

1

Warehouse BLE Mesh Climate
Monitoring System

Submitted by

Syed Mustafa Amjad 19i-0807
Abdullah bin Zahid 19i-0904
M. Zeeshan Ansar 19i-0772

Supervised by

Engr. Aamer Hafeez Internal Supervisor

Department of Electrical Engineering

National University of Computer and Emerging Sciences, Islamabad

2023

2

 Developer’s Submission

“This report is being submitted to the Department of Electrical Engineering of the National
University of Computer and Emerging Sciences in partial fulfillment of the requirements
for the degree of BS in Electrical Engineering”

3

 Developer’s Declaration

“We take full responsibility for the project work conducted during the Final Year Project (FYP)
titled “Designing and Implementing a Warehouse Climate Monitoring System using
Bluetooth Low Energy (BLE) Mesh Network”. We solemnly declare that the project work
presented in the FYP report is done solely by us with no significant help from any other person;
however, small help wherever taken is duly acknowledged. We have also written the complete
FYP report by ourselves. Moreover, we have not presented this FYP (or substantially similar
project work) or any part of the thesis previously to any other degree awarding institution within
Pakistan or abroad.

 We understand that the management of the Department of Electrical Engineering of National
University of Computer and Emerging Sciences has a zero-tolerance policy towards plagiarism.
Therefore, we as an author of the above-mentioned FYP report solemnly declare that no portion
of our report has been plagiarized and any material used in the report from other sources is
properly referenced. Moreover, the report does not contain any literal citing of more than 70 words
(total) even by giving a reference unless we have obtained the written permission of the publisher
to do so. Furthermore, the work presented in the report is our own work and we have positively
cited the related work of the other projects by clearly differentiating our work from their relevant
work.

 We further understand that if we are found guilty of any form of plagiarism in our FYP report even
after our graduation, the University reserves the right to withdraw our BS degree. Moreover, the
University will also have the right to publish our names on its website that keeps a record of the
students who committed plagiarism in their FYP reports.”

 ___________________ ___________________ ___________________

 Syed Mustafa Amjad Abdullah Bin Zahid M. Zeeshan Ansar

 BS(EE) 2019-0807 BS(EE) 2019-0904 BS(EE)2019-0772

Certified by Supervisor

Verified by Plagiarism Cell Officer

Dated: __________

4

 Abstract

This final year project report presents the development and implementation of a Warehouse

Climate Monitoring BLE (Bluetooth Low Energy) Mesh Network System. The system offers an
efficient and effective solution for monitoring temperature and humidity levels in warehouses,
surpassing traditional WiFi-based alternatives. Leveraging BLE technology, the system captures
real-time data from strategically placed sensor nodes and aggregates it through a mesh network
topology. Compared to WiFi-based solutions, the BLE Mesh Network System requires less
hardware, provides scalability, and reduces power consumption. The successful implementation
of the system demonstrates its potential to revolutionize warehouse climate monitoring. With
proactive monitoring, warehouse owners and operators can ensure optimal storage conditions,
minimizing spoilage risks and enhancing supply chain management. The project highlights the
advantages of BLE mesh networks and their ability to transform warehouse climate monitoring
systems.

5

 Acknowledgements

We would like to express our sincere gratitude to our supervisors, Engr.Aamer Hafeez, Engr.
Hamza Ali Imran and Engr. Saffiullah Hussaini for providing their invaluable guidance, comments
and suggestions throughout the course of this project. We would specially thank Engr. Aamer
Hafeez for constantly motivating us to work hard and the importance of group work and Engr.
Hamza Ali Imran for authorizing our access to Emumba.

6

 Table of Contents

Developer’s Submission 2

Developer’s Declaration 3

Abstract 4

Acknowledgements 5

1. Problem Statement 9

2. Introduction and Background 9

3. Conceptualization 9

3.1. Existing Solutions 10

3.2. Proposed Solution 10

4. Block Diagram of Main Modules 11

5. Flow Charts 13

6. Hardware 15

6.1. Microcontroller Unit (MCU) Selection Criteria 15

6.1.1. BLE Support 15

6.1.2. Availability 15

6.1.3. Cost 15

6.1.4. Software Support 16

7. Design Methodology 17

7.1. Stepwise Refinement 17

7.2. Stepwise Refinement Diagram 18

8. Project Scope 18

8.1. Project Objective 18

8.2. Milestones 18

8.3. Technical Requirements 19

8.4. Limits and Exclusions 19

9. Project Design 19

9.1. DHT22 Sensor 19

9.2. ESP32 SoC 20

9.3. ESP-IDF Framework 20

9.4. BLE Mesh 20

9.4.1. BLE Nodes 21

7

9.4.2. Node Provisioning Procedure 21

9.4.3. BLE Mesh Network Security 21

9.5. Android Application 22

9.5.1. Flowcharts 23

10. Design Testing and Data Collection 25

11. Result 26

11.1.1. Device Configuration 27

12. Problems Faced 34

13. Personal Growth and the Society 35

13.1. The Engineer and Society 35

13.2. Compliance with 17 SDGs 35

13.3. Skills Learned through the Journey 35

14. Conclusion and Future Work 35

15. Codes 36

15.1. ESP code 36

15.2. Flutter Application Code 50

16. References 86

8

 List of Figures

Figure 1: Block diagram of the project
………………………………..…………...…………………11
Figure 2: Network block diagram of the project …………………………………………….………11
Figure 3: Block diagram of the proxy node ……………………………..………………………..…12
Figure 4: Flow chart for sensor node ……………………………………………………………..…13
Figure 5: Flow chart for node provisioning procedure……………………………….…………..…14
Figure 6: Cost comparison of various embedded computing platforms .……..……………….…16
Figure 7: Hardware selection criterion score of various microcontrollers …………………….....17
Figure 8: Tree diagram for step-wise refinement of final solution………………..……….………18
Figure 9: Flow chart for the android based application …………………..………………..………25
Figure 10: Prototype of a climate monitoring node …………………………………..…..…...……26
Figure 11: 3-D printed housing for climate monitoring node ………………………….…………..27
Figure 12: Node discovery phase…………………………………………………….………………27
Figure 13: Device provisioning menu…………………………………………………………..……28
Figure 14: Configuration messages of BLE sensor node………………………………………....29
Figure 15: Message indicating configuration has completed ……………………………………..29
Figure 16: BLE Device model configuration menu………………………………………………....30
Figure 17: BLE sensor server configuration menu………………………………………………….31
Figure 18: BLE sensor setup server configuration menu………………………………………..…32
Figure 19: App dashboard displaying sensor data………………………………………………....32

9

1. Problem Statement

Warehouse goods can easily become spoiled or filled with mold under inappropriate

temperature and humidity levels. Climate-sensitive goods like pharmaceuticals, dairy, and
beverages are especially susceptible. Millions of dollars worth of products can be lost
unexpectedly and disrupt the supply chain. A constant temperature and humidity monitoring
system can help circumvent these losses.

2. Introduction and Background

Warehouse owners usually underestimate humidity and temperature as key elements in

keeping goods in optimal and safe condition while in inventory. High humidity and temperature
damage products causing unexpected losses. Excessive humidity causes mildew and mold
growth on products, shelves, boxes, and walls whilst metal parts start corroding [1].

Mold is a type of fungi, some are edible such as mushrooms, and others are used in the

baking of bread and brewing alcohol. Most fungi live off of decaying biological matter, however,
some can be damaging to health. Microscopic spores are produced and used for the reproduction
of the fungus which leads to respiratory illnesses in a closed environment. These spores travel
through the air, settle on a suitable surface and begin to grow [1]. When spores settle on a surface,
to thrive there should be sufficient food to sustain the fungi. Mold can grow on any biological
material. It can attack the most common materials used in warehouse packings such as wooden
crates, and cardboard boxes. Eliminating all sources of food for mold is also an almost impossible
task. High temperatures are also extremely dangerous for a large variety of products especially
dairy or dairy-based products as these will spoil instantly under extreme temperatures [2].

This is not a new problem. Many companies have temperature and humidity sensors

installed all over the warehouse. Specially trained personnel are employed to watch over these
sensors and record data at regular time intervals. This is not an optimal solution to the issue.
Firstly, we have human error involved which means forgetting to log data of a specific room or
incorrectly reading data from thermometer/humidity sensors.

Secondly, we have the issue of a constant watch as hiring multiple workers for reading

sensor data in each room is a waste of resources. Due to these reasons, we need a system
where we can gather all the sensor’s data at short time intervals and log them into a database.
Parameters can be set for dangerous/concerning levels of humidity and temperature thus
sounding alarms for immediate action. This will reduce the number of workers needed and it will
provide the convenience of monitoring the sensors through a singular device.

3. Conceptualization

Sensor nodes for monitoring warehouse climate will be installed at various locations in the

warehouse. Each node is capable of measuring and sending sensor data through a wireless
protocol to a smart device. The maintenance crew can monitor temperature and humidity by
connecting their smart devices with the sensor network. Each sensor node will publish its
measurements periodically to all connected smart devices. We can specify upper and lower

10

threshold values for temperature and humidity using the mobile application. If the temperature
or humidity readings are not within the threshold limits, then the mobile app will immediately
notify the crew. Upon receiving a timely notification, the crew can quickly handle the situation
before it causes severe damage.

3.1. Existing Solutions

Currently, there are 4 wireless communication technologies that can be used for
warehouse monitoring systems; Wi-Fi, Zigbee, Z-Wave, and LoRaWAN. Multiple
microcontrollers support these technologies. Wi-Fi is the most commonly used wireless
technology, especially in warehouse management applications [3]. Wi-Fi allows for 300 Mbps of
maximum bandwidth, cloud connectivity and direct support for any smart device with Wi-Fi
enabled. Power usage is between 5 and 10 watts per device, the range is only 15 to 45 meters,
and the mesh network is not supported [4]. A lot more routers will be required for the topology
due to no mesh network support resulting in a high per-unit cost.

Zigbee can also be used, it has an amazing range of up to 100 meters, power usage of

only 0.01 to 0.1 watts, and mesh network support [5]. These factors allow it to be an excellent fit
for our project but the biggest downside is its incompatibility with smart devices through a direct
connection.

Z-Wave technology also suffers only in this regard, the range is 100 meters, mesh

support is enabled and power consumption is only 0.08 watts per device but no direct
connection with smart devices [6]. The last of the technologies is LoRaWAN, it has the highest
signal range of all available technologies at a staggering 5 to 10 kilometers, with a power usage
of 0.25 watts and mesh network support. LoRaWAN would have been the perfect candidate if
not for the fact that each module costs a lot more than the rest and it does not have direct smart
device support [7].

3.2. Proposed Solution

Bluetooth Low Energy (BLE) is the most appropriate wireless communication technology
for our sensor devices. Firstly, this project requires battery-powered sensor nodes and highly
power-efficient communication hardware. BLE is designed for such applications where power
consumption is a high priority such as battery-powered devices [24]. Other wireless
technologies like Zigbee, Z-wave, and Wi-Fi are power-hungry alternatives so they don’t fit well
in this case. Power-efficient devices are required for our use case and BLE happens to be the
only technology that meets this requirement.

Secondly, the data sent by sensor nodes are small and infrequent, so there is a need for
wireless technology which is specifically designed for such applications. BLE is most suitable for
applications with relatively short range and infrequent low-bandwidth data transfers. Other
possible alternatives are simply not satisfactory for this project because some of them are
designed for high data rates such as Wi-Fi while others are specifically designed for industrial or
home automation applications.

Finally, every smart device running iOS or Android supports BLE which makes it a better
choice. We can easily connect the sensor network with smart devices like mobile phones or
tablets. Other alternatives like Zigbee and Z-wave can’t directly connect to smartphones.

The proposed solution uses a DHT22 temperature and humidity sensor which has an
operating temperature of -40 to 60 Celcius. It is not suitable for such warehouses whose climate
conditions don't fall under the operating range of our device. The optimum operating

11

temperature for the battery is -20 to 60 Celcius. So the warehouse climate conditions must be
under the range.

4. Block Diagram of Main Modules

Project Block Diagram

Figure 1: Block diagram of the project

Project Network Block Diagram

Figure 2: Network block diagram of the project

12

Proxy Node Block Diagram

Figure 3: Block diagram of the proxy node

13

5. Flow Charts

Figure 4: Flow chart for sensor node

14

Figure 5: Flow chart for node provisioning procedure

15

6. Hardware

Three types of computing platforms are applicable; System-on-Chip (SOC), Single-Board

Computers (SBC), and Microcontrollers. All three have their benefits and drawbacks. The SOC
incorporates many system components into a single silicon chip allowing it to be extremely
compact and lightweight. Power requirements are lower, processors are fast and memory
capacity is huge. However, the cost of these boards is extremely high and they need to be
specifically manufactured for the task at hand.

SBC is an entire computer built on a single circuit board making it very easy to use and

modify for various applications but the cost of these computing devices is high [8].

Another alternative is a microcontroller which is a microcircuit (IC) that is programmed to

regulate electronic devices which makes it easy to use and the cost is very low. Due to its
simplicity, it cannot carry out extremely complex computations. Microcontrollers are the
appropriate choice for our purposes as we only need simple computations, low energy, and low
costs [9-10].

6.1. Microcontroller Unit (MCU) Selection Criteria

Choosing the right microcontroller is also challenging as there are a plethora of MCUs
on the market. We have devised four main selection criteria for our boards; complete BLE
support, availability, cost, and software support.

6.1.1. BLE Support

Some of the most optimal boards for our task are; ESP32, Raspberry Pi Pico W, Arduino
Nano 33 BLE, and Adafruit Feather NRF52. All of these boards support BLE Mesh Network
technology [11-14].

6.1.2. Availability

ESP32 is readily available in Pakistan on sites like hallroad.org, daraz.com, and more
[15-16]. The Raspberry Pi Pico W is a new release this year but it is also present in Pakistan
[17]. Arduino Nano 33 and Adafruit Feather NRF52 are also readily available [18-19]. All the
boards in our selection are easy to source so we can approve all the boards under the
availability criteria.

6.1.3. Cost

All the boards selected have varying price tags. The prices in order from the highest to
the lowest are as follows; Arduino Nano 33 BLE, Adafruit feather NRF52, Raspberry Pi Pico W,
and ESP32 [10-13]. As we can see the Adafruit Feather and Nano 33 BLE both have prices
above 5000 PKR while the ESP32 and Pico W remain below 2000 PKR. In our mesh network,
we require a large number of sensor nodes due to which the Adafruit Feather and Nano 33 BLE
fail the cost criteria.

