improving the efficiency of data acquisition and reconstruction algorithms, these 

modifications can help minimize patient discomfort and enhance overall image quality. 

1.1.2  Introduction to Parallel Magnetic Resonance Imaging (pMRI): 

Within the past few years, parallel imaging techniques have been widely used in literature as 

well as commercially to accelerate MRI scan. Parallel Magnetic Resonance Imaging (pMRI) [2] 

techniques are used to enhance MRI methods virtually, allowing faster data acquisition without 

any increased gradient or additional radio frequency. parallel MRI techniques such as SENSE 

(Sensitivity Encoding) [3] and GRAPPA (Generalize Auto calibrating Partial Parallel 

Acquisition) [4] have been widely used in clinical and research settings with an aim to reduce 

scan times and improve patient comfort, particularly for patients who have difficulty holding still 

or are unable to tolerate longer scan times. pMRI techniques are also used to improve image 

quality in areas where conventional MRI may have limitations, such as imaging the beating heart 

for diagnosing cardiovascular diseases and planning interventions, functional MRI (fMRI) [5] to 
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map brain activity by measuring changes in blood flow, musculoskeletal imaging to diagnose 

conditions such as osteoarthritis and muscle injuries, interventional MRI to guide the placement 

of instruments and monitor the progress of the procedures such as biopsy, tumor ablation.  

1.1.3  Challenges in pMRI Image Reconstruction: 

pMRI offers the advantage of faster image acquisition using undersampled data, but it introduces 

challenges in the reconstruction of high-quality images from the acquired undersampled data. 

The acquired data is undersampled, meaning that not all spatial frequencies are fully captured. 

The under-sampling leads to artifacts and image distortions in the reconstructed images. 

To overcome these challenges, various image reconstruction methods have been proposed in the 

literature, and one such method is the Generalized Autocalibrating Partial Parallel Acquisition 

(GRAPPA) technique. GRAPPA reconstructs MR images from the acquired under-sampled raw 

data (known as k-space data in MRI), by using information from the k-space data acquired 

during a calibration scan. The reconstruction process typically involves a series of mathematical 

operations to interpolate the missing k-space data in each receiver coil and reconstructs the final 

image. These operations can be computationally intensive, and the amount of computation 

required can increase with the number of receiver coils used.  

1.2  Problem Statement: 

The problem addressed in this research project is the long image reconstruction time associated 

with GRAPPA. GRAPPA enables faster image acquisition using multiple receiver coils, but the 

reconstruction process increases as the number of coils increases. To overcome this, efficient 

software-based solutions have been developed, including channel compression and dimension 

reduction. Channel compression aims to reduce the number of required channels for MRI 

reconstruction, while dimension reduction reduces the higher-dimensional calibration data of 

GRAPPA to a lower-dimensional space without compromising image quality. 
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1.3  Proposed Solution: 

Real-time MRI reconstruction requires quick processing and analysis of large amounts of data, 

which can be a significant computational challenge. MRI reconstruction is a computationally 

intensive task that involves processing large amounts of data in real-time, making it an ideal 

candidate for hardware acceleration. In this work, two FPGA based accelerators embedded on 

chip are proposed for GRAPPA Reconstruction. The proposed accelerator for channel 

compression employs PCA based channel compression to reduce the computation complexity of 

the GRAPPA algorithm and the proposed accelerator for dimension reduction using random 

projection [6] incorporated in GRAPPA to reduce dimensions of the calibration phase. The 

proposed solution of dimension reduction aims to empirically select a random projection matrix 

to ensure preservation of the relevant information in the data, enabling an evaluation of the 

impact of dimension reduction on image quality and reconstruction accuracy. The proposed 

solution of channel compression is aimed to reduce the number of receiver coils by compressing 

the acquired data to fewer channels. The compression process is done using PCA [6] (Principal 

Component Analysis) which extracts essential components of data and removes the redundant 

information. The FPGA based accelerator for channel compression reduces the data that needs to 

be stored and processed by the GRAPPA algorithm, which reduces imaging time and storage 

resources.  

The proposed accelerators can be an excellent choice for real-time MRI reconstruction, as they 

can offer high performance and low memory as well as processing requirements. proposed 

designs intend to utilize the customized FPGA based accelerators; to perform PCA based coil 

compression, and random projection, making GRAPPA highly efficient for real-time MRI 

reconstruction. The integration of FPGA-based accelerators into the GRAPPA reconstruction 

workflow holds significant potential for speeding up the reconstruction process and enhancing 

overall efficiency in real-time MRI. These accelerators can minimize the time required for image 

reconstruction, enabling faster diagnosis, and reducing patient discomfort during scanning. 

Additionally, the efficient utilization of computational resources contributes to improved 

resource management and cost-effectiveness in medical imaging applications.  
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1.4   Key Objectives: 

The objective of this research-based project is to design a SoC system using VIVADO High 

Level Synthesis (HLS) tool. This SoC based system allows fast MRI reconstruction for real time 

clinical MRI applications. Following are the key objectives of this project: 

1.  To reduce the reconstruction time of GRAPPA without compromising the image quality. 

This process can enable faster diagnosis to allow patient comfortability and reduce the 

motion artifacts in the images.  

2. To reduce the computational complexity of GRAPPA reconstruction process, thus 

reducing cost and power requirements of MRI systems. 

3. This system can enable the development of smaller, more efficient, and portable MRI 

systems that can be used in far-off areas.  

4. Another key objective of this project is to improve the overall efficiency of MRI system, 

improving patients’ comfortability and fast reconstruction of high-quality MR imaging. 

1.5   Benefits of the project: 

The proposed SoC will significantly reduce the computation time and complexity in GRAPPA 

reconstruction. The development of the proposed hardware accelerators will reconstruct the MR 

images with higher frame rates, making the proposed design a valuable tool in various clinical 

applications. This project will offer several benefits:  

Improved temporal resolution: Frame rate is a critical factor in defining the temporal 

resolution of real-time MRI. More detailed images of dynamic physiological processes with 

better temporal resolution are provided by higher frame rates. Thus, it allows better 

understanding to clinicians, better diagnosis, and better treatment plans.  

Reduced motion artifacts: When the patient or organ under observation is in motion, it creates 

motion artifacts in the MR images. The motion artifacts can be reduced by higher frame rates 

which helps in better diagnosis and improved results.  
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Improved precision in image-guided interventions: Real-time MRI is used to guide 

procedures such as surgeries and biopsies. High frame rates provide accurate and precise 

visualizations and reduce risks of complications during the procedure.  

Better measurement of physiological parameters: The accuracy of measuring physiological 

parameters such as blood flow, heart function etc. can also be improved with high frame rates. 

Thus, it provides better understanding of pathophysiology of diseases and can aid in treatment 

and monitoring.  

Faster scan times: High frame rates provide shorter real-time MRI scans. This can increase 

patient comfort and reduce anxiety during the scan. 

Dynamic imaging: Our proposed solution is a real-time application thus it will provide 

visualization of physiological processes in motion. It can also help in diagnosis, progression, and 

treatment of diseases better.  

1.6   Motivation: 

The key motivation of this research project is to address the computational complexity of the 

GRAPPA reconstruction algorithm. pMRI techniques have gained significant attention from 

researchers and technologists in the field of MRI, as it enables faster image acquisition without 

any additional RF power and increased gradient. This capability of pMRI has a potential to 

revolutionize the MRI systems due to its increased throughput, patient comfortability, and 

enhanced diagnostic capabilities.  

