Transportation Management System for
FAST

Rabab Hussain 191-0893
Mauazzama Aslam 191-0892
Zayan Safi 191-0850

Project Supervisor

Dr. Arshad Hassan

Department of Electrical Engineering

National University of Computer and Emerging Sciences,
Islamabad

2023

Developer’s Submission

“This report is being submitted to the Department of Electrical Engineering of the National
University of Computer and Emerging Sciences in partial fulfillment of the requirements for the
degree of BS in Electrical Engineering”

Developer’s Declaration

“We take full responsibility of the project work conducted during the Final Year Project (FYP)
titled “Transportation Management System for FAST”. We solemnly declare that the project
work presented in the FYP report is done solely by us with no significant help from any other
person; however, small help wherever taken is duly acknowledged. We have also written the
complete FYP report by ourselves. Moreover, we have not presented this FYP (or substantially
similar project work) or any part of the thesis previously to any other degree-awarding institution
within Pakistan or abroad.

We understand that the management of the Department of Electrical Engineering of National
University of Computer and Emerging Sciences has a zero-tolerance policy towards plagiarism.
Therefore, we as an author of the above-mentioned FYP report solemnly declare that no portion
of our report has been plagiarized and any material used in the report from other sources is
properly referenced. Moreover, the report does not contain any literal citing of more than 70
words (total) even by giving a reference unless we have obtained the written permission of the
publisher to do so. Furthermore, the work presented in the report is our own work and we have
positively cited the related work of the other projects by clearly differentiating our work from
their relevant work.

We further understand that if we are found guilty of any form of plagiarism in our FYP report
even after our graduation, the University reserves the right to withdraw our BS degree.
Moreover, the University will also have the right to publish our names on its website that keeps
a record of the students who committed plagiarism in their FYP reports.”

Rabab Hussain Mauazzama Aslam Zayan Safi

BS(EE) 2019-0893 BS(EE) 2019-0892 BS(EE) 2019-0850

Certified by Supervisor

Verified by Plagiarism Cell Officer

Dated:

Abstract

Commuting is a growing necessity and due to the increasing number of students, it is becoming
difficult to manage the university transportation system for administration and students alike. As
the drivers and buses are updated daily each student has to individually contact the
administration in order to avail the required information. At times students have to wait clueless
for an unknown period of time not knowing whether a bus is arriving or not.

This manual coordination is inefficient and hectic for day to day user. Furthermore, the service
quality promised by the administration is often not provided by the bus drivers. If not that, the
bus driver might be using the bus for personal usage or unsafe driving. And if a stranger enters
the bus there is ambiguity in verification of the identity of the commuter.

In order to tackle these problems, the Transportation Management System will entail data
logging features using hardware implementation and app development for both users, the
students and the admin, to keep track of the services and improve its efficiency.

The project aims to provide the following facilities:
1. Database having a record of students, payment status etc. for easy monitoring.

2. Admins can easily convey information to students instead of notifying each student
individually.

3. Real-time bus location, route, eta, and miscellaneous information for passengers.
4. Fuel usage data to administrator.
5. Bus atmosphere monitoring through temperature and humidity sensor.

6. Barcode scanner to verify the commuter is a registered member.

Acknowledgments

We would like to express our gratitude to everyone who contributed to the completion of this
project. Their constant input and sincere interest have been the key to achieving this milestone.

First of all, we would like to thank our project supervisor, Dr. Arshad Hassan, for his guidance
throughout the project and crucial insights. We want to further extend our gratitude to the
university faculty and workforce for accommodating our project needs throughout.

Contents

{070 01 =T 1 PP \Y
O O =Y o) < ol A o e Yo [T o o PSPPSR 1
1.1 IMOTIVATION ettt e e e e 1
1.2 Introduction and BackgroUNdeeuvveiiiiieviiiiiiiiirieiieeieeaaeeeas 1
1.3 Problem STatementc.ccei i 2
1.4 Literature REVIEW ..ottt e e e e s 3
i o] o =T ol Y oo o= J OO PP P P PP PP P PP PP P PUPTPTP 3
S T A o o T [=To1 o] o T[Tl 4 1Y TSRS 3
1.5.2 Technical requirements for the eXecution:ccccceveriiieiiriiiee e 3
1.5.3 Limits and EXCIUSIONS: ...ooiiiiiiiiiieiieceeete ettt 3

O T 2 U=T o To] A @ 10 o [=TSSR RP TR 4
2. Chapter 2 Design methodology, Scope, and Design Solutioncccceevvvvvviverirneererneereneeenne. 5
P28 R Y 1= o o [o] Fo -4V PP RPPRPP 5
2.2 DAtabase.....ciiii e e 5
DG T & =Y o LYY T S Y 1 (U | o R PTPpR 5
2.4 APPHCALION coeiieeee e et e e s e e e e s ree s 5

P T 21 [T Qe [T =4 [o PR 5
2.6 FIOW Chart..ccc i e 8
2.7 Design, Conduct Experiment, and Collect Data:cccceeeviieiiriiiee i 10
2.7.1 Database Implementationcccocuiiiiiniieir e 10
D R D T 7 o= 1 TN 1LY 1= o TRt 10
... 10
2.7.3 Database SChema e e 11
2.7.4 Database Entity Relationship Diagram:cccccieeeiuuuruuururunrenrernnrrnrnrsrersrarersrers... 11
2.7.5 Interfacing Barcode Scanner With ArdUinO:........ccccoeevvrverieeeeeiiiireeeeeeeeeeeeirreeeee e 12
2.7.6 Integrating Arduino, ESP-8266, Barcode Scanner, and Firebase:...........cccccveeee.... 12
2.7.7 Integrating GPS, DHT11, IR and Ultrasonic Sensor with ESP-32.........cccccvevevvnnennn. 12
2.7.8 Hardware Design of the Barcode SCanNer:.......ccccccovveurrevereeieeiiiiieereee e e eseernnreeeees 14
2.7.9 Hardware Schematic of the Sensor’s CirCuit:ccooceeriiiieniiiniiieneee e 15
2.7.10 Hardware Design of the SENSOr’s CirCUIL:uuvieiiriiieiiniieeeereee e 15

\Y

2.7.11 Hardware Casing SChemMALiCccovuuiiiiiiiiieiiiiee s 16
2.7.12 Hardware Casing of the Barcode SCANNErcoovivirvveeeeeeiiiiiiieeeee e 17
2.7.13 Hardware Casing of the SENSOr’'s CIrCUIT:uveviieiiiiiiiieeeiee e 18
2.7.14 Sensor’s Data Display on Google Firebase:.......ccocveeiiviiiiieiiiiiiie e 18
2.7.15 Application Implementation: ... 19
2.7.16 Android application SCre@NSNOLSccceeieiiiiieiic b s b aresararareraee 23

3. Chapter 3 Progress and Recommendationsceeivriiieiiiiieeeniiiieeeseeee e s s 26
3.0 PrOJECt PrOB eSS oot ebe bt e be bt neebebeeeraeeee 26
3.1.1 Deliverables Set.....coiii i e 26
3.1.2 Milestones till Project ClOSINGccoeieieeeieiciiiiciccc s ere s breraresseenes 26

3.2 Future recomMmENdationscooiiiiiiiiiiiiee e 27
3.3 CONCIUSION ettt 28
Appendix A — Codes ULIIZEA ..ot 29
JANaTo I o]t IE=ToT o] Tor= 1 o] o PRSPPSO 29