16

 Figure 6: Cost comparison of various embedded computing platforms.

6.1.4. Software Support

For our project, we want the chosen board to have an extensive library for implementing
the BLE mesh network. The board should support a good compiler for efficient programming.
ESP32 is supported by the Arduino IDE allowing us to write the code in C, and have it compiled
and loaded easily. It also possesses the ESP32 BLE library for Arduino IDE which is extremely
useful when using advanced BLE features [20].

The Raspberry Pi Pico W is a new board as such it currently supports Micro Python UF2

but BLE libraries for the device are not officially supported [21]. Due to it being a new board very
few people have worked on it thus its compatibility and applications are not currently well-
defined. The Arduino Nano 33 BLE is officially supported by the Arduino IDE, and also it uses
the same chip as other Arduino boards making the software library support very extensive. Not
only that but it can also be programmed in Python through the OpenMV IDE [22].

The Adafruit Feather nRF52 has a massive number of apps and compilers for its

programming, some include; Bluefruit LE Connect for Android/iOS, ABLE for cross-platform,
and Bluefruit LE Python Wrapper for programming in python [23]. According to our research,
only the Raspberry Pi Pico W fails this criterion due to it being new and having very few online
resources for BLE and BLE Mesh support.

17

 Figure 7: Hardware selection criterion score of various microcontrollers

In summary, the ESP32 has a perfect score of four as it has a cheap price, complete BLE
support, availability, and extensive software support. Hence, we will be using the ESP32 for our
project.

7. Design Methodology

7.1. Stepwise Refinement

We implored a stepwise refinement methodology. We noted down the features of the
final product and then traced it back to individual tasks. The final product had three key features;
wireless long-range connection, low power utilization, and easy connectivity to android devices.

To achieve a long-range wireless connection we selected BLE and LoraWAN. Both of
these also fulfill low power consumption requirements. When it came to connectivity to android
devices we could only go forward with BLE as LoraWAN has no direct support.

As we selected BLE for wireless communication, we now have to build a device around
it. For this, we used the Esp32 microcontroller as it fully supports all BLE modes. Secondly, we
chose Android Studio to make an application to read the data of the BLE sensor devices.

For the Esp32 we decided to code in ESP IDF as it allows us to fully customize the
microcontroller for our various needs. For android studio, we chose to develop in Java as it is
the industry standard with multiple libraries and coding techniques.

18

7.2. Stepwise Refinement Diagram

 Figure 8: Tree diagram for step-wise refinement of final solution

8. Project Scope

8.1. Project Objective
Develop a warehouse climate monitoring system using BLE(Bluetooth Low Energy) technology
within 8 months at a cost not to exceed Rs. 2500 per sensor node.

8.2. Milestones
● Sensor nodes are programmed to connect using BLE mesh technology.
● Proxy node programmed to connect with the sensor nodes.

19

● Software created to establish a connection with all the nodes and log data on the phone.
● Testing of the entire system in FAST or at home.

8.3. Technical Requirements

● Sensor node devices need to have two months of battery backup.
● Surge protector needs to be installed with the proxy node device.
● Android application needs to be approved and published on the google play store.
● Signal strength between all devices has to be above certain levels at all times.

8.4. Limits and Exclusions

● The sensor nodes record and post temperature every 15 minutes due to an incredibly
high battery time of 2 months

● Battery time is limited to 2 months as any higher would require a very large battery
● Application for the system is only built for android due to the complexity.
● Engineers will only come to set up the system once and one return visit to check the

system for faults.
● A warranty of 2 months will be provided on the system.
● Physical damage to devices will not be covered under warranty.

9. Project Design

The project aims to design a warehouse climate monitoring system. To develop such a

system, we need specific hardware components and software frameworks. The project
hardware consists of an ESP32-S2 series microcontroller, a dht22 temperature and humidity
sensor, and a rechargeable lithium-ion battery. The software framework required is the Iot
Development Framework (IDF) from Espressif Systems. A detailed description of each
component is provided below:

9.1. DHT22 Sensor

The DHT22 is one of the widely used types of sensors in climate monitoring applications.
It is a capacitive-type digital sensor that can measure relative humidity and temperature. The
major features of this sensor are as follows:

● The out of the sensor is a calibrated digital signal which removes the processing
overhead from the µcontroller

● This sensor can operate on extremely low power which makes it a perfect choice for
wireless sensing applications which require low power consumption.

● This sensor has a sufficiently long range for data transmission and excellent signal
strength.

● This sensor can operate in a variety of environments without affecting the measurement
sensitivity.

The DHT22 sensor has an on-chip processing unit that outputs calibrated data signals. It
eliminates the overhead of signal processing on the µcontroller. Moreover, it also allows
convenient interfacing of the sensor with the µcontroller. This sensor uses polymer-type

20

capacitor technology for sensing temperature and humidity. This sensing technology provides
highly accurate and stable measurements in a variety of environments making it suitable for
warehouse climate monitoring applications.

The DHT22 sensor is already calibrated by the manufacturer and the calibration factor is
stored in the memory of the sensor module. The sensor uses this factor to correct the measured
temperature. The time taken by the sensor for each measurement is 5 milliseconds. The
sensing frequency of DHT22 is 1 hertz for accurate measurements.

When µcontroller asserts the data line, the DHT22 sensor transitions from a low-power
state to a running state. Shortly after the data line assertion, the µcontroller de-asserts the data
line and the sensor starts data transmission. The sensor sends a 40-bit data packet containing
the temperature and humidity data.

9.2. ESP32 SoC

For sensor interfacing and BLE communication, we are using an ESP32-S2 series
system-on-chip (SoC) from Espressif Systems. It is a low-cost BLE chip with excellent
processing performance. Due to its low power consumption and processing performance, it is a
perfect choice for sensor network applications.

ESP32 chip supports multiple modes of operation based on the power consumption of
the chip. These are active mode, light–sleep mode, and deep sleep mode. It can dynamically
switch between these power modes during the program execution.

We’ll use the chip in light sleep mode to increase battery life. In the light sleep mode, it
only consumes 750µA.

9.3. ESP-IDF Framework

For building the software for sensor nodes, we are using the ESP-IDF version 4.0
framework developed by Espressif Systems for its ESP-S2 series devices. It provides a rich set
of APIs for BLE, light sleep mode, and GPIOs.

9.4. BLE Mesh

We’re using Bluetooth mesh technology for establishing a wireless sensor network
(WSN). In the mesh topology, each sensor node is connected to all other nodes that lie within
the radio range. The main advantages of using mesh network topology are the long range of
communication and the robustness of the network. Sensor nodes can relay messages to other
nodes in the network that are not directly reachable. This allows a mesh network to increase its
range of communication.

Mesh network also supports dynamic removal and addition of new sensor nodes to the
network without affecting the performance of the network. The mesh network can re-configure
the routes whenever the network topology changes due to the addition or removal of any node.

21

9.4.1. BLE Nodes

BLE mesh stack supports optional node roles to meet the networking requirements. These are
relay nodes and proxy nodes. These roles can only be enabled at the time of programming and
they can be disabled anytime when the node is in a running state.

 The relay nodes are used for relaying messages in the network to increase the range of
the network. They do so by receiving the broadcasted messages and then retransmitting them
to other nodes.

Proxy nodes are used to allow non-mesh BLE devices to communicate with the mesh
network. A proxy node acts as an intermediary in the network. It does so by simultaneously
connecting itself with the mobile device and mesh network. Both the mesh and non-mesh
devices use different formats for data. Mesh devices use mesh PDUs and non-mesh devices
use GATT. The mobile device uses GATT messages to send data to the proxy node. Then the
proxy node converts this data to a mesh PDU and transmits it to the mesh network. Similarly,
when a mobile device requests data from the mesh network. The proxy node converts the
incoming data from the mesh network to GATT and sends it to the mobile device.

9.4.2. Node Provisioning Procedure

The main task of provisioning is to configure new sensor nodes and add them to the
network. Mostly, the provisioner, a device that adds new nodes to the network, is a smartphone.
Usually, an app is used for handling all the provisioning-related tasks like assigning UUID
addresses and configuring encryption keys. Node Provisioning is a two-way communication
procedure that is normally initiated by an un-provisioned node.

 The un-provisioned node starts the process by becoming a BLE beacon. A beacon
normally advertises itself by broadcasting mesh advertisement packets. These packets are then
received by a nearby provisioner device. The provisioner device upon receiving the
advertisement packets can either drop those packets or send an invitation.

 To start the provisioning process, the provisioner sends an invitation to the un-
provisioned node. Upon receiving the invitation, the un-provisioned device starts sending device
information to the provisioner. This information normally consists of mesh sensor models and
the elements supported by the device. Information regarding the security algorithms is also
shared between the provisioner and the node.

To encrypt the communication, both devices exchange keys using the Diffie-Hellman key
exchange algorithm. Both devices use the exchanged keys to encrypt the communication
process. The exchange of additional keys along with the provisioning data is carried out next.
The provisioner device and the node share the networking information with each other. Finally,
a unicast address is assigned to the node, and the provisioning procedure terminates.

9.4.3. BLE Mesh Network Security

The BLE mesh technology mandates security in the network by enforcing the encryption of data
packets. It uses Advanced Encryption Standard (AES) for the encryption of mesh data packets.
It implements security at three levels: network, application, and device level. Due to
implementation at three independent levels, the mesh specifies the usage of three different
encryption keys. These are network keys, application keys, and device keys.

22

 Since the communication at the network level is encrypted, a node requires a network
key to decrypt it. So, sensor nodes must possess a network key to become a part of the
network. Network-level encryption helps to keep malicious nodes off the network. A node
possessing a network key can only decrypt data from the network layer.

 Similarly, the data at the application level is also encrypted using application keys.
Application keys are used for encrypting the data of applications running on the sensor node. In
our case, it is the data of sensor nodes i.e, temperature and humidity which is encrypted.
Sensor nodes running the same applications share the same application keys with each other
for encryption and decryption. This helps to prevent any spoofed application data from being
transmitted in the network by a malicious node.

 During the initial phase of provisioning, the communication between the provisioner and
the un-provisioned device is secured using the device key. It helps to encrypt the flow of
provisioning data which includes device UUID, services, and their characteristics.

9.5. Android Application

Our goal is to develop an Android application that serves as a valuable tool for monitoring and
managing devices within a BLE mesh network. The app will provide a user-friendly interface to
track and control various sensors connected to the network. The primary objective is to enable
users to stay informed about environmental conditions and receive notifications when specific
thresholds, such as temperature or humidity, are exceeded.

To achieve these goals, we will leverage the power of Flutter, a cross-platform development
framework. Flutter's versatility and extensive widget library will enable us to create an intuitive
and visually appealing user interface. The application will also integrate BLE Mesh functionality
using appropriate packages and libraries to establish seamless communication with the devices
in the network.

The app's core features will include a comprehensive dashboard displaying all devices within
the BLE mesh network. Users will be able to monitor sensor data in real-time, configure
threshold values, and receive notifications. Additionally, the application will support provisioning
of new sensor nodes, ensuring easy integration of new devices into the network. Network
security will also be prioritized, allowing users to manage encryption keys for enhanced data
protection.

23

9.5.1. Flowcharts

 Figure 9 (continued): Flow chart for the android based application

24

 Figure 9 (continued): Flow chart for the android based application

25

 Figure 9: Flow chart for the android based application

10. Design Testing and Data Collection

The firmware for sensor nodes is tested in real-time under various conditions to check
whether it meets our requirements or not. Initial testing involved the operation of mesh topology
with a variable number of nodes in the network. In this test, we created a topology consisting of
four sensor nodes. Each sensor node measured climate data and sent it over the mesh
network. Each sensor node also had a relay feature enabled which means it can forward data
coming from other sensor nodes.

During the test, we connected an android based mobile device to the proxy node. The
android device could not directly communicate with the mesh network. So, we connected the
android device with a proxy node which enabled bidirectional communication between the mesh
network and the android device. The proxy node acted as a bridge between the mobile device
and the mesh network.

26

Whenever the sensor nodes had to send the data to a mobile device, they would send it
to the proxy node. And then the proxy node would send it to the mobile device. The same is true
when the mobile device wants to send data to the mesh network. It would send its data to the
proxy node, and then the proxy node would forward it to the respective node in the mesh
network.

We also tested the extended range of mesh networks. The minimum distance at which
devices can communicate within a building is approximately 15 meters. However, by using the
mesh network, this range could be extended. The sensor nodes can also function as relay
nodes and forward the network traffic between nodes thus effectively increasing the range of the
network.

We also tested the self-healing ability of the mesh network. It can dynamically add new
nodes and reconfigure network paths. It also supports the dynamic removal of nodes without
affecting the communication process or requiring any reconfiguration.

Each sensor node can accurately measure the temperature and humidity with an
accuracy of 95% in humidity measurement and 98% in temperature measurement.

11. Result

Figure 10: Prototype of a climate monitoring node

27

Figure 11: 3-D printed housing for climate monitoring node

11.1.1. Device Configuration

Step: 1
During the configuration phase,
we initiate the process by
conducting a thorough scan of the
nearby BLE devices within the
mobile phone's range. As soon as
the nRF Mesh mobile application
identifies a new device within its
proximity, it promptly displays the
device's name and MAC address
in the scanner, as depicted in the
figure.

 Figure 12: Node discovery phase

28

 Step: 2

Upon tapping on the device showcased in the
scanner, you'll be directed to a user-friendly
interface that presents comprehensive
information about the device, including its name,
unicast address, and app keys. To seamlessly
incorporate this device into the BLE network,
simply tap on the provision button, and watch as
this device seamlessly becomes an integral part
of the network.

 Figure 13: Device provisioning menu

29

Step: 3

Once you initiate the provisioning
process by tapping on the provision
button, a seamless exchange of
configuration messages between the
mobile app and the BLE device ensues.
This meticulously orchestrated process is
designed to ensure a smooth and
successful provisioning of the device,
enabling it to seamlessly integrate into
the network.

Figure 14: Configuration messages of BLE sensor node

Step: 4

Following the exchange of
messages, once the device has
been successfully configured, the
application will present a message
stating "Configuration Complete."
This indicates that the device has
now become an integral and fully
functional part of the mesh network,
ready to participate in its network
operations.