GRAPPA is one of the main widely used methods for image reconstruction in pMRI. It reduces 

scan time by allowing acquisition of under-sampled data using multiple receiver coils. However, 

as the number of receiver coils increases, the image reconstruction time for each coil also 

increases. This limitation compromises the potential of pMRI techniques. 

This project aims to design two accelerators (Channel Compression and Random Projection) 

based on the SoC system using the VIVADO High Level Synthesis (HLS) to overcome the 

limitations of GRAPPA. The novelty of this research includes the design of two accelerators for 

efficient GRAPPA reconstruction i.e. (i) an accelerator for Channel Compression to reduce the 
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number of receiver coils and (ii) an accelerator for Random Projection to reduce the complexity 

of calibration phase of GRAPPA.  

The proposed SoC design offers many advantages over the conventional multi-chip systems such 

as less cost and less power consumption.  

Successful implementation of this project can provide excellent benefits for pMRI techniques 

e.g., GRAPPA including shorter scan time, patient comfort, accurate diagnosis, less power 

consumption, and cost efficiency, etc. 

1.7   Broader Impact (UN SGDs): 

1.7.1  Targeted SDGs: 

This project has a broader impact and aligns with several United Nations Sustainable 

Development Goals (SDGs). It contributes to following SDGs: 

Goal 3: Good Health and Well-being: By improving the temporal resolution of real-time MRI, 

the project enhances the ability to diagnose and monitor diseases, leading to better healthcare 

outcomes and improved well-being for patients. 

Goal 9: Industry, Innovation, and Infrastructure: The development of an FPGA-based 

hardware accelerator for MRI reconstruction represents a technological innovation in the field of 

medical imaging. It contributes to infrastructure development by advancing imaging 

technologies and improving their accessibility. 

Goal 11: Sustainable Cities and Communities: By reducing scan times and improving 

efficiency in MRI, the project helps optimize healthcare resources in urban areas, leading to 

more sustainable healthcare systems and better access to medical services. 

Goal 17: Partnerships for the Goals: Our project encourages interdisciplinary collaboration 

and knowledge sharing among researchers, engineers and healthcare professionals which is 

critical in the development of medical imaging technologies. 
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1.7.2  Potential Mapping: 

This project has the potential to bring about several positive outcomes: 

Improved Diagnostic Accuracy: This project helps doctors see physiological processes more 

clearly and accurately by reducing motion artifacts which leads to improved diagnostic accuracy 

and better treatment planning. 

Enhanced Patient Experience: Reduced scan times during MRI lead to less discomfort in the 

patient experience, which ultimately improves patient satisfaction and promotes better adherence 

to medical procedures. 

Technological Advancement: The development of FPGA-based hardware accelerators for 

GRAPPA reconstruction illustrates the potential for technological advancements in MRI 

reconstruction, hence opening novel opportunities for real-time imaging and dynamic process 

visualization. 

Sustainable Healthcare Practices: The optimization of MRI resources through reduced scan 

times contributes to sustainable healthcare practices, ensuring an efficient use of medical 

equipment, energy, and resources. 

Accessible Healthcare: By increasing the efficiency and speed of MRI scans, it will increase 

access to high-quality healthcare services, particularly in places with limited resources or 

underserved populations. 

Research and Innovation: The collaboration between researchers, engineers and healthcare 

professionals will promote a culture of research and innovation between academia and industry, 

leading to continuous advancements in medical imaging technologies. 

The project's distinctive impact and potential mapping can be expanded based on the project's 

scope and local healthcare contexts.



 

9 

 

 

Chapter-02 

Literature Review 

2.1  Magnetic Resonance Imaging (MRI): 

2.1.1  Background 

Magnetic Resonance Imaging (MRI) involves a combination of advanced science and 

engineering, including the use of superconductivity, cryogenics, quantum physics, digital and 

computer technology, and all within the radiology department of a hospital [8]. There are other 

imaging techniques such as X-rays and computed tomography (CT scans) which are being used 

in medical imaging to diagnose and study anatomy of the human body, but MRI is an efficient 

and harmless medical imaging technique. 

In the 1970s, MRI scanners were the domain of engineers and scientists. In the early days, the 

medical scanning technique named Nuclear Magnetic Resonance (NMR) imaging [9] was 

introduced; later its name was modified to MRI. Figure 2.1 demonstrates a visual representation 

of NMR working.  

 

 

 

 

 

 

 

Figure 2.1: Excitation and Relaxation of Protons in MRI when an RF Pulse is applied [10] 
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It works on the basic principle of nuclear magnetic resonance, where the nuclei of certain atoms 

align in the presence of strong magnetic fields, such as hydrogen protons in water molecules. 

When radio frequency (RF) pulses are applied, the aligned protons emit high energy signals 

which are detected and processed to create images.  

2.1.2 Technology Advancement in MRI:  

Magnetic Resonance Imaging (MRI) has evolved significantly since its inception in the 1970s. 

Some improvements and advancements of MRI technology [9] are as follow:  

Image Quality: MRI systems have shown remarkable improvements in image quality over the 

years. With the help of researchers and technologists, MRI hardware has improved such as 

stronger magnetic fields and high-performance radio frequency to enhance image clarity; thus, 

ensuring better diagnosis and treatment of diseases. 

Magnet Field Strength: The strength of MRI scanner has enhanced day by day. In the 1970s, 

the normal magnetic field strength of MRI magnets ranged from 0.1 to 0.3 Tesla (T). Today, 

MRI scanners with magnetic field strengths of 1.5 T and 3 T are commonly used for clinical 

purposes. A stronger magnetic field provides a high signal-to-noise ratio and improved image 

quality. 

Faster Imaging: MRI scan speed has improved by the development of techniques such as 

parallel imaging, thus enabling patient comfort, quick examination, and less power consumption.  

2.2  Parallel Magnetic Resonance Imaging (pMRI): 

In clinical magnetic resonance imaging (MRI), imaging speed is crucial alongside image 

contrast. However, current MRI scanners are already operating at their maximum potential speed 

due to technical and physiological challenges associated with rapidly switching magnetic field 

gradients. Parallel MRI (pMRI) has emerged as a solution to decrease acquisition time without 

requiring further enhancements in gradient performance [10]. 

The pMRI utilizes the spatial sensitivity information from an array of multiple receiver surface-

coils to partially replace the time-consuming process of spatial encoding. This means that fewer 

encoding steps are required for image acquisition during the process, resulting in faster image 
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acquisition while maintaining full spatial resolution and contrast. Essentially, pMRI improves 

both the speed and the quality of MRI scans. It allows for quicker image acquisition at a given 

level of detail and enables higher spatial resolution within a specific imaging time. Furthermore, 

pMRI can help reduce susceptibility artifacts which appear as distortions in the images by 

minimizing the length of the echo train used in single and multi-shot imaging. Figure 2.2 

demonstrates the Parallel MRI acquisition and reconstruction illustration. 