(3 T4 LT [PP TP T P UPPPRPPROTI 41
271 o] NTeY={=T o] VRSP RSSO 46

Vi

List of figures

Figure 1 Snippet 1 survey form - GOOEIE fOrMS.....ccuiiiiiiiiiiiicieeecee e 1
Figure 2 Snippet 2 survey form - GOOgIe fOrMS.....ccuviiiiiiiiieicieeeeee e 1
Figure 3 Block diagram of the SYSTEM......ueeiii i eee e 6
Figure 4 Student interface floOW Chart.... ... e 8
Figure 5 Administrator interface flow Chartueeviiiiiiiiiiii e 9
Figure 6 Barcode scanner interfacing flow Chart..........cooiiieeeiei i 9
Figure 7 A snippet of Students’s data from Google Firebase dashboard..........ccccccevvuvveeiiinnnnnnn. 10
Figure 8 A snippet of Driver’s data from Google Firebase dashboardccccccovviiniiiiiiniinennnn. 11
Figure 9 Schema design for the database.........cueviviiiiiiiiiiic e 11
Figure 10 The Entity Relationship Diagram for designed for the management system 12
Figure 11 LCD, ESP, Arduino, Arduino USB host shield and LEDs. Hardware set up captured..... 14
Figure 12 Hardware Schematic Diagram of Sensor's CirCUIteecevveeirereeeeeeieiiiineeeeeeeeeeeenneeee 15
Figure 13 Hardware Design of the SENSOr'S CIrCUIT ...uviiiiiiiiciiiiieeiee e 15
Figure 14 Schematic of the Hardware Casing.......cuccuiiiiriiiieeiiiiiieecniiee st e s siane e 16
Figure 15 Hardware Casing of the barcode scanner- paid fee status........ccccceeeviieeiiniieeiiniieeennn. 17
Figure 16 Hardware Casing of the barcode scanner -unpaid/pending fee status.............ccccu... 17
Figure 17 Hardware Casing of the Sensor's CirCUIt........oocuvveiiiiiieiiiiiiec e 18
Figure 18 Data from sensors being displayed on Google Firebasecccccceevvvvnveeeeeeeerieeinnvennnn. 19
Figure 19 Android studio version used displayed on launch page and Visual Studio Code snippet
(o T8 TN o o T3 g =4 o (PRt 19
Figure 20 Import packages code in Visual Studio Code.......uummmrmrimmiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeee, 20
Figure 21 Page routing code for the application and snippet of the emulator used on the right 20
Figure 22 Code for buttons created in the applicationcccecueeiiriiiie i 21
Figure 23 Code for getting data from the database to the applicationccccocceeiiiiiiiiiiniinennns 21
Figure 24 Code for displaying the students information in the application page..........cccecuvu..... 21
Figure 25 Cloud services APl keys tab for Maps APlcooveeeiiiieeieiieeeee e 22
Figure 26 List of APIs selected to utilize in the applicationceeeveeeveeeeeiiieiiiieeee e 22
Figure 27 Initial landing page and login page for Administrator........ccccveveeeiieiciivineeeeeeeeeennnneeen. 23
Figure 28 Administrator landing page and page under drivers datatabccccocceevvviiiiiiiinnnn. 23
Figure 29 Student data tab and page of unpaid fee students.......ccccocvevevviiiiinniiiei e, 24
Figure 30 Student login page, landing page and route page displaying seat availability............. 24
Figure 31 Maps route displayed with ETA of bus with a push notification...........ccccoecveviiininennn. 25
Figure 32 Project schedule using Primavera P6 in form of a Gantt chartccccvvveeeiieiecnnnnne.. 27

Vil

1. Chapter 1 Introduction

1.1 Motivation

A digital survey from active users of the university transportation system was conducted. The
result concluded that the majority of the commuters are facing various problems and more than
96% of them wanted a digitized transport management system.

If you use the bus service, do you always find a seat?

63 responses

® Yes
® No

© Sometimes

Figure 1 Snippet 1 survey form - Google forms

Would you prefer a digitized transport management system for FAST? (A mobile
application for bus tracking)

64 responses

® Yes
® No

Figure 2 Snippet 2 survey form - Google forms

1.2 Introduction and Background

We have been using the FAST transportation service for the past three years. The experience has
been quite hectic at times. The buses follow a pre-planned schedule where the pick-up and drop-
off times are allotted, however, there are some variations in these due to external factors such
as traffic. In such a scenario, the students have to call the driver, but the drivers are changed
regularly. The students then have to contact the main admin, who sometimes cannot be reached
due to many students calling in. Similarly, in the evening when the students have to get to their
designated buses, the information is placed on a notice board. A large crowd of students gathers
around it, and sometimes the information is unclear and needs to be verified by admins

1

individually. From the admin's perspective, another problem seen is in the verification of
transportation fees. Drivers have to individually verify from each passenger whether the charges
have been paid, which is both a time-consuming and unorganized method.

To cater to all these issues, our project proposes a smartphone-based application that can be
accessed by both admin and commuters. The application will provide the following
functionalities:

° Admin
o Driver and bus allotment
o Verification of transportation fee
o Intimation of miscellaneous information to commuters
o Planning and management of transportation routes
o] Fuel usage
o Atmosphere conditions on the bus
] Commuters
o] Access information regarding designated bus, driver, route, etc.
o} Real-time bus location
o Estimated time of arrival notifications
o Atmosphere conditions on the bus

1.3 Problem Statement

At present, there is no digital management system for FAST transportation. This results in many
issues for the students and the administration. Manually coordinating with each student is hectic
and inefficient. Moreover, the fuel used by a bus on a single route is not precisely available to the
admin. Making the entire process digital where both the student and admin receive real-time
accurate information will help in resolving the problems faced.

1.4 Literature Review

The paper [1] introduces the idea of an intelligent transport and fleet management system. This
system can help reduce the problems and mismanagement faced by the commuters. By using
cost efficient five small modules the system is implemented. The modules are interconnected to
each other, and the communication module sends the data remotely to the admin to track and
observe the system.

The paper [2] introduces the idea of utilizing Database in the Advanced Transport Management
System. The implementation of database is done by using the transport protocol HTTP and XML.
The utilization of databases in transport services can make the system more effective. This
system can also be extended to include GPS, so the user can track the route.

To regulate the flow of traffic and control traffic congestion, this paper [3] introduces the idea of
an Intelligent Public Transportation and City Traffic Management System. This system has CCTV
cameras to monitor the traffic flow and share it with the users automatically. The real-time traffic
updates are shared to the user on his smartphone.

By using the technology of barcode, the paper [4] introduces the idea of an Information Student
Management System. The students can swipe their identity cards on the barcode scanner in
order to verify their information. This system is connected to the cloud and can be accessed and
updated by the admin user. This system is secure and reduces human effort.

1.5 Project Scope

1.5.1 Project objective

To present software and hardware implemented demonstration of a digitized transportation
management system for FAST-ISB by the end of spring 2023.

1.5.2 Technical requirements for the execution:

1. Usage of barcode data and scanners.

2. The admin end application should have access to all the data.
3. ETA and Real-time tracking should be provided to users.

4, Students should have access to the service quality tab.

5. New students should be able to register themselves with ease.

1.5.3 Limits and Exclusions:

1. The project will not be generic to all models of transportation, only for FAST ISB.
2. Online payment of transportation fees will not be included.
3. The project will always require active internet access.

1.6 Report Outline
This report contains multiple chapters, chapter 2 discusses the design methodology of the
proposed solution and chapter 3 includes progress and recommendation for future

enhancements.

2. Chapter 2 Design methodology, Scope, and Design Solution

The hardware and software design of the whole project is discussed in this section.

Section 2.1 covers the three main modules of the project. Database creation is discussed in
Section 2.2. Section 2.3 covers the entire hardware setup of the project. The application is
discussed in Section 2.4. The block diagram is covered in Section 2.5 followed by the flowcharts
in Section 2.6. In the last section, 2.7 the design, experimentation and data collection are
discussed.