 Figure 15: Message indicating configuration has completed

30

31

Step: 5

Once the device has been
successfully added to the network,
the application seamlessly
transitions you to the node
configuration section. Within this
section, you have the flexibility to
personalize the device name and
configure all the elements
associated with it. Presently, this
device encompasses three models:
the Configuration Server,
responsible for managing all node
configuration messages, the Sensor
Server, utilized for retrieving data
from the node, and the Sensor
Setup Server, designed specifically
for configuring and fine-tuning the
sensor settings within the node. With
these models at your disposal, you
have complete control over
optimizing and customizing the
functionality of the device to suit
your specific requirements.

 Figure 16: BLE Device model configuration menu

32

Step: 6

During the node configuration step,
simply tap on the Sensor Server to
access its settings. From there, you
can proceed to bind an application
key to it. An application key plays a
crucial role in encrypting the data
transmitted by the sensor server,
ensuring its security and privacy. By
associating an application key with
the sensor server, you establish a
robust encryption mechanism that
safeguards the integrity of the data
being exchanged within the network.

Figure 17: BLE sensor server configuration menu

33

Step: 7

Similarly, during the node configuration
process, you can navigate to the Sensor
Setup Server and bind an application
key to it as well. Binding an application
key to the Sensor Setup Server enables
you to establish a secure
communication channel specifically for
setting up and configuring the sensor
within the node. This ensures that
sensitive configuration data remains
encrypted and protected, enhancing the
overall security and reliability of the
system.

Figure 18: BLE sensor setup server configuration menu

__

Step: 8

Once all the configuration steps have
been successfully completed, you can
proceed to tap on the "Get Sensor
Information" option to retrieve data from
the sensor. Upon selecting this option,
the node promptly sends the latest
readings of the humidity and temperature
parameters. By accessing this
information, you gain valuable insights
into the current environmental conditions,
allowing you to monitor and analyze the
sensor data in real-time.

Figure 19: App dashboard displaying sensor data

34

12. Problems Faced

We’ve faced the following problems during the development of firmware for sensor nodes:

● One of the problems we faced during the early phase of development was an
unexpected chip reset. After conducting research on the underlying real-time operating
system (RTOS), it was discovered that the cause of the problem was thread deadlock.
We used FreeRTOS for developing the firmware. It is a real-time operating system that
can run multiple threads at the same time. For some OS-related tasks, it dispatches a
background thread called IDLE TASK at the chip start-up. The job of this thread is to
reset the WD timer before expiration. If the WD timer expires, the chip will be reset. This
problem arose when we didn’t let the IDLE TASK execute and the WD timer expired.
The reason was a deadlock that occurred right after provisioning. When the IDLE TASK
tried to access the processor core, it was already occupied by the main thread. It led to
the expiration of the WD timer and the chip kept resetting itself. Later on, we identified
the flaw in the problem and fixed it.

● Another problem we encountered was the error while interfacing the sensor driver with
the BLE sensor model. The BLE mesh stack uses sensor models to automate the
process of getting data from the sensor. The official mesh documentation specifies a
specific way of interfacing the sensor driver with the corresponding sensor model. The
driver code we designed was flawed because it was incompatible with the semantics
rules of the BLE sensor model. We solved this problem by rewriting the driver code
according to the rules specified in the official mesh documentation.

● Another problem we encountered after the integration of the sensor driver with the
sensor model was the buffer overflow. Mesh stack has buffers of specific size which are
used to temporarily store the sensor data. The main thread kept pushing the values from
the sensor to the buffer which overflowed it. Later on, we solved this problem by limiting
the sensor updates and keeping the buffer capacity in check.

● Another problem occurred when receiving the data on the mobile device. The data we
received on the nRF Mesh app was corrupted. The reason was that we accidentally
misconfigured the sensor property IDs in the firmware program. BLE uses sensor
property IDs for adding a contextual meaning to the data of the sensor. Moreover, the
property IDs are also used to specify the way a data payload is constructed. If the
property IDs are misconfigured then the sensor data won’t be processed properly by the
mobile device. We solved this problem by properly configuring the property IDs.

● During the development process of our app, we encountered several challenges that

significantly impacted our timeline. One of the major obstacles we faced was the limited
knowledge of Android Studio, which caused delays in handling the BLE mesh data.
Despite our best efforts, the complexities of integrating the BLE Mesh library into
Android Studio proved to be a roadblock. This setback led us to make a strategic
decision to shift our development to Flutter, a cross-platform framework. While this
change allowed us to overcome the library compatibility issues, it also introduced a new
learning curve and necessitated adjustments to our development approach. As a result,
even though we have now finalized our app in Flutter, we are still in the process of
ironing out the remaining kinks to ensure a smooth and seamless user experience.

35

13. Personal Growth and the Society

13.1. The Engineer and Society
As we know the engineer is nothing without the society for whom he solves problems.

Our project conforms to this belief as it will allow for cheap and effective monitoring of goods in
warehouses which will help to remove any chances of spoiled goods and a large disruption in
the supply chain. The economy will improve and enable the common folk to obtain daily
necessities at all times.

13.2. Compliance with 17 SDGs
Out of the 17 goals our project can achieve 3. The first is Good Health and Well Being

which is achieved due to our system eliminating the potential for mold growth. Molds produce
spores for reproduction but these spores cause allergic reactions and other lung diseases in
humans. Second is Decent Work and Economic Growth, which is possible due to our system
monitoring the goods and making sure they do not spoil. If left unchecked this could cause huge
losses for a company and disrupt its supply chain leading to a decrease in economic growth.
Lastly, we have Responsible Consumption and Production which is possible due to the
extremely low power consumption of our system.

13.3. Skills Learned through the Journey
The first skill we learned was the ability to research documents. Over the course of our

project, we spent the majority of our time researching all the possible technologies and
microcontrollers that we could use. Secondly, we learned management skills as we had to
decide how to divide up the work amongst ourselves and make sure to put the right man for
each job/task. Thirdly, we learned how to use the ESP IDF which allows us to program the
ESP32 microcontrollers and set up BLE. Android studio and java will also be used later on to
develop the app for our project’s interface.

14. Conclusion and Future Work

In conclusion, this final year project successfully developed and implemented a Warehouse
Climate Monitoring BLE Mesh Network System, showcasing its potential to revolutionize
warehouse climate monitoring. The system's utilization of BLE technology and mesh network
topology enables real-time data collection from strategically placed sensor nodes, surpassing
traditional WiFi-based alternatives. The project demonstrated the advantages of the BLE Mesh
Network System, including reduced hardware requirements, scalability, and lower power
consumption.

Moving forward, there are several avenues for future work and enhancements to further improve
the system. Firstly, focusing on enhancing the user experience, the app will undergo continuous
improvements to make it more user-friendly. This includes refining the user interface, simplifying
the setup process, and optimizing the app's overall performance.

Additionally, the inclusion of a buzzer on each module presents an opportunity to enhance the
system's alerting capabilities. By incorporating an alarm functionality, the system will be able to
emit audible alerts in addition to the existing notifications on the user's phone, ensuring
immediate attention and response to critical temperature or humidity deviations.

36

Expanding the sensor capabilities is another aspect of future work. The addition of an oxygen
sensor to the existing temperature and humidity sensors will enable comprehensive monitoring
of the warehouse environment, providing valuable insights into potential oxygen-related risks
and ensuring the safety of stored goods.

Furthermore, implementing a database will allow for the storage and retrieval of historical data
collected by the system. By integrating a database system, users will be able to access and
analyze older data, generate graphs and reports, and gain valuable insights into trends and
patterns over time. This will facilitate informed decision-making and enable better management
of warehouse climate conditions.

Overall, these future enhancements and developments will further solidify the Warehouse
Climate Monitoring BLE Mesh Network System's effectiveness and usability, contributing to
improved warehouse climate monitoring and supply chain management practices.

15. Codes

15.1. ESP code

#include <stdio.h>
#include <string.h>

#include "esp_log.h"
#include "nvs_flash.h"
#include "esp_ble_mesh_defs.h"
#include "esp_ble_mesh_common_api.h"
#include "esp_ble_mesh_networking_api.h"
#include "esp_ble_mesh_provisioning_api.h"
#include "esp_ble_mesh_config_model_api.h"
#include "esp_ble_mesh_sensor_model_api.h"

// contains bluetooth stack initialization code
#include "BLE_stack_init.h"
#include "sensor_driver.h"

#define NODE_CID 0x02E5
#define TAG "Meshsetup"

// sensor descriptor related information
// property id for present outdoor ambient temperature
#define HUM_SENSOR_PROP_ID 0x0056
#define TEMP_SENSOR_PROP_ID 0x005B

// property id 0x0076 doesn't works
//#define HUM_SENSOR_PROP_ID 0x0076

37

#define SENSOR_POSITIVE_TOLERANCE
ESP_BLE_MESH_SENSOR_UNSPECIFIED_POS_TOLERANCE
#define SENSOR_NEGATIVE_TOLERANCE
ESP_BLE_MESH_SENSOR_UNSPECIFIED_NEG_TOLERANCE
#define SENSOR_SAMPLE_FUNCTION ESP_BLE_MESH_SAMPLE_FUNC_UNSPECIFIED
#define SENSOR_MEASURE_PERIOD ESP_BLE_MESH_SENSOR_NOT_APPL_MEASURE_PERIOD
#define SENSOR_UPDATE_INTERVAL ESP_BLE_MESH_SENSOR_NOT_APPL_UPDATE_INTERVAL

static uint8_t dev_uuid[ESP_BLE_MESH_OCTET16_LEN] = {0x32, 0x10};

// Define a static net_buf_simple variable.
// This is a helper macro which is used to define a static net_buf_simple object.
// Parameters NET_BUF_SIMPLE_DEFINE_STATIC(_name, _size)
// _name: Name of the net_buf_simple object.
// _size: Maximum data storage for the buffer.

NET_BUF_SIMPLE_DEFINE_STATIC(humidity_sensor_data, 1);
NET_BUF_SIMPLE_DEFINE_STATIC(temperature_sensor_data, 1);

// parameters of sensor state
static esp_ble_mesh_sensor_state_t sensor_state[2] = {
 [0] = {
 .sensor_property_id = HUM_SENSOR_PROP_ID,
 .descriptor.positive_tolerance = SENSOR_POSITIVE_TOLERANCE,
 .descriptor.negative_tolerance = SENSOR_NEGATIVE_TOLERANCE,
 .descriptor.sampling_function = SENSOR_SAMPLE_FUNCTION,
 .descriptor.measure_period = SENSOR_MEASURE_PERIOD,
 .descriptor.update_interval = SENSOR_UPDATE_INTERVAL,
 .sensor_data.format = ESP_BLE_MESH_SENSOR_DATA_FORMAT_A,
 .sensor_data.length = 0, /* 0 represents the length is 1 */
 .sensor_data.raw_value = &humidity_sensor_data,
 },
 [1] = {
 .sensor_property_id = TEMP_SENSOR_PROP_ID,
 .descriptor.positive_tolerance = SENSOR_POSITIVE_TOLERANCE,
 .descriptor.negative_tolerance = SENSOR_NEGATIVE_TOLERANCE,
 .descriptor.sampling_function = SENSOR_SAMPLE_FUNCTION,
 .descriptor.measure_period = SENSOR_MEASURE_PERIOD,
 .descriptor.update_interval = SENSOR_UPDATE_INTERVAL,
 .sensor_data.format = ESP_BLE_MESH_SENSOR_DATA_FORMAT_A,
 .sensor_data.length = 0, // 0 represents the length is 1
 .sensor_data.raw_value = &temperature_sensor_data,
 },
 };

/*
 Define a model publication context

38

 20 octets is large enough to hold two Sensor Descriptor state values. */
ESP_BLE_MESH_MODEL_PUB_DEFINE(sensor_pub, 20, ROLE_NODE);

static esp_ble_mesh_sensor_srv_t sensor_server = {
 .rsp_ctrl.get_auto_rsp = ESP_BLE_MESH_SERVER_RSP_BY_APP,
 .rsp_ctrl.set_auto_rsp = ESP_BLE_MESH_SERVER_RSP_BY_APP,
 .state_count = ARRAY_SIZE(sensor_state),
 .states = sensor_state,
};

ESP_BLE_MESH_MODEL_PUB_DEFINE(sensor_setup_pub, 20, ROLE_NODE);
static esp_ble_mesh_sensor_setup_srv_t sensor_setup_server = {
 .rsp_ctrl.get_auto_rsp = ESP_BLE_MESH_SERVER_RSP_BY_APP,
 .rsp_ctrl.set_auto_rsp = ESP_BLE_MESH_SERVER_RSP_BY_APP,
 .state_count = ARRAY_SIZE(sensor_state),
 .states = sensor_state,
};

// Configuration Server
static esp_ble_mesh_cfg_srv_t configuration_server = {
 .relay = ESP_BLE_MESH_RELAY_ENABLED,
 .beacon = ESP_BLE_MESH_BEACON_ENABLED,
 .gatt_proxy = ESP_BLE_MESH_GATT_PROXY_ENABLED,
 //.gatt_proxy = ESP_BLE_MESH_GATT_PROXY_DISABLED,
 .default_ttl = 10,
 .net_transmit = ESP_BLE_MESH_TRANSMIT(2, 20), // Total of 3 transmissions after every
20ms
 .relay_retransmit = ESP_BLE_MESH_TRANSMIT(2, 20),
};

// Root models
// all the server/client models are initialized here
static esp_ble_mesh_model_t root_models[] = {
 ESP_BLE_MESH_MODEL_CFG_SRV(&configuration_server), // define a configuration server
model
 ESP_BLE_MESH_MODEL_SENSOR_SRV(&sensor_pub, &sensor_server),
 ESP_BLE_MESH_MODEL_SENSOR_SETUP_SRV(&sensor_setup_pub, &sensor_setup_server),
};

// Element definition
static esp_ble_mesh_elem_t elements[] = {
 // Helper to define a BLE Mesh element within an array.
 // In case the element has no SIG or Vendor models, the helper
 // macro ESP_BLE_MESH_MODEL_NONE can be given instead.
 ESP_BLE_MESH_ELEMENT(0, root_models, ESP_BLE_MESH_MODEL_NONE),
};

// Node composition

39

static esp_ble_mesh_comp_t composition = {
 .cid = NODE_CID,
 .elements = elements,
 .element_count = ARRAY_SIZE(elements),
};