 

Figure 2.2: Parallel MRI acquisition and reconstruction illustration. The imaged object is shown 

in (a), and images acquired with different receiver coil elements are illustrated in (b). A 

commonly used random under-sampling pattern with fully sampled k-space center and its point 

spread function in spatial domain are shown in (c). The direct reconstruction with under-

sampling pattern in (c) is the convolution of the point spread function of the sampling pattern 

and the original image, as plotted in (d); image referred from [13] 

Modern MRI scanners using pMRI techniques can have up to 32 channels, allowing them to 

acquire images much faster than older systems. In clinical practice, they can speed up scans by 2 

to 4 times, while in research settings, the acceleration can reach up to 9 -12 times. This 

represents a significant improvement in imaging speed compared to older MRI methods 

developed in the 1980s. [11] 
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Over the past decade, significant progress has been made in the development of pMRI methods, 

leading to various parallel imaging reconstruction techniques and strategies. Some well-known 

techniques include SMASH, SENSE and GRAPPA, while others like AUTO-SMASH, VD-

AUTO-SMASH, GENERALIZED SMASH, MSENSE, PILS and SPACE RIP have also been 

proposed. All these methods require additional information about receiver coil sensitivity to 

compensate for the under-sampled k-space data. This sensitivity information can be obtained 

during patient setup or by acquiring a few additional k-space lines for each subsequent pMRI 

experiment (autocalibration), or a combination of both. The pMRI reconstruction methods can be 

broadly categorized into two groups: those that perform reconstruction in image space (e.g., 

SENSE, PILS) through an unfolding or inverse procedure, and the other category carries out the 

reconstruction in k-space (e.g., SMASH, GRAPPA) by calculating the missing k-space data. [12] 

 

Figure 2.3: Comparison of R = 2 accelerated acquisitions of the human heart using (b) pure 

SMASH, (c)AUTO-SMASH, (d) VD-AUTO-SMASH, and (e)GRAPPA for image reconstruction. 

The images demonstrate the progression of k-space related pMRI reconstruction methods over 

time, with a continuous improvement in image quality. It is evident that GRAPPA achieves 

excellent image quality without phase cancellation problems or residual artifacts. Additionally, 

it optimizes the signal-to-noise ratio (SNR) by allowing a sum of squares reconstruction of the 

uncombined component coil images. For comparison, Figure (2.3a) displays a full field-of-view 

(FOV) acquisition. The reconstruction result shown is referred from [13] 

Figure 2.3 demonstrates temporal evolution of k-space-related pMRI reconstruction algorithms, 

showcasing the improvements in image quality achieved with each technique. Pure SMASH 

(Figure 2.3b) suffers from signal losses and residual artifacts. AUTO-SMASH (Figure 2.3c) 
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introduces a self-calibrated reconstruction method but is still affected by limitations. VD-AUTO-

SMASH (Figure 2.3d) achieves better artifact suppression with more accurate coil weight 

estimation. Finally, GRAPPA (Figure 2.3e) further improves the accuracy of coil weights and 

overcomes the drawbacks of signal cancellations and low SNR. 

pMRI has shown significant benefits in various applications, including head, thoracic, and 

cardiac imaging, by significantly improving image acquisition capabilities. Most of the time, the 

primary focus is on two commercially available techniques i.e., SENSE and GRAPPA. However, 

having technical overview of the existing pMRI methods, discussing differences, similarities, 

advantages, and disadvantages can help clinicians choose the best pMRI method as per their 

requirement.  

2.3 GeneRalized Autocalibrating Partially Parallel Acquisitions 

(GRAPPA): 

GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) method is a pMRI 

technique It fits component coil signals to a single component coil ACS (Autocalibrating Signal) 

signal, which allows the derivation of linear weights to reconstruct missing k-space lines for each 

component coil. 

This procedure is repeated for each component coil, considering that the coil sensitivities change 

along the read direction. GRAPPA algorithm determines the weights for reconstruction at 

multiple positions along the read direction. 

After Fourier transformation, uncombined images for each single coil in the receiver array are 

obtained. The use of multiple k-space lines from all the receiver coils to fit one single coil results 

in increased accuracy and better artifact suppression. In GRAPPA algorithm, the uncombined 

single coil images can be combined using a magnitude reconstruction procedure (such as sum-of-

squares), results in enhanced signal-to-noise ratio (SNR) performance, especially at low 

reduction factors. Furthermore, using a magnitude reconstruction procedure helps eliminate 

signal losses due to phase cancellations. The GRAPPA reconstruction process is represented 

schematically in Figure 2.4. 
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Figure 2.4: The image depicts the steps involved in parallel magnetic resonance imaging 

(pMRI)GRAPPA reconstruction. (a) Signal Fitting: the signal from each component coil is 

matched to the auto-calibration signal (ACS). (b) Weight Determination: Reconstruction is 

performed in the read direction, where the weights are calculated for each data point based on 

the information obtained from the ACS. (c) Uncombined Coil Images Magnitude Reconstruction: 

The reconstructed magnitude images of the uncombined coil data are generated by combining 

the information from different coils. This combination enhances the signal and creates a final 

image.  

GRAPPA algorithm can be divided into two processing steps: (i) calibration phase (ii) synthesis 

phase. 

During the calibration phase, calibration data collected using a coil array is represented by two 

matrices: the source matrix (S𝑚×𝑛) and the target matrix (T𝑚×𝑙). The source matrix contains 

information about the coil sensitivities, while the target matrix holds the fully sampled 

calibration image, during kernel repetitions over ACS lines, and forms a GRAPPA calibration 

equation as: 

                              T𝑚×𝑙 = S𝑚×𝑛 W𝑛×𝑙 where 𝑚 ≫ 𝑛,                                                  (2.1) 

The unknown coefficients (reconstruction coefficients or GRAPPA weight sets), represented by 

W𝑛×𝑙, are estimated through a linear combination of Source and Target Matrices. In calibration 
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phase, conventional GRAPPA seeks least square fits to estimate the reconstruction coefficients 

(W): 

                                              𝑤 = min ‖S𝑤 − 𝑡‖2,                                                          (2.2) 

The problem in (2.1) is well overdetermined; therefore, pseudoinverse method can be used to 

estimate the best fit for (2.2): 

                                         W = (S𝐻S)−1 (S𝐻 T ),                                                             (2.3) 

where 𝐻 denotes the conjugate transpose. 

During the synthesis phase in GRAPPA, the estimated weight sets (W) in (2.3) are used to 

calculate the missing data points in the under-sampled region of the k-space for each channel in 

the array coil. Figure 2.5 represents a schematic description of the GRAPPA reconstruction 

method. The GRAPPA method, despite its advantages, has limitations. The use of massive array 

coils with numerous channels in imaging has resulted in longer computational times for 

GRAPPA reconstruction. This challenge has prompted the exploration of hardware and software 

approaches to reduce the number of channels effectively. 

Hardware-based solutions involve using a specialized signal combiner, while software-based 

methods, like principal component analysis (PCA), compress the channels before reconstruction. 

These software approaches significantly reduce computation time by combining multiple 

channels coil data into a single coil. 

In Literature, random projection is used to reduce computation complexity during GRAPPA 

calibration phase [28]. Random projection is a technique used in machine learning to reduce 

dimensions while preserving useful information. By applying random projection to GRAPPA, 

the computational time for calibration is reduced without sacrificing accuracy. The proposed 

random projection method achieves comparable reconstruction quality to traditional GRAPPA 

while significantly reducing computation time. This approach can be combined with PCA based 

channel reduction techniques for even greater efficiency. These limitations highlight the 

requirement for careful calibration and validation procedures when employing the GRAPPA 

method in clinical applications. 
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Figure 2.5: Schematic description of GRAPPA Reconstruction method using multiple lines from all the 

receiver coils to fit one line in a specific coil. This is repeated for each coil, resulting in uncombined coil 

images that can be combined using sum-of-squares.  
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Proposed Methodologies for fast GRAPPA Reconstruction 

3.1  Overview and background: 

GRAPPA is a widely used pMRI technique for accelerating MRI scan time. GRAPPA uses 

multiple receiver coils to reconstruct artifact free images. However, as the number of receiver 

coils increases, time to reconstruct images from each coil increases as well. The calibration phase 

is the first, most important and computational extensive phase of GRAPPA. It consists of 

complex mathematical operations of complex value matrices. Therefore, its computational 

complexity increases the overall reconstruction time of GRAPPA. To address this issue, two 

simultaneous solutions are proposed: (i) Channel Compression. (ii) Random Projection. 