2.1 Methodology:
Three main modules were required to design in this project:

e Database creation and implementation.
e Hardware design of the barcode scanner circuit and the sensor’s circuit.
e Mobile application development for students and the administration.

2.2 Database

To implement a cloud-based real-time database for storing information of students and drivers
and for ease of remote access, we have used Google Firebase. This Real-time Database allows
users to build well defined, collaborative applications by providing client-side code accessing the
database directly.

2.3 Hardware Setup
The hardware setup was divided into two parts:

e To implement the scanning of user ID cards (Barcodes), a barcode scanner implemented
with a Wi-Fi module and Arduino was used.

e Multiple sensors were interfaced with ESP-32 to monitor the bus environment, track the
bus location and count the passengers boarding in.

The setup is to be installed in the buses and is programmed to communicate with the database.

2.4 Application

The user-end application for both the fleet admin and commuters is designed using dart (an
application development language). The platforms used are Visual Studio Code, Flutter, and
Android studio. This application has a secure connection to the real-time database and utilizes
the data available there.

2.5 Block diagram

The diagram below provides a concept of how each component will interact in the designed
system.

Humidity sensor

IR sensor

Barcode
Scanner

Students
ul

J
>l &P

a
=77 | Admin Ul ¢ Firebase ﬂ a
= LEDs .

Figure 3 Block diagram of the system

The hardware components used are:
Arduino UNO:

Arduino UNO has been used as a microcontroller board. It plays an important role in determining
the bus fee status of the students. As represented in the block diagram, the barcode scanner and
the LEDs indicating the fee status are interfaced with Arduino.

LCD 16X2:

To display the fee status and the GPS location coordinates, LCD 16X2 is used. This LCD displays
16 characters per line, it utilizes two lines.

ESP-32:

ESP-32 is used as a WiFi module. It plays a significant part in sending the data from the
microcontroller to the cloud-based database. All the four sensors; DHT11, Ultrasonic sensor, IR
sensor and GPS sensor are interfaced with the ESP-32.

Barcode Scanner:

A Speed-X, 8500 2D Wire CMOS Handheld Barcode Scanner is used. The barcode scanner takes
the student roll number as an input to display the fee status.

Arduino USB Host Shield Module:

Arduino USB Host Shield Module allows the connection of the barcode scanner with the
microcontroller.

12C Module:
To make the display easier, the 12C module is used. It is interfaced with the LCD 16X2 module.
LEDs:

The LEDs emit green and red light when current passes through them. They are connected to the
barcode circuit.

GPS:
NEO-6M GPS module is used. It allows the real-time status monitoring of the buses.
Ultrasonic Sensor:

An ultrasonic sensor is used as a fuel level measurement sensor. It measures the distance of the
current fuel with the threshold set and helps to efficiently detect the available fuel.

DHT-11 Temperature and Humidity Sensor:

DHT-11 Temperature and Humidity Sensor is used to monitor the bus temperature conditions.
IR Sensor:

IR Sensor is utilized to count the passengers entering the bus.

The software end utilizes as follows:

Firebase

Google Firebase services are used to create a real-time database where all the data from sensors
and users is stored. The data is also retrieved as per requirement.

Android application

An application built using flutter libraries and VS code. Coded in dart, the application is accessible
to both admin and the commuters.

2.6 Flow chart

The first flowchart is of the student’s application user interface. The student has multiple options.
The students can:

e Check their fee status.
e Turn on or off the location alerts.
e Enable or disable the location.

Turn on
Location Student Ul

Alerts

Push Keep
notification notifications
upon arrival off

Check fee Location on
status

Share maps

Exit App

Keep location
off

Y

Figure 4 Student interface flow chart

The second flowchart is of the Administration’s application interface. The bus administration has
similarly multiple options as well:

e The admin can access and edit the driver’s data.
e The admin can access and edit the student’s data.
e The admin can access and edit the bus data.

The third flowchart above is of the barcode scanner interfacing. The barcode scanner takes the
roll number of the student has an input. A check from the database is made whether the student
has paid their dues or not, correspondingly a Green or Red LED glows; green indicating paid fee
status and red indicating unpaid fee status.

Admin Ul

Access and
edit Bus data

Route
details

Driver and
bus
assigning

Access and

Access and
edit student
data

edit driver
data

Student
details
Exit App

Fee status

Figure 5 Administrator interface flow chart

System

Signal red

initialization

Barcode scan

Signal green
mnput

Send
information to
database

Is fee paid?

Figure 6 Barcode scanner interfacing flow chart

2.7 Design, Conduct Experiment, and Collect Data:

2.7.1 Database Implementation
To implement the database, the data was divided as follows:

e Students Data: The data collected was the Email, Name, Mobile number, Roll number,
Route, and the fee status.

e Drivers Data: The data collected was the Driver’s availability status, Name, Bus Number,
Phone number and route.

The data was then stored in Google Firebase.

2.7.2 Database Design:

The below figure shows the entry of the student data in the database.

barcodefes = 0 E L“ o
Realtime Database

Data Rules Backups Usage ¥ Extensions 2D

1 "i190892@nu.edu.pk
me: "Mauazzama Aslam’
Phane: "892"
1190892"
& "Peshawar Road"

Paid

Figure 7 A snippet of Students’s data from Google Firebase dashboard

Similarly, the data of more than 50 students has been saved.

The next figure shows the information of the driver’s stored in the database.

10

barcodefee ~

Realtime Database

Data Rules Backups Usage % Extensions @D

co htips/harcodefee-f4ood-default-ridh firebaseio.com » Driver >

+ W
tive: "Yes
;. "ABC-088
e Al

el 546’

Figure 8 A snippet of Driver’s data from Google Firebase dashboard

2.7.3 Database Schema:

op ¢ @

><

The database schema of the students and the drivers is discussed. This is a way to organize the
data in separate entities to make it easier to share a single schema within another database

Students

Email

Name

Phone

Roll

Route

Status

Driver

CNIC
Name

Contact

2.7.4 Database Entity Relationship Diagram:

Figure 9 Schema design for the database

This section discusses the database entity relationship diagram. Here the student, bus, driver,
and admin are different entities and then all these entities have their respective attributes.
Similarly, the relationships between different entities can be seen by the relationship box.

11

‘“':_ o :}///X f \'\ \\ e
— ||\ ‘i
{ Phoneg, \""D"} II } \ _—
(’E‘:u-:e': F\oj_'\\ | .’?l;d:«l: RJJ:-\
. a— | i

A | N

h.

Figure 10 The Entity Relationship Diagram for designed for the management system

2.7.5 Interfacing Barcode Scanner with Arduino:

To interface the barcode scanner with the Arduino, Arduino USB host shield module was used.
We sent the scanned data; roll number of the student to the serial monitor of Arduino via the
USB Host Shield Rx (receiver) and Tx (transmitter) pins. This data was further sent to the cloud
via ESP-8266.

2.7.6 Integrating Arduino, ESP-8266, Barcode Scanner, and Firebase:

Firstly, the barcode scanner scans the data, that is the roll number of the student. Secondly, the
data is sent to the serial monitor via the USB Host Shield Rx and Tx pins. Furthermore, the data is
sent to the firebase by using ESP-8266.

The code checks the “Feestatus” column in the student’s table. If the status is paid, the LCD
displays “Paid”, correspondingly, the Green LED glows.

Similarly, when the fee status is not paid, LCD displays “Not Paid” and “Pending”.
Correspondingly, Red LED glows.