// contains provisioning related data
static esp_ble_mesh_prov_t prov = {
 .uuid = dev_uuid,
};

esp_ble_mesh_model_t *get_sensor_server_model(void)
{
 return &root_models[1];
}

static esp_err_t initialize_mesh(void)
{
 esp_err_t error_code = ESP_OK;
 ble_mesh_get_dev_uuid(dev_uuid);
 error_code = esp_ble_mesh_init(&prov, &composition);
 error_code = esp_ble_mesh_node_prov_enable(ESP_BLE_MESH_PROV_GATT |
ESP_BLE_MESH_PROV_ADV);
 return error_code;
}

static void mesh_provisioning_callback(esp_ble_mesh_prov_cb_event_t event,
esp_ble_mesh_prov_cb_param_t *param)
{
 switch (event)
 {
 case ESP_BLE_MESH_NODE_PROV_COMPLETE_EVT:
 ESP_LOGI(TAG, "Provisioning complete");
 break;
 case ESP_BLE_MESH_NODE_PROV_RESET_EVT:
 // All provisioning information in this node will be deleted and the node needs to be
reprovisioned. The
 // API function esp_ble_mesh_node_prov_enable() needs to be called to start a new
provisioning procedure.
 esp_ble_mesh_node_local_reset();
 default:
 break;
 }
}

static void config_server_callback(esp_ble_mesh_cfg_server_cb_event_t event,
esp_ble_mesh_cfg_server_cb_param_t *param)

40

{
 if (event == ESP_BLE_MESH_CFG_SERVER_STATE_CHANGE_EVT)
 {
 switch (param->ctx.recv_op)
 {
 case ESP_BLE_MESH_MODEL_OP_APP_KEY_ADD:
 ESP_LOGI(TAG, "config: app key added");
 break;
 default:
 break;
 }
 }
}

/**
 * : after variable name is used for specifying the number of bit fields to use for variable
 * ((packed)) means it will use the smallest possible space for struct Ball - i.e. it will cram fields
together without padding
 */
struct sensor_descriptor
{
 uint16_t sensor_prop_id;
 uint32_t pos_tolerance : 12,
 neg_tolerance : 12,
 sample_func : 8;
 uint8_t measure_period;
 uint8_t update_interval;
} __attribute__((packed));

/**
 * @brief Sends sensor descriptor state data in response to sensor descriptor get message
 * Sensor Descriptor Status message ==> Sensor Descriptor Get message
 * @param param
 * Sensor Server Model callback parameters
 * Public Members of esp_ble_mesh_sensor_server_cb_param_t:
 * esp_ble_mesh_model_t *model - Pointer to Sensor Server Models
 * esp_ble_mesh_msg_ctx_t ctx - Context of the received messages
 * esp_ble_mesh_sensor_server_cb_value_t value - Value of the received Sensor Messages
 *
 * @details
 * Message Types:
 * 1) Sensor Descriptor Get
 * Sensor Descriptor Get is an acknowledged message used to get the Sensor Descriptor state
of all
 * sensors within an element.
 *
 * 2) Sensor Descriptor Status

41

 * The Sensor Descriptor Status is an unacknowledged message used to report a sequence of
the
 * Sensor Descriptor states of an element.
 */
static void
ble_mesh_send_sensor_descriptor_status(esp_ble_mesh_sensor_server_cb_param_t *param)
{
 struct sensor_descriptor descriptor = {0}; // initialize all bits to zero
 uint8_t *status = NULL; // pointer to memory allocated to descriptor state struct
 uint16_t length = 0; // length of sensor descriptor state
 esp_err_t err;
 int i;

 status = calloc(1, ARRAY_SIZE(sensor_state) * ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN);
 if (!status)
 {
 ESP_LOGE(TAG, "No memory for sensor descriptor status!");
 return;
 }

 if (param->value.get.sensor_descriptor.op_en == false)
 {
 /* Mesh Model Spec:
 * Upon receiving a Sensor Descriptor Get message with the Property ID field
 * omitted, the Sensor Server shall respond with a Sensor Descriptor Status
 * message containing the Sensor Descriptor states for all sensors within the
 * Sensor Server.
 */
 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 descriptor.sensor_prop_id = sensor_state[i].sensor_property_id;
 descriptor.pos_tolerance = sensor_state[i].descriptor.positive_tolerance;
 descriptor.neg_tolerance = sensor_state[i].descriptor.negative_tolerance;
 descriptor.sample_func = sensor_state[i].descriptor.sampling_function;
 descriptor.measure_period = sensor_state[i].descriptor.measure_period;
 descriptor.update_interval = sensor_state[i].descriptor.update_interval;

 memcpy(status + length, &descriptor, ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN);
 length += ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN;
 }
 goto send;
 }
 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 /* Send descriptor state when the get message contains the valid sensor property ID */
 if (param->value.get.sensor_descriptor.property_id == sensor_state[i].sensor_property_id)
 {

42

 descriptor.sensor_prop_id = sensor_state[i].sensor_property_id;
 descriptor.pos_tolerance = sensor_state[i].descriptor.positive_tolerance;
 descriptor.neg_tolerance = sensor_state[i].descriptor.negative_tolerance;
 descriptor.sample_func = sensor_state[i].descriptor.sampling_function;
 descriptor.measure_period = sensor_state[i].descriptor.measure_period;
 descriptor.update_interval = sensor_state[i].descriptor.update_interval;
 memcpy(status, &descriptor, ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN);
 length = ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN;
 goto send;
 }
 }
 /* Mesh Model Spec:
 * When a Sensor Descriptor Get message that identifies a sensor descriptor
 * property that does not exist on the element, the Descriptor field shall
 * contain the requested Property ID value and the other fields of the Sensor
 * Descriptor state shall be omitted.
 */
 memcpy(status, ¶m->value.get.sensor_descriptor.property_id,
ESP_BLE_MESH_SENSOR_PROPERTY_ID_LEN);
 length = ESP_BLE_MESH_SENSOR_PROPERTY_ID_LEN;

send:
 ESP_LOG_BUFFER_HEX("Sensor Descriptor", status, length); // Log a buffer of hex bytes at
Info level.

 err = esp_ble_mesh_server_model_send_msg(param->model, ¶m->ctx,
 ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_STATUS, length,
status);
 if (err != ESP_OK)
 {
 ESP_LOGE(TAG, "Failed to send Sensor Descriptor Status");
 }
 free(status); // release the memory held by descriptor state structure
}

static void ble_mesh_send_sensor_cadence_status(esp_ble_mesh_sensor_server_cb_param_t
*param)
{
 esp_err_t err;

 /* Sensor Cadence state is not supported currently. */
 err = esp_ble_mesh_server_model_send_msg(param->model, ¶m->ctx,
 ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_STATUS,
 ESP_BLE_MESH_SENSOR_PROPERTY_ID_LEN,
 (uint8_t *)¶m->value.get.sensor_cadence.property_id);
 if (err != ESP_OK)
 {
 ESP_LOGE(TAG, "Failed to send Sensor Cadence Status");

43

 }
}

static void ble_mesh_send_sensor_settings_status(esp_ble_mesh_sensor_server_cb_param_t
*param)
{
 esp_err_t err;

 /* Sensor Setting state is not supported currently. */
 err = esp_ble_mesh_server_model_send_msg(param->model, ¶m->ctx,
 ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_STATUS,
 ESP_BLE_MESH_SENSOR_PROPERTY_ID_LEN,
 (uint8_t *)¶m->value.get.sensor_settings.property_id);
 if (err != ESP_OK)
 {
 ESP_LOGE(TAG, "Failed to send Sensor Settings Status");
 }
}

struct sensor_setting
{
 uint16_t sensor_prop_id;
 uint16_t sensor_setting_prop_id;
} __attribute__((packed));

static void ble_mesh_send_sensor_setting_status(esp_ble_mesh_sensor_server_cb_param_t
*param)
{
 struct sensor_setting setting = {0};
 esp_err_t err;

 /* Mesh Model Spec:
 * If the message is sent as a response to the Sensor Setting Get message or
 * a Sensor Setting Set message with an unknown Sensor Property ID field or
 * an unknown Sensor Setting Property ID field, the Sensor Setting Access
 * field and the Sensor Setting Raw field shall be omitted.
 */

 setting.sensor_prop_id = param->value.get.sensor_setting.property_id;
 setting.sensor_setting_prop_id = param->value.get.sensor_setting.setting_property_id;

 err = esp_ble_mesh_server_model_send_msg(param->model, ¶m->ctx,
 ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_STATUS,
 sizeof(setting), (uint8_t *)&setting);
 if (err != ESP_OK)
 {
 ESP_LOGE(TAG, "Failed to send Sensor Setting Status");
 }

44

}

static uint16_t ble_mesh_get_sensor_data(esp_ble_mesh_sensor_state_t *state, uint8_t
*data)
{
 uint8_t mpid_len = 0, data_len = 0;
 uint32_t mpid = 0;

 if (state == NULL || data == NULL)
 {
 ESP_LOGE(TAG, "%s, Invalid parameter", __func__);
 return 0;
 }

 if (state->sensor_data.length == ESP_BLE_MESH_SENSOR_DATA_ZERO_LEN)
 {
 /* For zero-length sensor data, the length is 0x7F, and the format is Format B. */
 mpid = ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID(state->sensor_data.length,
state->sensor_property_id);
 mpid_len = ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN;
 data_len = 0;
 }
 else
 {
 if (state->sensor_data.format == ESP_BLE_MESH_SENSOR_DATA_FORMAT_A)
 {
 mpid = ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID(state->sensor_data.length,
state->sensor_property_id);
 mpid_len = ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID_LEN;
 }
 else
 {
 mpid = ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID(state->sensor_data.length,
state->sensor_property_id);
 mpid_len = ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN;
 }
 /* Use "state->sensor_data.length + 1" because the length of sensor data is zero-based. */
 data_len = state->sensor_data.length + 1;
 }

 // ???
 memcpy(data, &mpid, mpid_len);
 memcpy(data + mpid_len, state->sensor_data.raw_value->data, data_len);

 return (mpid_len + data_len);
}

45

static void ble_mesh_send_sensor_status(esp_ble_mesh_sensor_server_cb_param_t *param)
{
 uint8_t *status = NULL;
 uint16_t buf_size = 0;
 uint16_t length = 0;
 uint32_t mpid = 0;
 esp_err_t err;
 int i;

 /**
 * Sensor Data state from Mesh Model Spec
 * |--------Field--------|-Size (octets)-|------------------------Notes-------------------------|
 * |----Property ID 1----|-------2-------|--ID of the 1st device property of the sensor---------|
 * |-----Raw Value 1-----|----variable---|--Raw Value field defined by the 1st device property--
|
 * |----Property ID 2----|-------2-------|--ID of the 2nd device property of the sensor---------|
 * |-----Raw Value 2-----|----variable---|--Raw Value field defined by the 2nd device property--
|
 * | |
 * |----Property ID n----|-------2-------|--ID of the nth device property of the sensor---------|
 * |-----Raw Value n-----|----variable---|--Raw Value field defined by the nth device property--
|
 */

 // find the buffer size for sensor status
 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 esp_ble_mesh_sensor_state_t *state = &sensor_state[i];
 if (state->sensor_data.length == ESP_BLE_MESH_SENSOR_DATA_ZERO_LEN)
 {
 buf_size += ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN;
 }
 else
 {
 /* Use "state->sensor_data.length + 1" because the length of sensor data is zero-based.
*/
 if (state->sensor_data.format == ESP_BLE_MESH_SENSOR_DATA_FORMAT_A)
 {
 buf_size += ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID_LEN + state-
>sensor_data.length + 1;
 }
 else
 {
 buf_size += ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN + state-
>sensor_data.length + 1;
 }
 }
 }

46

 status = calloc(1, buf_size);
 if (!status)
 {
 ESP_LOGE(TAG, "No memory for sensor status!");
 return;
 }

 if (param->value.get.sensor_data.op_en == false)
 {
 /* Mesh Model Spec:
 * If the message is sent as a response to the Sensor Get message, and if the
 * Property ID field of the incoming message is omitted, the Marshalled Sensor
 * Data field shall contain data for all device properties within a sensor.
 */
 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 length += ble_mesh_get_sensor_data(&sensor_state[i], status + length);
 }
 goto send;
 }

 /* Mesh Model Spec:
 * Otherwise, the Marshalled Sensor Data field shall contain data for the requested
 * device property only.
 */
 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 if (param->value.get.sensor_data.property_id == sensor_state[i].sensor_property_id)
 {
 length = ble_mesh_get_sensor_data(&sensor_state[i], status);
 goto send;
 }
 }

 /* Mesh Model Spec:
 * Or the Length shall represent the value of zero and the Raw Value field shall
 * contain only the Property ID if the requested device property is not recognized
 * by the Sensor Server.
 */
 mpid =
ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID(ESP_BLE_MESH_SENSOR_DATA_ZERO_LEN,
 param->value.get.sensor_data.property_id);
 memcpy(status, &mpid, ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN);
 length = ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN;

send:
 ESP_LOG_BUFFER_HEX("Sensor Data", status, length);

47

 err = esp_ble_mesh_server_model_send_msg(param->model, ¶m->ctx,
 ESP_BLE_MESH_MODEL_OP_SENSOR_STATUS, length, status);
 if (err != ESP_OK)
 {
 ESP_LOGE(TAG, "Failed to send Sensor Status");
 }
 free(status);
}

static void publish_data()
{
 uint8_t *status = NULL;
 uint16_t buf_size = 0;
 uint16_t length = 0;
 esp_err_t err;
 int i;

 // find the buffer size for sensor status
 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 esp_ble_mesh_sensor_state_t *state = &sensor_state[i];
 if (state->sensor_data.length == ESP_BLE_MESH_SENSOR_DATA_ZERO_LEN)
 {
 buf_size += ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN;
 }
 else
 {
 /* Use "state->sensor_data.length + 1" because the length of sensor data is zero-based.
*/
 if (state->sensor_data.format == ESP_BLE_MESH_SENSOR_DATA_FORMAT_A)
 {
 buf_size += ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID_LEN + state-
>sensor_data.length + 1;
 }
 else
 {
 buf_size += ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN + state-
>sensor_data.length + 1;
 }
 }
 }

 status = calloc(1, buf_size);

 if (!status)
 {
 ESP_LOGE(TAG, "No memory for sensor status!");

48

 return;
 }

 for (i = 0; i < ARRAY_SIZE(sensor_state); i++)
 {
 length += ble_mesh_get_sensor_data(&sensor_state[i], status + length);
 }