3.2  Channel Compression in pMRI: 

Parallel MRI enables faster image acquisition using multiple receiver coils for data acquisition. 

However, processing the data of a large number of receiver coils requires more memory and 

increases computational complexity. Channel compression techniques can be used to address this 

issue by compressing the receiver coil data into a smaller set of data. Therefore, reducing 

computational complexity and computer memory requirements for GRAPPA reconstruction. 

Channel Compression techniques use Eigen Value Decomposition (EVD) [15] methods such as 

Principal Components Analysis (PCA) [16] and Singular Value Decomposition (SVD) [21] to 

extract the essential information of a data set and remove redundant information. These 

techniques have applications in many fields of MRI including real time MRI, fast imaging etc. 

3.2.1 Principal Component Analysis (PCA):  

PCA is a dimensional reduction technique which maps a large dimensional data to lower 

dimensional data, by extracting the components which have the most variations. It consists of the 

following steps: 

I. Standardize the range of continuous initial value variables. 

Mathematically, this is achieved by subtracting the mean and dividing by standard 

deviation for each variable value as shown in equation (3.1): 
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                                     𝑍 =
𝑣𝑎−𝑚ⅇ𝑎𝑛 𝑜𝑓 𝑡ℎⅇ 𝑑𝑎𝑡𝑎 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑ⅇ𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                                (3.1) 

II. Covariance matrix computation is used to identify correlations in the data. 

Mathematically, this is done by taking sum of correlations between all the possible pairs 

of variables as shown in equation (3.2): 

                                      (𝑥, 𝑦)  =
1

𝑛−1
∑𝑛

𝑖=1 (𝑥𝑖 − 𝐸(𝑥))(𝑦𝑖 − 𝐸(𝑦))                (3.2) 

III. Eigen value and Eigen vector computation of correlation matrix. Mathematically, this is 

done by subtracting the eigen values from the variable values and multiplying it with the 

eigen vector as shown in equation: 

                                           (𝐴 − 𝜆𝐼)𝑥 = 0                                                      (3.3) 

where 𝐼 is the identity matrix, 𝜆 is eigen value and 𝑥 is the eigen vector. 

IV. Extract the principal components and recast the data along principal component axes.  

The eigen vectors and eigen values are used to compute the principal components of the 

data. These principal components are arranged in such a way that the most initial 

components contain most essential information of the data as shown in Figure 3.1. These 

principal components are used for data compression [22]. 

 

Figure 3.1: Principal Components and Eigen Value Normalization 

Limitations of PCA for Channel Compression: 
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The computational complexity of calculating covariance of the data increases with the increase 

data sets. In this research, in order to transform eigen values of the matrix to principal 

components, Singular Value Decomposition (SVD) is used.  

3.2.2 Singular Value Decomposition (SVD):  

SVD is a linear algebra technique which transforms a matrix into three main matrices: 

                                                      𝐴 = 𝑈𝛴𝑉∗                                                                (3.4) 

where 𝑈 is the orthonormal row elements of matrix A, 𝑉∗ is the conjugate of orthonormal 

column elements of matrix A containing the information of eigen vectors and 𝛴 is the singular 

diagonal matrix containing eigen values [23]. With the help of the eigen vectors and eigen 

values, principal components of the data can be transformed. 

Limitations of SVD: 

The time complexity of computing SVD of an m×n matrix is O (nm min(m, n)); and for high 

rank data sets, SVD becomes computationally expensive. Moreover, SVD does not have 

independent operations which could be exploited using hardware or software solutions to speed 

the process of compression. 

To overcome the computational complexity of orthonormal column and rows matrices for 

extracting principal components, this research uses QR Decomposition [24] method for 

accelerating channel compression.  

 

3.3  QR decomposition-based Channel Compression: 

QR decomposition is one of the methods of matrix decomposition used for solving eigen value 

problems, linear systems, and least square approximations. QR decomposition decomposes a 

matrix into two matrices; an orthogonal 𝑄 matrix [24] which contains the information of eigen 

vectors, and an upper triangular 𝑅 matrix [24] which contains the information of coefficients of 

eigen vectors. 

3.3.1 QR Decomposition and Modified Gram-Schmidt Method 
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In literature, it is observed that for QR decomposition-based channel compression, the modified 

Gram- Schmidt [27] method is employed. In the modified Gram-Schmidt method, all the column 

vectors of matrix (A) are modified to be orthogonal to the first column vector of matrix (A) for 

faster computation as it orthogonalizes the column vectors simultaneously as shown in Figure-4. 

The proposed accelerator exploits the inherent parallelism in QR decomposition based on 

modified Gram – Schmidt method in comparison to the classical Gram – Schmidt method. 

Figure 3.2 shows the reduction of number of receiver channels for GRAPPA reconstruction. 

 

Figure 3.2: Channel Compression Algorithm Workflow 

 

 

 

 

 

3.4  Random Projection in GRAPPA: 

3.4.1 Overview of Random Projection Method 

Figure 3.3: Pseudo code of QR decomposition using modified Gram Schmidt 

Method [28] 
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Random projection is a powerful technique for reducing the dimensionality of datasets while 

preserving data relationships. By multiplying a random projection matrix with the original data 

matrix, a lower-dimensional representation is obtained.  

Different random projection matrices, such as Achlioptas' matrix [29] and Li matrix [16], have 

been proposed in the literature, offering improved computational efficiency and accuracy. The 

choice of the projection matrix depends on the specific needs of the application, considering the 

trade-off between speed and convergence time based on the dataset's dimensionality. 

Traditionally, random dense matrices [31] were used for random projection, but sparse projection 

matrices [32] have gained attention for their computational efficiency. These matrices have 

fewer non-zero entries, resulting in faster computations without significant loss of accuracy. 

However, when using a very sparse projection matrix, there is a risk of destroying non-zero 

entries, replacing them with zeros. 

To ensure the preservation of pairwise distances, the projection matrix distribution, such as the 

standard normal distribution is commonly used, following the Johnson-Lindenstrauss theorem. 

Additionally, the sparsity of the random matrix further improves efficiency by setting lower 

bounds on sparsity. 

3.4.2 Integration of Random Projection in GRAPPA Calibration Phase: 

GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) reconstruction is one of 

the most advanced techniques in magnetic resonance imaging (MRI) that consists of two phases 

i.e., calibration and synthesis. The calibration phase involves collecting training data from the 

source and target matrices, which is used to calculate the missing weight sets using a calibration 

equation. This phase is computationally expensive due to the complex-valued multiplication of 

an overdetermined set of linear equations. 

To address the computational complexity of the calibration phase, a recent approach known as 

Random Projection on GRAPPA (RP-GRAPPA) has been proposed [33]. RP-GRAPPA utilizes 

random projection (RP) as a dimension reduction technique to reduce the dimensions of the 

problem. The main idea is to multiply the original matrices by a randomly generated projection 

matrix R, resulting in reduced-order source (Sred) and target (Tred) matrices. 
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The reduced set of equations during the calibration phase of GRAPPA can be approximated as: 

                                 S𝑚×𝑛 W𝑛×𝑙 – T𝑚×𝑙 ≈ Sred𝑚×𝑛 W𝑛×𝑙 - Tred 𝑚×𝑙,                      (3.5) 

where 𝜆 represents a factor by which the order of the source and target matrices is reduced. A 

smaller value of 𝜆 implies a larger reduction in the number of linear equations. In RP-GRAPPA, 

the reconstruction coefficient (W) is estimated using the pseudoinverse method by solving the 

reduced set of linear equations: 

                             W𝑛×l = ((Sred)
H (Sred)

-1
 )  ((Sred)

H
 (Tred))                                (3.6) 

where Sred and Tred are the reduced-order matrices obtained through random projection. 