2.7.7 Integrating GPS, DHT11, IR and Ultrasonic Sensor with ESP-32
The sensors used in the project were interfaced with the ESP-32. The sensors included:

e DHT11; to monitor the temperature and humidity of the bus.
e IR Sensor; to count the passengers boarding in.
e Neo-6M GPS Sensor; to track the bus location.

12

e Ultrasonic Sensor; to track the fuel level measurement in the bus.

All the sensors were interfaced with ESP-32. The sensors reading were first read on the
Arduino serial monitor and via the same ESP-32 were sent to the Google Firebase. From the

Google Firebase, the application fetches the data.

13

2.7.8 Hardware Design of the Barcode Scanner:
In the below figure, the interfacing of the barcode scanner with Arduino via the USB host shield

module can be seen. The LCD 16X2 has been interfaced with the 12C module. The LEDS are
connected to the pins of ESP-8266 declared as the output pins.

Red LED glows when the
student’s fee status is
not paid.

Green LED glows when
the student’s fee status
is paid.

Figure 11 LCD, ESP, Arduino, Arduino USB host shield and LEDs. Hardware set up captured.

14

2.7.9 Hardware Schematic of the Sensor’s Circuit:
The hardware schematic diagram of the sensor’s circuit was made on Fritzing software.

From left to right in the schematic, the first sensor is DHT11. The second sensor is the IR sensor.
Above ESP32, an ultrasonic sensor is connected and lastly below the LCD, GPS sensor is attached.

Figure 12 Hardware Schematic Diagram of Sensor's Circuit

2.7.10 Hardware Design of the Sensor’s Circuit:
The hardware design of the sensor’s circuit is shown below.

Figure 13 Hardware Design of the Sensor's Circuit

15

Initially, the sensors were tested using two different ESP-32. One ESP-32 was connected with the
GPS Sensor and the other ESP32 was connected with the remaining sensors.

After testing all the sensors, they were connected to one ESP-32 to optimize the resources. The
final hardware design was implemented as shown in Figure 12; the schematic diagram.

2.7.11 Hardware Casing Schematic
For the first step, the case was designed on CorelDraw software. The dimensions were chosen
after calculating the initial design measurements of the hardware on the breadboard.

[e |
% C |
SO A
SR SR

I 1

?

Figure 14 Schematic of the Hardware Casing

16

2.7.12 Hardware Casing of the Barcode Scanner

The final hardware casing of the barcode scanner circuit was as below:

Figure 15 Hardware Casing of the barcode scanner- paid fee status

FesiFPending)‘ 1

Figure 16 Hardware Casing of the barcode scanner -unpaid/pending fee status

Figure 15 shows the blinking of the Green LED when the fee status is paid. Similarly, Figure 16
shows the blinking of Red LED as Pending fee status of student is displayed on the LCD.

17

2.7.13 Hardware Casing of the Sensor’s circuit:
The final hardware casing of the sensor’s circuit was as below:

Figure 17 Hardware Casing of the Sensor's Circuit

On the 16x2 LED, the volume of the fuel and the longitude and latitude were displayed. This data
was also displayed on the Google firebase and the data from DHT11 and IR sensor was also
displayed on the Google Firebase.

2.7.14 Sensor’s Data Display on Google Firebase:
All the data read was displayed on Google Firebase by using ESP-32.

Figure 18 shows the real-time data read from the sensors to the Google Firebase. The first cell is
the GPS location that can be seen. It changes in real-time as the location changes. The second
cell is of Humidity. The third cell is of the fuel level; a numeric value can easily be used to monitor
the availability of the fuel in vehicle. The fourth cell shows the data read from the IR sensor;
incrementing the number of passengers boarding in. The last cell shows the temperature within
the bus.

18

Fealli. g barcodefer - Aol
Firebase barcodefes « 0P & Q
Do Realtime Database

Data Rules Backups Usage ¥ Extensions XD

A\ Vour seourty rules are defined a3 public, 5o ahyona can steal, madity, or delete data in your databasa Leammore[] Dismiss

Bulld

3365566
Release & Monltor —

{2 73.01584

Analytics wdity- 40)

o
Engage

n 1
AN oroducts P 30.2

Upgrade

Figure 18 Data from sensors being displayed on Google Firebase

2.7.15 Application Implementation:
To implement the application, the tools used were the following:

Flutter

Visual Studio Code
Android Studio
Dart language

* maindart %

~ OPEM EDITO

androidstudio

Figure 19 Android studio version used displayed on launch page and Visual Studio Code snippet on the right

Packages imported for flutter library, firebase, Google APl and more.

19

* App title set for the app bar

* Routing for pages done

* Pagesformed

* Buttons coded

» Dataloaded from firebase

* Data added to a map variable

* Dataloaded to an array

* Desired content displayed

Figure 20 Import packages code in Visual Studio Code

@override
build(Buildc
routerDelegate: router.routerDelegate,

routeInformationParser: router.routeInformationParser,
routeInformationProvider: router.routeInformationProvider,

)

Figure 21 Page routing code for the application and snippet of the emulator used on the
right

20

onPressed:
child:

b J
10,
Elevate

onPressed: () => context
child: st Text('Stude

Figure 22 Code for buttons created in the application

oaddata()
se.instance.ref();

print e");
snapshot = await ref.child
print("hi");

snapshot.exists

a = snapshot.value;

List all = List.from(a

I
L

Figure 23 Code for getting data from the database to the application

Figure 24 Code for displaying the students information in the application page

.go(

1y
/D
A

ic>.from(all[i]

21

Google cloud services are utilized for push notifications and google maps APl is installed for
ETA, polylines and map display.

& TMSFastMaps w fof resources, dows, protucts, and mete Q, Search =
Credentials + CREATE CREDENTIALS W DELETE ~ RESTORE DELETED CREDENTIALS

Create crecentials 1o access your enabled APls

F Remember to configure the DAuth conpent screen with information about your appilcation CONFIGH
APl Keys
O ame Creation date o} Restrictions
O e 2,202 APl =

OAuth 2.0 Client 1Ds

[Mame Creation date . Type Chent ID

Figure 25 Cloud services API keys tab for maps AP/

o

TMSFasiMaps « Search (/) for resources, docs, products, and maore

Set an application restriction

Agplication restrictions limel an AP key's usage to specific websiles, IP addresses, Android

applications, of I05 Spplicalions. You can s&1 one apolicaton festriction per key

® Mone
() Websites
IP addresses

7 Android apps

O 05 spps

APl restrictions

AP reatrictions specify the enabled APl that this key can call

() Dosit restrict key

(®) Restrict kay

5 APls -]

Selected APls;
Dwections AP|
Geacoding AP1
Gealocation AP|
Maps 50K for Android

Time Zone AP

Mote: It may take up 1o 5 minutes for settings to 16ke effect

Figure 26 List of APIs selected to utilize in the application

2.7.16 Android application screenshots

7

938

€ TMSFAST

Figure 28 Administrator landing page and page under drivers data tab

23

Q, Search by Rell Mumibe:

Number of seats available: 38

Wiew on mapy

tack to home pagn

Figure 30 Student login page, landing page and route page displaying seat availability

24

Notification

The bus will arrive in 17 minutes.

ETA: 17 mins™’

Rawalpindi
sidaly

Figure 31 Maps route displayed with ETA of bus with a push notification

25

3.1
311

3.1.2

3. Chapter 3 Progress and Recommendations

Project Progress

Deliverables set

1.

2.

3.
4,

A functioning and developed application connected to a database.

Tested hardware modules with stored mock data.

A week of reported data on fuel and service quality.

Real-time tracking and Estimated Time Arrival(ETA) on the application.

Milestones till project closing

1.
2.

3.