 ESP_LOG_BUFFER_HEX("Published Sensor Data", status, length);

 esp_ble_mesh_model_t *model = get_sensor_server_model();
 err = esp_ble_mesh_model_publish(model, ESP_BLE_MESH_MODEL_OP_SENSOR_STATUS,
length, status, ROLE_NODE);
 if (err != ESP_OK)
 {
 ESP_LOGE(TAG, "Failed to publish Sensor Status");
 }
 free(status);
}

static void ble_mesh_sensor_server_cb(esp_ble_mesh_sensor_server_cb_event_t event,
 esp_ble_mesh_sensor_server_cb_param_t *param)
{
 ESP_LOGI(TAG, "Sensor server, event %d, src 0x%04x, dst 0x%04x, model_id 0x%04x",
 event, param->ctx.addr, param->ctx.recv_dst, param->model->model_id);

 switch (event)
 {
 case ESP_BLE_MESH_SENSOR_SERVER_RECV_GET_MSG_EVT:
 switch (param->ctx.recv_op)
 {
 case ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_GET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_GET");
 ble_mesh_send_sensor_descriptor_status(param);
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_GET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_GET");
 ble_mesh_send_sensor_cadence_status(param);
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_GET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_GET");
 ble_mesh_send_sensor_settings_status(param);
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_GET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_GET");

49

 ble_mesh_send_sensor_setting_status(param);
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_GET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_GET");
 ble_mesh_send_sensor_status(param);
 break;
 default:
 ESP_LOGE(TAG, "Unknown Sensor Get opcode 0x%04x", param->ctx.recv_op);
 return;
 }
 break;
 case ESP_BLE_MESH_SENSOR_SERVER_RECV_SET_MSG_EVT:
 switch (param->ctx.recv_op)
 {
 case ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET");
 ble_mesh_send_sensor_cadence_status(param);
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET_UNACK:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET_UNACK");
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET");
 ble_mesh_send_sensor_setting_status(param);
 break;
 case ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET_UNACK:
 ESP_LOGI(TAG, "ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET_UNACK");
 break;
 default:
 ESP_LOGE(TAG, "Unknown Sensor Set opcode 0x%04x", param->ctx.recv_op);
 break;
 }
 break;
 default:
 ESP_LOGE(TAG, "Unknown Sensor Server event %d", event);
 break;
 }
}

void app_main()
{

 nvs_flash_erase();
 nvs_flash_init();

 BLE_stack_init();

50

 esp_ble_mesh_register_prov_callback(mesh_provisioning_callback);
 esp_ble_mesh_register_config_server_callback(config_server_callback);
 esp_ble_mesh_register_sensor_server_callback(ble_mesh_sensor_server_cb);
 initialize_mesh();

 net_buf_simple_add_u8(&humidity_sensor_data, 2*humidity);
 net_buf_simple_add_u8(&temperature_sensor_data, 2*temperature);

 while (true)
 {
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 get_temperature_and_humidity();
 printf("Humidity: %f%% Temp: %fC\n", humidity, temperature);

 net_buf_simple_pull(&humidity_sensor_data, sizeof(uint8_t));
 net_buf_simple_pull(&temperature_sensor_data, sizeof(uint8_t));

 net_buf_simple_add_u8(&humidity_sensor_data, 2*humidity);
 net_buf_simple_add_u8(&temperature_sensor_data, 2*temperature);

 publish_data();
 }
}

15.2. Flutter Application Code

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

class SendConfigModelPublicationAdd extends StatefulWidget {
 final MeshManagerApi meshManagerApi;

 const SendConfigModelPublicationAdd(this.meshManagerApi, {Key? key}) : super(key: key);

 @override
 State<SendConfigModelPublicationAdd> createState() => _SendConfigModelPublicationAddState();
}

class _SendConfigModelPublicationAddState extends State<SendConfigModelPublicationAdd> {
 late int selectedElementAddress;
 late int selectedModelId;
 late int selectedSubscriptionAddress;

51

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 title: const Text('Send a config model Publication add'),
 children: <Widget>[
 TextField(
 decoration: const InputDecoration(hintText: 'Element Address'),
 onChanged: (text) {
 selectedElementAddress = int.parse(text);
 },
),
 TextField(
 decoration: const InputDecoration(hintText: 'Model id'),
 onChanged: (text) {
 selectedModelId = int.parse(text);
 },
),
 TextField(
 decoration: const InputDecoration(hintText: 'publication address'),
 onChanged: (text) {
 selectedSubscriptionAddress = int.parse(text);
 },
),
 TextButton(
 onPressed: () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 try {
 await widget.meshManagerApi
 .sendConfigModelPublicationSet(selectedElementAddress, selectedSubscriptionAddress,
selectedModelId)
 .timeout(const Duration(seconds: 40));
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on TimeoutException catch (_) {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('Board didn\'t respond')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 },
 child: const Text('Send config message'),
)
],
);
 }
}

52

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

class SendConfigModelSubscriptionAdd extends StatefulWidget {
 final MeshManagerApi meshManagerApi;

 const SendConfigModelSubscriptionAdd(this.meshManagerApi, {Key? key}) : super(key: key);

 @override
 State<SendConfigModelSubscriptionAdd> createState() =>
_SendConfigModelSubscriptionAddState();
}

class _SendConfigModelSubscriptionAddState extends State<SendConfigModelSubscriptionAdd> {
 late int selectedElementAddress;
 late int selectedModelId;
 late int selectedSubscriptionAddress;

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 title: const Text('Send a config model Subscription add'),
 children: <Widget>[
 TextField(
 decoration: const InputDecoration(hintText: 'Element Address'),
 onChanged: (text) {
 selectedElementAddress = int.parse(text);
 },
),
 TextField(
 decoration: const InputDecoration(hintText: 'Model id'),
 onChanged: (text) {
 selectedModelId = int.parse(text);
 },
),
 TextField(
 decoration: const InputDecoration(hintText: 'subscription address'),
 onChanged: (text) {
 selectedSubscriptionAddress = int.parse(text);
 },
),
 TextButton(
 onPressed: () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 try {

53

 await widget.meshManagerApi
 .sendConfigModelSubscriptionAdd(selectedElementAddress, selectedSubscriptionAddress,
selectedModelId)
 .timeout(const Duration(seconds: 40));
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on TimeoutException catch (_) {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('Board didn\'t respond')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 },
 child: const Text('Send config message'),
)
],
);
 }
}

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

class SendDeprovisioning extends StatefulWidget {
 final MeshManagerApi meshManagerApi;

 const SendDeprovisioning({Key? key, required this.meshManagerApi}) : super(key: key);

 @override
 State<SendDeprovisioning> createState() => _SendDeprovisioningState();
}

class _SendDeprovisioningState extends State<SendDeprovisioning> {
 int? selectedElementAddress;

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 key: const ValueKey('module-send-deprovisioning-form'),
 title: const Text('Send a deprovisioning'),
 children: <Widget>[
 TextField(
 key: const ValueKey('module-send-deprovisioning-address'),
 decoration: const InputDecoration(hintText: 'Element Address'),
 onChanged: (text) {

54

 setState(() {
 selectedElementAddress = int.tryParse(text);
 });
 },
),
 TextButton(
 onPressed: selectedElementAddress != null
 ? () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 final node = await
widget.meshManagerApi.meshNetwork!.getNode(selectedElementAddress!);
 final nodes = await widget.meshManagerApi.meshNetwork!.nodes;
 try {
 final provisionedNode = nodes.firstWhere((element) => element.uuid == node!.uuid);
 await widget.meshManagerApi.deprovision(provisionedNode).timeout(const
Duration(seconds: 40));
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on TimeoutException catch (_) {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('Board didn\'t respond')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } on StateError catch (_) {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('No node found with this
uuid')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 }
 : null,
 child: const Text('Send node reset'),
)
],
);
 }
}

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

class SendGenericLevel extends StatefulWidget {
 final MeshManagerApi meshManagerApi;

 const SendGenericLevel({Key? key, required this.meshManagerApi}) : super(key: key);

 @override

55

 State<SendGenericLevel> createState() => _SendGenericLevelState();
}

class _SendGenericLevelState extends State<SendGenericLevel> {
 int? selectedElementAddress;

 int? selectedLevel;

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 key: const ValueKey('module-send-generic-level-form'),
 title: const Text('Send a generic level set'),
 children: <Widget>[
 TextField(
 key: const ValueKey('module-send-generic-level-address'),
 decoration: const InputDecoration(hintText: 'Element Address'),
 onChanged: (text) {
 selectedElementAddress = int.parse(text);
 },
),
 TextField(
 key: const ValueKey('module-send-generic-level-value'),
 decoration: const InputDecoration(hintText: 'Level Value'),
 onChanged: (text) {
 setState(() {
 selectedLevel = int.tryParse(text);
 });
 },
),
 TextButton(
 onPressed: selectedLevel != null
 ? () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 debugPrint('send level $selectedLevel to $selectedElementAddress');
 try {
 await widget.meshManagerApi
 .sendGenericLevelSet(selectedElementAddress!, selectedLevel!)
 .timeout(const Duration(seconds: 40));
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on TimeoutException catch (_) {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('Board didn\'t respond')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 }

56

 : null,
 child: const Text('Send level'),
)
],
);
 }
}

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

class SendGenericOnOff extends StatefulWidget {
 final MeshManagerApi meshManagerApi;

 const SendGenericOnOff({Key? key, required this.meshManagerApi}) : super(key: key);

 @override
 State<SendGenericOnOff> createState() => _SendGenericOnOffState();
}

class _SendGenericOnOffState extends State<SendGenericOnOff> {
 int? selectedElementAddress;

 bool onOff = false;

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 key: const ValueKey('module-send-generic-on-off-form'),
 title: const Text('Send a generic On Off set'),
 children: <Widget>[
 TextField(
 key: const ValueKey('module-send-generic-on-off-address'),
 decoration: const InputDecoration(hintText: 'Element Address'),
 onChanged: (text) {
 setState(() {
 selectedElementAddress = int.tryParse(text);
 });
 },
),
 Checkbox(
 key: const ValueKey('module-send-generic-on-off-value'),
 value: onOff,
 onChanged: (value) {
 setState(() {

57

 onOff = value!;
 });
 },
),
 TextButton(
 onPressed: selectedElementAddress != null
 ? () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 debugPrint('send level $onOff to $selectedElementAddress');
 final provisionerUuid = await
widget.meshManagerApi.meshNetwork!.selectedProvisionerUuid();
 final nodes = await widget.meshManagerApi.meshNetwork!.nodes;
 try {
 final provisionedNode = nodes.firstWhere((element) => element.uuid == provisionerUuid);
 final sequenceNumber = await
widget.meshManagerApi.getSequenceNumber(provisionedNode);
 await widget.meshManagerApi
 .sendGenericOnOffSet(selectedElementAddress!, onOff, sequenceNumber)
 .timeout(const Duration(seconds: 40));
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on TimeoutException catch (_) {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('Board didn\'t respond')));
 } on StateError catch (_) {
 scaffoldMessenger.showSnackBar(
 SnackBar(content: Text('No provisioner found with this uuid : $provisionerUuid')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 }
 : null,
 child: const Text('Send on off'),
)
],
);
 }
}

import 'package:flutter/cupertino.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/views/control_module/model.dart';

class MeshElement extends StatelessWidget {
 final ElementData element;

 const MeshElement(this.element, {Key? key}) : super(key: key);

58

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Text('address : ${element.address}'),
 Row(
 children: <Widget>[const Text('Models: '), ...element.models.map((e) => Model(e))],
)
],
);
 }
}

import 'package:flutter/material.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

class Model extends StatelessWidget {
 final ModelData model;

 const Model(this.model, {Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Wrap(
 children: <Widget>[Text(' ${model.modelId} '), appKeyBindIcon(), const Text(', ')],
);
 }

 bool isAppKeyBound() {
 return model.boundAppKey.isNotEmpty;
 }

 Icon appKeyBindIcon() {
 return isAppKeyBound()
 ? const Icon(
 Icons.check,
 size: 15,
 color: Colors.green,
)
 : const Icon(
 Icons.clear,
 size: 15,
 color: Colors.red,
);
 }
}

import 'dart:async';

59

import 'package:flutter/material.dart';
import 'package:flutter_reactive_ble/flutter_reactive_ble.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import
'package:nordic_nrf_mesh_example/src/views/control_module/commands/send_config_model_publ
ication_add.dart';

import 'commands/send_deprovisioning.dart';
import 'commands/send_generic_on_off.dart';
import 'commands/send_config_model_subscription_add.dart';
import 'commands/send_generic_level.dart';
import 'node.dart';

class Module extends StatefulWidget {
 final DiscoveredDevice device;
 final MeshManagerApi meshManagerApi;
 final VoidCallback onDisconnect;

 const Module({
 Key? key,
 required this.device,
 required this.meshManagerApi,
 required this.onDisconnect,
 }) : super(key: key);

 @override
 State<Module> createState() => _ModuleState();
}

class _ModuleState extends State<Module> {
 final bleMeshManager = BleMeshManager();

 bool isLoading = true;
 late List<ProvisionedMeshNode> nodes;

 @override
 void initState() {
 super.initState();
 _init();
 }

 @override
 void dispose() {
 _deinit();
 super.dispose();
 }

60

 @override
 Widget build(BuildContext context) {
 Widget layout = Center(
 child: Column(
 mainAxisSize: MainAxisSize.min,
 children: const [
 CircularProgressIndicator(),
 Text('Connecting ...'),
],
),
);
 if (!isLoading) {
 layout = ListView(
 children: <Widget>[
 TextButton(
 onPressed: () {
 _deinit();
 widget.onDisconnect();
 },
 child: const Text('Disconnect from network'),
),
 for (var i = 0; i < nodes.length; i++)
 GestureDetector(
 onTap: () {
 Navigator.of(context).push(
 MaterialPageRoute(
 builder: (context) {
 return Node(
 meshManagerApi: widget.meshManagerApi,
 node: nodes[i],
 name: nodes[i].uuid,
);
 },
),
);
 },
 child: Card(
 child: Padding(
 padding: const EdgeInsets.all(16.0),
 child: Container(
 key: ValueKey('node-$i'),
 child: Text(nodes[i].uuid),
),
),
),
),
 const Divider(),
 SendGenericLevel(meshManagerApi: widget.meshManagerApi),