The advantage of RP-GRAPPA is that it significantly reduces the total reconstruction time of 

GRAPPA. However, it should be noted that RP-GRAPPA may introduce large reconstruction 

errors if the value of 𝜆 is not appropriately chosen. Previous studies have recommended setting 𝜆 

to be greater than 2.2 to avoid significant reconstruction errors [34]. Furthermore, it has been 

observed that the optimal value for 𝜆 to balance between reconstruction errors and reconstruction 

time is around 3. By incorporating random projection into the calibration phase of GRAPPA, 

RP-GRAPPA offers a promising approach to reduce computational complexity while 

maintaining reconstruction accuracy in MRI applications [19]. 

3.4.3 Proposed Sparse Randomly Projected Matrix:  

The proposed method addresses the challenge of dimensionality reduction by utilizing a highly 

sparse randomly projected matrix, denoted as R. This matrix is generated using entries {-1, 0, 1} 

and probabilities {1/s, 1-1/s, 1/2s}, where s is computed as the square root of the product of the 

higher dimensional data (D) and a scaling factor (λ). It is represented as,  

                                                      +1,         with prob 1/2s, 

                            R =  rij = +√𝑠       0,          with prob 1 – 1/s,                                 

(3.7) 

                                                       -1,          with prob 1/2s   
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Where s = √𝑚 ∗  𝜆  and by adjusting the scaling factor λ, the number of non-zero elements in the 

matrix are significantly reduced, resulting in improved computational efficiency during the 

GRAPPA Calibration phase. 

The impact of varying the scaling factor on the reduction of non-zero elements in the matrix. 

This reduction is significant as it effectively decreases the time complexity associated with 

complex-valued multiplication. Figure 3.4 presents the block diagram of the proposed method, 

demonstrating the implementation of the random projection in GRAPPA using the proposed 

sparser projection matrix with the scaling factor λ. 

 

Figure 3.4: Block Diagram of the proposed Random Projection method with GRAPPA 

Reconstruction 

 

 

 

3.5  Integration of Channel Compression and Random Projection 

with GRAPPA: 
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The proposed algorithm of Channel Compression and Random Projection aims to accelerate the 

GRAPPA reconstruction time. However, as shown in figure 3.5, by combining these algorithms 

with GRAPPA, acceleration can be enhanced more. 

 

Figure 3.5: Data Flow of proposed methodologies 

The integration of random projection and channel compression techniques in GRAPPA offers 

several advantages. Random projection reduces the number of calibration lines required, 

enabling faster acquisition, and reducing scan time. Channel compression, on the other hand, 

reduces the number of receiver channels used during reconstruction, thereby decreasing the 

computational complexity and memory requirements. 

The integration is achieved by performing channel compression on the receiver channel data and 

reducing the data that needs to be stored and processed by GRAPPA. Subsequently, random 

projection is employed on the acquired data before applying the GRAPPA reconstruction 

algorithm. By projecting the data onto a lower-dimensional subspace, the number of calibration 

lines needed for accurate reconstruction is significantly reduced. 

3.5.1Benefits: 

Enhanced efficiency:  

The integration of random projection and channel compression in GRAPPA leads to improved 

efficiency in terms of acquisition time and computational complexity. 

 

Reduced memory requirements:  

By reducing the number of receiver channels, integration lowers the memory requirements 

during reconstruction, allowing for more efficient data processing. 
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Increased applicability:  

The integration expands the feasibility of GRAPPA in clinical settings by enabling faster 

acquisitions and reducing the computational burden, making it more accessible for routine use. 

3.5.2 FPGA based hardware accelerators: 

Field Programmable Gate Arrays (FPGA) FPGAs are an excellent choice for efficient 

computation of real time data. Therefore, the hardware of our proposed accelerator is 

implemented on FPGA to deal with large data sets that will be used in the process of GRAPPA 

reconstruction. Recently, High Level Synthesis (HLS) tool provided by VIVADO tool chain can 

be used to generate RTL while reducing the design efforts. HLS uses C/C++ languages for 

design. In this project both the Hardware Descriptive Language (HDL) and HLS are used to 

generate RTL of the accelerator to be embedded on chip to accelerate GRAPPA reconstruction.  

 

 

 

 

 

 

 

 

 

 

Chapter-04 

SoC based GRAPPA Reconstruction 
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4.1  Proposed System-On-Chip Design for GRAPPA 

reconstruction: 

In this project, we developed a SoC design for the GRAPPA reconstruction algorithm using: (i) 

Random Projection Method (ii) Channel Compression Method. The under-sampled data received 

from receiver coils will be processed in DDR4(4rth Generation Double Data Rate) RAM [36] 

and will be compressed by PCA accelerator through system bus and will be acquired by 

GRAPPA which will be processed in ARM [37] processor as shown in figure 4.1.   

 

Figure 4.1: Block Diagram of the proposed SoC design with proposed accelerators using 

Channel Compression and Random Projection Method 

Meanwhile in the calibration step of GRAPPA, dimensions of the acquired data will be reduced 

with Random projection accelerator. Both the accelerators will be integrated through DMAC 

[38] so that the accelerated data can be transferred to a multicore processor from its local 

memory in fast processing time, allowing computation and data transfer to process in parallel. 
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This system will provide synthesized k-space data which can be accessed through DDR4 with 

fewer computational expenses and lesser reconstruction time.  

DDR4 is the fourth generation of DDR (Double Data Rate) RAM, which is a type 

of memory commonly used in computer systems. Due to good memory density and memory 

bank of 64GB. It has faster data transfer rates and larger capacities, DDR4 can operate at a lower 

voltage (1.2V) which makes it more power efficient. Faster speeds and increased 

memory bandwidth allow DDR4 SDRAM to keep up with the modern processors, including 

multi-core CPUs. Our system will be running on DDR4 for better computational time and faster 

speed. Direct Access Control (DMAC) is an IC that controls the data transfers between 

a device and the memory without needing a CPU. ARM [39] processors can execute instructions 

much faster than the Intel processors. By removing redundant instructions and pathway 

optimizations, ARM processor provides efficient performance while consuming less resources 

than CISC- based processor. As less resources are used and less power consumption, therefore 

ARM CPUs generate very less heat.  

4.2  Proposed Architecture for Channel Compression: 

The Channel Compression Algorithm, implemented using the Vivado HLS Design tool and 

tested on the Zynq UltraScale CU102 board, is divided into two main modules as demonstrated 

in Figure 4.2, which is controlled by a control unit as demonstrated in Figure 4.3: 

4.2.1  QR Decomposition Module: 

• Input: 

The input to the QR decomposition module is a data matrix, denoted as A, of size m x n, where 

m represents the number of rows and n represents the number of columns. Each element of the 

matrix A is denoted as aᵢⱼ, where i represents the row index and j represents the column index. 

• Output: 

The output of the QR decomposition module includes two main components: 
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Row Eigen Information: This provides information about the eigenvalues and eigenvectors of 

the matrix AᵀA (A transpose multiplied by A). The eigenvalues represent the amount of variance 

captured by each eigenvector, and the eigenvectors represent the principal directions in the data. 