Project proposal documentation and approval
Schema design

Basic app development learning and implementation
Database learning and implementation

Controller and hardware programming

ETA and Real-time tracking

Final project report

13/09/2022
30/09/2022
16/10/2022
05/11/2022
30/11/2022
01/04/2022
30/05/2023

26

2022 Qtr &, 2022 Qtr 1, 2023 Qtr 2, 2023 Qtr 3, 2023 Otr 4, 2023

ug Sep Dct [Nov] Dec Jan Feb Mar Apr [Way | Jun Jul] 4ug [Sep Oct | Mov
24-May-23 A, FYP-TMS FYP - Transportation Management System - FAST

¥ 05Dec-22 A, FYP-TMS.1 FYP1
Froject Proposa Document [41)
Project Proposal Defense [All)
Pracurement of Hardware (Al
hema Deszign (Rababy)
Database Leaning and Implementation (Fabab)

Cantroller Programming and Implementation (Mauazzama)
Integration of Database and Controller [Rabab and Mauazzama)

Basic App Develogment Learning [Zayan]

Basic App Development Implementabon [Zayan)

Advarced App Development Learming Zayan]

Advanced &pp Development Implementation [Zaypan)
Integration of Database. Controlles and App [(Zayan)
Proaress Report (4]

24May-23 A, FYP-TMS.2 FYP2

Fiebase vanables and Login page (Rabab and Zavah)

cdule procursment and interfacing (Mauazzanhal

Infrared procurement and implementation| (R abab)

Google Locaton AP with GPS[Mauazzatma and Zapan)
Fuel and temperature sensor procuiement (Al

Fuel and temperature sensor programming [Mauazzama and A abab)
Added senzorz implamentatioh and testing (Mauazzama and Habab)
% sting of Firehase, Geolocator and AP [Zapan)
Push Motifications (Zapan)
Application testiryg and debugging [all)

Hardware and Un-sile testing [A0)
Final Documentation and Reaparting [Al)

Figure 32 Project schedule using Primavera P6 in form of a Gantt chart

The Gantt chart entails the project divided in to its activities, starting from project proposal to all
the modules fulfilled as per deliverables and ending with the conclusion of this final report.

3.2 Future recommendations

During the duration of this project we have concluded that the scope defined can be scaled vastly.
With ample time, research and APl modules this project can be generalized to all transportation
systems around the world rather than just of a university.

Improved hardware, however costly can improve the results and administrative management
largely. A fuel flow rate sensor, accelerometer and monitoring Al enhanced cameras can further
add to the ease and accuracy of this management system. The application can be developed in
to further platforms for ease of commuter’s access.

27

3.3 Conclusion

The project followed all its defined milestones and a displayable prototype was made. Hardware
was encased properly and ready to be deployed, similarly the software was ready to use.

One of the objectives for this project was to gain insights with respect to this project regarding
sustainable development goals defined by the United Nations General Assembly.

e SDG 09: Industry, innovation and infrastructure
e SDG 11: Sustainable cities and communities
e SDG 12: Responsible consumption and production

The project proposes a new digitization of the transportation system used on a daily basis. The
solution to economic fuel consumption complements the global goals responsible consumption
and the elimination of paper receipts to mobile application advances in the sustainable cities
target of the UN.

Further during this project our team has gained a learning experience on how to use new
modules, programming languages and development platforms. The transportation management
system for FAST provides an engineering solution to tackle a real life problem.

28

Appendix A — Codes utilized

Android application

The android application code has been uploaded on GitHub for further use by the community
and better development in the future. The program can be found here:
https://github.com/ZayanSafi/TMSFAST

However, some snippets from the code are provided below.

main:

import ‘'package:flutter/material.dart’;
import ‘package:go_router/go_router.dart’;
import ‘'package:url_strategy/url_strategy.dart';

import 'package:firebase_core/firebase_core.dart’';
import 'package:firebase_database/firebase_database.dart’;
import 'firebase_options.dart';

import 'admin_side.dart’;
import ‘'driver_data.dart';
import 'student_fee_data.dart’;
import ‘unpaid_students.dart';
import 'login.dart’;

import ‘'student_side.dart';
import 'student_login.dart';
import ‘admin_login.dart';
import 'route_l.dart';

import ‘'package:firebase_messaging/firebase_messaging.dart’;
import 'g_9.dart';

// await Firebase.initializeApp(
// options: DefaultFirebaseOptions.currentPlatform,
1);
Future<void> _messageHandler(RemoteMessage message) async {
print('background message ${message.notification!.body}');

}

void main() async{
WidgetsFlutterBinding.ensurelnitialized();

await Firebase.initializeapp(

options: DefaultFirebaseOptions.currentPlatform,

)i
setPathUrlStrategy();
FirebaseMessaging.onBackgroundMessage(_messageHandler);
return runApp(App());

}

class App extends StatelessWidget {
App({Key? key}) : super(key: key);

static const String title = 'TMS FAST';

// @override

// Widget build(BuildContext context) => MaterialApp.router(

! routerDelegate: _router.routerDelegate,

// routelnformationParser: _router.routelnformationParser,

// routelnformationProvider: _router.routeInformationProvider,

/);
Foverride

Widget build(BuildContext context) {
return MaterialApp.router(
routerDelegate: _router.routerDelegate,
routeInformationParser: _router.routeInformationParser,
routeInformationProvider: _router.routelnformationProvider,
theme: ThemeData(
scaffoldBackgroundColor: Color.fromARGB(255, 184, 203, 213),
})
// builder: (context, child) {
I/ return Container(

I/ decoration: BoxDecoration(

I/ image: DecorationImage(

/7 image: AssetImage('C:\Games\bgimage.jpg'), // Replace with your image path
I/ fit: BoxFit.cover,

1),

I),

Vil child: child,

7o)

I}

)5
¥

final GoRouter _router = GoRouter(
errorBuilder: (context, state) => ErrorScreen(error:state.error),
routes: <GoRoute>[
GoRoute(

routes: <GoRoute>[

GoRoute(
path: 'page2’,
builder: (BuildContext context, GoRouterState state)
const Page2Screen(),

)s

GoRoute(
path: 'page3’,
builder: (BuildContext context, GoRouterState state) =>
const Page3Screen(),

"
W

)5

GoRoute(
path: 'page4’',
builder: (BuildContext context, GoRouterState state) =>
const Paged4Screen(),

)y
GoRoute(

30

path: 'pageS',
builder: (BuildContext context, GoRouterState state)
const PageSScreen(),

),
GoRoute(

path: 'pageé’,

builder: (BuildContext context, GoRouterState state)
const Page6Screen(),

) ,GoRoute(
path: 'page7’,
builder: (BuildContext context, GoRouterState state)
Page7Screen(),

) ,GoRoute(
path: 'page8’,
builder: (BuildContext context, GoRouterState state)
Page8Screen(),

),

GoRoute(
path: ‘page9°’,
builder: (BuildContext context, GoRouterState state)
MapScreen(),

),

GoRoute(
path: 'pagele’,
builder: (BuildContext context, GoRouterState state)
G95creen(),

)s
}J

path: /',
builder: (BuildContext context, GoRouterState state) =>
const PagelScreen(),
//const MapScreen(),

)s

Il

)5
b

class ErrorScreen extends StatelessWidget {
final Exception? error;

const ErrorScreen({Key? key, required this.error}) : super(key:

@override

key);

31

ﬁ;;;;-;;ud(hild(mun context) {
return Scaffold(
appBar: AppBar(

title: Texz("Error”),

)s
body: Center(
child: Texz(
) error.toString()
.