61

 SendGenericOnOff(meshManagerApi: widget.meshManagerApi),
 SendConfigModelSubscriptionAdd(widget.meshManagerApi),
 SendConfigModelPublicationAdd(widget.meshManagerApi),
 SendDeprovisioning(meshManagerApi: widget.meshManagerApi),
],
);
 }
 return layout;
 }

 Future<void> _init() async {
 bleMeshManager.callbacks = DoozProvisionedBleMeshManagerCallbacks(widget.meshManagerApi,
bleMeshManager);
 await bleMeshManager.connect(widget.device);
 // get nodes (ignore first node which is the default provisioner)
 nodes = (await widget.meshManagerApi.meshNetwork!.nodes).skip(1).toList();
 // will bind app keys (needed to be able to configure node)
 for (final node in nodes) {
 final elements = await node.elements;
 for (final element in elements) {
 for (final model in element.models) {
 if (model.boundAppKey.isEmpty) {
 if (element == elements.first && model == element.models.first) {
 continue;
 }
 final unicast = await node.unicastAddress;
 debugPrint('need to bind app key');
 await widget.meshManagerApi.sendConfigModelAppBind(
 unicast,
 element.address,
 model.modelId,
);
 }
 }
 }
 }

 setState(() {
 isLoading = false;
 });
 }

 void _deinit() async {
 await bleMeshManager.disconnect();
 await bleMeshManager.callbacks!.dispose();
 }
}

62

class DoozProvisionedBleMeshManagerCallbacks extends BleMeshManagerCallbacks {
 final MeshManagerApi meshManagerApi;
 final BleMeshManager bleMeshManager;

 late StreamSubscription<ConnectionStateUpdate> onDeviceConnectingSubscription;
 late StreamSubscription<ConnectionStateUpdate> onDeviceConnectedSubscription;
 late StreamSubscription<BleManagerCallbacksDiscoveredServices>
onServicesDiscoveredSubscription;
 late StreamSubscription<DiscoveredDevice> onDeviceReadySubscription;
 late StreamSubscription<BleMeshManagerCallbacksDataReceived> onDataReceivedSubscription;
 late StreamSubscription<BleMeshManagerCallbacksDataSent> onDataSentSubscription;
 late StreamSubscription<ConnectionStateUpdate> onDeviceDisconnectingSubscription;
 late StreamSubscription<ConnectionStateUpdate> onDeviceDisconnectedSubscription;
 late StreamSubscription<List<int>> onMeshPduCreatedSubscription;

 DoozProvisionedBleMeshManagerCallbacks(this.meshManagerApi, this.bleMeshManager) {
 onDeviceConnectingSubscription = onDeviceConnecting.listen((event) {
 debugPrint('onDeviceConnecting $event');
 });
 onDeviceConnectedSubscription = onDeviceConnected.listen((event) {
 debugPrint('onDeviceConnected $event');
 });

 onServicesDiscoveredSubscription = onServicesDiscovered.listen((event) {
 debugPrint('onServicesDiscovered');
 });

 onDeviceReadySubscription = onDeviceReady.listen((event) async {
 debugPrint('onDeviceReady ${event.id}');
 });

 onDataReceivedSubscription = onDataReceived.listen((event) async {
 debugPrint('onDataReceived ${event.device.id} ${event.pdu} ${event.mtu}');
 await meshManagerApi.handleNotifications(event.mtu, event.pdu);
 });
 onDataSentSubscription = onDataSent.listen((event) async {
 debugPrint('onDataSent ${event.device.id} ${event.pdu} ${event.mtu}');
 await meshManagerApi.handleWriteCallbacks(event.mtu, event.pdu);
 });

 onDeviceDisconnectingSubscription = onDeviceDisconnecting.listen((event) {
 debugPrint('onDeviceDisconnecting $event');
 });
 onDeviceDisconnectedSubscription = onDeviceDisconnected.listen((event) {
 debugPrint('onDeviceDisconnected $event');
 });

 onMeshPduCreatedSubscription = meshManagerApi.onMeshPduCreated.listen((event) async {

63

 debugPrint('onMeshPduCreated $event');
 await bleMeshManager.sendPdu(event);
 });
 }

 @override
 Future<void> dispose() => Future.wait([
 onDeviceConnectingSubscription.cancel(),
 onDeviceConnectedSubscription.cancel(),
 onServicesDiscoveredSubscription.cancel(),
 onDeviceReadySubscription.cancel(),
 onDataReceivedSubscription.cancel(),
 onDataSentSubscription.cancel(),
 onDeviceDisconnectingSubscription.cancel(),
 onDeviceDisconnectedSubscription.cancel(),
 onMeshPduCreatedSubscription.cancel(),
 super.dispose(),
]);

 @override
 Future<void> sendMtuToMeshManagerApi(int mtu) => meshManagerApi.setMtu(mtu);
}

import 'package:flutter/material.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

import '../control_module/mesh_element.dart';

class Node extends StatefulWidget {
 final String name;
 final ProvisionedMeshNode node;
 final MeshManagerApi meshManagerApi;

 const Node({Key? key, required this.node, required this.meshManagerApi, required this.name}) :
super(key: key);

 @override
 State<Node> createState() => _NodeState();
}

class _NodeState extends State<Node> {
 bool isLoading = true;
 late int nodeAddress;
 late List<ElementData> elements;

 @override
 void initState() {
 super.initState();

64

 _init();
 }

 void _init() async {
 nodeAddress = await widget.node.unicastAddress;
 elements = await widget.node.elements;
 setState(() {
 isLoading = false;
 });
 }

 @override
 Widget build(BuildContext context) {
 Widget body = Center(
 child: Column(
 mainAxisSize: MainAxisSize.min,
 children: const [
 CircularProgressIndicator(),
 Text('Configuring...'),
],
),
);
 if (!isLoading) {
 body = ListView(
 children: [
 Text('Node $nodeAddress'),
 Text(widget.node.uuid),
 ...[
 const Text('Elements :'),
 Column(
 children: <Widget>[
 ...elements.map((element) => MeshElement(element)).toList(),
],
),
],
],
);
 }

 return Scaffold(
 appBar: AppBar(
 title: Text(widget.name),
),
 body: body,
);
 }
}

65

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter_reactive_ble/flutter_reactive_ble.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/app.dart';
import 'package:nordic_nrf_mesh_example/src/views/control_module/module.dart';
import 'package:nordic_nrf_mesh_example/src/widgets/device.dart';

class ProvisionedDevices extends StatefulWidget {
 final NordicNrfMesh nordicNrfMesh;

 const ProvisionedDevices({Key? key, required this.nordicNrfMesh}) : super(key: key);

 @override
 State<ProvisionedDevices> createState() => _ProvisionedDevicesState();
}

class _ProvisionedDevicesState extends State<ProvisionedDevices> {
 late MeshManagerApi _meshManagerApi;
 final _devices = <DiscoveredDevice>{};
 bool isScanning = false;
 StreamSubscription<DiscoveredDevice>? _scanSubscription;

 DiscoveredDevice? _device;

 @override
 void initState() {
 super.initState();
 _meshManagerApi = widget.nordicNrfMesh.meshManagerApi;
 _scanProvisionned();
 }

 @override
 void dispose() {
 super.dispose();
 _scanSubscription?.cancel();
 }

 @override
 Widget build(BuildContext context) {
 return Column(
 children: [
 if (isScanning) const LinearProgressIndicator(),
 if (_device == null) ...[
 if (!isScanning && _devices.isEmpty)
 const Expanded(
 child: Center(

66

 child: Text('No module found'),
),
),
 if (_devices.isNotEmpty)
 Expanded(
 child: ListView(
 padding: const EdgeInsets.all(8),
 children: [
 for (var i = 0; i < _devices.length; i++)
 Device(
 key: ValueKey('device-$i'),
 device: _devices.elementAt(i),
 onTap: () {
 setState(() {
 _device = _devices.elementAt(i);
 });
 },
),
],
),
),
] else
 Expanded(
 child: Module(
 device: _device!,
 meshManagerApi: _meshManagerApi,
 onDisconnect: () {
 _device = null;
 _scanProvisionned();
 }),
),
],
);
 }

 Future<void> _scanProvisionned() async {
 setState(() {
 _devices.clear();
 });
 await checkAndAskPermissions();
 _scanSubscription = widget.nordicNrfMesh.scanForProxy().listen((device) async {
 if (_devices.every((d) => d.id != device.id)) {
 setState(() {
 _devices.add(device);
 });
 }
 });
 setState(() {

67

 isScanning = true;
 });
 return Future.delayed(const Duration(seconds: 10), _stopScan);
 }

 Future<void> _stopScan() async {
 await _scanSubscription?.cancel();
 isScanning = false;
 if (mounted) {
 setState(() {});
 }
 }
}

import 'dart:async';
import 'dart:io';

import 'package:file_picker/file_picker.dart';
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/widgets/mesh_network_widget.dart';

class Home extends StatefulWidget {
 final NordicNrfMesh nordicNrfMesh;

 const Home({Key? key, required this.nordicNrfMesh}) : super(key: key);

 @override
 State<Home> createState() => _HomeState();
}

class _HomeState extends State<Home> {
 late IMeshNetwork? _meshNetwork;
 late final MeshManagerApi _meshManagerApi;
 late final StreamSubscription<IMeshNetwork?> onNetworkUpdateSubscription;
 late final StreamSubscription<IMeshNetwork?> onNetworkImportSubscription;
 late final StreamSubscription<IMeshNetwork?> onNetworkLoadingSubscription;

 @override
 void initState() {
 super.initState();
 _meshManagerApi = widget.nordicNrfMesh.meshManagerApi;
 _meshNetwork = _meshManagerApi.meshNetwork;
 onNetworkUpdateSubscription = _meshManagerApi.onNetworkUpdated.listen((event) {
 setState(() {
 _meshNetwork = event;
 });

68

 });
 onNetworkImportSubscription = _meshManagerApi.onNetworkImported.listen((event) {
 setState(() {
 _meshNetwork = event;
 });
 });
 onNetworkLoadingSubscription = _meshManagerApi.onNetworkLoaded.listen((event) {
 setState(() {
 _meshNetwork = event;
 });
 });
 }

 @override
 void dispose() {
 onNetworkUpdateSubscription.cancel();
 onNetworkLoadingSubscription.cancel();
 onNetworkImportSubscription.cancel();
 super.dispose();
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: ListView(
 children: [
 PlatformVersion(nordicNrfMesh: widget.nordicNrfMesh),
 ExpansionTile(
 title: const Text('Mesh network database'),
 expandedAlignment: Alignment.topLeft,
 children: [MeshNetworkDatabaseWidget(nordicNrfMesh: widget.nordicNrfMesh)],
),
 ExpansionTile(
 title: const Text('Mesh network manager'),
 expandedAlignment: Alignment.topLeft,
 children: [MeshNetworkManagerWidget(nordicNrfMesh: widget.nordicNrfMesh)],
),
 const Divider(),
 if (_meshNetwork != null)
 MeshNetworkDataWidget(meshNetwork: _meshNetwork!)
 else
 const Text('No meshNetwork loaded'),
],
),
);
 }
}

69

class PlatformVersion extends StatefulWidget {
 const PlatformVersion({Key? key, required this.nordicNrfMesh}) : super(key: key);

 final NordicNrfMesh nordicNrfMesh;
 @override
 State<PlatformVersion> createState() => _PlatformVersion();
}

class _PlatformVersion extends State<PlatformVersion> {
 String? _platformVersion;

 @override
 Widget build(BuildContext context) {
 if (_platformVersion != null) {
 return Text('Run on $_platformVersion');
 } else {
 return TextButton(
 onPressed: () async {
 var version = await widget.nordicNrfMesh.platformVersion;
 setState(() {
 _platformVersion = version;
 });
 },
 child: const Text('Get Platform Version'),
);
 }
 }
}

/// A [Widget] to interact with network database.
///
/// User may either :
/// - import a mesh network using the given JSON scheme
/// - export a mesh network to get the associated JSON String
/// - load a mesh network from the local database
/// - reset a mesh network
class MeshNetworkDatabaseWidget extends StatelessWidget {
 final NordicNrfMesh nordicNrfMesh;

 const MeshNetworkDatabaseWidget({Key? key, required this.nordicNrfMesh}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 MeshManagerApi? meshManagerApi = nordicNrfMesh.meshManagerApi;
 IMeshNetwork? meshNetwork = meshManagerApi.meshNetwork;
 return Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: [

70

 TextButton(
 onPressed: () async {
 final filePath = await FilePicker.platform.pickFiles(type: FileType.any);
 if (filePath == null) return;
 final file = File(filePath.paths.first!);
 debugPrint('loading and importing json file...');
 final json = await file.readAsString();
 await meshManagerApi.importMeshNetworkJson(json);
 debugPrint('done !');
 },
 child: const Text('Import MeshNetwork (JSON)'),
),
 TextButton(
 onPressed: meshManagerApi.loadMeshNetwork,
 child: const Text('Load MeshNetwork'),
),
 TextButton(
 onPressed: meshNetwork != null
 ? () async {
 final meshNetworkJson = await meshManagerApi.exportMeshNetwork();
 debugPrint(meshNetworkJson);
 }
 : null,
 child: const Text('Export MeshNetwork'),
),
 TextButton(
 onPressed: meshNetwork != null ? meshManagerApi.resetMeshNetwork : null,
 child: const Text('Reset MeshNetwork'),
),
],
);
 }
}

/// A [Widget] to alter network's data without the need of an open connection.
/// _(Manage provisioners, groups, etc.)_
class MeshNetworkManagerWidget extends StatelessWidget {
 final NordicNrfMesh nordicNrfMesh;

 const MeshNetworkManagerWidget({Key? key, required this.nordicNrfMesh}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 MeshManagerApi? meshManagerApi = nordicNrfMesh.meshManagerApi;
 IMeshNetwork? meshNetwork = meshManagerApi.meshNetwork;
 return Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: [