Column Eigen Information: This provides information about the eigenvalues and eigenvectors 

of the matrix AAᵀ (A multiplied by A transpose). The eigenvalues and eigenvectors in this case 

represent the singular values and right singular vectors, respectively. 

• Procedure: 

The QR decomposition module performs the following steps to obtain row and column eigen 

information: 

QR Decomposition Computing: The module uses modified Gram-Schmidt algorithm to 

calculate the QR decomposition of the input matrix A. This yields two matrices: an orthogonal 

matrix Q and an upper triangular matrix R. 

o Computing Row Eigen Information: 

a. AᵀA: Multiplication of the transpose of matrix A (Aᵀ) with A itself to obtain the matrix AᵀA. 

b. Eigenvalues and Eigenvectors: Eigenvalues and eigenvectors calculation of AᵀA. These 

eigenvalues and eigenvectors represent the row eigen information. 

o Computing Column Eigen Information: 

a. AAᵀ: Multiplication matrix A with its transpose (Aᵀ) to obtain the matrix AAᵀ. 

b. Eigenvalues and Eigenvectors: Eigenvalues and eigenvectors calculation of AAᵀ. These 

eigenvalues and eigenvectors represent the column eigen information. 

o Output: 

a. Row Eigen Information: The module provides the eigenvalues and eigenvectors obtained from 

the computation of AᵀA as the row eigen information. These eigenvalues indicate the amount of 

variance captured by each corresponding eigenvector. 

b. Column Eigen Information: The module outputs the eigenvalues and eigenvectors obtained 

from the computation of AAᵀ as the column eigen information. These eigenvalues are the 

singular values, and the eigenvectors are the right singular vectors. 
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4.2.2  Principal Component Mapping Module: 

• Input: 

The input to the PCM module is two identity matrices represented by a matrix X of size n x n, 

and Z m x m, where m and n denotes the number of rows and columns elements of matrix A of 

size m x n. 

• Output: 

The output of the PCM module includes two main components: 

Compressed Data: This is the transformed dataset, where the original high-dimensional data is 

projected onto a lower-dimensional subspace defined by the selected principal components. 

Procedure: 

The PCM module performs the following steps to produce compressed data: 

o  Principal Components: 

a. Determination of the number of principal components, k, based on a desired level of explained 

variance or a specific dimensionality reduction goal. 

b. Selection of the top k eigenvectors corresponding to the highest eigenvalues as the principal 

components. These eigenvectors form the projection matrix P. 

o Compressed Data: 

a. Projection of the preprocessed data A onto the selected principal components by calculating 

the dot product of A and P. The resulting compressed data matrix Y is given by Y = A * P. 

 

o Output: 

Compressed Data: The module outputs the transformed dataset Y, which represents the original 

high-dimensional data mapped onto a lower-dimensional subspace defined by the selected 

principal components. The number of columns in Y corresponds to the number of selected 

principal components. 
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Figure 4.2: Channel Compression Accelerator 

4.2.3  Finite State Machine Module: 

The FSM module controls the execution of the QR module and PCA module, coordinating their 

operations based on three states: Idle, Running, and Done. 

Idle State: 

In the Idle state, the FSM module is waiting for a trigger signal to start the process. Upon 

receiving the trigger signal, the FSM module transitions to the Running state. 

Running State: 

In the Running state, the FSM module coordinates the execution of the QR module and PCA 

module. It starts by activating the QR module, which performs the QR decomposition on the 

input data. Once the QR decomposition is completed, the FSM module triggers the PCA module 

to process the decomposed data. The PCA module mapped the principal components to obtain 

the compressed data. While the PCA module is running, the FSM module remains in the 

Running state, waiting for the PCA module to finish its computations. 

 

 

Done State: 

In the Done state, the FSM module indicates the completion of the entire process. It may output 

the compressed data obtained from the PCA module and any other relevant results. The FSM 

module then returns to the Idle state, ready to receive the next trigger signal for a new process. 

• Transitions and Actions: 

Idle -> Running: Transition triggered by a start signal. 
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When the FSM module receives a start signal, it transitions from the Idle state to the Running 

state. The action associated with this transition activates the QR module and triggers its 

execution. 

Running -> Done: Transition triggered when the PCA module completes its computations. 

Once the PCA module finishes its computations and provides the compressed data, the FSM 

module transitions from the Running state to the Done state. The action associated with this 

transition involves outputting the compressed data and any other relevant results. 

Done -> Idle: Transition triggered by a reset signal or completion of the process. 

When the FSM module receives a reset signal or completes the process, it transitions from the 

Done state back to the Idle state. The action associated with this transition involves resetting 

internal variables, preparing for a new process, or waiting for the next trigger signal. 

 

Figure 4.3: FSM Module for Proposed CC architecture 

The FSM module described above controls the execution of the QR module and PCA module, 

coordinating their operations in a three-state system: Idle, Running, and Done. It starts with the 

Idle state, waiting for a trigger signal to initiate the process. Upon receiving the trigger signal, it 

transitions to the Running state, activating the QR module and triggering the PCA module. While 

the PCA module is running, the FSM module remains in the Running state. Once the PCA 

module completes its computations, the FSM module transitions to the Done state, where it may 

output results. Upon receiving a reset signal or completing the process, it transitions back to the 

Idle state, ready for the next trigger signal. To enhance computation efficiency, the QR and PCM 
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module utilizes HLS pragmas like loop unrolling and parallelism. These pragmas leverage 

parallel processing capabilities, distributing the workload across multiple units and optimizing 

resource utilization. This accelerates computation, resulting in faster generation of the final 

reduced matrix. 

4.3  Proposed Architecture for Random Projection: 

4.3.1 Accelerator Designing: 

The Random Projection Algorithm, implemented using the Vivado HLS Design tool and tested 

on the Zynq UltraScale CU102 board, is divided into four main modules as demonstrated in 

Figure 4.4: 

Module 1: Random Number Generator 

The Random Number Generator module serves as an initial step in the Random 

Projection Algorithm, providing the necessary random numbers for subsequent 

operations. These random numbers will be further utilized in the following modules to 

determine the algorithm's behavior and enable the generation of the final output matrices.  

To generate random numbers, the module employs a pseudo-random number generator 

(PRNG) algorithm. This algorithm ensures that the generated random numbers exhibit a 

uniform distribution within the range of 0 to 1. By leveraging the PRNG algorithm, the 

module generates a variable called R_temp, which holds the random numbers. 

The elements in R_temp represent independent random variables drawn from the uniform 

distribution. These random numbers are stored as single-precision values, utilizing a 

fixed number of bits to accommodate both the fractional and integer parts of the number. 

This precision allows for accurate representation and subsequent processing of the 

random numbers within the algorithm. 

 

Module 2: Random Matrix 

The Random Matrix module is responsible for creating a matrix based on the R_temp 

variable generated by the Random Number Generator module. This matrix has 

dimensions of [m x (n*lambda)]. It is important to note that the rows and column indices 

are separated and treated differently. 



 

33 

 

During the execution of this module, the R_temp variable from Module 1 is utilized to 

populate the elements of the matrix. Each element of the matrix corresponds to a specific 

row and column index. The value of m determines the row index, while the product of n 

and lambda determines the column index. 

By separating the row and column indices, the Random Matrix module ensures that each 

element in the matrix corresponds to a unique position in the overall structure. This 

separation allows for more efficient storage and manipulation of the matrix, facilitating 

subsequent operations in the Random Projection Algorithm. 