)s
);
¥
}

adminlogin:

import ‘package:flutter/material.dart’;

import 'package:go_router/go_router.dart’;

import 'main.dart’;

import ‘package:firebase_core/firebase_core.dart’;

import ‘package:firebase_database/firebase_database.dart’;
impore ‘firebase_oprions.dare’;

import “admin_side.dart’;

class Page7Screen extends Statefulllidges {
Boverride
_Page7ScreenState createState() => _Page?ScreenStatze();

class _Page7ScreenState extends StatecPage7Screen> {
final _formiey = Globaliey<FormState>();
final _emailController = TextEditinglontroller();
final _passwordController = TextEditingController();
FirebaseDatabase database = FirebaseDatabase.instance;
late Object? a ;
var array = [];

loaddata() async {
final ref = FirebaseDatabase.instance.ref();
print{"before™);
final snapshot = await ref.child('AdminLogin/‘).get();
print{"hi");
if (snapshot.exists) {
a = snapshot.value;
List all = List.from(a as List);

for (var i = @; i < all.lengeh; i++) {
ery {
Map<String, dynamic> _post =
Map<String, dynamic>.from{all[i] as Map);
array.add(_post);
} catch (e) {
print(null error');

e
secState{() {});
print(array: Sarray');
1 else {
print(No data available.');

}
}
Boverride

void initState() {
super.initState();

32

loadaata();

Soverride
widget build(BuildContext context) => Scaffold(
appBar: AppBar(title: const Text(app.title)),
body: Form(
key: _formey,
child: Column(
crossicisaliprment: Crossidsalignment.start,
children: [
TextForaField(
controller: _emailController,
decoration: InputDecoration(labelText: "OMaIC'),
validator: (value) {
if (value!.isempty) {
return “Please enter your 13-digit OMIC number (without dashes or spaces)”;
}
return null;
b
)s
TextForsField(
controller: _passwordController,
obscureText: true,
decoration: InputDecoration(labelText: “Password’),
validator: (value) {
if (value!.isEspty) {
return "Please enter your password’;
}
return null;
b
)J
Padding(
padding: const Edgelnsets.symmetric(vertical: 16.@),
child: Elevatedsutton(
onPressed: () {
if (_formKey.currentState!.validate()) {
final email = _emailController.text.trim();
final password = _passwordController.text.trim();
print(‘email: Semail');
print("password: $password’);
final match = array.any(
(map) => map[OGC’].toString() == email &8 map[Password’] == password);
print(match: Smatch’);
if (match) {
Navigator.push(
context,
rMaterialPageRoute(builder: (context) => PageSScreen()),
b
} else {
print(*Invalid cnic or password');
}
3

3
child: Text("Login'),

33

/1f The screen of the fifth page.
class PagesSScreen extends Statelesswidget {
[/ Creates a [PageSScreen].
const PageSscreen({Key? key}) : super(key: key);

Foverride
vidget build(BuildContext context) => Scaffold(
appBar: AppBar(title: const Text(app.title)),
body: Center(
child: Column(
mainidsaliprment: Mainddsaligrment.center,
children: <widgets[
Elevatedsutton(
onfressed: () => context.go(’/page2’),
child: const Text(Orivers Data’),
)l
const SizedBow(height: 12,),
ElevatedButton(
cnPressed: () => context.go(’/page3’),
child: const Text('Students Data’),

import ‘package:flutter/material.dart”;

import ‘package:go router/go router.dart’;

import ‘package:firebase _core/firebase _core.dart’;
import

import

‘package:firebase database/firebase database.dart’;

i “firebase_options.dart”;
import “main.dart’;

class Page2Screen extends Statefulkidget {
const PagezScreen({super.key});
Soverride

}

class _PagelScreenState extends StatecPagelScresn> {

StatecPage2Screens createState() => _Page2Scresnstate();

FirebaseDatabase database = FirebaseDatabase.instance;

late cbject? a ;
var array = [];

1 a() async{

34

final ref = FirebaseDatabase.instance.ref();
print("before™);
final snapshot = await ref.child("Driver/").get();
print("hi”);
if (snapshot.exists) {
a = snapshot.value;
List all = List.from(a as List);
for (var i = @; i < all.length; iss) {
try {
MapcString, dynamic> _post = Map<String, dynamic>.from(all
if(_post["active’]=="ves" || _post[active’J=="yes")
{
array.add(_pest);

} catch (e) {
print("null error’);

setstate(() {

) H
} else {
print{"No data available.");
}
}
Soverride
void initstate() {
J/ ToDO: implement initState

super.initstate();
loaddata();
}

Soverride
widget build(BuildContext context) {
Size size = MediaQuery.of{context).size;
return Scaffold(
appBar: AppBar(title: const Text(app.title)),
body: Center(
child: Column(
mainddsaligrment: Maindxisaligrment.center,
children: asidgets[
Container(
height: 4ee,
width: size.width,
child:Listview.builder(
itemCount: array.length,
itemBuilder: (BuildCormtext conmtext, int index) {
return (
Container(
child: Row(
children: [

Taor et |
Text(index.toString()+"-"),
Tedt(“\t\t\thame:\t" + array[index][Name’],style:TextStyle(color:array[index]["Active® J=="ves"?Colors.green:Colors.red)),
Text(“\t\t\tBus#:\t" + array[index][Bus"],style:TextStyle(color:array[index]["Active” J=="Yes ?Colors.green:Colors.red)),
Text("\t\t\tPhone:\t" + array[index][Phone’],style:TextStyle(color:array[index]["Active’ J=="ves™?Colors.green:Colors.red))
Text("\t\t\tRoute:\t" + array[index][Route’],style:TextStyle(color:array[index]["Active® J=="ves"?Colors.green:Colors.red)) |

]!
,J
)
b
' s
ElevatedButton(
onPressed: () => context.go('/"),
child: const Text('tome'))
]J
)l
)J
)

35

class GoScreen extends Statefulwidget {
const Gascreen({Key? key}) : super(key: key);

(Soverride
_GoscreenState createState() => _GoScreenState();

}

class _GoScreenState extends StatecG@Screen> {
late DatabaseReference _databaseReference;
int? firebasevariable;
int availableSeats = 4@;

(Soverride
void initState() {
super.initState();
_databaseReference =
FirebaseDatabase.instance.reference().child(/Orivers/ali/Number Of Students Entered’);

_datab ference lue.listen((Dat datab nt) {
setstate(() {
fireb iable = dat p ~alue as int?;
B
3
}
@override

widget build(BuildContext context) => Scaffald(
appBar: AppBar(title: const Text(app.title)),
body: Center{
child: Column{
mainddsaliprment: Maindxdsaligrment.center,
children: adidget>(
Tesck(
‘Nurber of seats available: ${availableSeats - (firebasevariable ?? @)}°,
style: TextStyle(fontSize: 24),

)s
const SizedBow(height: 1),
ElevatedButton(
onfressed: () => context.go('/pages’),
child: const Text('view on maps”),

)s
const Sizedeox(height: 10),
ElevatedButton(
onPressed: () => context.go('/"),
child: const Text('Go back to home page’),
)

36

{1/ The screen of the first page.
class PageiScreen extends Statelesswicget {
/// Creates a [PageiScreen].
const PageiScreen({Key? key}) : super(key: key);

([Soverride
widget build(BuildContext comtext) => Scaffold(
appBar: AppBar(title: const Text(app.title)),

: Center(
child: Column(
mainudsaligrnment: Maindcdsaligrment.center,
children: adidgets|
ElevatedButton(
onPressed: () => context.go('/page?’),
child: const Text('Login as Administrator’),
}!
const SizedBox(height: 19,),
ElevatedButton(
onPressed: () => context.po(’/page8’), //page8 change
child: const Text(Login as Student'),
}I

—
-
~—
—
-

(0

‘dart:async’;

“package:flutter/material.dart’;