71

 TextButton(
 onPressed: meshNetwork != null
 ? () async {
 //13 provisioners are maximum with the below given ranges and the default ttl is 5
 //above that, will throw error
 final result = await meshNetwork.addProvisioner(0x0888, 0x02F6, 0x0888, 5);
 debugPrint('provisioner added : $result');
 }
 : null,
 child: const Text('add provisioner'),
),
 TextButton(
 onPressed: meshNetwork != null
 ? () async {
 var provs = await meshNetwork.provisioners;
 debugPrint('# of provs : ${provs.length}');
 for (var value in provs) {
 debugPrint('$value');
 }
 }
 : null,
 child: const Text('get provisioner list'),
),
 TextButton(
 onPressed: meshNetwork != null
 ? () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 final groupName = await showDialog<String>(
 context: context,
 builder: (c) {
 String? groupName;
 return Dialog(
 shape: const RoundedRectangleBorder(
 borderRadius: BorderRadius.all(Radius.circular(5.0)),
),
 insetPadding: const EdgeInsets.symmetric(horizontal: 40),
 elevation: 0.0,
 child: Padding(
 padding: const EdgeInsets.fromLTRB(24.0, 20.0, 24.0, 24.0),
 child: Container(
 decoration: const BoxDecoration(
 shape: BoxShape.rectangle,
),
 child: Column(
 mainAxisSize: MainAxisSize.min,
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 TextField(

72

 decoration: const InputDecoration(labelText: 'Group name'),
 onChanged: (text) => groupName = text,
),
 TextButton(
 onPressed: () => Navigator.pop(c, groupName),
 child: const Text('OK'),
)
],
),
),
),
);
 });
 if (groupName != null && groupName.isNotEmpty) {
 try {
 await meshManagerApi.meshNetwork!.addGroupWithName(groupName);
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 } else {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('No name given,
aborting')));
 }
 }
 : null,
 child: const Text('Create group with name'),
),
 TextButton(
 onPressed: meshNetwork != null
 ? () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 final groupAdr = await showDialog<String>(
 context: context,
 builder: (c) {
 String? groupAdr;
 return Dialog(
 shape: const RoundedRectangleBorder(
 borderRadius: BorderRadius.all(Radius.circular(5.0)),
),
 insetPadding: const EdgeInsets.symmetric(horizontal: 40),
 elevation: 0.0,
 child: Padding(
 padding: const EdgeInsets.fromLTRB(24.0, 20.0, 24.0, 24.0),
 child: Container(
 decoration: const BoxDecoration(

73

 shape: BoxShape.rectangle,
),
 child: Column(
 mainAxisSize: MainAxisSize.min,
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 TextField(
 decoration: const InputDecoration(labelText: 'Group address'),
 keyboardType: TextInputType.number,
 onChanged: (text) => groupAdr = text,
),
 TextButton(
 onPressed: () => Navigator.pop(c, groupAdr),
 child: const Text('OK'),
)
],
),
),
),
);
 });
 if (groupAdr != null && groupAdr.isNotEmpty) {
 try {
 await meshManagerApi.meshNetwork!.removeGroup(int.parse(groupAdr));
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 } else {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('No address given,
aborting')));
 }
 }
 : null,
 child: const Text('Delete group'),
),
 TextButton(
 onPressed: meshNetwork != null
 ? () async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 final groupAdr = await showDialog<String>(
 context: context,
 builder: (c) {
 String? groupAdr;
 return Dialog(
 shape: const RoundedRectangleBorder(

74

 borderRadius: BorderRadius.all(Radius.circular(5.0)),
),
 insetPadding: const EdgeInsets.symmetric(horizontal: 40),
 elevation: 0.0,
 child: Padding(
 padding: const EdgeInsets.fromLTRB(24.0, 20.0, 24.0, 24.0),
 child: Container(
 decoration: const BoxDecoration(
 shape: BoxShape.rectangle,
),
 child: Column(
 mainAxisSize: MainAxisSize.min,
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[
 TextField(
 decoration: const InputDecoration(labelText: 'Group address'),
 keyboardType: TextInputType.number,
 onChanged: (text) => groupAdr = text,
),
 TextButton(
 onPressed: () => Navigator.pop(c, groupAdr),
 child: const Text('OK'),
)
],
),
),
),
);
 });
 if (groupAdr != null && groupAdr.isNotEmpty) {
 try {
 final subs = await
meshManagerApi.meshNetwork!.elementsForGroup(int.parse(groupAdr));
 debugPrint('$subs');
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('OK')));
 } on PlatformException catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('${e.message}')));
 } catch (e) {
 scaffoldMessenger.showSnackBar(SnackBar(content: Text(e.toString())));
 }
 } else {
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('No address given,
aborting')));
 }
 }
 : null,
 child: const Text('Get group elements'),
),

75

],
);
 }
}

import 'dart:async';
import 'dart:io';

import 'package:flutter/material.dart';
import 'package:flutter_reactive_ble/flutter_reactive_ble.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/app.dart';
import 'package:nordic_nrf_mesh_example/src/widgets/device.dart';

class ScanningAndProvisioning extends StatefulWidget {
 final NordicNrfMesh nordicNrfMesh;
 final VoidCallback onGoToControl;

 const ScanningAndProvisioning({
 Key? key,
 required this.nordicNrfMesh,
 required this.onGoToControl,
 }) : super(key: key);

 @override
 State<ScanningAndProvisioning> createState() => _ScanningAndProvisioningState();
}

class _ScanningAndProvisioningState extends State<ScanningAndProvisioning> {
 late MeshManagerApi _meshManagerApi;
 bool isScanning = true;
 StreamSubscription? _scanSubscription;
 bool isProvisioning = false;

 final _serviceData = <String, Uuid>{};
 final _devices = <DiscoveredDevice>{};

 @override
 void initState() {
 super.initState();
 _meshManagerApi = widget.nordicNrfMesh.meshManagerApi;
 _scanUnprovisionned();
 }

 @override
 void dispose() {
 super.dispose();
 _scanSubscription?.cancel();

76

 }

 Future<void> _scanUnprovisionned() async {
 _serviceData.clear();
 setState(() {
 _devices.clear();
 });
 await checkAndAskPermissions();
 _scanSubscription = widget.nordicNrfMesh.scanForUnprovisionedNodes().listen((device) async {
 if (_devices.every((d) => d.id != device.id)) {
 final deviceUuid =

Uuid.parse(_meshManagerApi.getDeviceUuid(device.serviceData[meshProvisioningUuid]!.toList()));
 debugPrint('deviceUuid: $deviceUuid');
 _serviceData[device.id] = deviceUuid;
 _devices.add(device);
 setState(() {});
 }
 });
 setState(() {
 isScanning = true;
 });
 return Future.delayed(const Duration(seconds: 10), _stopScan);
 }

 Future<void> _stopScan() async {
 await _scanSubscription?.cancel();
 isScanning = false;
 if (mounted) {
 setState(() {});
 }
 }

 Future<void> provisionDevice(DiscoveredDevice device) async {
 final scaffoldMessenger = ScaffoldMessenger.of(context);
 if (isScanning) {
 await _stopScan();
 }
 if (isProvisioning) {
 return;
 }
 isProvisioning = true;

 try {
 // Android is sending the mac Adress of the device, but Apple generates
 // an UUID specific by smartphone.

 String deviceUUID;

77

 if (Platform.isAndroid) {
 deviceUUID = _serviceData[device.id].toString();
 } else if (Platform.isIOS) {
 deviceUUID = device.id.toString();
 } else {
 throw UnimplementedError('device uuid on platform : ${Platform.operatingSystem}');
 }
 final provisioningEvent = ProvisioningEvent();
 final provisionedMeshNodeF = widget.nordicNrfMesh
 .provisioning(
 _meshManagerApi,
 BleMeshManager(),
 device,
 deviceUUID,
 events: provisioningEvent,
)
 .timeout(const Duration(minutes: 1));

 unawaited(provisionedMeshNodeF.then((node) {
 Navigator.of(context).pop();
 scaffoldMessenger
 .showSnackBar(const SnackBar(content: Text('Provisionning succeed, redirecting to control
tab...')));
 Future.delayed(const Duration(milliseconds: 500), widget.onGoToControl);
 }).catchError((_) {
 Navigator.of(context).pop();
 scaffoldMessenger.showSnackBar(const SnackBar(content: Text('Provisionning failed')));
 _scanUnprovisionned();
 }));
 await showDialog(
 context: context,
 barrierDismissible: false,
 builder: (_) => ProvisioningDialog(provisioningEvent: provisioningEvent),
);
 } catch (e) {
 debugPrint('$e');
 scaffoldMessenger.showSnackBar(SnackBar(content: Text('Caught error: $e')));
 } finally {
 isProvisioning = false;
 }
 }

 @override
 Widget build(BuildContext context) {
 return RefreshIndicator(
 onRefresh: () {
 if (isScanning) {

78

 return Future.value();
 }
 return _scanUnprovisionned();
 },
 child: Column(
 children: [
 if (isScanning) const LinearProgressIndicator(),
 if (!isScanning && _devices.isEmpty)
 const Expanded(
 child: Center(
 child: Text('No module found'),
),
),
 if (_devices.isNotEmpty)
 Expanded(
 child: ListView(
 padding: const EdgeInsets.all(8),
 children: [
 for (var i = 0; i < _devices.length; i++)
 Device(
 key: ValueKey('device-$i'),
 device: _devices.elementAt(i),
 onTap: () => provisionDevice(_devices.elementAt(i)),
),
],
),
),
],
),
);
 }
}

class ProvisioningDialog extends StatelessWidget {
 final ProvisioningEvent provisioningEvent;

 const ProvisioningDialog({Key? key, required this.provisioningEvent}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Center(
 child: Card(
 margin: const EdgeInsets.all(8),
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 mainAxisSize: MainAxisSize.min,
 children: [
 const LinearProgressIndicator(),

79

 Padding(
 padding: const EdgeInsets.all(8),
 child: Column(
 children: [
 const Text('Steps :'),
 Column(
 children: [
 ProvisioningState(
 text: 'onProvisioningCapabilities',
 stream: provisioningEvent.onProvisioningCapabilities.map((event) => true),
),
 ProvisioningState(
 text: 'onProvisioning',
 stream: provisioningEvent.onProvisioning.map((event) => true),
),
 ProvisioningState(
 text: 'onProvisioningReconnect',
 stream: provisioningEvent.onProvisioningReconnect.map((event) => true),
),
 ProvisioningState(
 text: 'onConfigCompositionDataStatus',
 stream: provisioningEvent.onConfigCompositionDataStatus.map((event) => true),
),
 ProvisioningState(
 text: 'onConfigAppKeyStatus',
 stream: provisioningEvent.onConfigAppKeyStatus.map((event) => true),
),
],
)
],
),
),
],
),
),
);
 }
}

class ProvisioningState extends StatelessWidget {
 final Stream<bool> stream;
 final String text;

 const ProvisioningState({Key? key, required this.stream, required this.text}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return StreamBuilder<bool>(

80

 initialData: false,
 stream: stream,
 builder: (context, snapshot) {
 return Row(
 children: [
 Text(text),
 const Spacer(),
 Checkbox(
 value: snapshot.data,
 onChanged: null,
),
],
);
 },
);
 }
}

import 'package:flutter/material.dart';
import 'package:flutter_reactive_ble/flutter_reactive_ble.dart';

class Device extends StatelessWidget {
 final DiscoveredDevice device;
 final VoidCallback? onTap;

 const Device({Key? key, required this.device, this.onTap}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Card(
 child: InkWell(
 onTap: onTap,
 child: Padding(
 padding: const EdgeInsets.all(8),
 child: Text('${device.name} : ${device.id}'),
),
),
);
 }
}

import 'package:flutter/material.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/views/control_module/mesh_element.dart';

class Group extends StatefulWidget {
 final GroupData groupData;
 final IMeshNetwork meshNetwork;

81

 const Group(this.groupData, this.meshNetwork, {Key? key}) : super(key: key);

 @override
 State<Group> createState() => _GroupState();
}

class _GroupState extends State<Group> {
 List<ElementData> elements = [];

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 title: Text(widget.groupData.name),
 subtitle: Text(widget.groupData.address.toString()),
 onExpansionChanged: (isOpen) {
 if (isOpen) {
 debugPrint('load elements');
 widget.meshNetwork
 .elementsForGroup(widget.groupData.address)
 .then((value) => setState(() => elements = value));
 }
 },
 children: <Widget>[
 const Text('Elements :'),
 Column(
 children: <Widget>[
 ...elements.map((e) => MeshElement(e)).toList(),
],
),
],
);
 }
}

import 'package:flutter/material.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';

import 'group.dart';
import 'node.dart';

class MeshNetworkDataWidget extends StatefulWidget {
 final IMeshNetwork meshNetwork;

 const MeshNetworkDataWidget({Key? key, required this.meshNetwork}) : super(key: key);

 @override
 State<MeshNetworkDataWidget> createState() => _MeshNetworkDataWidgetState();
}

82

class _MeshNetworkDataWidgetState extends State<MeshNetworkDataWidget> {
 List<ProvisionedMeshNode> _nodes = [];
 List<GroupData> _groups = [];

 @override
 void initState() {
 super.initState();
 widget.meshNetwork.nodes.then((value) => setState(() => _nodes = value));
 widget.meshNetwork.groups.then((value) => setState(() => _groups = value));
 }

 @override
 void didUpdateWidget(covariant MeshNetworkDataWidget oldWidget) {
 super.didUpdateWidget(oldWidget);
 // nodes, provisioners and groups may have changed
 widget.meshNetwork.nodes.then((value) => setState(() => _nodes = value));
 widget.meshNetwork.groups.then((value) => setState(() => _groups = value));
 }

 @override
 Widget build(BuildContext context) {
 return Column(
 children: <Widget>[
 Text('MeshNetwork ID: ${widget.meshNetwork.id}'),
 if (_nodes.isNotEmpty) ...[
 Text('Nodes (${_nodes.length}): '),
 ..._nodes.map((e) => Node(e, widget.meshNetwork, 'node-${_nodes.indexOf(e)}')),
],
 if (_groups.isNotEmpty) ...[
 Text('Groups (${_groups.length}): '),
 ..._groups.map((e) => Group(e, widget.meshNetwork)),
]
],
);
 }
}

import 'package:flutter/material.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/views/control_module/mesh_element.dart';

class Node extends StatefulWidget {
 final ProvisionedMeshNode node;
 final IMeshNetwork meshNetwork;
 final String testKey; // For flutter driver tests
 const Node(this.node, this.meshNetwork, this.testKey, {Key? key}) : super(key: key);

83

 @override
 State<Node> createState() => _NodeState();
}

class _NodeState extends State<Node> {
 String _nodeUuid = 'reaching...';
 String _nodeAdress = 'reaching...';
 List<ElementData> _elements = [];

 @override
 void initState() {
 super.initState();
 _nodeUuid = widget.node.uuid;
 widget.node.unicastAddress.then((value) => setState(() => _nodeAdress = value.toString()));
 }