The Random Matrix module serves as an intermediary step in the algorithm, providing 

the necessary matrix representation based on the generated random numbers. The 

resulting matrix, denoted as R_t, acts as a fundamental component in subsequent 

computations, contributing to the overall behavior and performance of the Random 

Projection Algorithm. 

 

Module 3: Comparator (Sparse Matrix Generation) 

The Comparator module plays a crucial role in generating a highly sparse random 

projection matrix based on the values in Random matrix R_t. This module compares each 

element of R_t to the following conditions: 

1. If the value of an element in R_t is greater than or equal to 1/s, it is set to 0. 

2. If the value of an element in R_t is less than 1/2s, it is set to -sqrt(s). 

3. If the value of an element in R_t falls between 1/s and 1/2s, it is set to sqrt(s). 

The value of s is calculated as the square root of the product of m and lambda. It 

represents a scaling factor for the comparisons in the Comparator module. 

Furthermore, during this comparison process, each element's indices that meet the 

specified conditions are stored alongside the corresponding values in the resulting sparse 

matrix R. This ensures that the sparsity pattern is preserved, allowing for efficient 

representation and computation in subsequent stages of the Random Projection 

Algorithm. 

The Comparator module utilizes HLS pragmas, including pipelining, loop unrolling, and 

parallelism, for faster computation. These HLS pragmas optimize the execution of 

conditional comparisons and sparse matrix generation, leveraging the capabilities of the 
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Zynq UltraScale CU102 hardware. The use of these HLS programs ensures efficient and 

accelerated processing within the Comparator module, contributing to the overall speed 

and effectiveness of the Random Projection Algorithm. 

 

 

Figure 4.4: Block Diagram of Random Projection Algorithm on Vivado HLS Tool 

Module 4: Sparse and Dense Matrix Multiplication:  

The Sparse and Dense Matrix Multiplication module is a key component of the Random 

Projection Algorithm. Its purpose is to perform an efficient multiplication operation 

between the sparse matrix R and the dense matrix Src. To achieve this, the module 

utilizes smart multiplication techniques and leverages HLS programs, such as loop 

unrolling and parallelism. 

In a traditional matrix multiplication, each element of the resulting matrix is calculated by 

multiplying corresponding elements from the dense and sparse matrices and summing 

them. However, the smart multiplication approach used in this module takes advantage of 

the sparsity pattern in the sparse matrix. Only the non-zero elements are considered for 

multiplication, while the indices of both the dense and sparse entries that would result in 

zero multiplication are ignored. This intelligent approach significantly reduces the 

number of multiplications and computations required, leading to faster processing. 
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To enhance computation efficiency, the Sparse and Dense Matrix Multiplication module 

utilizes HLS pragmas like loop unrolling and parallelism. These pragmas leverage 

parallel processing capabilities, distributing the workload across multiple units and 

optimizing resource utilization. This accelerates computation, resulting in faster 

generation of the final reduced matrix. 

 

 

 

 

 

 

 

 

 

Chapter-05 

Results and Discussion 

5.1 Datasets: 

The data used in this research is 30 receiver coil cardiac images provided by Case Western 

Reserve University, USA and Ohio State University, USA. The detailed features of the dataset 

used are shown in table 4.1. 
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Table 4.1: Feature of data set used in this research.  

5.2  Results: 

The results of the proposed methodology are presented here. 

 

5.2.1  Channel Compression Results: 

 

 
Table 5.2 (a): This table demonstrates the Time Comparison of Channel Compression (CC-

GRAPPA) against Conventional GRAPPA Reconstruction 

 

Table 5.2(b): Comparison of channel compression results for 30 coils cardiac 

data with acceleration factor (AF) = 2, kernel size 11 x 4 and 64 ACS. 
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The results in table 5.1 show that the proposed methodology speeds up the GRAPPA 

reconstruction times with acceptable SNR. The results show that channel compression using the 

proposed method offers speed up in the reconstruction time for GRAPPA without degrading the 

image quality. A complete examination of the performance of both the approaches was 

performed using MATLAB. When compared to the Conventional GRAPPA, the results clearly 

show improvements in overall reconstruction time, signal-to-noise ratio (SNR), and root mean 

square error (RMSE). 

 

Table 5.3: Time Comparison of FPGA based Channel Compression accelerator against single-

core and multi-core CPU. 

By comparing the proposed method with other methods in literature, the proposed method 

highlights its effectiveness which demonstrates a significant contribution to the field of channel 

compression and improved computational efficiency for CC-GRAPPA as shown in table 5.3. 

The Proposed Channel Compression Algorithm was tested using automated testing and 

verification features of the Vivado HLS tool. Furthermore, for performance evaluation the 

reconstruction time using the proposed method is compared with single-threaded and multi-

threaded CPU-based counterparts. CPU-based counterparts are implemented on a Linux 

environment using NRTBEANS 13.0 integrated development environment (IDE). The synthesis 

results were reported for the target device i.e., Zynq UltraScale ZCU102, which offers a 

combination of programmable logic and processing capabilities. The synthesis (performance) 

results for resource utilization showed varying usage, with moderate utilization for the 10 

Channel Coil Data demonstrated in Table 5.4. These results highlight the algorithm's adaptability 

and efficient resource utilization.  

Parameters FF DSP BRAM 
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Total Available Resources 554800 2020 1510 

10-Channel Coil Data 105,412 ~19% 585.8~29% 317.1 ~21% 

Table 5.4: Resource utilization of the Channel Compression Accelerator on ZynqCU102 FPGA 

Development Board 

5.2.2   Random Projection Results: 

The implementation of Random Projection on GRAPPA using the proposed sparse Random 

Projection Matrix shows noticeable reduction in the number of non-zero elements in a Random 

matrix, as illustrated in Figure 5.1. This reduction in non-zero elements directly translate to 

fewer multiplications during the calculation of missing weight sets using the pseudo inverse 

method in the GRAPPA Calibration Phase. Figure 5.1 provides a detailed comparison of the 

reduction in non-zero elements for different values of Lambda (𝜆) in both the Conventional 

Random Projection and the Proposed Random Projection. The introduction of a scaling factor λ 

results in subsequential reduction in non-zero elements which greatly enhance computational 

efficiency.  

When compared to the Conventional Random Projection Method, the results clearly show 

improvements in overall reconstruction time, signal-to-noise ratio (SNR), and root mean square 

error (RMSE) as shown in Table 5.5 and Figure 5.2 

By comparing the proposed method with other methods in literature, the proposed method 

highlights its effectiveness which demonstrates a significant contribution to the field of 

dimensionality reduction and improved computational efficiency for RP-GRAPPA. 
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Table 5.5: This demonstrates a comparative analysis of the signal-to-noise ratio (SNR) and root mean 

square error (RMSE) for a 12-coil cardiac dataset between proposed RP-GRAPPA vs the conventional 

RP-GRAPPA under various configuration settings. 

 

Figure 5.1: This shows the comparative analysis of no of non-zero elements in the proposed highly sparse 

random projected matrix with conventional Random projected matrix. 
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Figure 5.2: This graph shows the comparative analysis of reconstruction time of proposed highly sparse 

random projection method vs the conventional Random projection method. 