‘package: poogle maps_flutter/google maps_flutter.dart';

“package: flutter polyline points/flutter polyline points.dart” as poly;
“package:google_directions_api/google directions_api.dart’ as directions;
“package: firebase_core/firebase_core.dart”;

‘package:firebase database/firebase_database.dart’;
“firebase_options.dart’;

*package:geclocator/geoclocator.dart”;

*packaga: geccoding/g ing.dact";

‘package:firebase messaging/firebase messaging.dart’;

“dart:comvert”;

‘package:http/http.dart” as http;

EREELEELERLELID IO

class MapScreen extends Statefullddget {
const MapScreen({Key? key}) : super(key: key);
[Soverride
_MapScreenState createState() => _MapScreenState();

et

class _MapScreenState extends StatectapScreens {
FirebaseOatabase database = FirebaseDatabase.instance;
late Cbject? a ;
var array = [1;

37

=15
String? _currentiddress;
String? _destinstioniddress;
string? _eta;
late FirebaseMessaging messaging;

final i ition = const Camer
target: Lating(33.6799, 73.8425),
zoom: 11.5,

%

late GoogleMapController _poogledapComtroller;

Setowarkers _markers = {};

Set<Polyline> _polylines = {};

List<iating> polylineCoordinates = [];

poly.PolylinePoints pelyli ints = paly.Polyli ints();

Soverride
void dnitstate() {
super. initState();
messaging = FirebaseMessaging.instance;
_petFomToksn();
: _getPolyline();

void _petPosroken() async {
firal = aait aging.getToken();
await messaging.subscribeToTopic("bus™); //dont need
print (fosToken);

Futurecvoid> sendfOMessage{String token, String title, String mbody) async {
final posturl = uUri.parse(https://fom. googleapis.com/fom/send’);
final headers = <String, String{
"Content-Type': “application/json’,

“Autherization’: "key SChaN 5 tEal ap
b
f;m!. body = <String, dynamdics>{
‘notification’: {‘title': title, "body": mbody},
‘priority": "high’,
“to": token,
]
final jsonEncodedBody = json.encode{body);
final response = msait hittp.post(
pesturl,
headers: headers,
bedy: jsonEncodedsody,
]
if (response.statusCode == 200) {
print(’FO: mescage sent”);
} else {
print('Failed to send FOM message’);

/I et polyline for the route between source and destination
woid _petPalyline{) async {
firal ref = FirebaseDatabase.instance.ref(});

38

e ek YT]
directions.DirectionsService.init(AlzaSyalbdPy3UF-DvIDatNraUBCevOViSHDYeB") ;
final _directionsipi = directions.DirectionsService();

print(“before™);
final snapshot = await ref.child{ Bus’).get();
print("hi”);
if (snapshot.exists) {
a = snapshot.value;
List all = List.from(a as List);
for (var 1 = 8; i < all.length; i+s) {
try {
Map<String, dynamic> _post = MapcString, dynamic>.from(all[i] as Map);
array.add(_pest);
} catch (e) {
print(*null error’);

}
setstate(() {

03

print (array[e]["Leng'1);
print(“Eng");

print (amm oIl

// Lating _sourceCoordinates = Lating(33.6528, 73.8177);
Lating _scurceCoordinates = Lating(array[e][Lat’],array[@][Long’]);
Lating _destinationCoordinates = Lating(33.6882, 73.2351);

_markers. add(Marker(
markerId: MarkerId(socurce’),
position: _sourceCoordinates,
infowindow: Irrfowndow(
title: ‘Source’,
snippet: “This is the scurce location®,
)J’
W
_markers. add(Marker(
markerld: MarkerId(destination’),
position: _destinationCoordinates,
infowindow: Irrfowndow(
title: ‘Destination’,
snippet: “This is the destination location’,
)J’
W

poly.PolylineResult result = await polylinePoints.get dinates(
*AlzaSyAlbdPy3UF - DVIDathNril3CevivXerdyes” ,
poly.PointLating(_scurceCoordinates,latitude, _scurceCoordinates.longitude),
poly.Pointiating(

_destinationCoordinates.latitude, _destinationCoordinates.longitude),

travelrode: poly.TravelMode.driving,

' H

if (result.points.isNotEspty) {
result.points.for€ach((poly.PointLating point) {

polylineCoordinates.add(LatLng(point.latitude, point.longitude));

i

}

39

if (result.points.ishotEspty) {
result. points. forgach((poly.Peintiating point) {
pelyls 1 add(LatLng(point. latitude, point.longitude));
}}};

w59
: print{“empty paly”);

mait placemariFromCoordinates(_sourceCoordinates.latitude, _sourceCoordinates.longitude)
Jthen((List<Placemari> placesaris) {
Flacemark place = placesarks[a];
setstate(() {
currentiddress =

“${place.street}, ${place.sublocality}, ${place.subidministrativairea}, ${place.postalCode}’;

i
}J‘:;t:h!rﬂr({!j {
nmmprin‘t(a; 3

@it placemarkr inates(_destinati inates.latitude, _destinationCoordinates. longituds)
Jthen((List<rlacemaric placemarks) {
Placemark place = placemarks[d];
setstate(() {
_destinaticniddress =
*${place.street), ${place.sublocality}, ${place zubsdwinistrativesrea}, ${place postalCode}’;

HH
bel -c;tcl’fr'rvf‘{(l) {
”Mﬂn‘t' {OH

]

final source = _currentiddress;
final destination = _destinationaddress;

// Gat the route between the source and destination
final request = directions.DirectionsRequest(
origin: source,
destination: destination,
traveldode: directions.Traveldode.driving,
|

print(source);
print(destination);

_directionsipi . route{request,
(directions.Directi 1t response, directi irecti 3 status) {
if (status == directions.DirectionsStatus.ok) {
print(“Directions request successful”);
// Extract the ETa from the response cbject
final durgtion = response.routes?.first.legs?.first.durstion!.text;
print("ETA: Sduration™);
setstate(() {
_eta = "ETA: Sduration’;
HH
/I check if ETA iz 5 minutes or less
if (duration != null &8 duration = 'S mins’) {
print(Sending notification...”);
sendFOMessage(

811~ 1grTRONEUSE2PbD: APARLHEVEAL J06_nas_tDACKEIpHEHRpbbrET3IhQNAP- 1THS0gEF e

-T1T1y5N

plad-0H",

40

Hardware
Barcode scanner

#include <SoftwareSerial.h>

#define rxPin 14

#define txPin 12

#define red 15

#define green 13

SoftwareSerial mySerial = SoftwareSerial(rxPin, txFin);
#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Set the LCD address to @x27 for a 16 chars and 2 line display
LiguidCrystal_I2C lcd(Bx27, 16, 2);

#include <ESPB266WIFi.h>
#include <FirebaseESPE266.h>
#include <addons/RTDBHelper.h>

#define WIFI_SSID "Hexagon"

#define WIFI_PASSWORD "twentythree”

#define DATABASE_URL "barcodefee-fdc9d-default-rtdb.firebaseio.com”
FirebaseData fbdo;

FirebaseAuth auth;

Firebaselson json; // format for storing and transporting data.
FirebaseConfig config;

byte inData;

char inChar;

String BuildINString;
String Feestatus;
String Name;

vold setup()

Serial.begin(115208);
mySerial.begin(11528@);
pinMode(red, OUTPUT);
pinMode(green, OUTPUT);

led.begin();

led.backlight();

lcd.setCursor(®, 8);
lcd.print(“Connecting To");
lcd.setCursor(®, 1);

led.print(* Wifi®);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.print("Connecting to Wi-Fi");
while (WiFi.status() != WL_CONNECTED)