 @override
 Widget build(BuildContext context) {
 return ExpansionTile(
 key: Key(widget.testKey),
 title: Text(_nodeUuid),
 subtitle: Text(_nodeAdress),
 onExpansionChanged: (isOpen) {
 if (isOpen) {
 debugPrint('load elements');
 widget.node.elements.then((value) => setState(() => _elements = value));
 }
 },
 children: <Widget>[
 const Text('Elements :'),
 Column(
 children: <Widget>[
 ..._elements.map((e) => MeshElement(e)).toList(),
],
),
],
);
 }
}

import 'package:device_info_plus/device_info_plus.dart';
import 'package:flutter/foundation.dart';
import 'package:flutter/material.dart';
import 'package:nordic_nrf_mesh/nordic_nrf_mesh.dart';
import 'package:nordic_nrf_mesh_example/src/views/control_module/provisioned_devices.dart';
import 'package:nordic_nrf_mesh_example/src/views/home/home.dart';
import
'package:nordic_nrf_mesh_example/src/views/scan_and_provisionning/scan_and_provisioning.dart';

84

import 'package:permission_handler/permission_handler.dart';

const int homeTab = 0;
const int provisioningTab = 1;
const int controlTab = 2;
// used for app's theme
const Map<int, Color> primarySwatch = {
 50: Color.fromRGBO(0, 164, 153, .1),
 100: Color.fromRGBO(0, 164, 153, .2),
 200: Color.fromRGBO(0, 164, 153, .3),
 300: Color.fromRGBO(0, 164, 153, .4),
 400: Color.fromRGBO(0, 164, 153, .5),
 500: Color.fromRGBO(0, 164, 153, .6),
 600: Color.fromRGBO(0, 164, 153, .7),
 700: Color.fromRGBO(0, 164, 153, .8),
 800: Color.fromRGBO(0, 164, 153, .9),
 900: Color.fromRGBO(0, 164, 153, 1),
};

class NordicNrfMeshExampleApp extends StatefulWidget {
 const NordicNrfMeshExampleApp({Key? key}) : super(key: key);

 @override
 State<NordicNrfMeshExampleApp> createState() =>
 _NordicNrfMeshExampleAppState();
}

class _NordicNrfMeshExampleAppState extends State<NordicNrfMeshExampleApp> {
 late final GlobalKey<ScaffoldMessengerState> _scaffoldKey =
 GlobalKey<ScaffoldMessengerState>(debugLabel: 'main_scaffold');
 late final NordicNrfMesh nordicNrfMesh = NordicNrfMesh();

 int _bottomNavigationBarIndex = homeTab;

 @override
 Widget build(BuildContext context) {
 Widget body = const SizedBox.shrink();

 if (_bottomNavigationBarIndex == homeTab) {
 // home
 body = Home(nordicNrfMesh: nordicNrfMesh);
 } else if (_bottomNavigationBarIndex == provisioningTab) {
 // scanning & provisionning
 body = ScanningAndProvisioning(
 nordicNrfMesh: nordicNrfMesh,
 onGoToControl: () {
 setState(() {
 _bottomNavigationBarIndex = controlTab;

85

 });
 });
 } else if (_bottomNavigationBarIndex == controlTab) {
 // List provisioned devices and then can control/setup them
 body = ProvisionedDevices(nordicNrfMesh: nordicNrfMesh);
 }

 return MaterialApp(
 theme: ThemeData(
 brightness: Brightness.light,
 primarySwatch: const MaterialColor(0xFF00A499, primarySwatch),
 primaryColor: const Color.fromRGBO(0, 164, 153, 1),
 primaryColorDark: const Color.fromRGBO(0, 114, 105, 1),
 scaffoldBackgroundColor: Colors.white,
),
 home: ScaffoldMessenger(
 key: _scaffoldKey,
 child: Scaffold(
 appBar: AppBar(),
 body: body,
 bottomNavigationBar: BottomNavigationBar(
 currentIndex: _bottomNavigationBarIndex,
 onTap: (newBottomNavigationBarIndex) {
 if (nordicNrfMesh.meshManagerApi.meshNetwork != null) {
 setState(() {
 _bottomNavigationBarIndex = newBottomNavigationBarIndex;
 });
 } else {
 _scaffoldKey.currentState!.clearSnackBars();
 _scaffoldKey.currentState!.showSnackBar(const SnackBar(
 content: Text('Please load a mesh network')));
 }
 },
 items: const [
 BottomNavigationBarItem(
 icon: Icon(Icons.home),
 label: 'Home',
),
 BottomNavigationBarItem(
 icon: Icon(Icons.bluetooth_searching),
 label: 'Provisioning',
),
 BottomNavigationBarItem(
 icon: Icon(Icons.videogame_asset),
 label: 'Control',
),
],
),

86

),
),
);
 }
}

void log(Object? msg) => debugPrint(
 '[$NordicNrfMeshExampleApp - ${DateTime.now().toIso8601String()}] $msg');

Future<void> checkAndAskPermissions() async {
 if (defaultTargetPlatform == TargetPlatform.android) {
 final androidInfo = await DeviceInfoPlugin().androidInfo;
 if (androidInfo.version.sdkInt! < 31) {
 // location
 await Permission.locationWhenInUse.request();
 await Permission.locationAlways.request();
 // bluetooth
 await Permission.bluetooth.request();
 } else {
 // bluetooth for Android 12 and up
 await Permission.bluetoothScan.request();
 await Permission.bluetoothConnect.request();
 }
 } else {
 // bluetooth for iOS 13 and up
 await Permission.bluetooth.request();
 }
}

16. References

[1] M. M. R. A. S. T. Tamaryn Menneer, "Modelling mould growth in domestic environments

using relative humidity and temperature," Building and Environment, vol. 208, no.
108583, 2022.

[2] Mach1global, "WHY TEMPERATURE CONTROL IS IMPORTANT IN

PHARMACEUTICAL LOGISTICS," Mach1, 4 October 2017. [Online]. Available:
https://www.mach1global.com/importance-of-temperature-control-pharmaceutical-
logistics/. [Accessed 4 September 2022].

[3] Zhang, Qinghua & Wang, Yi & Cheng, Guoquan & Zhuan, Wang & Shi, Dongmei.

(2014). Research on warehouse environment monitoring systems based on wireless
sensor networks. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics
and Applications, ICIEA 2014. 1639-1644. 10.1109/ICIEA.2014.6931430.

87

[4] Roomi, M. (2020, March 23). 6 advantages and disadvantages of WIFI: Drawbacks and
benefits of wireless networks. HitechWhizz. Retrieved September 13, 2022, from
https://www.hitechwhizz.com/2020/03/6-advantages-and-disadvantages-drawbacks-
benefits-of-wifi.html

[5] Prasanna. (2022, January 25). Zigbee technology advantages and disadvantages:

Zigbee Technology Architecture and its applications. A Plus Topper. Retrieved
September 13, 2022, from https://www.aplustopper.com/zigbee-technology-advantages-
and-disadvantages/

[6] https://www.konsyse.com/articles/advantages-and-disadvantages-of-z-wave/

[7] https://www.nicerf.com/articles/detail/advantages-and-disadvantages-of-lora-
module.html

[8] Editorial, E. (2021, February 10). System on a chip (SOC) - advantages and

disadvantages explained. RoboticsBiz. Retrieved August 31, 2022, from
https://roboticsbiz.com/system-on-a-chip-soc-advantages-and-disadvantages-
explained/#:~:text=SoC%20basically%20has%20smaller%20footprint,size%20means%2
0it%20is%20lightweight.&text=Application%2Dspecific%20SoCs%20can%20be%20cost
%2Defficient.

[9] Author, L. M. (2019, December 7). System-on-A-chip vs. Single Board computers: Linear

Microsystems. Linear Microsystems (LMI). Retrieved August 31, 2022, from

[10] Geeks for Geeks. (2022, July 7). Advantages and disadvantages of Microcontroller.

GeeksforGeeks. Retrieved August 31, 2022, from
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-
microcontroller/#:~:text=Advantages%20of%20the%20microcontroller%20%3A&text=At
%20an%20equivalent%20time%2C%20many,%2C%20and%20I%2FO%20port.

[11] Espressif Systems, ESP32-WROOM-32, Datasheet Version 2.5, Pages10-11.

[12] Raspberry Pi Ltd. (2022, June 6). Raspberry Pi Pico W Datasheet. Raspberry Pi Ltd.
Page

[13] Arduino®. (2022, September 1). Arduino® Nano 33 BLE Datasheet/Product Reference

Manual. Page 2

[14] Townsend, K. (n.d.). Bluefruit NRF52 Feather Learning Guide. Adafruit Learning

System. Retrieved September 1, 2022, from https://learn.adafruit.com/bluefruit-nrf52-
feather-learning-guide

[15] WROOM ESP32 WIFI based Microcontroller Development Board. (n.d.). Retrieved

September 1, 2022, from https://hallroad.org/esp32.html

[16] CART. (n.d.). Retrieved September 1, 2022, from https://www.daraz.pk/products/esp32-

wifi-esp-wroom-32-ch9102x-i222155602-
s1437614446.html?spm=a2a0e.searchlist.list.1.29493e67LlFLhr&search=1

https://www.hitechwhizz.com/2020/03/6-advantages-and-disadvantages-drawbacks-benefits-of-wifi.html
https://www.hitechwhizz.com/2020/03/6-advantages-and-disadvantages-drawbacks-benefits-of-wifi.html
https://www.konsyse.com/articles/advantages-and-disadvantages-of-z-wave/
https://www.nicerf.com/articles/detail/advantages-and-disadvantages-of-lora-module.html
https://www.nicerf.com/articles/detail/advantages-and-disadvantages-of-lora-module.html
https://roboticsbiz.com/system-on-a-chip-soc-advantages-and-disadvantages-explained/#:~:text=SoC%20basically%20has%20smaller%20footprint,size%20means%20it%20is%20lightweight.&text=Application%2Dspecific%20SoCs%20can%20be%20cost%2Defficient
https://roboticsbiz.com/system-on-a-chip-soc-advantages-and-disadvantages-explained/#:~:text=SoC%20basically%20has%20smaller%20footprint,size%20means%20it%20is%20lightweight.&text=Application%2Dspecific%20SoCs%20can%20be%20cost%2Defficient
https://roboticsbiz.com/system-on-a-chip-soc-advantages-and-disadvantages-explained/#:~:text=SoC%20basically%20has%20smaller%20footprint,size%20means%20it%20is%20lightweight.&text=Application%2Dspecific%20SoCs%20can%20be%20cost%2Defficient
https://roboticsbiz.com/system-on-a-chip-soc-advantages-and-disadvantages-explained/#:~:text=SoC%20basically%20has%20smaller%20footprint,size%20means%20it%20is%20lightweight.&text=Application%2Dspecific%20SoCs%20can%20be%20cost%2Defficient
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-microcontroller/#:~:text=Advantages%20of%20the%20microcontroller%20%3A&text=At%20an%20equivalent%20time%2C%20many,%2C%20and%20I%2FO%20port
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-microcontroller/#:~:text=Advantages%20of%20the%20microcontroller%20%3A&text=At%20an%20equivalent%20time%2C%20many,%2C%20and%20I%2FO%20port
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-microcontroller/#:~:text=Advantages%20of%20the%20microcontroller%20%3A&text=At%20an%20equivalent%20time%2C%20many,%2C%20and%20I%2FO%20port
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide

88

[17] Raspberry pi pico W WIFI in Pakistan. Hallroad Lahore. (n.d.). Retrieved September 1,
2022, from https://hallroadlahore.pk/raspberry-pi-pico-w-wifi.html

[18] Arduino: Nano 33 BLE sense NRF52480 development board - ABX00031. InStock.PK |

Pakistan's First Online Electronics Parts Store. (n.d.). Retrieved September 1, 2022,
from https://instock.pk/arduino-nano-33-ble-sense-abx00031.html

[19] Adafruit Feather NRF52 Bluefruit Le price: 8035.00 rs. Price: 8035.00 Rs. (n.d.).

Retrieved September 1, 2022, from https://www.shoppingbag.pk/amazon-adafruit-
feather-nrf52-bluefruit-le/O06KKFILYP.html

[20] Duncan, Santos, R., M.T.Mendis, Cullins, J., CobRce, Ton, Ludwig, S., Stefan,

Buenaflor, A. R., Santos, S., Saravanan, JDavis, Mutahi, K., Jupp, M., Pableitor, Peter,
Gibson, M., Alan, Amos, D., … Behrouz. (2022, April 19). Installing ESP32 in Arduino
IDE (windows, mac OS X, linux). Random Nerd Tutorials. Retrieved September 2, 2022,
from https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-
instructions/#:~:text=There's%20an%20add%2Don%20for,Mac%20OS%20X%20or%20
Linux.

[21] Max, Alimiracle, Lynn, H., Upton, L., Ben, Watkiss, S., Geerling, J., Szaja, Calvo, F. G.,

Felix, Johanson, P., Allan, A., Hellmark, Kamat, P., Pelowitz, D., & Zimmermann, U.
(2022, June 30). Raspberry pi pico W: Your $6 IOT platform. Raspberry Pi. Retrieved
September 2, 2022, from https://www.raspberrypi.com/news/raspberry-pi-pico-w-your-6-
iot-platform/

[22] Team, T. A. (n.d.). Nano 33 ble: Arduino Documentation. Arduino Documentation |

Arduino Documentation. Retrieved September 2, 2022, from
https://www.arduino.cc/en/Guide/NANO33BLE

[23] Townsend, K. (n.d.). Bluefruit NRF52 Feather Learning Guide. Adafruit Learning

System. Retrieved September 2, 2022, from https://learn.adafruit.com/bluefruit-nrf52-
feather-learning-guide/software-resources

[24] Blog Post Comparing The Different Wireless Technologies For Condition Monitoring

Applications In IIoT There are several wireless technologies to choose from, Video
Nordic Demonstrates Auracast™ Broadcast Audio Watch Nordic Semiconductor’s Vince
Hagen describe the demonstration of Auracast™ broadcast audio Nordic shared… ,
Case Study Farm to Store with Israel’s Largest Retailer, & Bluetooth News Auracast is
coming to Bluetooth. (n.d.). Bluetooth technology overview. Bluetooth® Technology
Website. Retrieved October 2, 2022, from https://www.bluetooth.com/learn-about-
bluetooth/tech-overview/

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/software-resources
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/software-resources