The Proposed Random Projection Algorithm was tested using automated testing and verification 

features of the Vivado HLS tool. Furthermore, for performance evaluation the reconstruction 

time using the proposed method is compared with single-threaded and multi-threaded CPU-

based counterparts. CPU-based counterparts are implemented on a Linux environment using 

NRTBEANS 13.0 integrated development environment (IDE). The synthesis results were 

reported for the target device i.e., Zynq UltraScale ZCU102, which offers a combination of 

programmable logic and processing capabilities. The synthesis (performance) results for resource 

utilization showed varying usage, with moderate utilization for the 10 Channel Coil Data and 

higher utilization for the 30 Channel Coil Data exhibit in Table 5.6 (a). The time comparison of 

FPGA based Random Projection accelerator against single-core and multi-core CPU 

demonstrated in Table 5.6 (b). These results highlight the algorithm's adaptability and efficient 

resource utilization.  

 

Table 5.6 (a): Resource utilization of the Random Projection Accelerator on ZynqCU102 FPGA 

Development Board 
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Table 5.6 (b): Time Comparison of FPGA based Random Projection accelerator against single-core and 

multi-core CPU. 

5.2.3   Integration of Channel Compression and Random Projection with 

GRAPPA: 

 

Table 5.7: This comparison illustrates the performance of two proposed methods, CC-GRAPPA 

(Proposed Method I) and RP-GRAPPA (Proposed Method II), when integrated with GRAPPA. The 

results are compared with Conventional GRAPPA Reconstruction, focusing on key performance 

parameters such as Signal-to-Noise Ratio (SNR) and Total Reconstruction Time. 
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Figure 5.3: Comparative analysis of reconstruction time of proposed accelerators with GRAPPA. 

The results demonstrated in table 5.7 and figure 5.3, that the integration of proposed 

methodologies speeds up the GRAPPA reconstruction times up to 3x with acceptable SNR. The 

results show that integration of Channel Compression (proposed method-I) and Random 

Projection (proposed method-II) with GRAPPA speeds up the reconstruction time without 

compromising the image quality. 

5.3 Discussion: 

The main contribution of this research is to accelerate the overall GRAPPA reconstruction in 

MRI. In this work, two simultaneous solutions (Channel Compression and Random Projection) 

are proposed to accelerate the GRAPPA reconstruction. The evaluation is conducted using the 

following settings: 

● GRAPPA Parameters: Kernel Size (𝑘𝑓 × 𝑘𝑝) = [3 x 2], Calibration Lines = 32, and 

Acceleration Factor (af) = 2. 

● Performance Measures: Total number of non-zero elements, total number of zero 

elements, sparsity percentage of the Sparse Matrix, calibration time, synthesis time, and 

total time. 

● Evaluation Parameters: Signal-to-Noise Ratio (SNR), Root Mean Square Error 

(RMSE), and Artifact Power (AP), 
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Following are the observations when comparing the results obtained from the Conventional and 

the Proposed Method: 

1. Reduction of receiver coil data: The proposed channel compression method reduces the 

number of receiver coils data. This data is later stored and processed by GRAPPA 

reconstruction algorithm. This reduction significantly improves computational efficiency 

on FPGA by reducing the number of required multiplications during the GRAPPA 

Calibration Phase. 

2. Reduction of Non-zero Elements: The Proposed Sparse Randomly Projected Matrix 

achieves a reduction of non-zero elements. This reduction significantly improves 

computational efficiency on FPGA by reducing the number of required multiplications 

during the GRAPPA Calibration Phase. 

3. Sparsity and Computational Performance: The Proposed randomly generated Matrix 

demonstrates a higher sparsity percentage, as compared to the traditional RP-GRAPPA. 

This higher sparsity leads to improved computational performance as fewer calculations 

are needed. 

4. Total Time: The proposed methods demonstrate faster processing and improved overall 

efficiency compared to the traditional GRAPPA method. This improvement signifies 

faster processing and overall efficiency gains. 

5. Performance Metrics: The evaluation parameters including SNR, RMSE and AP, 

indicate the superiority of the proposed Sparse Randomly Projected Matrix. On average, 

it achieves 1.09% higher SNR, 0.29% lower RMSE, and 33.93% reduced artifact power 

compared to the conventional GRAPPA. 

These findings demonstrate significant advantages of the proposed two accelerators (Random 

Projection and Channel Compression) in terms of computational efficiency and performance 

measures. The methods show substantial speedup, improved sparsity, and enhanced signal 

quality, making it a highly effective approach for GRAPPA reconstruction. 
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Chapter-06 

Conclusion and Future work 

6.1 Conclusion  

In conclusion, this project focused on addressing the computational complexity and image 

reconstruction time of GRAPPA technique in Parallel Magnetic Resonance Imaging (pMRI). 

The aim of this project is to design a System-on-Chip (SoC) system using the VIVADO Design 

tool that enables fast MRI reconstruction for real-time clinical applications. 

This project focused on two key aspects i.e., channel compression and dimension reduction. The 

channel compression accelerator utilized Principal Component Analysis (PCA) to reduce the 

number of receiver coils and compress the data acquired for image reconstruction. This reduced 

the imaging time and storage required, while still preserving the essential components of the 

data. On the other hand, the dimension reduction accelerator employing random projection is 

used to reduce the higher dimensional calibration phase of GRAPPA reconstruction to a lower 

dimensional space feature.  

The proposed accelerators were designed using FPGA and implemented using the VIVADO 

Design tool. The experiments conducted on a 30-channel cardiac dataset demonstrated the 

effectiveness of the accelerators. The results showed that the accelerators significantly reduced 

the reconstruction times for GRAPPA method, achieving 15x speed-ups compared to single-core 

and multi-core CPUs while maintaining acceptable Signal-to-Noise Ratio (SNR) values. 

Furthermore, the proposed accelerators utilized fewer resources and reduced memory 

requirements, making them highly efficient for real-time MRI reconstruction. 

The development of FPGA-based accelerators for channel compression and dimension reduction 

in GRAPPA reconstruction brings significant contributions to improve the efficiency and speed 

of real-time MRI. These accelerators offer several advantages e.g., they enhance patient comfort, 

reduce motion artifacts, improve precision in image-guided interventions, enable faster scan 

times, and provide better measurement of physiological parameters. 
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The real-time implementation of this project is a significant step forward in addressing the 

computational challenges of GRAPPA reconstruction in real-time MRI. It has the potential to 

revolutionize MRI systems by making the image reconstruction faster, more efficient, and 

accessible. 

6.2 Future Work: 

6.2.1 Enhanced Dimension Reduction Techniques: 

Dimension reduction techniques have the potential to be further explored and improved in the 

years to come. While PCA and random projection have demonstrated promising results in 

lowering GRAPPA computational complexity, it would be interesting to examine advanced 

methods such sparse representation [40], low-rank approximation [41] or sparse principal 

component analysis [42]. These techniques could provide additional opportunities to optimize 

the reconstruction time and improve the quality of the reconstructed images in parallel magnetic 

resonance imaging. 

6.2.2 Integration with Deep Learning Approaches: 

Deep learning integration with GRAPPA reconstruction shows promising potential for future 

research. Deep neural networks have demonstrated exceptional performance in a variety of 

image reconstruction tasks [43] and their application in parallel magnetic resonance imaging 

holds considerable potential. It may be able to learn complicated image reconstruction patterns 

and produce even faster and more precise reconstruction outcomes by training neural networks 

on large-scale datasets, which could lead to significant advancements to the MRI technique. 

6.2.3 Real-Time Implementation Considerations: 

The effectiveness and speed of GRAPPA reconstruction process are crucial in real-world 

applications [44]. The proposed SoC design should therefore be modified for real-time 

implementation. This involves performance improvements, algorithmic enhancements, and 

hardware optimizations, while considering protocols, scalability, and flexibility across MRI 

systems. The objective is to provide a valuable tool for seamless integration into clinical MRI 

processes, enabling faster and more precise image reconstruction. 
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