Serial.print(®.");
delay(300);

;
Serial.println();

//<databaseName>.firebaseio.com or <databaseName>.<region>.firebasedatabase.app

41

}

Serial.println();
Serial.print("Connected with IP: ");
Serial.println(WiFi.localIP());
Serial.println();
config.database_url = DATABASE_URL;
config.signer.test_mode = true;
Firebase.reconnectWiFi(true);
Firebase.begin(&config, &auth);
lcd.clear();

lcd.setCursor(@, €);
led.print(“Barcode Scanner");
led.setCursor(®, 1);

led.print(" Ready");

void loop() {

ReadData();

delay(2ee);

if (BuildINString != "")

{
lcd.clear();
BuildINString.trim();
Serial.print(">");
Serial.print(BuildINString);
Serial.println("<");
Firebase.getString(fbdo, "/status_of_students/"
Name = fbdo.to<String>();
Serial.println(Name);
lcd.print(“"Name:");
lcd.setCursor(e, 1);
lcd.print(Name);
delay(2ee0);
lcd.clear();
Firebase.getString(fbdo, "/status_of_students/"
Feestatus = fbdo.to<String>();
Serial.println(Feestatus);
lcd.print("“Fee:");
lecd.print(Feestatus);
if (Feestatus == “Paid")

digitalWrite(green, HIGH);
digitalWrite(red, LOW);

else if (Feestatus == "Pending")

digitalWrite(green, LOW);
digitalWrite(red, HIGH);

}
else if (Feestatus == "Not Paid")
digitalWrite(green, LOW);

digitalWrite(red, HIGH);
¥

+ BuildINString + '/' + “Name");

+ BuildINString + '/' + "Fees");

}

void ReadData() {

BuildINString = "";
}

while (mySerial.available() > @) {
inData = @;
inChar = @;
inData = mySerial.read();
inChar = char(inData);
BuildINString = BuildINString + inChar;

42

GPS and remaining sensors

#include <TinyGPS++.h>

#include <SoftwareSerial.h»

static const int RXPin = 16, TXPin = 17;
static const vint32 t GPSBaud = 9608;
TinyGPSPlus gps;

SoftwareSerial ss(RXPin, TXPin);

Jf-===---Variables-------

#include <math.h>

float h;

float t;

float liquid volume;

const int IR PIN = 33; // Change this to the pin connected to your IR module
int count = @;

int lastState = HIGH;

If-- -firebase-----

#include <wWiFi.h>

#include <FirebaseESP32.h»

#include <addons/RTDBHelper.h>

#define WIFI_SSID "Hexagon"

#define WIFI_PASSWORD "twentythree"

#define DATABASE URL “barcodefee-f4c9d-default-ritdb.firebaseio.com™ //<databaseName>.fireb

io.com or <datab

FirebaseData fbdo;
FirebaseAuth auth;
FirebaseConfig config;

ff--~-==-13C Led--------

#include <iire.h»

#include <LiquidCrystal I2C.h>

LiquidCrystal_I2C lcd(@x27, 16, 2); // set the LCD address to @x27 for a 16 chars and 2 line display

Jf===sscUltrasonic-==---=
#define TRIG_PIN 32
#define ECHO_PIN 35

#include "DHT.h"

#define DHTPIN 4

#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
float latt;

float lngg;

il =rmreSptup===s==
void setup() {

Serial.begin({11520@);
55.begin{GPSBaud);

».<region:.firebasedatabase.app

43

SSTOTgETL O SOUeS) 5
Wire.begin();
lcd.begin();
lcd.backlight();
dht.begin();

WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
pinMode(2, OUTPUT);
Serial.print("Connecting to Wi-Fi");
while (WiFi.status() != WL_CONNECTED)

Serial.print(".");
delay(3e@);

digitalWrite(2, HIGH);

Serial.println();

Serial.print("Connected with IP: “);
Serial.println(WiFi.localIP());

Serial.println();

Serial.printf("Firebase Client v¥s\n\n", FIREBASE_CLIENT_VERSION);
config.database_url = DATABASE_URL;

config.signer.test_mode = true;

Firebase.reconnectWiFi(true);

Firebase.begin(&config, &auth);

pinMode(IR_PIN, INPUT);
pinMode(TRIG_PIN, OUTPUT);
pinMode (ECHO_PIN, INPUT);
Serial.println(F("DHTxx test!™));

}
void loop()

while (ss.available() > @) {
if (gps.encode(ss.read()))
{

Serial.print(F("Location: "));
latt = gps.location.lat();
lngg = gps.location.lng();
Serial.print("Lattitude:");
Serial.print(latt, 6);
Serial.print(" Longitude:");
Serial.print(lngg, 6);
lcd.setCursor(®, 1);
lcd.print(latt);
lcd.print(”,");

44

led.print(1lngg);

digitalWrite(TRIG_PIN, LOW);

delayMicroseconds(2);

digitalrite(TRIG_PIN, HIGH);

delayMicroseconds(1@);

digitalWrite(TRIG_PIN, LOW);

unsigned long pulse_width = pulseIn(ECHO_PIN, HIGH);

float distance = pulse_width / 58.8;

float jar_radius = 8.75; // radius of the jar in centimeters

float jar_height = 28.@; // height of the jar in centimeters

float liquid_height = jar_height - distance; // height of the liquid in the jar in centimeters
liquid_volume = 3.14159 * jar_radius * jar_radius * liquid_height / 1@e@e.@; // volume of the liquid in the jar in
if (liquid_volume < @)

liquid_volume = @;

Serial.print("Liquid volume: “);
Serial.print(liquid_volume);
Serial.println(™ liters");

lcd. setCursor(@, 8);
led.print("v:");
led.print(liquid_volume);
led.println(™ liters ");

int currentState = digitalRead(IR_PIN);
if (currentState == LOW 88 lastState == HIGH) {
count++;
Serial.println("Person detected. Count:

+ String(count));

lastState = currentState;

h = dht.readdumidity();

t = dht.readTemperature();
Serial.print(F("Humidity: "));
Serial.print(h);

Serial.print(F("% Temperature: "));
Serial.print(t);

Serial.print(F("°C "));
Serial.print(" counting");
Serial.println(count);

Firebase.setInt(fbdo, "/Drivers/Ali/GPS Location/Latitude”, latt);
Firebase.setInt(fbdo, "/Drivers/Ali/GPS Location/Longitude”, Ilngg);
Firebase.setInt(fbde, "/Drivers/Ali/Room Temp", t);

Firebase.setInt(fbde, "/Drivers/Ali/Humidity”, h);

Firebase.setInt(fbdo, "/Drivers/Ali/LiquidVolume”, liquid_volume);
Firebase.setInt(fbdo, "/Drivers/Ali/Number Of Students Entered”, count);

liters

45

Bibliography
[1] M. Igbal, S. Noreen, T. Sabir, S. Afghani. (2014, January). “Intelligent Transport Fleet
Management System,” IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. |, PP 68-75, Jan 2014.

[2] C. Maria, I. Petrescu. “Use in Database in Advanced Transport Management System —
Interface Using XML - Study Of Case,” [Online], Feb 2011.

(3] S. Mulay, C. Dhekne, R. Bapat, T. Budukh. “Intelligent City Traffic Management and
Public Transportation System”, JCSI International Journal of Computer Science Issues, Vol. 10,
Issue 3, No 1, May 2013

[4] Raj Kiran T, T Abhinav, V Nafeez, Adithya H B, Amulya S, R Meghana, Sunil MP. “Student
database management and inquiry system using barcode scanner”, Department of Electronics
and Communication Engineering, School of Engineering and Technology, Jain University,
Bangalore, Vol-1 Issue-5, 2016.

46

